585 research outputs found

    Macrocell Path-Loss Prediction Using Artificial Neural Networks

    Full text link

    Coverage optimization and power reduction in SFN using simulated annealing

    Get PDF
    An approach that predicts the propagation, models the terrestrial receivers and optimizes the performance of single frequency networks (SFN) for digital video broadcasting in terms of the final coverage achieved over any geographical region, enhancing the most populated areas, is proposed in this paper. The effective coverage improvement and thus, the self-interference reduction in the SFN is accomplished by optimizing the internal static delays, sector antenna gain, and both azimuth and elevation orientation for every transmitter within the network using the heuristic simulated annealing (SA) algorithm. Decimation and elevation filtering techniques have been considered and applied to reduce the computational cost of the SA-based approach, including results that demonstrate the improvements achieved. Further representative results for two SFN in different scenarios considering the effect on the final coverage of optimizing any of the transmitter parameters previously outlined or a combination of some of them are reported and discussed in order to show both, the performance of the method and how increasing gradually the complexity of the model for the transmitters leads to more realistic and accurate results.This work was supported by the Spanish Ministry of Science and Innovation under Projects TEC2008-02730 and TEC2012-33321. The work of M. Lanza and Á. L. Gutiérrez was supported by a Pre-Doctoral Grant from the University of Cantabria

    Deterministic diffraction loss modelling for novel broadband communication in rural environments

    Get PDF
    This paper presents a deterministic modelling approach to predict diffraction loss for an innovative Multi-User-Single-Antenna (MUSA) MIMO technology, proposed for rural Australian environments. In order to calculate diffraction loss, six receivers have been considered around an access point in a selected rural environment. Generated terrain profiles for six receivers are presented in this paper. Simulation results using classical diffraction models and diffraction theory are also presented by accounting the rural Australian terrain data. Results show that in an area of 900 m by 900 m surrounding the receivers, path loss due to diffraction can range between 5 dB and 35 dB. Diffraction loss maps can contribute to determine the optimal location for receivers of MUSA-MIMO systems in rural areas
    corecore