497 research outputs found

    MobiBits: Multimodal Mobile Biometric Database

    Full text link
    This paper presents a novel database comprising representations of five different biometric characteristics, collected in a mobile, unconstrained or semi-constrained setting with three different mobile devices, including characteristics previously unavailable in existing datasets, namely hand images, thermal hand images, and thermal face images, all acquired with a mobile, off-the-shelf device. In addition to this collection of data we perform an extensive set of experiments providing insight on benchmark recognition performance that can be achieved with these data, carried out with existing commercial and academic biometric solutions. This is the first known to us mobile biometric database introducing samples of biometric traits such as thermal hand images and thermal face images. We hope that this contribution will make a valuable addition to the already existing databases and enable new experiments and studies in the field of mobile authentication. The MobiBits database is made publicly available to the research community at no cost for non-commercial purposes.Comment: Submitted for the BIOSIG2018 conference on June 18, 2018. Accepted for publication on July 20, 201

    Multimodal Biometrics Enhancement Recognition System based on Fusion of Fingerprint and PalmPrint: A Review

    Get PDF
    This article is an overview of a current multimodal biometrics research based on fingerprint and palm-print. It explains the pervious study for each modal separately and its fusion technique with another biometric modal. The basic biometric system consists of four stages: firstly, the sensor which is used for enrolmen

    Latent-to-full palmprint comparison based on radial triangulation under forensic conditions

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. R. Wang, D. Ramos, J. Fiérrez, "Latent-to-full palmprint comparison based on radial triangulation under forensic conditions" in International Joint Conference on Biometrics (IJCB), Washington, D.C. (USA), 2011, 1 - 6.In forensic applications the evidential value of palmprints is obvious according to surveys of law enforcement agencies which indicate that 30 percent of the latents recovered from crime scenes are from palms. Consequently, developing forensic automatic palmprint identification technology is an urgent and challenging task which deals with latent (i.e., partial) and full palmprints captured or recovered at 500 ppi at least (the current standard in forensic applications) for minutiae-based offline recognition. Moreover, a rigorous quantification of the evidential value of biometrics, such as fingerprints and palmprints, is essential in modern forensic science. Recently, radial triangulation has been proposed as a step towards this objective in fingerprints, using minutiae manually extracted by experts. In this work we help in automatizing such comparison strategy, and generalize it to palmprints. Firstly, palmprint segmentation and enhancement are implemented for full prints feature extraction by a commercial biometric SDK in an automatic way, while features of latent prints are manually extracted by forensic experts. Then a latent-to-full palmprint comparison algorithm based on radial triangulation is proposed, in which radial triangulation is utilized for minutiae modeling. Finally, 22 latent palmprints from real forensic cases and 8680 full palmprints from criminal investigation field are used for performance evaluation. Experimental results proof the usability and efficiency of the proposed system, i.e, rank-l identification rate of 62% is achieved despite the inherent difficulty of latent-to-full palmprint comparison.The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007- 2013) under grant agreement number 23880

    Palmprint Gender Classification Using Deep Learning Methods

    Get PDF
    Gender identification is an important technique that can improve the performance of authentication systems by reducing searching space and speeding up the matching process. Several biometric traits have been used to ascertain human gender. Among them, the human palmprint possesses several discriminating features such as principal-lines, wrinkles, ridges, and minutiae features and that offer cues for gender identification. The goal of this work is to develop novel deep-learning techniques to determine gender from palmprint images. PolyU and CASIA palmprint databases with 90,000 and 5502 images respectively were used for training and testing purposes in this research. After ROI extraction and data augmentation were performed, various convolutional and deep learning-based classification approaches were empirically designed, optimized, and tested. Results of gender classification as high as 94.87% were achieved on the PolyU palmprint database and 90.70% accuracy on the CASIA palmprint database. Optimal performance was achieved by combining two different pre-trained and fine-tuned deep CNNs (VGGNet and DenseNet) through score level average fusion. In addition, Gradient-weighted Class Activation Mapping (Grad-CAM) was also implemented to ascertain which specific regions of the palmprint are most discriminative for gender classification
    • …
    corecore