2,499 research outputs found

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Single-Switch User Interface for Robot Arm to Help Disabled People Using RT-Middleware

    Get PDF
    We are developing a manipulator system in order to support disabled people with less muscle strength such as muscular dystrophy patients. Such a manipulator should have an easy user interface for the users to control it. But the supporting manipulator for disabled people cannot make large industry, so we should offer inexpensive manufacturing way. These type products are called “orphan products.” We report on the construction of the user interface system using RT-Middleware which is an open software platform for robot systems. Therefore other user interface components or robot components which are adapted to other symptoms can be replaced with the user interface without any change of the contents. A single switch and scanning menu panel are introduced as the input device for the manual control of the robot arm. The scanning menu panel is designed to perform various actions of the robot arm with the single switch. A manipulator simulation system was constructed to evaluate the input performance. Two muscular dystrophy patients tried our user interface to control the robot simulator and made comments. According to the comments by them, we made several improvements on the user interface. This improvements examples prepare inexpensive manufacturing way for orphan products

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Sensor-based navigating mobile robots for people with disabilities

    Get PDF
    People with severe physical disabilities need help with everyday tasks, such as getting dressed, eating, brushing their teeth, scratching themselves, drinking, etc. They also need support to be able to work. They are usually helped by one or more persona

    Functional evaluation of ASIBOT: A new approach on portable robotic system for disabled people

    Get PDF
    In this work, an innovative robotic solution for human care and assistance is presented. Our main objective is to develop a new concept of portable robot able to support the elderly and those people with different levels of disability during the execution of daily tasks, such as washing their face or hands, brushing their teeth, combing their hair, eating, drinking, and bringing objects closer, among others. Our prototype, ASIBOT, is a five degrees of freedom (DOF) self-contained manipulator that includes the control system and electronic equipment on board. The main advantages of the robot are its light weight, about 11 kg for a 1.3 m reach, its autonomy, and its ability to move between different points (docking stations) of the room or from the environment to a wheelchair and vice versa, which facilitates its supportive functions. The functional evaluation of ASIBOT is addressed in this paper. For this purpose the robotic arm is tested in different experiments with disabled people, gathering and discussing the results according to a methodology that allows us to assess users' satisfaction.The research leading to these results has received funding from the RoboCity2030- II-CM project (S2009/DPI-1559), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU.Publicad

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197

    User-centered design of a dynamic-autonomy remote interaction concept for manipulation-capable robots to assist elderly people in the home

    Get PDF
    In this article, we describe the development of a human-robot interaction concept for service robots to assist elderly people in the home with physical tasks. Our approach is based on the insight that robots are not yet able to handle all tasks autonomously with sufficient reliability in the complex and heterogeneous environments of private homes. We therefore employ remote human operators to assist on tasks a robot cannot handle completely autonomously. Our development methodology was user-centric and iterative, with six user studies carried out at various stages involving a total of 241 participants. The concept is under implementation on the Care-O-bot 3 robotic platform. The main contributions of this article are (1) the results of a survey in form of a ranking of the demands of elderly people and informal caregivers for a range of 25 robot services, (2) the results of an ethnography investigating the suitability of emergency teleassistance and telemedical centers for incorporating robotic teleassistance, and (3) a user-validated human-robot interaction concept with three user roles and corresponding three user interfaces designed as a solution to the problem of engineering reliable service robots for home environments

    Tongue Control of Upper-Limb Exoskeletons For Individuals With Tetraplegia

    Get PDF

    Computer Access Technologies for Controlling Assistive Robotic Manipulators: Potentials and Challenges

    Get PDF
    One of the most challenging barriers to a successful application of the assistive robots is how to enable users who have special needs to interact with the robot aids in an efficient and comfortable manner, since the conventional control method using a traditional joystick combined with buttons and/or knobs demands fine motor control and good dexterity resulting in cognitive and physical workload. Adopting computer access technology, which has provided an alternative means to allow people who have a wide range of special needs to independently access their computer, can be a practical solution to this issue. In this paper, we reviewed and discussed the potentials and challenges of computer access technologies as an alternative control method for controlling assistive robotic manipulators, focusing on most widely adopted interventions in the clinical settings, including alternative pointing, keyboard-only access, switch scanning interface and speech recognition

    Suitable task allocation in intelligent systems for assistive environments

    Get PDF
    The growing need of technological assistance to provide support to people with special needs demands for systems more and more efficient and with better performances. With this aim, this work tries to advance in a multirobot platform that allows the coordinated control of different agents and other elements in the environment to achieve an autonomous behavior based on the user’s needs or will. Therefore, this environment is structured according to the potentiality of each agent and elements of this environment and of the dynamic context, to generate the adequate actuation plans and the coordination of their execution.Peer ReviewedPostprint (author's final draft
    corecore