2,060 research outputs found

    Development of a Multiphase Photon Monte Carlo Method for Spray Combustion and its Application in High-pressure Conditions

    Get PDF
    In this work the development of a multiphase photon Monte Carlo (PMC) method with a focus on resolving radiative heat transfer in combustion simulations is presented. The multiphase PMC solver can account for description of participating media in both Lagrangian and Eulerian frameworks. The solver is validated against exact solutions in several one-dimensional configurations. The developed solver is then applied to Diesel spray combustions, where liquid spray droplets are assumed to be cold, nonemitting, large, and isotropically scattering. Several formulations for radiative properties of the Diesel spray are first explored. The PMC solver has then been coupled with the multiphase spray combustion solver in OpenFOAM and the coupled solver is used for simulations of high pressure Diesel spray combustion. It was found that in typical Diesel spray combustion applications, such as in an internal combustion engine, impact of radiation on the evolution of the liquid spray was insignificant. Although the impact of radiation on the spray was minimal, nongray spectral properties and the assumption of semi-transparency for Diesel spray were found to impact the radiative transfer significantly, while impact of scattering was marginal. Spray radiation was also found not to have much effect on global combustion characteristics in high-pressure engine-relevant configurations. However, a small but noticeable effect on minor species distribution relevant to pollutant formation was observed

    Simulating water-entry/exit problems using Eulerian-Lagrangian and fully-Eulerian fictitious domain methods within the open-source IBAMR library

    Full text link
    In this paper we employ two implementations of the fictitious domain (FD) method to simulate water-entry and water-exit problems and demonstrate their ability to simulate practical marine engineering problems. In FD methods, the fluid momentum equation is extended within the solid domain using an additional body force that constrains the structure velocity to be that of a rigid body. Using this formulation, a single set of equations is solved over the entire computational domain. The constraint force is calculated in two distinct ways: one using an Eulerian-Lagrangian framework of the immersed boundary (IB) method and another using a fully-Eulerian approach of the Brinkman penalization (BP) method. Both FSI strategies use the same multiphase flow algorithm that solves the discrete incompressible Navier-Stokes system in conservative form. A consistent transport scheme is employed to advect mass and momentum in the domain, which ensures numerical stability of high density ratio multiphase flows involved in practical marine engineering applications. Example cases of a free falling wedge (straight and inclined) and cylinder are simulated, and the numerical results are compared against benchmark cases in literature.Comment: The current paper builds on arXiv:1901.07892 and re-explains some parts of it for the reader's convenienc

    A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes

    Get PDF
    In this paper we show and discuss the use of a versatile interaction potential approach coupled with an immersed boundary method to simulate a variety of flows involving deformable bodies. In particular, we focus on two kinds of problems, namely (i) deformation of liquid-liquid interfaces and (ii) flow in the left ventricle of the heart with either a mechanical or a natural valve. Both examples have in common the two-way interaction of the flow with a deformable interface or a membrane. The interaction potential approach (de Tullio & Pascazio, Jou. Comp. Phys., 2016; Tanaka, Wada and Nakamura, Computational Biomechanics, 2016) with minor modifications can be used to capture the deformation dynamics in both classes of problems. We show that the approach can be used to replicate the deformation dynamics of liquid-liquid interfaces through the use of ad-hoc elastic constants. The results from our simulations agree very well with previous studies on the deformation of drops in standard flow configurations such as deforming drop in a shear flow or a cross flow. We show that the same potential approach can also be used to study the flow in the left ventricle of the heart. The flow imposed into the ventricle interacts dynamically with the mitral valve (mechanical or natural) and the ventricle which are simulated using the same model. Results from these simulations are compared with ad- hoc in-house experimental measurements. Finally, a parallelisation scheme is presented, as parallelisation is unavoidable when studying large scale problems involving several thousands of simultaneously deforming bodies on hundreds of distributed memory computing processors

    Coupling of CFD and semiempirical methods for designing three-phase condensate separator: case study and experimental validation

    Get PDF
    This study presents an approach to determine the dimensions of three-phase separators. First, we designed different vessel configurations based on the fluid properties of an Iranian gas condensate field. We then used a comprehensive computational fluid dynamic (CFD) method for analyzing the three-phase separation phenomena. For simulation purposes, the combined volume of fluid–discrete particle method (DPM) approach was used. The discrete random walk (DRW) model was used to include the effect of arbitrary particle movement due to variations caused by turbulence. In addition, the comparison of experimental and simulated results was generated using different turbulence models, i.e., standard k–ε, standard k–ω, and Reynolds stress model. The results of numerical calculations in terms of fluid profiles, separation performance and DPM particle behavior were used to choose the optimum vessel configuration. No difference between the dimensions of the optimum vessel and the existing separator was found. Also, simulation data were compared with experimental data pertaining to a similar existing separator. A reasonable agreement between the results of numerical calculation and experimental data was observed. These results showed that the used CFD model is well capable of investigating the performance of a three-phase separator

    COUPLED LAGRANGE-EULER MODEL FOR SIMULATION OF BUBBLY FLOW IN VERTICAL PIPES CONSIDERING TURBULENT 3D RANDOM WALKS MODELS AND BUBBLES INTERACTION EFFECTS

    Full text link
    Una nueva aproximación euleriana-lagarangiana, en su forma de acople en dos vías, para la simulación de flujo de burbujas, agua-aire es presentada en la tesis, en la que se incluyen los efectos de las colisiones entre burbujas, así como las posibles roturas o coalescencia de burbujas. Esta aproximación utiliza el modelo Continuous Random Walk, CRW, para tener en cuenta las fluctuaciones de la velocidad. Esta aproximación se enmarca dentro de un modelo de turbulencia k-epsilon para la fase continua del líquido. En esta tesis se estudiarán los métodos para realizar el acople entre ambas aproximaciones, el efecto de la fuerza lift y de la dispersión turbulenta sobre la distribución de la fracción de huecos, así como los modelos de coalescencia y rotura de burbujas que puedan ser empleados en este tipo de aproximación. Se ha partido de un código euleriano para simular la parte continua, y sobre él se ha acoplado la aproximación lagrangiana. Para que ese acople afecte a la fase continua sobre su solver ser han añadido fuentes de momento y turbulencia. Además se ha modificado el volumen computacional de cada celda para que tenga en consideración el volumen ocupado por la fase dispersa. El acople en doble vía hace que los perfiles de velocidad y turbulencia de la fase continua se modifiquen notablemente y que se aproximen a los reales, lo que resulta básico para la correcta simulación de las fuerzas interfaciales. La colisión entre burbujas, y burbujas y pared se ha incluido. Este efecto es necesario como paso previo a incluir los procesos de rotura o coalescencia de burbujas, aunque la colisión en sí tenga efectos limitados en la distribución de la fracción de huecos. El proceso de coalescencia se basa en el modelo de Chester ( 1991 ) , el modelo compara el tiempo de colisión con el tiempo de drenaje de la película entre burbujas para determinar si existe o no coalescencia. El modelo de rotura se basa en el modelo de Martínez-Bazán. Uno de los principales hitos deAli Abd El Aziz Essa ., M. (2012). COUPLED LAGRANGE-EULER MODEL FOR SIMULATION OF BUBBLY FLOW IN VERTICAL PIPES CONSIDERING TURBULENT 3D RANDOM WALKS MODELS AND BUBBLES INTERACTION EFFECTS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18068Palanci

    Mechanistic modeling of evaporating thin liquid film instability on a bwr fuel rod with parallel and cross vapor flow

    Get PDF
    This work has been aimed at developing a mechanistic, transient, 3-D numerical model to predict the behavior of an evaporating thin liquid film on a non-uniformly heated cylindrical rod with simultaneous parallel and cross flow of vapor. Interest in this problem has been motivated by the fact that the liquid film on a full-length boiling water reactor fuel rod may experience significant axial and azimuthal heat flux gradients and cross flow due to variations in the thermal-hydraulic conditions in surrounding subchannels caused by proximity to inserted control blade tip and/or the top of part-length fuel rods. Such heat flux gradients coupled with localized cross flow may cause the liquid film on the fuel rod surface to rupture, thereby forming a dry hot spot. These localized dryout phenomena can not be accurately predicted by traditional subchannel analysis methods in conjunction with empirical dryout correlations. To this end, a numerical model based on the Level Contour Reconstruction Method was developed. The Standard k- turbulence model is included. A cylindrical coordinate system has been used to enhance the resolution of the Level Contour Reconstruction Model. Satisfactory agreement has been achieved between the model predictions and experimental data. A model of this type is necessary to supplement current state-of-the-art BWR core thermal-hydraulic design methods based on subchannel analysis techniques coupled with empirical dry out correlations. In essence, such a model would provide the core designer with a "magnifying glass" by which the behavior of the liquid film at specific locations within the core (specific axial node on specific location within a specific bundle in the subchannel analysis model) can be closely examined. A tool of this type would allow the designer to examine the effectiveness of possible design changes and/or modified control strategies to prevent conditions leading to localized film instability and possible fuel failure.Ph.D.Committee Chair: Abdel-Khalik, Said; Committee Member: Ammar, Mostafa H.; Committee Member: Ghiaasiaan, S. Mostafa; Committee Member: Hertel, Nolan E.; Committee Member: Liu, Yingji

    CFD modelling of the fluidised bed coating process

    Get PDF
    • …
    corecore