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SUMMARY 

 

This work has been aimed at developing a mechanistic, transient, 3-D numerical 

model to predict the behavior of an evaporating thin liquid film on a non-uniformly 

heated cylindrical rod with simultaneous parallel and cross flow of vapor. Interest in this 

problem has been motivated by the fact that the liquid film on a full-length boiling water 

reactor fuel rod may experience significant axial and azimuthal heat flux gradients and 

cross flow due to variations in the thermal-hydraulic conditions in surrounding 

subchannels caused by proximity to inserted control blade tip and/or the top of part-

length fuel rods.  Such heat flux gradients coupled with localized cross flow may cause 

the liquid film on the fuel rod surface to rupture, thereby forming a dry hot spot. These 

localized dryout phenomena can not be accurately predicted by traditional subchannel 

analysis methods in conjunction with empirical dryout correlations. To this end, a 

numerical model based on the Level Contour Reconstruction Method was developed. The 

Standard k- ε turbulence model is included. A cylindrical coordinate system has been 

used to enhance the resolution of the Level Contour Reconstruction Model. Satisfactory 

agreement has been achieved between the model predictions and experimental data.  

A model of this type is necessary to supplement current state-of-the-art BWR core 

thermal-hydraulic design methods based on subchannel analysis techniques coupled with 

empirical dry out correlations. In essence, such a model would provide the core designer 

with a “magnifying glass” by which the behavior of the liquid film at specific locations 

within the core (specific axial node on specific location within a specific bundle in the 

subchannel analysis model) can be closely examined. A tool of this type would allow the 



 xix

designer to examine the effectiveness of possible design changes and/or modified control 

strategies to prevent conditions leading to localized film instability and possible fuel 

failure. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

 

Multi-phase flow is a ubiquitous process with many important engineering 

applications. A variety of numerical techniques have been inspired by, and developed for, 

the direct simulation of such flows. The use of a fixed Eulerian grid to represent the 

velocity field with additional advection schemes to preserve the sharpness of interfacial 

fronts has become increasingly popular. Numerical approaches developed to 

mechanistically model the behavior of two-phase flow include the volume-of-fluid (VOF), 

level set, and front tracking methods. Recent comprehensive reviews of these numerical 

techniques can be found in Glimm et al.(1998), Scardovelli and Zaleski (1999), Osher 

and Fedkiw (2001), Jamet et al.(2001), and Tryggvason et al.(2001). These methods have 

been widely used to model a variety of two-phase flows involving drops, bubbles, and 

particles. Each of them has some advantage over the others and has offered varying 

degrees of success in modeling general multiphase problems. During the past several 

years, efforts at Georgia Tech have focused on the development of a simplified front 

tracking method, called the Level Contour Reconstruction Method (LCRM) (Shin and 

Juric, 2002, Shin et al., 2005a, 2005b, Shin and Abdel-Khalik, 2007), which does not 

have logical connectivity and thus eliminates the associated algorithmic burden in the 

original front tracking method while retaining the accuracy and advantages of explicit 
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Lagrangian surface tracking. A primary advantage of the Level Contour Reconstruction 

Method is the ability to naturally and automatically handle interface merging and breakup 

in 3D flows which was extremely difficult in the original front tracking method. 

The behavior of a thin liquid film flowing along a solid wall has numerous 

engineering applications ranging from surface coating to cooling of nuclear reactor cores. 

The problem is readily amenable to analysis using LCRM. Our interest in this problem 

derives from earlier work on modeling of annular two-phase flow in boiling water 

reactors (BWRs). A boiling water reactor contains several hundred fuel assemblies. Fuel 

assemblies may contain several part length fuel rods to enhance moderation in the upper 

regions of the core and improve fuel utilization (Figure 1.1) depending on venders. The 

active length of full length fuel rods is about 3.6 meters. It has been hypothesized that 

some recent BWR fuel failures following control rod maneuvers may have been caused 

by liquid film instability in regions of localized cross flow and high heat flux gradients. 

Specifically, the liquid film flowing upwards along a full-length fuel rod in the upper 

regions of the core may experience significant azimuthal and axial heat flux gradients and 

cross flow caused by variations in the thermal-hydraulic conditions in the surrounding 

subchannels caused by proximity to an inserted control blade tip and/or sudden change in 

geometry at the top of neighboring part-length rods. The heat flux gradients and cross 

flow may cause the liquid water film on the fuel rod surface to rupture, thereby forming a 

dry hot spot (Figure 1.2). Such localized dryout phenomena cannot be accurately 

predicted by current core design methods based on subchannel analysis techniques 

coupled with empirical dryout correlations.  
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  Figure 1.1: Schematic of a BWR fuel assembly cross section 

                       

Figure 1.2: Liquid film dry patch formation under cross flow and high local heat 
flux conditions  

 

To this end, this research has been undertaken to develop a numerical model by 

which the detailed three-dimensional behavior of the liquid film along a specific axial 

node of a specific fuel rod can be mechanistically modeled (Figure 1.3). The simulation 

region of LCRM encompasses one computational node in a subchannel analysis code (10 

WATER 
ROD

WATER 
ROD

PART LENGTH ROD 

FULL LENGTH ROD 
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cm long subchannel). The model would supplement current subchannel analysis methods 

by allowing core designers to focus closely on specific areas of potential concern.  

                         

 

Figure 1.3: LCRM simulation region encompassing one subchannel analysis 
code computational node 

 

Among the challenges presented by this problem is the ability to accurately 

represent the evolving liquid film interface despite the relatively coarse grid resolution 

necessitated by the three-dimensional nature of the problem. Additionally, operating 

conditions in current boiling water reactor cores produce turbulent flow in both the vapor 

core and liquid film in the upper regions of the core. Hence it is necessary to   incorporate 

turbulent effects in the model. In this study, we present an algorithm for modeling the 

liquid-film-covered fuel rod geometry using a cylindrical coordinate system, in 

combination with Standard ε−k  turbulence model. The aim is to develop the means to 

3.6 m 

Cross vapor flow

LCRM  
Simulation 
Region 
10 cm 
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realistically simulate the behavior of an evaporating thin film on a cylindrical nuclear fuel 

rod surface using LCRM. 

1.2 Critical Heat Flux 

 
The critical heat flux (CHF) in a boiling system is the heat flux above which the 

surface temperature of the heated surface is expected to rapidly rise due to either 

departure from nucleate boiling (DNB) or liquid film dryout. If operated above the 

critical heat flux, fuel rod cladding in a nuclear reactor core would be damaged due to 

such high temperatures. Thus the critical heat flux has become one of the most important 

operational limits for nuclear reactor cores.  

 

 
           (a) DNB                                                    (b) Dryout 

Figure 1.4: Schematic diagram of CHF (a) Departure from nucleate boiling (DNB) (b) 
Dryout.  

 

 It is generally agreed that there are two CHF mechanisms: departure from 

nucleate boiling (DNB) and dryout, as presented in Figures 1.4 (a) and (b), respectively. 

DNB can take place in either subcooled or saturated flow boiling at low vapor quality 

DNB 
Dryout 

Liquid 
Film 

Vapor 



 6

(e.g. PWR hot channels), while dryout occurs in saturated flow boiling at high vapor 

quality (e.g. upper region of BWR cores). In DNB, a vapor film forms on the wall 

separating the liquid water from the heated surface, thereby increasing the wall 

temperature. Dryout, on the other hand, occurs in annular two-phase flow, where the 

thickness of the liquid film on the wall becomes very small due to evaporation so that it 

can no longer transfer the heat effectively from the wall.  

Different models have been proposed to predict the critical heat flux. Kataoka et 

al. (1997) proposed a prediction model for DNB and dryout. Other dryout prediction 

models can be found in the work of Hewitt (1990) and Okawa (2003). In general, 

however, core designers rely on empirical correlations based on experimental data for the 

exact bundle geometries to be used. These correlations, however, may not fully capture 

the actual range of operating conditions, including axial and azimuthal variations in heat 

flux due to proximity of control rods as well as cross flow due to sudden geometry 

changes near the top of part length rods. Hence in this study we attempt to 

mechanistically model dryout using LCRM. LCRM allows us to track the liquid film 

evolution for different velocity and heat flux boundary conditions. This provides a way of 

predicting CHF under vapor cross flow and heat flux gradient.  

1.3 Turbulence Modeling 

Turbulent flow exists in numerous engineering applications including PWR and 

BWR reactors. Turbulent flow is dissipative. In turbulent flow, there are numerous eddies 

in the flow ranging in size from “large” eddies to “small” eddies (Figure 1.5). Large 

eddies transfer energy to smaller eddies. Smaller eddies break up and transfer energy to 

even smaller eddies. This process is repeated until the smallest scale, where the energy is 
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dissipated to heat by molecular viscosity. This process is often referred to energy 

cascade. In addition to the eddies, large scale motion exists in turbulent flow. The large 

scale motion with complex movement greatly influences the far field downstream 

conditions. The complex movement present in turbulent flow greatly enhances the 

transport of mass, momentum and energy, well above the rates achieved in laminar flow.  

 

Figure 1.5: Turbulent flow contains large eddies and small eddies with varies 
length scale with complex movement 

 

To understand turbulent flow, both simulation and experimental approaches are 

used. However, in many cases, experiments are limited by the ability to fully diagnose 

the conditions within a turbulent flow field. Some parameters of turbulent flow, for 

example the fluctuating pressure, are difficult to measure even by the most advanced 

equipment. Additionally, many experiments are costly. Hence, simulation has become an 

important approach for engineers to understand the behavior of turbulent flows.  

Over the past few decades, several numerical methods have been developed for 

turbulent flow simulation, including direct numerical simulation (DNS), large-eddy 

simulation (LES), and solution of the Reynolds Averaged Navier-Stokes (RANS) 
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equations etc. In addition, statistical models of turbulent flow have been proposed (Pope, 

2000). DNS solves the Navier-Stokes equations directly from large eddies to the smallest 

eddies. On the other hand, LES mainly simulates the large eddies while making some 

approximations for smaller eddies. Both DNS and LES need significant computer 

resources to run the calculation. For many engineering applications, the RANS method is 

adequate. The RANS model provides useful information while requiring considerably 

less time and resources. Hence, in this study, we employ the RANS method as the basis 

for our turbulence model.  

Reynolds Averaged Navier-Stokes equations (RANS) are the averaged Navier-

Stokes equations. In the averaging process, new parameters are introduced and additional 

turbulent flow information needs to be provided to close the equations. Zero-equation 

model, one-half-equation model, one-equation model, and two-equation model have been 

developed to provide the turbulent flow information according to the number of addition 

partial differential equations to be solved. The zero-equation model is built by assuming 

similarity of molecular motion and turbulent eddies. More recent work, however, uses 

one or two PDEs to model the turbulence. The most popular two-equation model is the 

Standard ε−k  Model, which was based on the work of Jones and Launder (1972) and 

Launder and Sharma (1974). The model includes two equations, one for “ k ”, the 

turbulent kinetic energy, one for “ε ”, the dissipation rate, to close the RANS equations. 

Turbulent kinetic energy is related to the velocity scale, while the dissipation rate is 

related to the length scale. Generally one needs two scales to describe turbulence. Other 

two-equation turbulent flow models include the ω−k  model (Wilcox, 1988) and SST 

model (Menter, 1992), which are used widely in aerospace engineering.  
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In the turbulent boundary layer, numerous experiments show that the time-

smoothed velocity varies logarithmically with the normal distance from the wall (Wilcox, 

2006). This “law of the wall” (Figure 1.6) is usually employed to resolve the velocity 

near the wall in the simulation without enough grid resolution. In our model, we use the 

law of the wall to set up the boundary conditions of turbulence kinetic energy and 

dissipation rate near the wall. Detail description of the numerical method for the Standard 

ε−k Model will be presented in Chapter 3. 

 

Figure 1.6: Law of the wall in turbulent flow 

 
 
 
 
 
 
 
 
 
 
 

u+ 

y+ (log scale) 

Cyu += ++ ln
41.0
1  



 10

 
1.4 Objectives 

 

The primary objective of this thesis project is to develop an experimentally-

validated simulation tool to mechanically model the behavior of the evaporating liquid 

film surrounding a cylindrical fuel rod in a BWR using the Level Contour Reconstruction 

Method. This work builts on the work of Shin and Abdel-Khalik (2007) by changing the 

coordinate system of the fixed Eulerian grid in the LCRM to cylindrical coordinates in 

order to enhance the model resolution. More importantly, turbulence effects are included 

to more accurately simulate the velocity and temperature distributions at prototypical 

BWR operational conditions. Comparison is made between the model predictions and 

experimental data of critical heat flux on internally heated annuli. In addition to 

quantifying the effects of geometric and boundary conditions on dryout, the mechanistic 

model developed in this investigation allows one to quantify the effects of transient 

conditions on CHF. In nearly all transient analysis performed for reactor core design, 

steady state dryout correlations are used to establish the safety limits. This approach is 

used even in BWR stability transients where both reactor power and core flow undergo 

rapid oscillatory behavior. This practice is usually justified by the assertion that the use of 

such steady state correlation should yield conservative results. Data supporting such an 

assertion are not available. Therefore the model developed in this investigation will be 

used to examine the validity of such assertion. 

The remainder of this thesis is organized as follows. Chapter 2 provides a 

literature review of numerical schemes used to model two-phase flow. The algorithm for 

solving the governing equations and description of Level Contour Reconstruction Method 
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are presented in Chapter 3. Chapter 4 provides the calculations performed to validate the 

model including comparisons with experimental data along with the results and 

discussion. Chapter 5 summarizes the conclusions of this thesis and offers suggestions for 

future research.  
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CHAPTER 2 

LITERATURE REVIEW 

 

Successful computational fluid dynamic (CFD) simulation requires an 

understanding of the numerical methods and physics of the flow, both of which cover a 

wide range of topics. Numerical methods include multiphase flow simulation, numerical 

solution of PDEs, grid generation, and turbulence simulation; the physics of the flow 

includes fluid mechanics, heat transfer, turbulent flow, and multiphase flow. The primary 

objective of this thesis is to develop an experimentally-validated simulation tool to 

mechanistically model the behavior of the evaporating liquid film surrounding a 

cylindrical rod in a BWR using the Level Contour Reconstruction Method. The literature 

review to be summarized in this chapter will cover some important topics relating to the 

simulation of the evaporating liquid film which leads to dryout in boiling water reactors.  

2.1 Numerical Methods of Multiphase Flow Simulation 

 

            Direct simulation of multiphase flows is a very challenging problem. The 

multiphase flow behavior is highly dependent on the simultaneous coupling of unsteady 

mass, momentum, and energy transport with interfacial physics of surface tension, latent 

heat exchange, interphase mass transfer, discontinuous material properties, and 

complicated liquid-vapor interface dynamics. Over the past several decades, numerous 

techniques have been developed to simulate multiphase flow. These techniques include 

the volume-of-fluid (VOF), level set, and front tracking schemes. Recent comprehensive 
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reviews of these numerical techniques can be found in Scardovelli and Zaleski (1999), 

Osher and Fedkiw (2001), Jamet et al. (2001), Tryggvason et al. (2001), and Glimm et al. 

(1998). These methods have been widely used to model a variety of two-phase flows 

involving drops, bubbles, and particles. Each of them has some advantage over the others 

and has offered varying degrees of success in modeling general multiphase problems. A 

simple classification scheme of these methods can be made based on their computational 

grids. The volume-of-fluid (VOF) and level set method (LSM) employ a stationary grid 

to capture the interface. On the other hand, both front tracking and Level Contour 

Reconstruction Method (LCRM) use a Largrangian grid to track the interface, along with 

another stationary (Eulerian) grid for the fluid. As discussed in Tryggvason et al. (2001) 

front tracking has enjoyed considerable success in direct simulation of 2D, axisymmetric 

and 3D flow of drop and bubble dynamics. The Level Contour Reconstruction Method 

(LCRM) is essentially a hybrid between the level set and front tracking methods 

combining characteristics of both methods.  In the following sections, we briefly review 

some of the main numerical schemes. 

 

2.1.1 Volume-of-Fluid Method 

The volume-of-fluid technique was introduced by Noh and Woodward (1976). 

This technique is often referred to by other names such as “the cell method” and “the 

method of partial fraction”. The basic idea is presented here.  Referring to Figure 2.1a, a 

fixed grid on a two dimensional plane is shown with a curve representing the interface 

between the liquid and vapor. A number between 0 and 1 is assigned to each cell 

according to the volume fraction of that cell containing liquid inside the interface. A 

value of unity is assigned to the cells completely within the liquid area, while a value of 
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zero is assigned to the cells completely within the vapor area. Other cells encompassing 

the interface are assigned values between 0 and 1 depending on the volume fractions of 

the two phases. As the interface evolves, the volume fractions in the boundary nodes are 

adjusted as schematically shown in Figure 2.1b. 

 

 

                     (a)                                                                       (b) 

 Figure 2.1: Schematic representation of the volume-of-fluid method 

Volume-of-fluid method preserves the mass of the fluid. The basic concept is easy 

to understand. However, it usually needs many cells to simulate the front since the 

volume fraction is not sufficiently accurate to capture the front. It is also hard to calculate 

the curvature and normal direction by volume fraction (Sethian, 1999). Much work is 

required to develope a higher order version. Readers are referred to Chorin (1980), 

Sethian (1984), and Puckett (1991) for additional details regarding volume-of-fluid 

methods.  

2.1.2 Level Set Method (LSM) 

The level set method (LSM) was first developed by Osher and Sethian in 1988. 

Since that time several review articles (Osher 2001) and books (Osher 2003, Sethian 
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1999) describing this technique have been published.  One of the earliest attempts at 

using the LSM to solve two-phase flow problems was reported by Sussman et al. in 1994. 

Since that time this method has become increasingly popular due to its simplicity. 

Referring to Figure 2.2, consider a closed surface in two dimensions separating the entire 

domain into two regions, namely, inside and outside. In the level set method, the level set 

of a variable φ  is used to represent the interface by φ =0.5. The region outside the 

boundary can be defined by φ  =1, while the region inside the boundary is defined by φ  

=0. The variable φ  is continuous and smooth. By solving the Navier-Stokes equation, the 

calculated velocity field can be used to advect the variable φ  using the 

convection/advection equation.  

            Figure 2.2: Schematic representation of the level set method 

 

Solving the convection equation for φ  allows the interface to be tracked. 

However, unlike the VOF method, the level set method is not naturally conservative, thus 

an extra mass conservation condition is required. Referring to Figure 2.3, the level set 

method is used to simulate a rising bubble. However without mass conservation, the 

φ =0  
1=φ

5.0=φ
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bubble shrinks as it continually loses mass. An additional mass conservation technique is 

needed to mitigate this mass loss problem. One simple mass conservation technique has 

been developed by Fukano et al. (2003). In addition to the convection equation, Eq. 2.1 is 

solved to a steady state.  

                                  0))(1( =∇−−
∂
∂ φφ

oA
tA

t
. (2.1) 

Here, A0 denotes the total mass in the whole domain, while A(t) is the total mass at 

time t. In Figure 2.4, the technique by Fukano and Inatomi (2003) is used to conserve the 

mass of a rising bubble.  

The mass loss problem of the level set method stems from incorrectly deleting the 

characteristic information at some locations. In 2002, Enright et al.  proposed the 

“particle level set method” to deal with the mass loss problem. This allows the level set 

method to obtain subgird scale accuracy near the interface and better mass conservation 

properties in under-resolved regions. The lack of connectivity between marker points 

makes the implementation much easier than front tracking and unsatisfactory description 

of the interface geometry can be obtained by using the level set function which maintains 

nice geometric properties. In Enright’s method, marker points are placed randomly at 

inner and outer sides of the interface. The marker points are advected using the velocity 

field of the flow. Usually these marker points should not cross over the interface, from 

inner side to outer side or vice versa. However, when some marker points cross over the 

interface, it shows that the characteristic information has been deleted incorrectly. At that 
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time, the interface is reconstructed locally using the information associated with these 

marker points. 
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Figure 2.3: Bubble rising simulation by level set method without mass conservation. 
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Figure 2.4: Bubble rising simulation using level set method with mass conservation 
technique (Fukano and Inatomi, 2003) 
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This reconstruction is done by changing the level set value at each node near these 

marker points to correctly restore the interface. The “particle level set” method compares 

favorably with VOF and front tracking in mass conservation and interface resolution, 

respectively.  

2.1.3 Front Tracking Method 

In the front tracking method, the front is discretized into many marker points 

whose position is used to construct the interface as shown in Figure 2.5. Numerous 

articles describing this method have been published (see, for example, Glimm et al., 1998 

and Tryggvason et al., 2001). In this method, a stationary Eulerian grid is used to 

describe the fluid flow, while the interface is tracked by a Lagrangian grid of lower 

dimension. At each time step, the Navier-Stokes equation is solved on the Eulerian grid; 

the velocity information is then transferred to the Lagrangian grid to advect the interface. 

The resulting interface information provided by the Lagrangian grid is, in turn, passed to 

the Eulerian grid so that the Navier-Stokes equation could be solved for the next time 

step.  

 

 

 

 

 

Figure 2.5: Schematic representation of the front tracking method 



 20

Front tracking has many advantages; among them is the lack of numerical 

diffusion, ease, and accuracy with which interfacial physics can be described on a subgrid 

level. It is found that tracking often does not require as highly refined grids and that grid 

orientation does not affect the numerical solution, i.e. there is no grid anisotropy (Glimm 

et al., 1998). Tracking affords a precise description of the location and geometry of the 

interface and thereby the surface tension force (and other interface sources) can be very 

accurately computed directly on the interface. 

Front tracking also has shortcomings; the most often cited shortcoming is its 

algorithmic complexity in tracking surfaces in 3D flows and its difficulty in robustly 

handling interface merging and breakup particularly in 3D. These difficulties arise from 

the need to logically connect the interface elements and “bookkeep” changes in 

connectivity during interface modifications, namely, element addition, deletion or 

reconnection. In two-dimensions these issues are relatively minor and the implementation 

of a robust connectivity algorithm is fairly straightforward. However, in moving to three-

dimensions, the algorithmic complexity of connectivity increases dramatically, 

particularly for interface reconnection during topology change. To give an example of 

element addition, in Figure 2.6, the interface is tracked by marker points 1, 2 and 3. After 

some time steps, the interface deforms considerably which necessitates the addition of 

another marker point (point 4) between 2 and 3, so that the interface can be simulated 

properly. Between point 2 and 4, the interface is represented by the dashed line. To add 

or delete maker points, each point must “know” its neighboring points by pointers, which 

presents a great computational burden in three dimensional computations.  
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Figure 2.6: Schematic representation for the addition of a point in the front tracking 
method. Point 4 is added between point 2 and point 3.  

 

Torres and Brackbill (2000) have implemented a front tracking method that 

eliminates the need of connectivity. They use what they call the point set method to 

construct a Heaviside function on the fixed grid from a set of unconnected interface 

points. Their Heaviside function is calculated in several steps. First, by setting an 

approximate indicator function equal to one in cells which contain unconnected interface 

points, they solve a Laplace Equation for this approximate indication function to allow 

them to distinguish crudely between interior and exterior cells. A second smoothed and 

continuous indicator function is then calculated by interpolating using tensor product of 

one-dimensional B-splines. Finally, they calculate a correction to this smoothed function 

so that contours of the indicator function coincide with the interface. Normals and 

curvatures required at the interface points are calculated similarly as in the level set 

method by using gradients of this indicator function. To obtain the surface area required 

for calculation of the surface tension force they construct a circular element around each 

interface point. The B-spline weighted area of this circle is divided by the number of 
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interfacial point whose distance to the center is less than a circle of a certain specified 

radius. Periodic interface reconstruction in their method is accomplished by using an 

auxiliary refined mesh and probing from this mesh to the interface contour of the 

indicator function. In this point regeneration algorithm, care must be taken to regenerate 

points from the inside or outside depending on whether the interface is undergoing 

coalescence or breakup. They test the accuracy of their calculations on various 

geometries and demonstrate the coalescence of 2D and 3D droplets in zero gravity. In 

essence, Torres and Brackbill (2000) are the first to “unchain” the front tracking method 

from its dependence on logical interface points. However, in contrast to the Level 

Contour Reconstruction Method that we will describe here, the approach in theirs appears 

to be more cumbersome when dealing with quantities such as construction of the 

indicator function, surface area, normals and cuavature. Interface point regeneration 

seems to require a relatively complex and non-general algorithm as well. The authors also 

admit that their method is more computationally costly than standard front tracking.  

2.1.4 Level Contour Reconstruction Method 

Invented by Shin and Juric (2002), the Level Contour Reconstruction Method is a 

simplified front tracking method. As discussed in the previous section, one drawback of 

the front tracking method is that each marker point must keep track of its neighbor 

marker points by pointers. The Level Contour Reconstruction Method (LCRM) (Shin and 

Juric, 2002, Shin and Abdel-Khalik, 2007) is a simplified front tracking method that 

eliminates the logical connectivity between discrete interface elements which represented 

a huge algorithmic burden in the original front tracking method, where neighbor element 

connectivity was maintained to facilitate calculation of the interface geometry (interface 
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normal and curvature), and for bookkeeping during element addition/deletion and 

topology change procedures. This becomes extremely complex particularly in three-

dimensional simulations where interface merging and/or break up is frequent and 

important. The associated algorithmic burden has been obviated in the LCRM while the 

accuracy and advantages of explicit Lagrangian surface tracking are retained. The 

customary stationary volumetric mesh is supplemented by a moving interface mesh 

which is used to explicitly track the interface. This interface mesh is composed of non-

stationary, Lagrangian computational points connected to form a two-dimensional surface 

(one-dimensional line for 2D problems). With this technique, the infinitely thin interface 

is approximated by a smooth distribution function that is used to distribute sources at the 

interface over several grid points near the interface. In this way, the front is given a finite 

thickness on the order of the mesh size to provide stability and smoothness. There is also 

no numerical diffusion since this thickness remains constant for all time. 

A primary advantage of the Level Contour Reconstruction method is the ability to 

naturally and automatically handle interface merging and breakup in 3D flows. The 

interface elements are periodically discarded and then reconstructed on a level contour of 

the characteristic indicator function, I(x,t). The newly reconstructed interface elements 

automatically take on the topological characteristics of the indicator function, thus the 

operations of element deletion, addition and reconnection are accomplished 

simultaneously and automatically in one step and without the need for element 

connectivity. Furthermore, once the elements are constructed, interface normals and 

element areas are easily defined and surface tension forces are accurately computed 

directly on the interface for each element independently. 
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A more detailed and complete description of LCRM can be found in Shin and 

Juric, 2002 and Shin and Abdel-Khalik, 2007. The method has been updated by using a 

local indicator function value for reconstruction instead of a constant contour value in 

order to mitigate the mass redistribution problem. The surface tension force has been 

modified using a hybrid surface tension force formulation which decreases the parasitic 

currents to a significantly smaller level (Shin et al., 2005). More detailed descriptions of 

these modification can be found in (Shin et al., 2005). 

The above mentioned methods have been widely implemented and have found 

success in computing a variety of two-phase flows involving drops, bubbles and particles.  

Nowadays 2D computations are commonplace and 3D nearly so. Until very recently 

these methods have not been applied to the more general problem of flows with phase 

change such as boiling flows which are indeed inherently three-dimensional, very 

dynamic and exhibit repeated merging and breakup of liquid-vapor interfaces. Phase 

change flows are among the most difficult challenges for direct numerical simulation and 

only recently have numerical methods begun to offer the promise of helping to provide 

accurate prediction of the detailed small scale physical processes involved. Recent 2D 

computations of boiling flows include those of Juric and Tryggvason (1998) using an 

extension of front tracking, Welch and Wilson (2000) with VOF method and Son and 

Dhir (1998) using level sets. Qian, Tryggvason and Law (1998) have developed a 2D 

method of tracking the motion of premixed flames closely based on ideas in Juric and 

Tryggvson (1998) for boiling flows. Helenbrook et al. (1999) preformed similar 

computations of premixed flames using level set method for 2D incompressible, invisid 

flow that allows sharp discontinuities in fluid properties.  
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A number of hybrid methods have appeared in recent years. Sussman and Puckett 

(2000) proposed a coupled Level Set/Volume-of-fluid (VOF-CLS) method in order to 

alleviate some of the geometrical problems of the VOF method. It combines the accuracy 

in mass conservation of VOF and convenient description of topologically complex 

interfaces of the Level Set function. The resulting scheme still remains Eulerican, not 

incorporating any of the Front Tracking characteristic and still not accurate in under-

resolved regions by blindly applying the VOF local mass constraint.  

Aulisa et al. (2003) present a new hybrid method which combines marker and 

Volume-of-Fluid algorithms. Two distinct markers of grid intersection and mass 

conservation have been used to describe the interface. Both markers are advected 

numerically to update the volume fraction. The conservation markers inside each cell 

keep the local volume fraction to the reference value while the intersection markers, 

which locate the interface on the grid lines, eliminate the necessity of remeshing the 

system. Thus they obtain both smooth motion of the interface by marker methods and 

good mass conservation as in the standard VOF method.   

Our specific focus here is an extension of the phase change/front tracking method 

of Juric and Tryggvason (1998), Shin and Abdel-Khalik (2007), and Shin and Juric 

(2002) to enable full 3D simulations of turbulent multiphase problems including phase 

change.  

2.2 Prediction of Dryout 

 
Prediction of dryout in boiling channels is a challenging problem of wide practical 

interest, particularly for boiling water reactors. Along a boiling channel, different flow 

patterns can exist before dryout is reached: single-phase liquid flow, bubbly flow, slug 
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flow and annular flow (Figure 2.7). Generally speaking, there are three methods for 

predicting dryout for BWR fuel assemblies (Mitsutake et al. 1990): (1) liquid film dryout 

model, (2) subchannel analysis, and (3) experimental correlations. In the experimental 

correlation approach, the cross section averaged variables of a fuel assembly are used in 

the correlation based on experimental data. In the subchannel analysis approach, a fuel 

assembly is divided into subchannels (Figure 2.8). For each subchannel, the governing 

conservation equations are solved in conjunction with experimental correlations for mass, 

momentum, and energy exchange between the phases to predict dryout based on 

subchannel averaged variable. In the liquid film dryout model, assuming annular flow, 

mass conservation equation is used to calculate the film mass flux at each elevation by 

estimating the evaporation rate, entrainment rate and deposition rate (Figure 2.9) through 

the use of experimental correlations.  

Okawa et al. (2003) and Hewitt and Govan (1990) proposed liquid film dryout 

models by solving the mass conservation equation. The mass conservation equation in the 

annular flow region is  

                                     ( )evd
f mmmC

dz
dm

−−=  .                          (2.2) 

   Where fm  is the liquid film flow rate, vm  the evaporation rate, em the 

entrainment rate, dm  the deposition rate, and C a constant. The value of fm at each 

elevation can be determined by calculating vm , em , and dm from experimental 

correlations. Dryout happens when the liquid film flow rate becomes very small. Clearly 
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accuracy and validity of the experimental correlations for vm , em , and dm play an 

important role in this liquid film dryout model. 

                   
Figure 2.7: Schematic flow regime along a channel 

 

 

Figure 2.8: Schematic representation of a subchannel in a fuel assembly 
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Figure 2.9: Schematic representation of deposition, evaporation and entrainment 
 
 

Sugawara et al. (1990) developed a subchannel analysis code, FIDAS to estimate 

dryout in boiling channels. The procedure includes several steps. They first divided the 

assembly into many subchannels. Separate sets of the governing equations of continuity, 

momentum, and energy for the liquid film, vapor and entrained droplets were solved for 

each subchannel. By employing some experimental correlations, the FIDAS code can 

simulate flow regime evolution in the subchannels: single-phase liquid flow, bubbly/slug 

flow, annular flow, drop flow and single-phase vapor flow. Between subchannels, the 

exchange of mass, momentum and energy are evaluated by Prandtl’s mixing length 

model. Other equations are used to calculate the wall shear stress, drop size, vapor-liquid 

interfacial drag forces, convective heat transfer, radiation heat transfer, vapor-liquid 

interfacial heat transfer, and vapor-droplet interfacial heat transfer. FIDAS can be used to 

predict dryout for round tubes and rod bundles.  

entrainment 
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Naitoh et al. (2002) developed a subchannel analysis code, CAPE-BWR, for 

dryout predition for fuel bundles. This code performs subchannel, liquid film flow, and 

spacer effect analysis. Spacers cause the flow change direction and enhance the 

turbulence. These effects are taken into account in their code. Turbulence is calculated by 

ε−k model. Knabe et al. (1995) developed a subchannel analysis code, RINGS, with the 

similar capability as CAPE-BWR. 

2.3 RANS Turbulence Models 

 
In this section, we review some Reynolds Averaged Navier-Stokes (RANS) 

turbulence models for incompressible flow. This is an engineering approach for 

turbulence modeling. While the RANS model is not as accurate, it is much simpler than 

either DNS or LES models.  Readers are referred to Wilcox (2006) and Ferziger and 

Peric (2002) for more information.  

Turbulent flow is unsteady. By ensemble averaging, the velocity is decomposed 

as the average part and the fluctuating part.  
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Averaging the governing equation leads to the Reynolds-Averaged Navier-Stokes 

(RANS) equation 
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Where ji uu ''ρ− is the Reynolds-stress tensor, jiij uu ''=τ the specific Reynolds 

stress tensor. Following Boussinesq’s approximation, assuming that the Reynolds-stress 

can be expressed by 

                             )(
i

j

j

i
Tij x

u
x
u

∂

∂
+

∂
∂

=ντ  .                                                  (2.7) 

The turbulence effect is represented by the eddy viscosity Tν . Prandtl proposed 

the mixing length hypothesis since eddy viscosity is related to the length scale from 

dimentional analysis. In two dimensions, his model can be expressed by 

                               
dy
dU

Txy ντ = .                                                      (2.8) 

Prandtl’s mixing length hypothesis  

                              
dy
dUlmixT

2=ν  .                                                             (2.9) 

Here, mixl  is the mixing length which is very similar to the mean free path of the 

molecular momentum transport. Prandtl proposed that the mixing length is proportional 

to the distance from the wall.    
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To calculate the mixing length more accurately, several algebraic (zero-equation) 

models have been proposed including Van Driest (1956), Cebeci-Smith  (1967), and 

Baldwin-Lomax(1978). In the Van Driest model, the mixing length is given by: 

                           ( )oAy
mix eyl

++−−= /1κ  .                                                       (2.10) 

Cebeci-Smith Model and Baldwin-Lomax Model are classified as two-layer 

models. In the inner layer and outer layer, different expressions are used for the eddy 

viscosity.  

The zero-equation models mentioned above do not perform well in separated 

flows thus limiting their applicability. Prandtl proposed to calculate the turbulence kinetic 

energy k to determine the eddy viscosity since k is related to the velocity scale. This leads 

to Prandtl’s One-Equation Model.  
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                                              lkT
2/1=ν .                                                      (2.13) 

Other one-equation models can be found in Spalart and Allmaras (1992) and 

Menter (1994).  

To describe eddy viscosity, one might need two scales, a velocity scale and a 

length scale. The time scale can be derived from the velocity scale and length scale. From 
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Prandtl’s one-equation model, we already have one equation to calculate the turbulence 

kinetic energy which is related to the velocity scale; we need to find another equation to 

describe the length scale. The most widely known two-equation models are ε−k and 

ω−k model, whereε , ω are calculated to describe the length scale. They are related to 

the length scale by the following relationships:  

                    lk /~ 2/3ε , and lk /~ 2/1ω .                                              (2.14) 

The Standard ε−k Model is  

                                   εν μ /2kCT = . 

                  ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+
∂
∂

+−
∂
∂

=
∂
∂

+
∂
∂

j
kT

jj

i
ij

j
j x

k
xx

U
x
kU

t
k σννετ

ρ
/1  .                        (2.15) 

                ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+
∂
∂

+−
∂
∂

=
∂
∂

+
∂
∂

j
T

jj

i
ij

j
j xxk

C
x
U

k
C

x
U

t
εσννετε

ρ
εε

εεε /1 2

21 .           (2.16) 

                 3.1,0.1,09.0,92.1,44.1 21 ===== εμεε σσ kCCC . 

The most popular ω−k model is proposed by Wilcox  (1988).   
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In 2006, Wilcox modified the ω−k model which includes “cross diffusion” and 

“stress limiter” terms. This improves the simulation accuracy in some complex separated 

flows.   

Both the ε−k and ω−k models has some shortcomings. The ε−k model does 

not perform well in flows with an adverse pressure gradient and within the near wall 

region, while the ω−k model does not perform well in the outer region. In view of this, 

Menter (1992) proposed a model to combine the ε−k and ω−k models. The basic idea 

is to use the ω−k model near the wall and change to the ε−k model in the outer region, 

thus combining the strength of these two models. A blending function 1F  varying from 

zero to one is defined to achieve this goal. This model is very popular in aerospace 

engineering.   
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CHAPTER 3 

ALGORITHM DEVELOPMENT 

 

3.1 Introduction 

            

In this chapter, the solver algorithm for using the Level Contour Reconstruction 

Method (LCRM) to simulate an evaporating thin liquid film on a BWR fuel rod is 

presented. The main contributions presented here involve expansion of the method to 

include turbulence effects and use of cylindrical coordinates for the fixed Eulerian grid. 

These modifications are necessary for proper modeling of the problem of interest, namely 

prediction of dryout on a BWR fuel rod with axial and azimuthal heat flux gradients and 

cross flow from neighboring subchannels. In a BWR reactor core, the Reynolds number 

of the flow is nearly 106; hence, the flow is highly turbulent. To model the physics of the 

flow and dryout on a fuel rod, it is important to account for the turbulent effects. Indeed, 

turbulence has a large impact on the critical heat flux calculation as will be seen in the 

next chapter. Without accounting for turbulence, the calculated dryout heat flux will 

likely be considerably higher than the actual value, i.e. non-conservative. The governing 

equation for turbulent flow to be used in this investigation is the RANS equation rather 

than the original Navier-Stokes equation. Standard ε−k  model will be used to close the 

RANS equation.  

In addition to simulating the turbulent effects, we solve the governing equations 

and construct the interface using a cylindrical coordinate system rather than the Cartesian 
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coordinate system used in the original LCRM development (Shin and Juric, 2002). Using 

a Cartesian coordinate system to simulate a cylindrical BWR fuel rod requires use of an 

immersed boundary method to approximate the boundary condition on the rod surface. 

While numerical schemes such as the immersed boundary method have gained some 

success in the past, the use of cylindrical coordinates for the problem at hand makes it 

considerably easier to specify the boundary conditions without any approximation. This 

is particularly important to our simulation since the liquid film on the rod is expected to 

be very thin and its movement is very sensitive to the boundary condition on the surface. 

Using a cylindrical coordinate system eliminates any unnecessary approximations.     

The main steps in the model are:  

1. solve the RANS equations for velocity and pressure  

2. solve the ε,k equations for ε,k , and eddy viscosity  

3. solve the energy conservation equation for temperature  

4. advect the marker points on the interface using LCRM 

5. go to step 1 for the next time step 

6. reconstruct the interface every 10 time steps using LCRM 

In the following sections, we will present our governing equations, numerical 

methods and LCRM in more detail.  Sections 3.2, 3.3 and 3.4 are devoted to the 

governing equations, grid structure, and numerical methods, respectively. Section 3.5 

describes the Level Contour Reconstruction Method, while Section 3.6 presents higher 

order Level Contour Reconstruction Method. Section 3.7 introduces the method used to 

compute the surface tension force, while Sections 3.8 to 3.10 deals with the sharp 

interface temperature method, boundary conditions, and wall functions.  
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3.2 Governing Equations 

           The liquid-vapor phase change problem involves both fluid flow and heat transfer 

and requires the solution of the governing equations coupled with appropriate interface 

boundary conditions. Isothermal flow without phase change is a special case of the 

formulation presented here. We write one set of transport equations valid for both phases. 

This local, single field formulation incorporates the effect of the interface in the equations 

as delta function source terms, which act only at the interface. The  Navier-Stokes 

equation in vector form is: 
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+∇+∇⋅∇++∇−=∇⋅+

∂
∂ )(11 Tp

t
μ

ρρ
.       (3.1) 

Here in the left hand side are the unsteady and advection terms, while the right 

hand side includes the pressure term, gravity term, viscous term, and surface tension 

force term F.   

The Reynolds Averaged Navier-Stokes (RANS) equation for turbulent flow is 

very similar to the original Navier-Stokes Eq. (3.1) except for the viscosity term. The 

turbulent eddy viscosity Tμ is added to the viscosity term. Turbulent eddy viscosity is a 

property of the flow and will be calculated from the Standard ε−k  model. We can write 

the RANS equation in cylindrical coordinate system for velocity u, v and w as: 
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The following equations define the shear stress terms in the RANS equations 

(3.2), (3.3), and (3.4), which include both the turbulent eddy viscosity Tμ  and molecular 

viscosity Lμ  of the fluid.   
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The turbulent eddy viscosity Tμ  can be calculated from the Standard 

ε−k equation.  
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To account for surface evaporation at the interface, the following equation is 
used,  
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The Standard ε−k  equation is described by the following equations ( Wilcox, 

2006): 
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3.1,0.1,09.0,92.1,44.1 21 ===== εμεε σσ kCCC . 

 
The first term on the right-hand side of Eq. (3.9) is the production of turbulence 

kinetic energy term, while the second term is the dissipation rate, at which rate the 

turbulent kinetic energy is converted to thermal energy by viscosity.  The third term is the 
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diffusion term.  

For cylindrical coordinates, Eqs. (3.9) and (3.10) are given by: 
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These governing equations are discretized and solved using a cylindrical 

coordinate system; detailed steps are presented in sections 3.3 and 3.4. Boundary 

conditions are introduced in section 3.9. Near the wall, wall functions are used for 

turbulence kinetic energy, dissipation rate and temperature. The wall functions will be 

presented in section 3.10. 

                                              

3.3 Grid Structure and Finite Difference Discretization 

 

In our study, a staggered grid in a cylindrical coordinate system which stores 

velocity at the edge and scalar quantities at the center of the cell is used (see Fig. 3.1). 

The advantages of using a staggered grid include treating derivatives more naturally and 

enhancing the stability of the numerical scheme, while the main disadvantage is 

complexity.  

For the problem of interest, the length scale in the axial (z) direction is 

considerably larger than the rod diameter and film thickness. Nevertheless, the grid 

should not be overly stretched in the axial direction. In our simulations, the value of zΔ  
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is limited to less than four times rΔ , if zΔ  is larger than about four rΔ , the numerical 

solution diverges.  

 

Figure 3.1: Staggered grid for cell (i,j,k) in cylindrical coordinate system  

 

The common central difference scheme to discretize the governing equations is 

employed. This central difference scheme is introduced by the following examples on the 

r-θ  plane.   
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  Example 3.1: Finite difference discretization 
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Figure 3.2: Finite difference scheme of Example 3.1 
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Example 3.2 

Finite difference discretization  
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Figure 3.3: Finite difference scheme of Example 3.2 
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3.4 Projection method 

The RANS equation is solved using Chorin’s projection method (Chorin, 1968). 

The discrete form of Equation 3.2, 3.3 and 3.4 can be written as  

 P
t h

nnn
nn

∇−+=+
Δ
−+

ρρ
111

FAAuuu . (3.15) 

Where, for ease of discussion, the viscous and gravitational terms are lumped into nA . 

nAu is the advection term. The subscript h implies a spatially discrete operator, while nF  

is the surface tension force term. 

We split the RANS  equation into three equations.  

                                          0
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and  

 P
t h

n

∇−=
Δ
−+

ρ
11 uu (

. (3.18) 

where u~  and u(  are the intermediate terms. Note that if we sum up the three equations 

3.16, 3.17, and 3.18, u~  and u(  will be canceled. Equation 3.16 is solved by the Courant-

Isaacson-Rees method (CIR) (Courant et al., 1952), which simply track the characteristic 
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information backward (Figure 3.4). More information about CIR scheme can be found in 

(Dupont and Liu, 2003) 

                                               ⎟
⎠
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Figure 3.4: Schematic presentations for CIR method. The characteristic information is 
tracked backward. u~ is calculated by interpolation of n

iu and n
i 1+u  

Then for equation 3.17,  
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The pressure is found by taking the divergence of 3.18 and enforcing the mass 

balance equation 01 =⋅∇ +nu . This leads to a Poisson equation for the pressure.     
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Equation 3.21 is solved for pressure by the biconjugate gradient stabilizer 

iteration (Bi-CGSTAB) method (H.A. van der Vorst, 1992). 

The updated velocity field is finally found from 3.18 

                                             Pt
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n ∇
Δ
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ρ
uu (1 . (3.22) 

 

             Next step is to solve the ε−k  model and temperature equation following the 

scheme in the projection method. For the turbulent kinetic energy equation 3.11, we 

discretize the equation as 
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where nAk  is the advection term, and nRhs  is the discretize form of all the right hand 

side terms in equation 3.11. We split the turbulence kinetic energy equation into two 

equations. 
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where k~  is the intermediate term. Using the CIR method, k~  is evaluated: 
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vturkk n Δ⋅−Δ⋅−Δ⋅−= θ .                (3.27)   

            After finding k~ , 1+nk  is evaluated using the relation: 

                                         tRhskk nn Δ⋅+=+ ~1 .                                              (3.28) 

The dissipation rate equation 3.12 can also be split into two equations, which can 

be solved following the same steps used for turbulent kinetic energy. 
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Using the CIR method, ε~  is evaluated: 

                               ),,(~ twzt
r
vturn Δ⋅−Δ⋅−Δ⋅−= θεε                 (3.32) 

              After findingε~ , 1+nε  is determined using the relation: 

                                         tRhsnn Δ⋅+=+ εε ~1                                               (3.33) 
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The ε,k equations are “stiff”. Large time step and mesh may lead to non-

physical values. It usually takes several attempts to identify the proper time step and 

mesh resolution.   

The energy equation is solved separately for each phase. We split the energy 

equation into two equations for each phase and solve using the same procedure used  for 

the turbulent kinetic energy and dissipation rate.  
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The CIR method is a first order method. To get second order accuracy in space 

and time, Dupont and Liu proposed the use of Back and Forth Error Compensation and 

Correction method (BFECC, Dupont and Liu, 2003). Basically, BFECC uses CIR scheme 

for three times.  

 

CIR(u,v,w, nψ , )~ψ  

CIR(-u,-v,-w,ψ~  ,ψ ) 

en +=ψψ~  

2/)( ψψ −= ne  

CIR(u,v,w,ψ~ , )1+nψ   

 

 

Where ψ  can be u, v, w, k, ε , or T in the governing equations, and e is the error 
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compensation term.  

The velocity field in turbulent flow may contain singularities; using BFECC at 

these locations may produce artifacts impacting the solution. To remedy this issue, at 

these singularities, one simply turns off BFECC. Even though this approach decreases 

accuracy, it is the simplest way to deal with such artifacts. For the velocity u, v, and w, 

the detector suggested by (Kim and Carlson, 2007) is used, while the detector suggested 

by (Dupond and Liu, 2003) is used for  k, ε , and T, The detailed steps are,  

 

Condition 1 ),min(2 ,,1,,,,,,1,,1,,,,1 kjikjikjikjikjikjikji uuuuuuu −+−+ −−≤+−  

Condition 2 ),min(2 ,1,,,,,,1,,1,,,,1, kjikjikjikjikjikjikji vvvvvvv −+−+ −−≤+−  

Condition 3 ),min(2 1,,,,,,1,,1,,,,1,, −+−+ −−≤+− kjikjikjikjikjikjikji wwwwwww  

              For velocity u, 

                        If Condition 1 is satisfied, use BFECC; otherwise set e to zero. 

             For velocity v 

                        If Condition 2 is satisfied, use BFECC; otherwise set e to zero. 

             For velocity w, 

                      If Condition 3 is satisfied, use BFECC; otherwise set e to zero. 

             For  k, ε , and T, 

 If ( Condition1), ( Condition 2), and (Condition 3) are satisfied 

simultaneously, use BFECC; otherwise set e to zero. 
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3.5 Level Contour Reconstruction Method 

 

The Level Contour Reconstruction Method was briefly introduced in Chapter 2. 

It represents a hybrid between the front tracking method and the level set method to 

eliminate the need for logical connectivity. Additional details are given below 

3.5.1 Indicator Function 

The material properties for the two phases are considered to be constant, but not 

generally equally for each phase. As a consequence, the bulk fluids are incompressible. 

Equations for the material property fields can be written for the entire domain using a 

Heaviside function which we will call the indicator function, I(x,t). Here I(x,t) takes the 

value 1 in one phase and 0 in the other phase. The values of the material property fields at 

every location can then be given by 

                            ),,()(),( 121 tIbbbtb xx −+=  (3.36) 

where the subscripts 1 and 2 refer to the respective phases and “b”stands for density, ρ , 

viscosity, μ , specific heat, c , or thermal conductivity, tk  .  

I(x,t) is found by solving the Poisson equation 

                             ∫
Γ

−⋅∇=∇
)(

2 ,)(
t

f dsI xxnδ  (3.37) 

where n  is the unit normal to the interface and ),( tsf xx =  is a parameterization of the 

interface )(tΓ .The three-dimensional delta function )( fxx −δ is non zero only when 
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fxx = . Note that the right-hand side of this Poisson equation is a function only of the 

known interface position, a fact we use to advantage in our numerical implementation. 

Readers are referred to Juric and Tryggvason (1998) for more information about Eq. 

(3.37).  

3.5.2 Transfer of Information between the Interface and the Fixed Grid  

There are two grids in our LCRM model, namely an Eulerican grid in a 

cylindrical coordinate system and a Lagrangian grid (marker points) as shown in Figure 

3.5. We solve all the governing equations on the Eulerian grid. The Lagrangian grid 

constitutes the marker points being on the interface used to track its movement. At each 

time step, information must be passed between the moving Lagrangian interface and the 

stationary Eulerian grid. Since the Lagrangian interface points, px  , do not necessarily 

coincide with the Eulerian grid points, ijx , this information transfer is done using 

Peskin’s immersed boundary method (Peskin, 1977). With this technique, the infinitely 

thin interface is approximated by a smooth distribution function that is used to distribute 

sources at the interface over several grid points near the interface. In a similar manner, 

this function is used to interpolate field variables from the stationary grid to the interface. 

In this way, the front is given a finite thickness on the order of the mesh size to provide 

stability and smoothness. There is also no numerical diffusion since the thickness of the 

front remains constant for all time. 
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Figure 3.5: Two grids are used in our model: Eulerican grid in cylindrical 
coordinate system and Lagrangian grid (marker points) to track the interface. 
 

The surface tension term integrals which appear in the governing equations can 

be written as  

                                       ∫
Γ

−=Φ
)(

)(
t

f dsxxφδ . (3.38) 

The discrete interface sources, pφ , can be distributed to the grid and the discrete 

field variables. Rij can be interpolated to the interface by the discrete summations: 

                                 ∑ Δ=Φ
p

pijpij sD )(xφ . (3.39) 

                                )( pijij
ij

rp DRhhR xθ∑= .  (3.40) 

Where sΔ  is the element length in the 2D case or element area in 3D. Equation (3.39) is 

the discretized form of (3.38). For xp we use the distribution function suggested by Peskin 

Eulerian grid 

Lagrangian grid 
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and McQueen (1994), 
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The above expensions for Dij can be easily extended to three-dimensions. 

3.5.3 Interface Reconstruction by Level Contours 

Here, we explain the central idea in the LCRM. Readers are referred to (Shin and 

Juric 2002, Shin and Abdel-Khalik 2007)  for more details. We take advantage of the fact 

that we really have two separate representations of the interface position: (1) the 

explicitly tracked interface elements and (2) the indicator function whose 0.5 contour 

level also represents the interface. Thus, beginning with a given indicator function field 

we can deposit a collection of interface elements on the 0.5 contour or, conversely, 

beginning with the interface elements we can solve the Poisson equation 3.37 for the 

indicator function. 

Let us suppose that at the end of a time step we have used the tracked interface 

elements in the solution of Eq. 3.37 to obtain the indicator function, I, at each grid point 

(Figure 3.6). We now completely discard the interface elements and construct new ones. 



 54

The procedure to do this is actually quite simple. We first draw a contour level across 

each grid cell at the value I=0.5 using linear interpolation. The two end points of this 

contour line form the endpoints of one new interface element. Because we use linear 

interpolation, neighboring elements from neighboring cells will always have the same 

endpoint locations. Since interface points that coexist at the same spatial location will 

move with the same velocity, the elements will never separate. Thus although adjacent 

elements are not logically connected, their endpoints are automatically physically linked. 

In this way, all adjacent interface elements are implicitly connected and the need for 

explicit bookkeeping of neighbor element connectivity is obviated.  

 

Figure 3.6: Level contour reconstruction in 2D calculation  

 

For now the interface elements are arbitrarily oriented. A simple procedure is  

used to orient the elements so that all the element normals point toward the inside of the 

volume enclosed by the surface. As shown in Figure 3.7 , the elements are oriented cell 

Ii,j Ii+1,j

Ii+1,j+1

Ii,j+1
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by cell such that maximum cell indicator function value lies to the right of the element 

tangent drawn from point 1 to point 2.  

 

Figure 3.7: Element orientation. Elements are oriented so that maximum cell indicator 
function value lies to the right of the element drawn from point 1 to point 2. In 
this way all element normals point consistently to the inside o the enclosed 
volume. 

  

We now have newly constructed and properly oriented interface elements that lie 

on the 0.5 indicator function contour level and whose endpoints are physically connected. 

The reconstruction step has replaced the need to add or delete elements individually. In 

this way the method handles topology change automatically and naturally in a way much 

like the level set method does using the distance function. During the course of a 

simulation, reconstruction is not performed at every time step. The frequency of 

reconstruction can be prescribed. In the simulations performed here we have found that 

reconstruction at every 10 time steps is sufficient. However, this frequency will most 

likely vary depending on the particular interface feature sizes and time scales of the 

(1) 

(2) 

Max Ii,j 
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problem. Although we have not done so here it would be possible to dynamically adjust 

the reconstruction frequency during the calculation. In between reconstruction steps, the 

usual point tracking by Lagrangian advection is performed by a simple integration which 

will be introduced in section 3.5.5.  

3.5.4 Interfacial Mass Flux 

Evaporation and/or condensation is detemined by performing an energy balance 

at the interface. The interfacial mass flux is given by: 
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−=⋅−= nqq )( 12& .                                       (3.44) 

Where q1 and q2 represent the heat flux vectors on the liquid and vapor sides of 

the interface and n is the outwardly directed unit normal.  

3.5.5 Advecting Surface Points 

With phase change, the marker point motion is governed by the velocity and 

interfacial mass flux: 
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3.5.6 Local Level Contour Reconstruction for Low Resolution Simulations 

In the original LCRM described in 3.5.3, although mass is globally conserved 
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during the interface reconstruction procedure, local conservation is not guaranteed. Using 

a constant indicator function value, If, as the sought after reconstruction contour during 

reconstruction can result in a mass redistribution. Indeed, it is possible that mass can be 

unphysically transported from regions of high curvature to regions of low curvature. In 

the worst case, mass could even be transported across the domain between two 

completely separate interfaces. Thus when seeking the constant reconstruction contour, If, 

the higher curvature surface would sacrifice some of its volume to the lower curvature 

surface. Although this effect is normally small (Shin and Juric, 2002), it can be noticed 

when the size of fine scale interface structures are poorly resolved by the grid. Our 

motivation is to improve this problem even at low resolution and especially for 3D 

calculations where low resolutions must often be resorted to.  

To mitigate this problem, we modified the method to automatically use different 

choices of the reconstruction contour values throughout the domain. As can be seen in 

Figs. 3.8 (a) and (b), we can interpolate (using a Peskin distribution, for example) the grid 

indicator function values to a surface element point. The idea then is to use this local 

indicator function value at the surface to reconstruct the element at that cell location. 

There may be more than one surface element in one cell. After having interpolated the 

indicator function values to the surface for all the elements, observe that each cell is 

affected by several elements Ip,e with areas, esΔ  . Thus the optimum contour value to use 

for reconstruction, Iopt , at that location is calculated by distributing this value back onto 

the Eulerican grid 

                     
∑
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Δ
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These are the local values we use to reconstruct the surface in that cell. Finally, we match 

the total volume before and after reconstruction. With this local procedure in the LCRM, 

there is virtually no mass redistribution between different surfaces even at low resolution.  

To get even higher order accuracy, we use higher order level contour 

reconstruction method as will be presented in section 3.6. 

 

(a) 

 

(b) 

Figure 3.8: Improved level contour reconstruction method using localized Iopt value. 

Ip,e 

Iopt(i,j,k) 
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3.6 Higher Order Level Contour Reconstruction Method 

In the Level Contour Reconstruction Method, the interface is composed of non-

stationary, not logically but implicitly connected computational points to form a two-

dimensional surface or one-dimensional line for 3D or 2D problems, respectively. The 

interface elements are periodically discarded and then reconstructed on a certain level 

contour of the characteristic indicator function. However, the level contour of the 

indicator function which satisfies the exact location of the original interfacial points 

before reconstruction is not, in general, a constant value. At a specific time step and given 

a complete set of tracked interface elements, we can obtain the indicator function value at 

each element point by interpolating the original grid indicator function values to surface 

element points. We then redistribute these local indicator function values back to the 

nearest grid locations. Thus we generate a localized contour level field, ),,( kjiI local , 

which will be used to reconstruct the element at that cell location. Finally we draw a 

contour line/surface of zero value with linear evaluation function, )(xLE , 

                   [ ]∑ −−=
g

glocalorg
L PkjiIkjiIE )(),,(),,()( xxx  (3.49) 

Here ),,( kjiI local represents the given indicator function field before 

reconstruction, x  is the evaluation point, gx is the grid cell center, and the summation is 

performed across a small multiple of the mesh spacing in each direction. )( gP xx − is a 

tensor product of one-dimensional Linear interpolation kernels, L, given by: 
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       );();();()( zzzLLrrrLP gggg Δ−Δ−Δ−=− θθθxx   (3.50) 

with grid spacing rΔ , θΔ , and zΔ  . The Linear interpolation kernel is defined by: 
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                         .                                                 (3.51) 

where h is the grid spacing in each direction. Hereafter, we will refer to this as the linear 

reconstruction procedure as compared to the high order reconstruction which will be 

discussed below. 

The linear reconstruction always generates a small perturbation near the 

reconstructed interface since we used a linear interpolation kernel function, which is 

continuous but not smooth, to locate the zero level of the evaluation function, even 

though the surface can be reconstructed accurately with small mass redistribution 

between different curvature regions by using the localized indicator function value. 

Furthermore, the values of indicator function interpolated from the ),,( kjiI local field at 

the original interface points do not exactly match the value interpolated from the given 

original indicator function ),,( kjiI org . We interpolated the indicator function value from 

the original interface points and then redistributed this back to the grid, so that the final 

local indicator function field is an “averaged” value since each cell can be affected by 

several elements.  

This perturbation eventually dies out since the reconstruction is usually not 

performed every time step during the course of a simulation. Thus the global sense of the 

otherwise
h
r

10 ≤≤
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error can usually be considered to be minimal. But for some problems which undergo 

abrupt change of interfacial motion from a surface tension dominant equilibrium state to 

a dynamic flow regime with large deformation, rupture, and coalescence, frequent 

reconstruction becomes necessary. The reconstruction time step usually depends on the 

specific problem at hand and the optimal time step can be difficult to obtain. With 

excessive reconstruction, the small disturbances from reconstruction can drive the 

interface to unphysical locations and the solution will depend on the reconstruction time 

step chosen. The problem becomes worse for small length scales without sufficient 

resolution, which turns out to be a frequent scenario of three-dimensional simulations. 

To locate a contour line/surface in the indicator function field, we need two    

ingredients: a level contour value at a specific location and the evaluation function field 

to compute field level. A continuous and smooth contour level can be obtained using B-

spline interpolation functions. B-spline interpolation allows smoothing of the possibly 

noisy data (Monaghan, 1985). The indicator function value at an arbitrary location can be 

found by: 

                )(),,()( g
g

org SkjiII xxx −= ∑ . (3.52) 

Here, )gS x(x− is a tensor product of one-dimensional B-splines, given by: 

                   );();();()( zzzMMrrrMS gggg Δ−Δ−Δ−=− θθθxx . (3.53) 

We used both the cubic B-splines );(3 hrM  and quintic B-splines );(5 hrM suggested by 

Torres and Brackbill (2000), 
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We can obtain the evaluation function field which gives a zero contour level at 

interface reconstruction from: 

                 [ ]∑ −−=
g

glocalorg SkjiIkjiIE )(),,(),,()(* xxx . (3.56) 

The evaluation field )(xE*  has continuous and smooth properties along the zero 

contour level. But if we compute the evaluation function value at the original interface 

point, the resulting value is still not exactly zero due to the manner of calculating 

),,( kjiI local . 

To get a more precise location for the reconstructed interfacial elements, we 

correct by adding a trial function field  ijkΨ , which will satisfy the zero contour value at 
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the original interface point. The corrected Eulerical evaluation field function is defined 

by: 

 [ ] )()(),,(),,()( ∑ ∑ −Ψ−−−=
g g

gijkglocalorg
H SSkjiIkjiIE xxxxx . (3.57) 

There are several ways of approximating the trial function. We assumed a 

function described: 

∑ −=Ψ
pN

pgPijk SI )( xxδ . (3.58) 

Here, px is the location of original interface points before reconstruction pIδ is 

the increment needed at the original interface points, and the integration has been 

performed throughout the entire given element, respectively. After rearrangement of 

equation (3.57) and (3.58), the final form of the system of linear equations which satisfies 

a zero level of evaluation function is: 

[ ]∑∑∑ −−=−−
g

glocalorg
g N

gpgp SkjiIkjiISSI
p

)(),,(),,()()( xxxxxxδ .(3.59) 

The idea here is similar to the Point Set Method of Torres and Brackbill (2000). 

However, they construct a new indicator function by adding a function interpolated 

directly from interface points to interface points: 

∑ +−=
pN

orgpP ISII )()()( xxxx δ . (3.60) 
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This was used to find the value of pIδ which would give a constant indicator 

function value throughout the interfacial points. This proves useful in two-dimensional 

simulations but requires a tremendous amount of work in three-dimensions. The 

computational effort needed to find the first part of the right hand side of equation 3.60 is 

Np for a single grid location. For the entire computational domain, the number of 

computations required is zrp NNNN ××× θ required. This would most likely be 

impractical to perform three-dimensional simulations unless additional information for 

interface point locations is provided  

Equation 3.57 is a more convenient form which can be treated efficiently for 

function evaluation. We distribute the pIδ the increment throughout the domain to 

construct the Eulerian field trial function and then interpolate this back to the original 

interfacial points to force the zero contour of Iorg(i,j,k)-Ilocal(i,j,k). Equation 3.59 can be 

rewritten in simple form as follows: 

[ ] pmpmp NmxbI ,...,1),( ,, ==Φ δ . (3.61) 

We calculate mpI .δ  using a Newton iteration scheme 

[ ] p
l

mp
l

mp
l

mp NmIII ,...,1),( ,
1

,
1

, =Φ−= −+ δδδ J . (3.62) 

where l is the iteration index and J is the Jacobian matrix of partial derivatives of 

the error with respect to the mpI .δ . Since these derivatives are difficult to calculate and 
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the subsequent matrix inversion would be computationally expensive, a simple form of 

Jacobian is used,  

IJ 1−= a . (3.63) 

where I is the identity matrix and a is a constant which determines the rate of 

convergence of the iteration. At the optimum value of a, different for different physical 

parameters, the iteration converges rather quickly to a tolerance of 510−=ε  in 10 to 100 

iterations. Optimum values for a were determined through experiment and range roughly 

between 1 and 10. The tolerance is calculated by 

p
l

mp NmI ,...,1),max( 1
, == +δε . (3.64) 

The higher order Level Contour Reconstruction Method bears great resemblance 

to the Point Set Method of Torres and Brackbill (2000). They used points rather than the 

line or triangular elements which we use in our Level Contour Reconstruction Method. 

Because we utilize higher dimensions in the front description, calculation of geometric 

quantities such as curvature, normal and tangent associated with the interface becomes 

much more straightforward to implement.  

In general the reconstructed interface contains elements of non-uniform size  

because the location of reconstruction is confined to the edge of each grid cell. The 

irregularity of element size does not produce any problem with the high order 

reconstruction but increases the required memory by generating insignificant size 

elements without any additional accuracy enhancement. Usually elements of the size of 
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the spatial grid size are recommended. Thus in terms of memory optimization it is 

preferable to generate elements of roughly uniform size.  

We regularize the interface elements in the following two steps (Figure 3.9): First 

we draw an approximate contour line neglecting relatively small elements. We draw a 

new line, which passes through the edge of the cell when the distance from the 

reconstructing point to the edge of each cell, dl, is less than a specified criterion. We call 

this process “attaching to the grid”. Because the first step is simply a rough 

approximation, we can use either equation 3.49 or 3.56 to locate the reconstructed 

interface. The next step is to relocate this approximate contour line/point to the exact 

interfacial location depicted by equation 3.57 by movement in the normal direction. 

 

Figure 3.9: Regularizing the surface points in two steps as shown in (a) and (b) 

 

dl

(a) 
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Figure 3.9: Regularizing the surface points in two steps as shown in (a) and (b) 

 

After these two steps, the size of the reconstructed interface elements may not be 

exactly the same but they are quite uniform. The range of element sizes is usually 1 or 1.5 

times the spatial grid size. By regularizing the interface elements, we can reduce the 

elements to 70% of that of the previous reconstruction procedure without sacrificing the 

accuracy. This is quite important in three-dimensional cases where resources are highly 

restricted.  

    

3.7 Computing the Surface Tension Force 

 

In this section, we will first briefly describe the conventional surface tension 

calculation method used in front tracking. Next we will give a brief description of a 

(b) 
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purely Eulerian approach, the VOF-CSF method. Finally, we introduce a hybrid 

Lagrangian-Eulerian computation of the surface tension force in front tracking. We will 

use a hybrid Lagrangian-Eulerian method in our evaporating thin liquid film model.  

3.7.1 Conventional Lagrangian Front Tracking Approach for Calculating the 
Surface Tension Force 

In the conventional front tracking approach, the surface tension force F is 

calculated directly on the Lagrangian interface grid. This force is then distributed onto the 

fixed Eulerian grid using Peskin’s immersed boundary method applied to the surface 

integral 

,)(
)(

dsffft fL xxnF −= ∫Γ δσκ  (3.65) 

where σ is the surface tension coefficient (assumed constant value here) and fκ is 

twice the mean interface curvature calculated directly on the Lagrangian grid before the 

immersed boundary distribution to the Eulerian grid. We use the subscript L on the force 

in equation (3.62) to distinguish it as having been calculated first directly on the 

Lagrangian grid before the immersed boundary distribution to the Eulerian grid. The 

distcrete numerical expression of this distribution onto the fixed grid is in the form of a 

sum over interface elements e: 

eekji
e

ekjiL sD Δ= ∑ )x(fF ,,,,, . (3.66) 
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Where esΔ is the element area and kjiD ,,  is a discrete approximation to the Dirac 

function. The tension force on each surface element (typically a plane triangle in 3D) is 

given by: 

,∫∫ ×==
ee l eeeees e dlds ntnfe σσκ  (3.67) 

Here et is the vector tangent to the edge, el , of the element and en the  normal to 

the element . The latter integral in the equation above, derived using a variation of 

Stoke’s theorem, is a physically appealing description of the actual force on a surface 

imparted by surface tension. A discrete approximation of this integral is applied to each 

triangular surface element. The cross product of the normal and tangent vectors, the 

binormal, gives the direction of “pull” on the edge of each element and the net force is 

obtained, after multiplying by σ  , by integrating around the edges of the element, Eq. 

(3.67), and summing the contributions of all elements, Eq. (3.66). The advantage of this 

form is that it exactly preserves the conservation property that the sum of the surface 

tension forces around a closed surface identically equals zero. Moreover, this calculation 

can be performed entirely on the element, independent of its neighbors.  

3.7.2 Eulerian VOF-CSF Appproach for Calculating the Surface Tension Force 

An alternative to calculating the force,F, directly on the Lagrangian surface grid 

is to represent it purely in Eulerian form (as in the level set or VOF-CSF approach, for 

example) in terms of the indicator(or color) function, C, as  

      δσκnF =E . (3.68) 
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where we use the subscript E on the force to denote all the quantities in Eq. (3.68) as 

being computed solely on the Eulerian grid. Here 

Ch∇=δn . (3.69) 

And the Eulerian expression for twice the mean interface curvature is  

n⋅−∇= hκ . (3.70) 

In VOF the color function is advected by Eulerian transport: 

0=∇⋅+
∂
∂ C

t
C

hu . (3.71) 

3.7.3 Hybrid Formulation for Calculating the Surface Tension Forces in Front 
Tracking  

The approach to calculate F is a hybrid of the Lagrangian representation, FL Eq. 

(3.65) and the Eulerian representation, FE, in Eq. (3.68) explained as follows. We can 

write FL as 

GF LL σκ= . (3.72) 

where  ∫
Γ

−=
)(

)(
t

fff dsxxnG δ ,  for example, at a cell face 

∑ Δ= ++
e

eekjiekji sD )(,,2/1,,2/1 xnG . (3.73) 



 71

And Lκ  is the sought after expression for the curvature defined on the Eulerian grid. 

Taking the scalar product of both the left and right sides of Eq. (3.72) with G 

GGGF ⋅=⋅ LL σκ . (3.74) 

gives us an expression for the curvature on the Eulerian grid in terms of quantities 

calculated on the Lagrangian grid :  

GG
GF
⋅
⋅

= L
Lκ . (3.75) 

 Finally, we express the surface tension force in a manner analogous to VOF-CSF form in 

Eq. (3.68) 

IhL∇=σκF . (3.76) 

where I is found from the solution to the Poisson equation. Note that the numerical 

computation of the curvature is not intimately tied to the indicator function or its 

gradients as in VOF-CSF, but rather it is more closely related to the actual physical 

curvature of the Lagrangian surface. We will use a hybrid Lagrangian-Eulerian method in 

our evaporating thin liquid film model.  

For cylindrical coordinates, Eq. 3.70 is given by 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇
∇

⋅∇=
φ
φκ  
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3.8 Sharp Interface Temperature Method for the Energy Equation 

In the original Level Contour Reconstruction Method, the release and absorption 

of the latent heat of evaporation is modeled using a discrete delta source term in the 

energy equation. Due to memory limitations, even with current computational resources, 

one is often forced to use relatively crude grid resolutions for three-dimensional problems. 

Using a delta function source term is likely to lead to unacceptable numerical inaccuracy 

in cases where the interface is too close to the wall.  Furthermore, it is quite difficult to 

maintain the interface temperature at the saturation temperature with the normal probe 

technique (Udaykumar, 1992). Thus, treating the interface boundary as a sharp interface 

is preferable especially for the energy equation since the calculation of the correct 

interfacial mass flux is highly dependent on obtaining an accurate temperature field 

calculation in the vicinity of the interface. The sharp interface temperature method is 
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developed by Shin and Abdel-Khalik (2007).This idea was originally applied by Durbin, 

2005, to the alloy solidification problem. 

Consider the liquid phase with thermal conductivity kL. For simplicity, assume 

that the conductivity is constant over the entire computation domain in each phase.  Here, 

for clarity, the arguments are presented in one dimensional form. The explicit finite-

difference equation for the temperature at node i is: 

  ( )1
1 12 2n n n n nL

i i i i i
k tT T T T T
h

+
− +

Δ
= + + − . (3.78) 

where h denotes the spatial resolution and Δt is the time step. Suppose that node i-1 is 

located in the vapor phase while node i lies in the liquid phase. Instead of using the actual 

temperature at node i-1, a “ghost” value is calculated using the known temperature and 

location of the interface. A schematic diagram of this process is shown in Figure 3.10. 

The temperature at one grid spacing away from the interface, T(xf +Δx), is interpolated 

using the nearest grid points (Ti and Ti+1). When the distance between the grid node and 

the interface becomes too small, the grid node nearest to the interface is not used in the 

above extrapolation in order to avoid numerical instabilities. The interpolated 

temperature (Point D in Figure 3.10) and the interface condition (Point C in Figure 3.10) 

are then used to extrapolate the temperature at the ghost node i-1. 

The temperature at node i then become: 

 ( )1
12 2n n n n nL

i i i ghost i
k tT T T T T
h

+
+

Δ
= + + − . (3.79) 
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where Tghost is the “ghost” node temperature (point X in Figure 3.10) at the i-1 location. 

The advantage of this method, as compared to the immersed-boundary front-tracking 

method, is that the gradients near the interface are expressed more accurately and the 

temperature at the interface can be forced to be exactly equal to the value we specify, 

usually the saturation temperature. The gradient of the temperature in each phase can then 

be extracted easily and accurately.  This information will subsequently be used to 

calculate the interfacial mass flux. 

 

 

 

 

Figure 3.10: Schematic diagram for the interpolation scheme used in the sharp 
interface temperature method 

 
The same procedure will apply to the computation of the vapor phase node 

neighboring the interface. Thus, we see that the sharp interface temperature method 

solves the energy equation separately in each of the two phases using the ghost fluid 

method for complex geometry. The only difference, as we pointed out earlier, is that the 

phase boundary is moving rather than stationary which imposes no additional cost in the 

Level Contour Reconstruction Method since the interface location is explicitly tracked. 

The accuracy of the sharp interface temperature method was validated by Shin and 
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Abdel-Khalik (2007) by comparing the results against the exact analytical solution for the 

Stefan problem. 

3.9 Boundary Conditions 

 

 

Figure 3.11: Simulation domain and boundary conditions in the simulation 

Figure 3.11 shows the computation domain and boundary conditions used in this 

analysis. It represents an axial segment of a fuel rod within a coolant subchannel, which 

is about 10 cm long.  Normally, a liquid film flows vertically upward along the rod with 

parallel vapor flow in the square subchannel. However, we simulate it as a cylindrical 

subchannel consistent with the cylindrical coordinate system used here.   
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Pressure differences between the channel of interest and neighboring subchannels 

within the same bundle may result in cross flow of vapor through the subchannel 

boundaries. Convective boundary conditions are used for both inlet and outlet.  No-slip 

boundary conditions are applied on the inner wall. To simulate axial vapor flow, the 

outside cylindrical wall is assumed to be moving in the z direction with a specified 

velocity of win. Neumann conditions for the pressure are applied on the inner and outer 

wall. The liquid film is assumed to have a uniform initial thickness around the rod at the 

bottom of the computation domain. The value of the inlet film thickness has been fixed 

throughout the simulation thereby approximating a constant inlet mass flow rate of the 

liquid, i.e. a specified void fraction at the inlet to the computation domain.  

Because of turbulence, at the first grid near the inner wall, wall functions are used 

to set the turbulence kinetic energy, dissipation rate, and eddy viscosity. We also need to 

set temperature wall function; the details are presented in section 3.10. Readers are 

referred to (Ferziger and Peric, 2002) for more boundary condition information on the 

turbulent kinetic energy and dissipation rate. 
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3.10 Wall Function 

 

Figure 3.12: Schematic represnetation for turbulent velocity profile and wall function 

 

The velocity gradient of tubulent flow near the wall is very high (Figure 3.12). 

Hence to resolve the correct velocity gradient near the wall, the first mesh point p from 

the wall must be very close to the wall, say +y <1.  To address this issue, a nonuniform 

mesh is often used to place the first grid at +y <1 .  

L

yu
y

ν
τ≡+ .  (3.80) 

However, because of the added complexity, a nonuniform mesh has not been 

used in this study.  For a uniform mesh, we assume that the first grid point nearest to the 

wall is in the log layer (30< +y <500).  From the law of the wall (Chapter 1) in the log 

layer, assuming the production of turbulence kinectic energy equals to the dissipation rate, 

we have the wall fuction:   

pp k,ε  
p 
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y
u

p κ
ε τ

3

= . (3.81) 

μ

τ

C
u

k p

2

= . (3.82) 

where τu is found from the law of the wall by Newton’s method. To derive the wall 

function equations 3.81 and 3.82,  we start with the RANS boundary layer equation in 

two dimensions(Wilcox, 2006): 
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UU TL )(1 νν

ρ
. (3.83) 

In the log layer,  from the perturbation analysis we can neglect convection, 

pressure gradient and molecular viscosity because these terms are small compared to the 

eddy viscosity term (Wilcox, 2006) . Then Eq. 3.83 becomes, 

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

=
y
U

y Tν0 . (3.84) 

Eq. 3.84 implies that the Reynolds shear stress is a constant.  

2
τρτνρ u

y
U

wT ==⎥
⎦

⎤
⎢
⎣

⎡
∂
∂ . (3.85) 

where wτ  is the shear stress at the wall, and τu is the friction velocity. Thus, 
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In log layer, the law of the wall is,   

C
yuu

U +=
νκ
ττ ln . (3.87) 

Here, κ is Karman’s constant≈0.41.Taking partial derivative of Eq.3.87 respect 

to y, we have   

y
u

y
U

κ
τ=

∂
∂ . (3.88) 

On the other hand, in the ε,k equation, neglecting convection and molecular 

viscosity (Wilcox, 2006), we have   
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ε
ν μ

2kCT = . (3.91) 

Where Pk is the production of turbulence kinectic energy term. 
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Assuming production equals dissipation, combining Eqs. 3.86,  3.88 and  3.92, 

we obtain the wall function for the dissipation rate: 
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From the Eqs. 3.86, 3.88, and 3.91 
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From Eqs. 3.93 and 3.94, 

2

2

3

22
2

τ
μ

τ

τ
μ

τ
μτ κ

κ
κε u

kC
y

u

y
u
kC

y
ukCu === . (3.95) 

Finally we get the wall function for turbulent kinetic energy from Eq. 3.95 

μ

τ

C
u

k
2

= . (3.96) 

τu is found from the law of the wall by Newton’s method. Define a function f 

from the law of the wall,   
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ln1 . (3.97) 

where the only unkown is τu in the function f 

ττ κuu
f 11' 2 −−= . (3.98) 

From Newton’s method: 

'
1

f
fuu nn −=+

ττ . (3.99) 

It usually takes no more than ten iterations to converge.     

For temperature, we use the following wall function to set the temperature wT  on 

the heating rod surface (Chen and Jaw, 1998) .  

++ = EyT t ln
41.0

Pr
. (3.100) 

where ,0.9=E  and tPr  is the tubulent Prandtl number, set equal to 0.9.   
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CHAPTER 4 

RESULTS AND DISSCUSION 

 

This chapter presents the simulation results obtained in this investigation. 

Section 4.1 presents validations of the velocity profile for single-phase flows and the 

curvature. Section 4.2 illustrates the detailed liquid film structure using the level contour 

reconstruction method for uniform heating. Section 4.3 presents the prediction of critical 

heat flux for internally heated annuli, while Section 4.4 includes the application to boiling 

water reactors.  

 

4.1 Validation of the Velocity Profile for Single-Phase Flow and the Curvature 

• Single-phase laminar flow 

In order to validate our numerical methods for solving the governing equations in 

a cylindrical coordinate system, we have simulated the single-phase, fully- developed 

laminar flow in annuli, as shown in Figure 4.1. Based on the fully-developed assumption, 

applying the no-slip boundary condition on cylindrical walls, the Navier-Stokes equations 

can be solved analytically.  This analytical solution can be used to measure the error of 

the numerical solution. The exact solution of the velocity profile in annuli is: 
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.  

 

Figure 4.1:  Schematic representation of the laminar flow velocity profile in an 
annulus 

 

An annulus with inner radius 0.005 m, outer radius 0.008 m, and length of 0.003 

m, is chosen for the simulation. The working fluid in the simulation is saturated water at 

6.9 MPa (1000 psia), fluid density 741.7 kg/m3, and viscosity 9.17x10-5 N-s/m2. The inlet 

and outlet velocity in the z direction is set as the analytical solution. In this way, the 

annulus can be viewed as infinitely long.  The Reynolds number is 500. The grid, Δ r,Δ z, 

and Δ t used in the simulation are presented in Table 4.1.   

Table 4.1: Input parameters in the convergence test of laminar flow in annuli  

Grid Δ r ,Δ z (m) Δ t(sec) 

4×4×4 7.5e-4 5.4e-4 

8×8×8 3.75e-4 2.7e-4 

12×12×12 2.5e-4 1.8e-4 

16×16×16 1.875e-4 1.35e-4 

32×32×32 9.375e-5 6.75e-5 

z 
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Figure 4.2: Grid convergence test results of BFECC and CIR methods for the laminar 
flow in annuli. This figure shows that the BFECC method is between first and second 
order. The CIR method is less than first order. However, the CIR method introduces 
smaller error than the BFECC method. 

 

Figure 4.2 shows the convergence test results of the BFECC and CIR methods. 

The error norms used are defined by 
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where 

Wcal=numerical solution 

Wexact= corresponding analytical solution 

i,j,k= discrete index 

Figure 4.2 shows that the BFECC method is between first and second order. The CIR 

method is less than the first order. However, the CIR method introduces smaller errors 

than the BFECC method. Both of these two methods are employed in this study. 

• Curvature Study 

We study the accuracy of calculating the curvature from the distance function 

φ by the following equation. 
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Eq. 4.4 is discretized directly following the general finite difference method as 

         

             

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

=
∇
∇

⋅∇= 2/1

2

2
2

2/1

2

2
2

1
11

r

r
r

r

r
rr

rr

r

θ

θ

θ φ
φ

φ

θφ
φ

φ
φ
φκ  (4.5) 



 86

             ( ) )(11
2/12/12/12/1 −+−+ −

Δ
+−

Δ
≈ jj

i
ii

i

bb
r

aa
rr θ

. 

where  

                    

2/1

2/1

2

2
2

2/1

+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

i

r

r
i

r

ra
θφφ

φ

2/1

2/1

2

2
2

2/1

1

+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

j

r

j

r

rb
θ

θ

φ
φ

φ
 (4.6) 

                     

2/1

2/1

2

2
2

2/1

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

i

r

r
i

r

ra
θφφ

φ

2/1

2/1

2

2
2

2/1

1

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

j

r

j

r

rb
θ

θ

φ
φ

φ
 

To test the validity of Eqs. 4.5 and 4.6, they are used to calculate the curvature 

of circles. For a circle with radius r, the exact solution of curvature should be 1/r. The 

calculation results obtained using a low resolution mesh 4× 4 are shown in Fig. 4.3. 

Figure 4.4 shows the L1 error norm of the calculation. These two figures show that the 

numerical solution is nearly identical to the exact solution. The L1 error norm is 

approximately 1×10-13, which shows that the curvature calculation for circles is very 

accurate even when a low resolution mesh is used.  
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 Figure 4.3:  Curvature calculation results of Eqs. 4.5 and 4.6 for circles with radii 
between 0.01 m and 0.02 m 

                    

Figure 4.4:  Curvature calculation errors of Eqs. 4.5 and 4.6 for circles with radii 
between 0.01 m and 0.02 m 
 

 

 Single-phase turbulent flow 

Ideally, to verify our numerical scheme for solving the turbulence model in a 

cylindrical coordinate system, we should compare our results with other simulations in a 

cylindrical coordinate system for annuli. However, we did not find such data in the public 
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domain. Instead, the fully-developed velocity profile for turbulent flow in a 2D channel 

on the x-y domain (Figure 4.5) is provided by Wilcox (2006), whose results are used to 

test the validity of our numerical methods. 

 
 
Figure 4.5: A two-dimensional channel is used to verify the numerical method in the 
Standard ε−k  turbulence model. The height of the channel is 0.1 m and the length 0.1 m. 

 
The numerical scheme is tested in a channel with height of 0.1 m and length of 

0.1 m. The fluid density is 1000 kg/m3 and viscosity 6.38×10-4 N-s/m2. The Reynolds 

number is 13750. Three different grids are used: 10×10, 20×20, and 50×50. The CIR 

method is used to solve the convection term. Since this channel is symmetric in the y 

direction, the Conjugate Gradient Method is used to solve the Poisson equation for 

pressure. In this test, we run the code until a steady state is reached with Wilcox’s 

calculation being set as the inlet velocity profile of the channel. The wall function is 

applied to the first grid near the wall. The velocity profile at the mid-plane in the x 

direction is used to compare with Wilcox’s results.  

As shown in Figure 4.6, our calculation compares fairly well with Wilcox’s 

results (2006). For the fine mesh grid, the velocity profile calculated by our numerical 

H U 
Y 

X 
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model is nearly identical to that found by Wilcox (2006). With the successful completion 

of these validation tests, the numerical method is ready for the simulation of the 

evaporating thin liquid film on a cylindrical rod.   

 
 

Figure 4.6: The numerical solution of the fully-developed velocity profile for 
turbulent flow (Re13750) in a two dimensional x-y channel  
 
 

4.2 Uniformly-Heated Evaporating Thin Liquid Film on a Cylindrical Rod   

In this section, the evaporating thin liquid film on a cylindrical rod with uniform 

heating is simulated by the level contour reconstruction method. To test the responses of 

the liquid film to uniform heating, both laminar and turbulent flows are simulated. 

Saturated water and steam at 6.9 MPa (1000 psia) are used as the working fluids; 

the liquid density, viscosity, conductivity, and specific heat are 741.7 kg/m3, 9.17×10-5 
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kg/ms, 0.5613 W/moC, and 4973 J/kgoC, respectively; the corresponding values for steam 

are 35.95 kg/m3, 1.89×10-5 kg/ms, 0.0573 W/moC, and 2684 J/kgoC, respectively. The 

latent heat of vaporization, surface tension coefficient, and saturation temperature are 

assumed to be constant and equal to 1.512×106 J/kg, 0.01785 N/m, and 558.8 K, 

respectively. 

In order to simulate a heated rod within a subchannel, the symmetry lines 

surrounding the rod within the subchannel are replaced by a moving concentric cylinder. 

The inner rod diameter is assumed to be 1.0×10-2m and the outer “wall” diameter is 

assumed to be 1.693×10-2m. The outer diameter has been selected to produce a channel 

hydraulic diameter comparable to that for typical BWR bundles. The liquid film is 

assumed to have a uniform initial thickness around the rod. The initial film thickness is 

assumed to be 1.0×10-3 m. At the inlet of the simulation domain, a program has been 

created to calculate the fully-developed velocity profile of the two-phase flow, as 

presented in Figure 4.7.  This calculation is done by solving the governing equation of 

two-phase flow in the r-z domain until a steady-state is achieved with a fixed outer “wall” 

velocity and a no slip boundary condition at the inner wall. The velocity profile 

calculated in the r-z domain is then used as the inlet velocity profile of Level Contour 

Reconstruction Method in the r-θ -z domain. 



 91

 

Figure 4.7: A 2D program in the r-z domain calculates the fully-developed velocity 
profile of the two-phase flow. The velocity profile is then used as the inlet velocity 
profile of the 3D LCRM model. The outer “wall” moves upward at a constant velocity. 
 

• Laminar Flow  

The numerical scheme was first tested by performing the simulation at zero heat 

flux with no cross flow for laminar flow. This case provides a base reference. Without 

heating or cross flow, the liquid film should remain uniform throughout the simulation 

since no disturbance that would cause the interface to move away from its initial 

equilibrium position occurs. As pointed out in Shin et al. (2005), this type of simulation is 

extremely difficult because the numerical method should cover both the dynamic and 

steady equilibrium regions. Our numerical method causes the maximum liquid film 

thickness to increase by 3% to 1.03×10-3 m, as can be seen in Figure 4.8. Because 3% is 

z 

r 
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very small, this increase should not significantly affect the simulation. The minimum 

liquid film thickness remains 1.0×10-3 m during the entire simulation. With this result, 

the numerical algorithm can now be used to assess the impact of the forcing functions on 

film stability and possible dryout formation.  

                  

 

Figure 4.8: Variation of the calculated film thickness with time for the case without 
heating or cross flow for laminar flow (BFECC method, tΔ =1×10-4 s, grid 5×20×50, 
and the axial “outer” wall velocity is 1.0 m/s)   
 

For nonzero heat flux values, the film thickness is expected to decrease as it 

proceeds along the rod. As shown in Figure 4.9, the minimum liquid film thickness 

oscillates slightly in the first 0.4 sec with a wall heat flux, wq , of 5.0×105 W/m2 for 
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laminar flow. After 0.4 sec, the minimum liquid film thickness becomes stable. Figure 

4.10 shows the detailed interfacial structure along the rod.  

 

 

Figure 4.9: Variation of the film thickness with time for uniform heating wq  of 5.0×105 
W/m2 for laminar flow (BFECC method, tΔ =1×10-4 s, grid 5×20×50, and the axial 
“outer” wall velocity is 1.0 m/s)   
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                     t =0.05 sec                                                   t =1 sec 
 
 

                                   
                       t =1.5 sec                                                  t =5.0 sec 
 
 
Figure 4.10: Detailed interfacial structure for uniform surface heating time for uniform 
heating wq  of 5.0×105 W/m2 for laminar flow (Note: This figure is not to scale; the z-
dimension has been compressed by a factor of 5, while deviation from the initial radius of 
the interface of the film has been magnified by a factor of 20 for easier viewing.)  
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• Turbulent flow 
 

The turbulent effect is simulated by the Standard ε−k model. Saturated water 

and steam at 6.9 MPa (1000 psia) is the working fluid. For uniform heat flux at 1.2×10 5 

W/m2, the liquid film oscillates slightly and ultimately approaches a steady minimum and 

maximum film thickness in Figure 4.11. Figure 4.12 shows the detailed interfacial 

structure along the rod.  

                    

 
Figure 4.11: Variation of the film thickness with time with uniform heating wq  1.2×105 
W/m2 for turbulent flow (BFECC method, tΔ =1×10-5 s, grid 5×20×50, and the axial 
“outer” wall velocity is 10.0 m/s)     
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               t=0.0 sec                                                      t=0.13 sec 

                             

           t=0.20 sec                                                          t=0.5 sec 

Figure 4.12: Detailed interfacial structure for uniform surface heating wq  of 1.2×105 
W/m2 for turbulent flow (Note: This figure is not to scale; the z-dimension has been 
compressed by a factor of 5 for easier viewing.)  
 
 
 
 



 97

4.3 Prediction of the Critical Heat Flux for Internally-Heated Annuli 

In the previous section, we simulated the evaporating thin liquid film on a 

cylindrical rod for uniform heating by the level contour reconstruction method. In this 

section our model is applied to the prediction of the critical heat flux for internally-heated 

annuli, i.e. a heated rod surrounded by an unheated cylindrical shell. For internally-heated 

annuli, Becker and Hernborg (1964) observed that the liquid film always dried out near 

the exit of the test section. Based on this observation, to predict the critical heat flux, the 

LCRM can be applied to the last 10 cm of the test section to simulate the evolution of the 

liquid film leading to dryout. The program can be run at different heat flux values on the 

inner rod to determine the heat flux corresponding to dryout (zero film thickness) at the 

exit, i.e. the critical heat flux (CHF). The simulation results are compared with the 

experimental data sets obtained by Becker and Hernborg (1964) and Mortimore and Beus 

(1979).  

4.3.1 Becker and Hernborg (1964) Experiment 

Becker and Hernborg measured the critical heat flux for internally heated annuli 

in 1964. In the experiment, the heat flux is kept constant. The mass flow rate is reduced 

slowly until the liquid film dries out. At dryout, the exit quality and pressure are recorded. 

The experimental data corresponding to CHF 2.01 and 2.47 (MW/m2) are shown in Table 

4.2.The heating length of the annulus is 0.608 m, the outer tube diameter 0.01742 m, and 

the inner rod diameter 0.00992 m.  
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Table 4.2: Exit Pressure and Quality at Dryout (Becker and Hernborg, 1964)  

Heat Flux 
(MW/m2) 

Exit 
Pressure 
(bar) 

Exit 
quality 

Mass 
Flux 
(Kg/m2s) 

Heat Flux 
(MW/m2) 

Exit 
Pressure 
(bar) 

Exit 
quality 

Mass 
Flux 
(Kg/m2s)

2.01 15.422 0.162 753.8 2.47 16.472 0.154 978.2 

2.01 16.368 0.177 693.3 2.47 18.206 0.158 966.3 

2.01 18.239 0.189 654 2.47 20.206 0.170 906 

2.01 20.487 0.193 649.4 2.47 20.657 0.172 897.7 

  

The procedure used to predict the critical heat flux using the LCRM is as follows: 

1. determine the initial liquid film thickness at the inlet 

2. input the material properties 

3. calculate the inlet velocity profile based on the calculated initial liquid film 

thickness and the mass flux  

4. run the LCRM model at different heat flux boundary conditions to determine 

the critical heat flux, i.e. the heat flux corresponding to dryout at the exit 

 Initial Liquid Film Thickness Calculation  

One important input parameter needed in the LCRM model is the initial liquid 

film thickness. To determine this parameter, the energy conservation equation is applied 

to compute the steam quality at the inlet of the simulation domain. From the steam 

quality, the correlation by Furukawa and Sekoguchi (1986) is employed to calculate the 

void fraction. The void fraction is then used to determine the liquid film thickness. The 

detail steps used to calculate the liquid film thickness in the experiment of Becker and 

Hernborg (1964) are illustrated below.   
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 Simulation Domain 

The simulation domain is in the last 10 cm of the test section. In this simulation 

domain, the flow type is assumed to be annular flow.   

 

Figure 4.13: LCRM simulation region in the experiment of Becker and Hernborg (1964)  
 

0.608 m 

LCRM 
Simulation  
Region 
10 cm 

A A

Section A-A

τ
τ

Vapor 
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In this annular flow region, it is assumed that a liquid film exists on both the inner rod 

and the outer tube as shown in Figure 4.13. In the inlet of the simulation domain, section 

A-A, the two liquid films are assumed to have the same thickness. 

 
 Calculating Quality  at Section A-A and Mass Flux 

The energy balance equation, along with the experimental data, is used to 

calculate the enthalpy at section A-A, hA-A. The exit quality Xexit, critical heat flux qcr,exp, 

and inner diameter Di  are used. The latent heat hfg is obtained by looking up the steam 

table at the exit pressure of the experiment. The inlet subcooling for the 0.608 m long test 

section is zero. The enthalpy at inlet is   

                           fin hh = . (4.7) 

The mass flux can, therefore, be calculated by the energy balance equation 

                                    )608.0()( exp, mDqhXmhhm icrfgexitinexit ⋅⋅⋅=⋅⋅=− π&& . (4.8) 

The energy balance equation is applied again, then the quality at section A-A, XA-A, can be 

obtained as follows: 

                                   )508.0()( exp, mDqhXmhhm icrfgAAinAA ⋅⋅⋅=⋅⋅=− −− π&& . (4.9) 

 Calculating Void Fraction α  at Section A-A 

Once the quality is calculated, the proper correlation is needed to calculate the 

void fraction. However, a validated correlation of void fraction for water and steam in 



 101

annuli was not found in the open literature. Instead, a correlation proposed by Furukawa 

and Sekoguchi (1986) for air-water two-phase flow in annuli is found. This correlation is 

used to calculate the void fraction in our model. The Furukawa and Sekoguchi (1986) 

correlation is  

  

pressure:102~159 kPa 
water temperature: 33 C°  
superficial air velocity, gj  :0.2~20 m/s 
superficial water velocity, lj :0.1~2.0 m/s  
diameter ratio oi DD /  5/13, 8/13, 10/13 
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After the void fraction is determined from the Furukawa and Sekoguchi (1986) 

correlation, the slip ratio is calculated by the relation: 

                                
Slip

X
X

g

f

υ
υ

α
−

+
=

11

1  . (4.11) 
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However, the prediction with the slip ratio by the Furukawa and Sekoguchi (1986) 

correlation tends to underestimate the CHF by 50%, as shown in Figure 4.13. In view of 

this, we multiply the (slip ratio)F-S(1986) correlation by an empirical correction factor of 1.3 or 

1.4.    

 (slip ratio)sim =(slip ratio)F-S (1986) correlation ×  (correction factor 1.3 or 1.4) .   (4.12) 

The void fraction is calculated again by Eq. 4.11 with (slip ratio)sim. 

 

Figure 4.14:  Variation of the CHF prediction with the slip ratio. Value calculated based 
on film thickness from the Furukawa and Sekoguchi (1986) correlation tends to 
underestimate CHF by 50% (Pressure 18.206 bar, BFECC method, tΔ =1×10-6 s, and 
grid 6×24×42) 

 Calculate  the Liquid Film Thickness τ   
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At time=0 sec, we assumed that the inner and the outer liquid film are with the 

same thicknessτ . The liquid film thickness can be calculated from the void fraction 

based on the area fraction of vapor by Eq. 4.13. 
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The liquid film thickness calculated from Eqs. 4.11, 4.12, and 4.13 increases as the slip 

ratio increases, as shown in Figure 4.13. 

 

Figure 4.15: The liquid film thickness for different slip ratio calculated using Eqs. 4.11, 
4.12, and 4.13 at CHF 2.47 (MW/m2) 
 

Although there are two liquid films in this annulus, the outer liquid film does not 

dry out (Becker and Herborg, 1964). In our simulation, we ignore the outer liquid film on 
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the unheated shroud, assuming that its movement does not affect the critical heat flux 

prediction for the inner heated rod. Only the inner liquid film is simulated by our level 

contour reconstruction method. Vapor occupies the rest of the area as seen in Figure 4.16. 

The outer film plays a role only in the film thickness calculation of Eq. 4.13. The inner 

liquid film thickness is set as τ  from Eq. 4.13.  The material properties used in the 

simulation are presented in Table 4.5. 

 

 

 

 

 

 

 

Figure 4.16: Schematic Diagram of the Model Geometry--Only the liquid film on the 
inner rod is simulated in our model. The outer film is ignored, and it is assumed that 
vapor is filled by the rest of the space  
 
 

 Calculate the Inlet Velocity Profile  

A program has been created to calculate the fully-developed velocity profile of 

the two-phase flow within the annulus as presented in Figure 4.17.  This fully-developed 

velocity profile is calculated by simulating a flow with uniform velocity at the inlet 

flowing through a long annulus in the r-z domain. The flow reaches fully-developed 

conditions as its velocity profile does not change in the axial direction. This fully-

developed velocity profile is employed as the inlet velocity profile of the computational 

domain for the 3D Level Contour Reconstruction Method.  

τ

Vapor Liquid film 
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Table 4.3:  Material properties used in the simulation of Becker and Hernborg (1964) 
experiment 
 
 P=16.472 

bar 
P=18.206 
bar 

P=20.206 
bar 

P=20.657 
bar 

Liquid density 
(Kg/m3) 

861.5 855.6 849.2 847.8 

Steam density 
(Kg/m3) 

8.31 9.158 10.14 10.36 

Liguid 
viscosity  
(N-Sm2) 

1.324e-4 1.291e-4 1.258e-4 1.251e-4 

Steam 
viscosity 
 (N-S/m2) 

1.581e-5 1.598e-5 1.616e-5 1.62e-5 

Liquid 
conductivity 
(W/moC) 

0.6491 0.6462 0.6427 0.642 

Steam 
conductivity 
(W/moC) 

0.04046 0.0414 0.04243 0.04265 

Liquid specific 
heat (J/kgoC) 

4503 4529 4559 4566 

Steam specific 
heat (J/kgoC) 

2835 2906 2988 3006 

Latent heat 
(J/kg) 

1.929e6 1.909e6 1.888e6 1.883e6 

Surface tension 
(N/m) 

0.03703 0.03591 0.0347 0.03444 

Saturation 
temperature 
(oC) 

202.9 207.8 213.1 214.2 
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Figure 4.17: A 2D program in the r-z domain calculates the fully-developed velocity 
profile of the two-phase flow in annuli. The velocity profile is used as the inlet velocity 
profile of the 3D LCRM model. Both inner and outer walls are stationary. 
 

 Steady-State CHF Prediction Results 
 

Figures 4.18 to 4.21 illustrate the steady-state CHF prediction results versus 

liquid film thickness at different exit pressures. Referring to Fig. 4.18, for a given initial 

film thickness, mass flux, and pressure, the film thickness corresponding to a given heat 

flux is calculated. When a non-zero exit film thickness is calculated, a “no-dryout” result 

is noted. As the assumed heat flux value increases, dryout is reached at the exit. The CHF 

is calculated by interpolation between the last-calculated “dryout” and “no dryout” cases. 

The results in Figures 4.18, 19, 20, and 21 correspond to different pressure with slightly 

z 

r
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different mass flux values. All calculations are performed using the BFECC method with 

mesh 6×24×42, and Δ t=1.0×10-6 sec. As expected, these four figures show that the 

predicted CHF increases as the liquid film thickness increases.   

Figure 4.22 shows the effect of slip on the predicted CHF at different pressures. 

The slip ratio predicted by the Furukawa and Sekoguchi (1986) model was multiplied by 

an empirical correction factor of either 1.3 or 1.4. In this figure, the simulation results 

obtained using the BFECC method with the slip ratio correction factor of 1.4 yields the 

best result. With the correction factor 1.4, the predicted CHF values are 3-23% lower 

than the experimental value CHFexp of 2.47 MW/m2. Figure 4.22 also compares the 

predicted CHF values obtained using either the CIR or the BFECC method with the same 

slip empirical factor (1.3). The results show that the BFECC method yields better results 

than the CIR method; the BFECC improves the CHF prediction by 11-20% versus the 

CIR method. The progressive simulation results leading to the predicted CHF values 

shown in Figure 4.22 can be found in Figures 4.23 to 4.25. Figure 4.26 shows the CHF 

prediction results for a lower mass flux corresponding to an experimental CHFexp value of 

2.01 (MW/m2). Here only the predictions obtained using the BFECC method and a slip 

correction factor of 1.4 are shown.  The predicted CHF is 20-40% lower than the 

experimental CHF.  
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Figure 4.18: Variation of predicted CHF with film thickness at pressure 16.472 (bar) and 
mass flux 978.2 (Kg/m2-s) (BFECC method, mesh 6×24×42, and Δ t=1.0×10-6 sec) 
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Figure 4.19: Variation of predicted CHF with film thickness at pressure 18.206 (bar) 
and mass flux 966.3(Kg/m2-s) (BFECC method, mesh 6×24×42, and Δ t=1.0×10-6 sec) 
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Figure 4.20: Variation of predicted CHF with film thickness at pressure 20.206 bar and 
mass flux 906 (Kg/m2-s) (BFECC method, mesh 6×24×42, and Δ t=1.0×10-6 sec) 
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Figure 4.21: Variation of predicted CHF with film thickness at pressure 20.657(bar) and 
mass flux 897.7 (Kg/m2-s) (BFECC method, mesh 6×24×42, and Δ t=1.0×10-6 sec) 
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Figure 4.22: Steady-state CHF prediction results at different pressure (mesh 6×24×42 
and Δ t=1.0×10-6 sec) 
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Figure 4.23: Steady-state CHF prediction results (slip ratio=Furukawa and Sekoguchi 
(1986) correlation× 1.4, BFECC method, mesh 6× 24×42, and Δ t=1.0×10-6 sec) 
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Figure 4.24: Steady-state CHF prediction results (slip ratio=Furukawa and Sekoguchi 
(1986) correlation× 1.3, BFECC method, mesh 6×24×42, and Δ t=1.0×10-6 sec) 
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Figure 4.25: Steady-state CHF prediction results (slip ratio=Furukawa and Sekoguchi 
(1986) correlation× 1.3, CIR method, mesh 6×24×42, and Δ t=1.0×10-6 sec) 
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Figure 4.26: Steady-state CHF prediction results (slip ratio=Furukawa and Sekoguchi 
(1986) correlation× 1.4, BFECC method, mesh 6×24×42, and Δ t=1.0×10-6 sec) 
 
 
 

 Transient CHF Prediction--Simulation for Different Mass Flux Reduction Rates 
 

In the Becker and Hernborg (1964) experiment, the heat flux is kept constant. The 

mass flux is gradually reduced until the liquid film dries out. To better simulate the dry 

out process, we follow the experimental procedure in our numerical simulation to predict 

the exit quality at dryout for different mass flux reduction rates. One advantage of the 

Level Contour Reconstruction Method is that it allows us to simulate the liquid film 

movement at different boundary conditions. For example, one simulation with a mass 

flux reduction rate 9.36× 107 (Kg/m2-s)/hr is shown in Figure 4.27. We first run the 

simulation at a high mass flux (1.5 times the experimental dryout mass flux) until it 
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reaches steady state. It takes 0.02 seconds. The liquid film does not dry out at this high 

mass flux. After the liquid film reaches steady state conditions at 0.02 second, the mass 

flux is decreased at a prescribed mass flux reduction rate until the liquid film dries out. In 

the simulation, the mass flux is reduced by decreasing the velocity at the inlet of the 

calculation domain while keeping the same inlet film thickness in Eq. 4.13. At dryout, we 

recorded the mass flux. The exit quality at dryout can then be calculated by the energy 

balance equation. 

 
Figure 4.27:  Mass flux setting at the mass flux reduction rate 9.36×107 (Kg/m2-s)/hr. 

 

We then test the sensitivity of the initial mass flux setting in the simulation. 

Figure 4.28 shows that exit quality at dryout predicted in the simulation for different 

initial mass flux values at the same mass flux reduction rate. The figure shows that the 
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prediction results of the exit quality at dryout do not significantly change for different 

initial mass flux values. The exit quality is not sensitive to the initial mass flux used to 

establish the starting steady state condition.   

 

 
Figure 4.28: Exit quality at dryout for different initial mass flux (CHF 2.47 MW/m2, 
mass flux reduction rate 9.36e7 (Kg/m2-s)/hr, and pressure 18.206 (bar), mesh 6×24×42, 
and Δ t=1.0×10-6 sec) 

 

 

Figure 4.29 shows that the mass flux at dryout obtained in the simulation decreases 

as the mass flux reduction rate increases. The higher the mass flux reduction rate, the 

lower the mass flux at dryout is.  From the energy balance equation, we can calculate the 

exit quality at dryout from the dryout mass flux in Figure 4.29. The results are shown in 
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Figure 4.30. It shows the exit quality at dryout will be higher at high mass flux reduction 

rates. This result confirms the observation that the use of steady state CHF values in 

transient analysis is generally conservative. The level of conservation increases as the 

transient becomes more rapid. 

 

 

Figure 4.29: Dryout mass flux at CHF 2.47 MW/m2 for different mass flux reduction 
rates. (Slip ratio=Furukawa and Sekoguchi (1986) correlation×1.4, initial mass flux=1.5 
×experiment mass flux, mesh 6×24×42, and Δ t=1.0×10-6 sec) 
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Figure 4.30: Exit quality at dryout at CHF 2.47 MW/m2 for different mass flux reduction 
rates. (Slip ratio=Furukawa and Sekoguchi (1986) correlation×1.4, initial mass flux=1.5 
×  experiment mass flux, mesh 6×24×42, and Δ t=1.0×10-6 sec) 
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Figure 4.31:  Dryout mass flux at CHF 2.01 MW/m2 for different mass flux reduction 
rates (slip ratio=Furukawa and Sekoguchi (1986) correlation×1.4, initial mass flux=1.5 ×  
experiment mass flux, mesh 6×24×42, and Δ t=1.0×10-6 sec) 
 
 

Figure 4.31 shows that the dryout mass flux obtained in the simulation decreases as 

the mass flux reduction rate increases for CHF 2.01 MW/m2. However, some of the 

predicted dryout mass flux values are higher than the experiment mass flux. This is 

because the slip ratio obtained using the Furukawa and Sekoguchi (1986) model with a 

correction factor 1.4 appears too low for the experiment with CHF 2.01 MW/m2. In the 

steady-state simulation, the CHFsim with correction factor 1.4 is 20-40% lower than the 

CHFexp in Figure 4.26. Even when the mass flux at time zero is increased by 50% above 

the experimental CHF value, the liquid film dries out quickly as shown in Figure 4.32. 
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From energy balance equation, the exit quality at dryout can be calculated. The results are 

shown in Figure 4.33.  

 

 
Figure 4.32: Mass flux setting at the mass flux reduction rate 3.12×107 (Kg/m2-s)/hr 
(mesh 6×24×42 and Δ t=1.0×10-6 sec) 
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Figure 4.33: Exit quality at CHF 2.01 MW/m2 for different mass flux reduction rates. 
(slip ratio=Furukawa and Sekoguchi (1986) correlation×1.4, initial mass flux=1.5 ×  
experimental value mesh 6×24×42, and Δ t=1.0×10-6 sec) 
 
 

      

4.3.2 Mortimore and Beus (1979) experiment 

Mortimore and Beus (1979) measured the critical heat flux at different subcooling 

conditions for internally heated annuli. In the experiment, the mass flux is kept constant 

at 352 kg/m2s while slowly increasing the heat flux until the liquid film dries out. The 

heat flux at dryout is shown in Table 4.4.  From the experimental data, we can calculate 

the initial film thickness using the energy balance equation as we did in the simulation of 

the Becker and Hernborg (1964) experiment. The heating length of the annulus was 2.13 
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m. At the test section inlet, the subcooling ihΔ  was between 0.1746 MJ/kg and 1.1635 

MJ/kg. Pressure was kept at 138 bar. The outer tube diameter was 0.0127 m, while the 

inner rod diameter was 0.0077 m.   

 

Table 4.4: Critical heat flux data (Mortimore and Beus, 1979) 

Inlet subcooling (MJ/Kg) Critical heat flux (MJ/m2) 

0.1746 0.3849 

0.4352 0.5205 

0.6840 0.6152 

1.1635 0.8518 

 
 

 Material property 

Saturated water and steam at 138 bar (2000 psia) are used as the working fluid; 

the liquid density, viscosity, conductivity, and specific heat are 624.7 kg/m3, 7.231×10-5 

Ns/m2, 0.4416 W/moC, and 7715 J/kgoC, respectively; the corresponding values for steam 

are 85.26 kg/m3, 2.21×10-5 Ns/m2, 0.08156 W/moC, and 10584 J/kgoC, respectively. The 

latent heat of vaporization, surface tension coefficient, and saturation temperature are 

assumed to be constant and equal to 1.079×106 J/kg, 0.006547 N/m, and 335.6 oC.  

 

 Grid convergence study 

For the grid convergence test, we predict the CHF for different grid resolutions. As 

can be seen in Figure 4.16, the predicted CHF value converges as the number of nodes 

increases. The time step is 1.0×10-4 sec. As the number of nodes increases, the predicted 
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CHF decreases. At the highest resolution (29160 nodes), the predicted CHF is 4.1×105 

(W/m2), which is lower than the experimental value of 6.15×105 (W/m2). With the slip 

ratio calculated from the Furukawa and Sekoguchi (1986) correlation, the prediction 

tends to underestimate the CHF by 33%. Again, Eq. 4.12 is used to correct the slip ratio. 

             

 
Figure 4.34: Grid convergence study of the simulation for mass flux=352 (kg/m2-s) in 
the experiment of Mortimore and Beus (1979) (P=138 (bar), slip ratio=Furukawa and 
Sekoguchi (1986) correlation, and subcooling ihΔ  =0.68 MJ/kg, CIR method, mesh 
5×20×50, and Δ t=1.0×10-4sec) 

 
 

 Steady State CHF Prediction Results 

Steady state CHF values are obtained by performing a series of steady state 

simulations at different heat flux values for the same film thickness. For low heat flux 

values dryout does not occur (see square symbols in Fig. 4.35). However, heat fluxes 
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above a specific value, dryout occurs at the exit (see triangular symbols in Fig. 4.35). The 

CHF value is obtained by interpolating between the last calculated value with and 

without dryout. Figures 4.35 to 4.38 illustrate that the predicted steady-state CHF 

increases as the liquid film thickness increases for different inlet subcooling. Figure 4.39 

shows that predicted CHF is very close to the CHFexp when a slip ratio correction factor 

of 1.3 is used. The simulation error is between -20% and 5%. 

 
Figure 4.35:Variation of CHF with film thickness at inlet subcooling 0.1746 (MJ/Kg) 
(P=138 bar, mass flux=352 kg/m2-s, CIR method, Δ t=1.0×10-4sec, and mesh 9×36×90) 
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Figure 4.36: Variation of CHF with film thickness at inlet subcooling 0.435 (MJ/Kg) 
(P=138 bar, mass flux=352 kg/m2-s, CIR method, Δ t=1.0×10-4sec, and mesh 9×36×90) 
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Figure 4.37: Variation of CHF with film thickness at inlet subcooling 0.684 (MJ/Kg) 
(P=138 bar, mass flux=352 kg/m2-s, CIR method, Δ t=1.0×10-4sec, and mesh 9×36×90) 
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Figure 4.38: Variation of CHF with film thickness at inlet subcooling 1.164 (MJ/Kg) 
(P=138 bar, mass flux=352 kg/m2-s, CIR method, Δ t=1.0×10-4sec, and mesh 9×36×90) 
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Figure 4.39: Predicted CHF results (P=138 bar, slip ratio=Furukawa and Sekoguchi 
(1986) correlation×1.3, mass flux=352 kg/m2-s, CIR method, Δ t=1.0×10-4sec, and mesh 
9×36×90) 
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Figure 4.40: Predicted CHF results for laminar and turbulent flows (P=138 bar, slip 
ratio=Furukawa and Sekoguchi (1986) correlation× 1.3, mass flux=352 kg/m2-s, CIR 
method, Δ t=1.0×10-4sec, and mesh 9×36×90) 

 
 CHF Prediction Assuming Laminar Flow 

In this section, comparison is made between the predicted CHF values for laminar 

and turbulent flows with the same liquid thickness and material properties. Both 

predictions are compared against the experimental data. The Standard ε−k  turbulence 

model is turned off for the laminar CHF simulations. The simulation results are shown in 

Figure 4.40. Without including the turbulent model, the CHF prediction is significantly 

higher than the turbulent model predictions and the experimental data. For the same 

boundary conditions, the difference between the laminar and turbulent CHF predictions is 

more than an order of magnitude. Clearly including the turbulence in the dryout model is 
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critical because the laminar model overestimates the critical heat flux by more than 

1000%.  

In turbulent flow, there are numerous eddies in the flow ranging in size from 

“large” eddies to “small” eddies. In addition to the eddies, large scale motion exists in 

turbulent flow. The complex movement present in turbulent flow greatly enhances the 

transport of mass, momentum and energy. The heat transfer and evaporation rates in 

turbulent flow are much higher than the corresponding rates in laminar flow. Thus, the 

critical heat flux for turbulent flow is much lower than the critical heat flux for laminar 

flow. 

• Transient CHF Prediction for Different Heat-Up Rates 

In this section, we focus on CHF prediction for different heat-up rates. Again, the 

aim is to compare transient CHF predictions against the steady state values. The 

mechanistic model developed in this investigation allows one to quantify the effects of 

transient conditions on CHF. In nearly all transient analyses performed for reactor core 

design, steady state dryout correlations are used to establish safety limits. This approach 

is used even in BWR stability transients where both reactor power and core flow undergo 

rapid oscillatory behavior. This practice is usually justified by the assertion that the use of 

such steady state correlations should yield conservative results. Experimental data 

supporting such an assertion are not available. Therefore, the model developed in this 

investigation will be used to examine the validity of such an assertion. 

To predict the critical heat flux for transient conditions, experimental data at 

subcooling 0.68 MJ/kg is used. The corresponding experimental critical heat flux is 

6.15×  105(W/m2), while the mass flux is 352 (Kg/m2-s). Assuming a slip ratio of 1.15, an 
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initial liquid film thickness of 0.000274 m is calculated. In the first two seconds of the 

simulation, the heat flux is set as half of the experimental critical heat flux. After the 

liquid film reaches steady state, the heat flux is increased at a prescribed heat-up rate until 

dryout occurs. The liquid film does not dryout at the initial heat flux.  

Figure 4.41 illustrates the heat flux setting at a heat-up rate 6.152×  105(W/m2) 

sec-1. After the liquid film reaches steady state at two seconds, the heat flux is increased 

at a heat-up rate of 6.152×  105(W/m2) sec-1 until the liquid film dries out. Results similar 

to that in Figure 4.41 haven been obtained for different heat-up rates following the initial 

steady state at 50% of the experimental CHF value. The results are shown in Fig. 4.42, 

which shows the CHF increases as the heat-up rate increases. The predicted critical heat 

flux values at all heat-up rates are higher than the experimental steady state critical heat 

flux. The fact that Fig. 4.42 show the predicted values to be higher than the experimental 

values is related to the uncertainty in the slip ratio, i.e. the initial film thickness. The 

important point, however, is that the predicted CHF generally increases as the heat-up 

rate increases. In other words, for faster transients, dryout will occur at a higher heat flux 

confirming the validity of the assertion that the used of steady state CHF correlation in 

transient analysis is conservative. Figure 4.43 shows a plot of the dryout time following 

initiation of the heat-up ramp for the calculation shown in Fig. 4.42. Clearly, the results 

show that the dryout time decreases as the heat-up rate increases.  
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Figure 4.41: Heat flux setting of heat-up rate 6.152×  105(W/m2) sec-1 
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Figure 4.42: CHF prediction results at different heat-up rates (slip ratio 1.15, P=138 bar, 
mass flux=352 kg/m2-s, subcooling 0.68 MJ/Kg, CIR method, mesh 5×20×50, and 
Δ t=1.0×10-4sec) 

 

 

Figure 4.43: Dryout time calculation results at different heat-up rates (slip ratio 1.15, 
P=138 bar, mass flux=352 kg/m2-s, subcooling 0.68 MJ/Kg, CIR method, mesh 
5×20×50, and Δ t=1.0×10-4sec) 
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• Transient CHF Prediction for Different Mass Flux Reduction Rates 

In this section, simulations of transient dryout at a fixed heat flux with different 

mass flux reductions are presented. The critical heat flux at different mass flux reduction 

rates is also simulated.  The setting of the mass flux is similar to the one in Figure 4.27. 

Assuming a slip ratio of 1.15, the initial liquid film thickness is 0.000274 m. The heat 

flux is set as the experimental critical heat flux 6.15×  105(W/m2), while the initial mass 

flux is set as twice the experimental mass flux value. After the liquid film reaches steady 

state at 2 seconds, the mass flux is reduced at a prescribed rate until the liquid film dries 

out.  

Figure 4.44 shows the predicted CHF values for different mass flux reduction 

rates. The results show that the dryout mass flux decreases as the mass flux reduction rate 

increases. In all cases, however, the predicted CHF mass flux values are lower than the 

corresponding experimental value. Again, this difference is probably related to 

uncertainty in the slip ratio used to estimate the initial film thickness. However, as 

discuss in the previous section, the important observation is to note that for a given heat 

flux, the dryout mass flux decreases as the transient becomes faster. The dryout times 

corresponding to the results in Fig. 4.44 are shown in Fig. 4.45; the dryout time decreases 

as the mass flux reduction rate increases. As shown in these two figures, our simulations 

confirm the assertion that the use of steady state correlations to predict dryout during 

transient conditions should yield conservative results.  
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Figure 4.44: Dryout mass flux prediction results at different mass flux reduction rates 
(slip ratio 1.15, P=138 bar, subcooling 0.68 MJ/Kg, heat flux 6.15×  105W/m2, CIR 
method, mesh 5×20×50, and Δ t=1.0×10-4sec) 

 
 

               
Figure 4.45: Dryout time calculation results at different mass flux reduction rates(slip 
ratio 1.15, P=138 bar, subcooling 0.68 MJ/Kg, heat flux 6.15×  105W/m2, CIR method, 
mesh 5×20×50, and Δ t=1.0×10-4sec) 
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4.4 Application to BWRs 

In this section, we focus on modeling the behavior of an evaporating thin liquid 

film on a heated cylindrical rod with spatially non-uniform heating and/or cross flow.  As 

indicated earlier, our interest in this problem derives from earlier work on modeling 

annular two-phase flow in boiling water reactors (BWRs). It has been hypothesized that 

some recent fuel failures following control rod maneuvers may have been caused by 

liquid film instability in regions of localized cross flow and high heat flux gradients. 

Specifically, the liquid water film flowing upwards along a full-length fuel rod in the 

upper regions of the core may experience significant azimuthal and axial heat flux 

gradients and cross flow caused by variations in the thermal-hydraulic conditions in the 

surrounding subchannels caused by proximity to an inserted control blade tip and/or 

sudden change in geometry at the top of neighboring part-length rods.  The heat flux 

gradients and cross flows may cause the liquid water film on the fuel rod surface to 

rupture by hydrodynamic instability, thereby forming a dry hot spot.  Such localized 

dryout phenomena cannot be accurately predicted by current core design methods based 

on subchannel analysis techniques coupled with empirical dryout correlations.  To this 

end, this effort has been undertaken to develop a mechanistic numerical model by which 

the detailed three-dimensional behavior of the liquid film along a specific axial node of a 

specific fuel rod can be mechanistically modeled.  The model would supplement current 

subchannel analysis methods by allowing core designers to focus closely on specific 

areas of potential concern.  It would allow designers to assess the potential for localized 

fuel failure due to hot spot formation caused by film instability. Such a computational 
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tool can be used to evaluate various design modifications or operational strategies to 

prevent occurrence of such un-anticipated dryout conditions. 

Various wall heat flux conditions have been applied at the cylindrical solid wall; 

both uniform and non-uniform heat flux in the axial and azimuthal directions have been 

used. The heat flux condition at the cylindrical wall is given by: 

 ( , ) (1 cos ) 1
2

z
w o

Lq z q A B zθ θ ⎡ ⎤⎛ ⎞= + + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. (4.14) 

where qo is the reference heat flux, while A and B are the fractional perturbation 

magnitudes of heat flux in the axial and azimuthal directions. 

Saturated water and steam at 6.9 MPa (1000 psia) are used as the working fluids; 

the liquid density, viscosity, conductivity, and specific heat are 741.7 kg/m3, 9.17×10-5 

kg/ms, 0.5613 W/moC, and 4973 J/kgoC, respectively; the corresponding values for steam 

are 35.95 kg/m3, 1.89×10-5 kg/ms, 0.0573 W/moC, and 2684 J/kgoC, respectively. The 

latent heat of vaporization, surface tension coefficient, and saturation temperature are 

assumed to be constant and equal to 1.512×106 J/kg, 0.01785 N/m, and 558.8 K, 

respectively. 

The inner rod diameter is assumed to be 1.0×10-2m and the outer “wall” diameter 

is assumed to be 1.693×10-2m. The outer diameter has been selected to produce a channel 

hydraulic diameter comparable to that for typical BWR bundles. The liquid film is 

assumed to have a uniform initial thickness around the rod. In all cases, the initial film 

thickness is assumed to be 1.0×10-3 m, while the axial velocity of the “outer wall” is 

assumed to be 10 m/sec. The BFECC method is used with mesh 5×20×50. 
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Figure 4.46 shows the calculated minimum liquid film thickness for different non-

uniform heating profiles. In some cases, the liquid film may momentarily dries out before 

recovering and reaching a steady state value as is the case for non-uniform heating with 

variation amplitude of 20% and 30% of the normal heat flux. For non-uniform heating 

with variation amplitude of 50%, the liquid film dries out at time 0.32 sec and does not 

recover. Figure 4.47 shows the detail liquid film evolvement. As can be seen in Figure 

4.47, a dry patch is formed at the top of the rod at 0.4, 0.48, and 0.56 sec for the non-

uniform heating with variation amplitude of 50%. Figure 4.48 shows the minimum liquid 

film thickness when cross flow is imposed on the primary axial flow. At cross flow 0.1% 

(velocity 0.01 m/s), the liquid film does not dry out. At cross flow 1% (velocity 0.1 m/s) 

and 2% (velocity 0.2 m/s), the liquid film dries out quickly. Figure 4.49 shows that a dry 

patch is formed on the rod with cross flow 2%. The results shown in Figure 4.46 through 

4.49 show that both localized non-uniform heating and cross flow can lead to film 

instability and “premature” dryout in BWRs.  

The results presented here clearly indicate that localized heat flux gradients and 

cross flow can lead to film breakdown and dry spot formation. Such mechanism may 

have contribute to the recently observed BWR fuel failures following control rod 

maneuvers while the control blade tip was located near the top of part-length rods. The 

method developed in this investigation offers the means to assess the potential for such 

effects in Boiling Water Reactors.  
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Figure 4.46: Variation of the calculated minimum film thickness with time for different 
non-uniform heating conditions (BFECC method, mesh 5×20×50, and Δ t=1.0×10-5sec, 

wq  of 1.6×105 W/m2, the axial “outer” wall velocity is 10.0 m/s) 

 

 

 



 142

                         

               t=0.2 sec                                                 t=0.4 sec 

                                        

                           t=0.48 sec                                                 t=0.56 sec 

Figure 4.47: Detailed interfacial structure for non-uniform 50% for turbulent flow (Note: 
This figure is not to scale; the z-dimension has been compressed by a factor of 5 for 
easier viewing. BFECC method, Δ t=1.0×10-5sec, mesh 5×20×50, and, wq  of 1.6×105 
W/m2, the axial “outer” wall velocity is 10.0 m/s)  
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Figure 4.48: Variation of the calculated minimum film thickness with time for different 
cross flow conditions (BFECC method, Δ t=1.0×10-5sec, mesh 5×20×50, and, wq  of 
1.6×105 W/m2, the axial “outer” wall velocity is 10.0 m/s) 
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                            t=0.03 sec                                           t=0.04 sec 
 

                                    
              t=0.08 sec                                              t=0.09 sec 

Figure 4.49: Detailed interfacial structure for cross flow 2% (Note: This figure is not to 
scale; the z-dimension has been compressed by a factor of 5 for easier viewing. BFECC 
method, Δ t=1.0×10-5sec, mesh 5×20×50, and, wq  of 1.6×105 W/m2, the axial “outer” 
wall velocity is 10.0 m/s)  
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 

This work has been aimed at developing a mechanistic, transient, 3-D numerical 

model to predict the behavior of an evaporating thin liquid film on a nonuniformly heated 

cylindrical rod with simultaneous parallel and cross flow of vapor. To this end, a 

numerical model based on the Level Contour Reconstruction Method was developed. The 

Standard k- ε turbulence model is included. A cylindrical coordinate system has been 

used to enhance the resolution of the Level Contour Reconstruction Model. Comparison 

has been made between the model predictions and experimental data. A model of this 

type is necessary to supplement current state-of-the-art BWR core thermal-hydraulic 

design methods based on subchannel analysis techniques coupled with empirical dry out 

correlations. In essence, such a model would provide the core designer with a 

“magnifying glass” by which the behavior of the liquid film at specific locations within 

the core (specific axial node on a specific locations within a specific bundle in the 

subchannel analysis model) can be closely examined. The boundary conditions for such a 

detailed model would be provided by the more global subchannel analysis results. A tool 

of this type would allow the designer to examine the effectiveness of possible design 

changes and/or modified control strategies to prevent conditions leading to localized film 

instability and possible fuel failure.  

The main work in this thesis involves expansion of the method originally 

proposed by Shin and Abdel-Khalik (2007) to include turbulence effects and use of 
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cylindrical coordinates for the fixed Eulerian grid. These modifications are necessary for 

proper modeling of the problem of interest, namely prediction of dryout in a BWR fuel 

rod with axial and azimuthal heat flux gradients and cross flow from neighboring 

subchannels. In a BWR reactor core, the Reynolds number of the flow is nearly 106; 

hence, the flow is highly turbulent. There are numerous eddies in the flow ranging in size 

from “large” eddies to “small” eddies in the flow. In addition to eddies, large scale 

motion exists in turbulent flow. To model the physics of the flow and dryout on a fuel rod, 

it is critical to account for turbulent effects on the various transport processes. Without 

accounting for turbulence and the corresponding enhancement in film vaporation, our 

simulation shows that the calculated dryout heat flux will likely be considerably higher 

than the actual value, i.e. non-conservative. The complex movement present in turbulent 

flow greatly enhances the transport of mass, momentum and energy, well above the rates 

achieved in laminar flow. Heat transfer and evaporation rate in turbulent flow are much 

higher than the rate in laminar flow. Thus the critical heat flux for turbulent flow is much 

lower than the value to be predicted for the same conditions without accounting for 

turbulence. 

In addition to simulating turbulence effects, we have solved the governing 

equations using a cylindrical coordinate system rather than the Cartesian coordinate 

system used in the original LCRM (Shin and Juric, 2002). Using a Cartesian coordinate 

system to simulate a cylindrical BWR fuel rod requires use of an immersed boundary 

method to approximate the boundary condition on the rod surface. While numerical 

schemes such as the immersed boundary method have gained some success in the past, 

the use of cylindrical coordinates for the problem at hand makes it considerably easier to 
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specify the boundary conditions without any approximation. This is particularly 

important to our simulation since the liquid film on the rod is expected to be very thin 

and its movement is very sensitive to the boundary condition on the surface. Using a 

cylindrical coordinate system eliminates any unnecessary approximations.     

Experimental data sets obtained by Becker and Hernborg (1964) and Mortimore 

and Beus (1979) has been used to compare with the model predictions of critical heat flux. 

The Level Contour Reconstruction Method is applied to the last 10 cm of the test section. 

With a vapor slip empirical correction factor of 1.4, the CHF prediction error ranges from 

3 to 40%. Use of the BFECC method improves the CHF prediction by 11-20%.  

The mechanistic model developed in this investigation allows one to quantify the 

effects of transient conditions on CHF. In nearly all transient analyses performed for 

reactor core design, steady state dry out correlations are used to establish safety limits. 

This approach is used even in BWR stability transients where both reactor power and 

core flow undergo rapid oscillatory behavior. This practice is usually justified by the 

assertion that the use of such steady state correlations should yield conservative results. 

Experimental data supporting such an assertion are not available. Our simulations 

confirmed the validity of this assertion, namely, the use of steady state correlations to 

predict dryout under transient conditions is indeed conservative. Additionally, the extent 

of conservation increases as the rate of change of either the heat flux or mass flux 

increases.   
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5.1 Contributions 

The work presented in this thesis is the first in the open literature to predict the 

critical heat flux for internally heated annuli using the Level Contour Reconstruction 

Method; the model has been expanded to include turbulent effects and use cylindrical 

coordinates for the fixed Eulerian grid. The main contributions of this doctoral thesis are 

1. Expansion of the Level Contour Reconstruction Method to include 

turbulence effects using the Standard ε−k  model since the flow in a 

BWR core is highly turbulent. 

2. Use of the cylindrical coordinate system for the fixed Eulerian grid rather 

than the Cartesian coordinate system in the original LCRM. The 

boundary condition the rod surface can be set naturally and easily.  

3. Validation of the Level Contour Reconstruction Method in the prediction 

of the critical heat flux for internally heated annuli.    

4. Validation of the conservative nature of the practice of using steady state 

CHF correlations to establish safety limits under transient conditions.  

 

5.2 Recommendations  

Based on the results of this investigation, additional work is needed to enhance 

the accuracy of the model. 

1. To determine the initial liquid film thickness in the LCRM model, a 

validated correlation of void fraction for water and steam in annuli is 

necessary. While these correlations are not available in the open literature, 

proprietary correlations have been developed and validated by reactor 
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vendors. Using the validated correlations with the permission from the 

vendors would significantly improve our ability to establish the initial 

conditions for various operating parameters.   

2. Our code has not been optimized for computational efficiency and we 

believe there is much room for improvement regarding simulation speed. 

However, ultimately we would need to parallelize the code in order to 

achieve the higher resolution simulations necessary to resolve the detailed 

features of turbulent flows.  

3. To simulate a square subchannel in a BWR core using a cylindrical 

coordinate system, advanced numerical technique must be employed to 

model the “square wall”.  

4. Future efforts will also include development of methods aimed at 

enhancing the interface model by incorporating such effects as disjoining 

pressure, non-equilibrium distribution of phase interface temperature, and 

contact line dynamics to provide a more complete analysis and to capture 

film behavior after rupture. 

5. The use of other turbulence models, particularly for the liquid film region, 

should be explored. 
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APPENDIX A 

FINITE DIFFERENCE DISCRETIZATION OF THE SHEAR 

STRESS TERMS IN THE RANS EQUATION  

 

The common central difference scheme to discretize the shear tress terms in the 

RANS equations is employed. This central difference scheme is introduced by the 

following examples on the 2D r-θ  plane. Then the finite difference scheme on the 3D r-

θ -z plane is presented. 

Example A.1: Finite difference discretization 
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Figure A.1: Finite difference scheme of Example A.1 
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Example A.2 

Finite difference discretization  
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Figure A.2: Finite difference discretization of Example A.2 
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In the following, on the 3D r-θ -z plane, the finite difference discretization of the 

shear stress terms in the RANS equation is presented. The definitions of the symbol we 

used in the program are the following: 

hr rΔ:  

hs θΔ:  

hz zΔ:  

rs(i): radius r at the location of scalar quantities 

r(i): radius r at the location of vector u 

vs: molecular viscosity 

ve: eddy viscosity 

**: square   

one : number 1 

two: number 2 

three: number 3 

four : number 4 
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 ≈
∂
∂ )(1

rrr
rr

τ  one/r(i)/hr**two*(rs(i+1)*(vs(i+1,j,k)+ve(i+1,j,k))  

*two*( u(i+1,j,k)- u(i ,j,k))-rs(i) (A.4) 

*(vs(i,j,k)+ve(i,j,k))*two*( u(i ,j,k)- u(i-1,j,k)) ) 

 

≈
∂
∂

rr θτθ
1  one/r(i)/hs*((vs(i,j,k)+vs(i+1,j,k)+vs(i,j+1,k)+vs(i+1,j+1,k)   

  +ve(i,j,k)+ve(i+1,j,k)+ve(i,j+1,k)+ve(i+1,j+1,k))/four 

*( r(i)/hr*(v(i+1,j, k)/rs(i+1)-v(i,j, k)/rs(i)) 

 +one/r(i)*(u(i ,j+1,k)-u(i,j,k))/hs )-(vs(i,j,k)+vs(i+1,j,k) (A.5) 

+vs(i,j-1,k)+vs(i+1,j-1,k) +ve(i,j,k)+ve(i+1,j,k) 

+ve(i,j-1,k)+ve(i+1,j-1,k))/four *( r(i)/hr*( 

v(i+1,j-1,k)/rs(i+1)-v(i, j-1,k)/rs(i))+one/r(i)*(u(i,j,k)-u(i,j-1,k))/hs)) 

≈
∂
∂

zrz
τ one/hz*((vs(i,j,k)+vs(i+1,j,k)+vs(i,j,k+1)+vs(i+1,j,k+1) 
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+ve(i,j,k)+ve(i+1,j,k)+ve(i,j,k+1)+ve(i+1,j,k+1))/four*( (w(i+1,j,k)- 

w(i,j,k))/hr+(u(i,j,k+1)-u(i,j,k))/hz)-(vs(i,j,k)+vs(i+1,j,k)  (A.6) 

+vs(i,j,k-1)+vs(i+1,j,k-1) +ve(i,j,k)+ve(i+1,j,k)+ve(i,j,k-1) 

+ve(i+1,j,k-1))/four*( (w(i+1,j,k-1)-w(i,j,k-1))/hr +(u(i,j,k)-u(i,j,k-1))/hz)) 

 

 ≈
r
θθτ

   (vs(i,j,k)+vs(i+1,j,k)+ve(i,j,k)+ve(i+1,j,k))/two/r(i) (A.7) 

*two*(one/two/r(i)/hs*(v(i,j,k)+v(i+1,j,k)-v(i,j-1,k)-v(i+1,j-1,k)) +u(i,j,k)/r(i))  
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2 θτ rr
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one/rs(i)**two/hr*( r(i)**two* 

(vs(i,j,k)+vs(i+1,j,k)+vs(i,j+1,k) 

+vs(i+1,j+1,k) +ve(i,j,k)+ve(i+1,j,k)+ve(i,j+1,k)+ve(i+1,j+1,k))/four    

 *( r(i)/hr*(v(i+1,j,k)/rs(i+1)-v(i,j,k)/rs(i))+one/r(i)/hs 

*(u(i,j+1,k)-u(i,j,k))) (A.8) 

-r(i-1)**two*(vs(i-1,j+1,k)+vs(i,j+1,k)+vs(i-1,j,k)+vs(i,j,k) 

+ve(i-1,j+1,k)+ve(i,j+1,k)+ve(i-1,j,k)+ve(i,j,k))/four*(r(i-1)/hr*(v(i,j,k)/rs(i) 

-v(i-1,j,k)/rs(i-1)) +one/r(i-1)/hs*(u(i-1,j+1,k)-u(i-1,j,k)))) 
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1 one/rs(i)/hs*(two*(vs(i,j+1,k)+ve(i,j+1,k))*(one/rs(i)/hs*       

(v(i,j+1,k)-v(i,j,k))+(u(i,j+1,k)+u(i-1,j+1,k))/two/rs(i)) –two  (A.9) 

*(vs(i,j,k)+ve(i,j,k))*(one/rs(i)/hs*(v(i,j,k)-v(i,j-1,k)) 

+(u(i,j,k)+u(i-1,j,k))/two/rs(i)) ) 
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θτ zz∂
∂

≈one/hz*( (vs(i,j,k)+vs(i,j+1,k)+vs(i,j,k+1)+vs(i,j+1,k+1) 

  +ve(i,j,k)+ve(i,j+1,k)+ve(i,j,k+1)+ve(i,j+1,k+1))/four 

 *( (v(i,j,k+1)-v(i,j,k))/hz  +one/rs(i)/hs*(w(i,j+1,k)-w(i,j,k)) )- (A.10) 

(vs(i,j,k)+vs(i,j+1,k)+vs(i,j,k-1)+vs(i,j+1,k-1) +ve(i,j,k) 

+ve(i,j+1,k)+ve(i,j,k-1)+ve(i,j+1,k-1))/four *((v(i,j,k)-v(i,j,k-1))/hz 

 +one/rs(i)/hs*(w(i,j+1,k-1)-w(i,j,k-1))) )  

 

)(1
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τ

∂
∂  ≈one/rs(i)/hr*( r(i)*(vs(i,j,k)+vs(i+1,j,k) 

+vs(i,j,k+1)+vs(i+1,j,k+1) +ve(i,j,k)+ve(i+1,j,k) 

+ve(i,j,k+1)+ve(i+1,j,k+1))/four     (A.11) 

  *( (w(i+1,j,k)-w(i,j,k))/hr+(u(i,j,k+1)-u(i,j,k))/hz)   

   -r(i-1)*(vs(i,j,k)+vs(i-1,j,k)+vs(i,j,k+1)+vs(i-1,j,k+1) 

    +ve(i,j,k)+ve(i-1,j,k)+ve(i,j,k+1)+ve(i-1,j,k+1))/four 

  *( (w(i,j,k)-w(i-1,j,k))/hr 

      +(u(i-1,j,k+1)-u(i-1,j,k))/hz)) 

zr θτθ∂
∂1

≈  one/rs(i)/hs*( (vs(i,j,k)+vs(i,j,k+1)+vs(i,j+1,k)+vs(i,j+1,k+1) 

      +ve(i,j,k)+ve(i,j,k+1)+ve(i,j+1,k)+ve(i,j+1,k+1))/four 

      *( (v(i,j,k+1)-v(i,j,k))/hz 

       +one/rs(i)/hs*(w(i,j+1,k)-w(i,j,k)) ) (A.12) 

     -(vs(i,j,k)+vs(i,j,k+1)+vs(i,j-1,k)+vs(i,j-1,k) 

      +ve(i,j,k)+ve(i,j,k+1)+ve(i,j-1,k)+ve(i,j-1,k))/four 

      *( (v(i,j-1,k+1)-v(i,j-1,k))/hz 
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      +one/rs(i)/hs*(w(i,j,k)-w(i,j-1,k)))) 
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≈one/hz*( (vs(i,j,k+1)+ve(i,j,k+1))*two*(w(i,j,k+1)-w(i,j,k))/hz       (A.13) 
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