183 research outputs found

    Technology applications

    Get PDF
    A summary of NASA Technology Utilization programs for the period of 1 December 1971 through 31 May 1972 is presented. An abbreviated description of the overall Technology Utilization Applications Program is provided as a background for the specific applications examples. Subjects discussed are in the broad headings of: (1) cancer, (2) cardiovascular disease, (2) medical instrumentation, (4) urinary system disorders, (5) rehabilitation medicine, (6) air and water pollution, (7) housing and urban construction, (8) fire safety, (9) law enforcement and criminalistics, (10) transportation, and (11) mine safety

    Design, Modeling, Fabrication and Testing of a Piezoresistive-Based Tactile Sensor for Minimally Invasive Surgery Applications

    Get PDF
    Minimally invasive surgery (MIS) has become a preferred method for surgeons for the last two decades, thanks to its crucial advantages over classical open surgeries. Although MIS has some advantages, it has a few drawbacks. Since MIS technology includes performing surgery through small incisions using long slender tools, one of the main drawbacks of MIS becomes the loss of direct contact with the patient’s body in the site of operation. Therefore, the surgeon loses the sense of touch during the operation which is one of the important tools for safe manipulation of tissue and also to determine the hardness of contact tissue in order to investigate its health condition. This Thesis presents a novel piezoresistive-based multifunctional tactile sensor that is able to measure the contact force and the relative hardness of the contact object or tissue at the same time. A prototype of the designed sensor has been simulated, analyzed, fabricated, and tested both numerically and experimentally. The experiments have been performed on hyperelastic materials, which are silicone rubber samples with different hardness values that resemble different biological tissues. The ability of the sensor to measure the contact force and relative hardness of the contact objects is tested with several experiments. A finite element (FE) model has been built in COMSOL Multiphysics (v3.4) environment to simulate both the mechanical behavior of the silicone rubber samples, and the interaction between the sensor and the silicone rubbers. Both numerical and experimental analysis proved the capability of the sensor to measure the applied force and distinguish among different silicone-rubber samples. The sensor has the potential for integration with commercially available endoscopic grasper

    Surgical Instruments based on flexible micro-electronics

    Get PDF
    This dissertation explores strategies to create micro-scale tools with integrated electronic and mechanical functionalities. Recently developed approaches to control the shape of flexible micro-structures are employed to fabricate micro-electronic instruments that embed components for sensing and actuation, aiming to expand the toolkit of minimally invasive surgery. This thesis proposes two distinct types of devices that might expand the boundaries of modern surgical interventions and enable new bio-medical applications. First, an electronically integrated micro-catheter is developed. Electronic components for sensing and actuation are embedded into the catheter wall through an alternative fabrication paradigm that takes advantage of a self-rolling polymeric thin-film system. With a diameter of only 0.1 mm, the catheter is capable of delivering fluids in a highly targeted fashion, comprises actuated opposing digits for the efficient manipulation of microscopic objects, and a magnetic sensor for navigation. Employing a specially conceived approach for position tracking, navigation with a high resolution below 0.1 mm is achieved. The fundamental functionalities and mechanical properties of this instrument are evaluated in artificial model environments and ex vivo tissues. The second development explores reshapeable micro-electronic devices. These systems integrate conductive polymer actuators and strain or magnetic sensors to adjust their shape through feedback-driven closed loop control and mechanically interact with their environment. Due to their inherent flexibility and integrated sensory capabilities, these devices are well suited to interface with and manipulate sensitive biological tissues, as demonstrated with an ex vivo nerve bundle, and may facilitate new interventions in neural surgery.:List of Abbreviations 1 Introduction 1.1 Motivation 1.2 Objectives and structure of this dissertation 2 Background 2.1 Tools for minimally invasive surgery 2.1.1 Catheters 2.1.2 Tools for robotic micro-surgery 2.1.3 Flexible electronics for smart surgical tools 2.2 Platforms for shapeable electronics 2.2.1 Shapeable polymer composites 2.2.2 Shapeable electronics 2.2.3 Soft actuators and manipulators 2.3 Sensors for position and shape feedback 2.3.1 Magnetic sensors for position and orientation measurements 2.3.2 Strain gauge sensors 3 Materials and Methods 3.1 Materials for shapeable electronics 3.1.1 Metal-organic sacrificial layer 3.1.2 Polyimide as reinforcing material 3.1.3 Swelling hydrogel for self assembly 3.1.4 Polypyrrole for flexible micro actuators 3.2 Device fabrication techniques 3.2.1 Photolithography 3.2.2 Electron beam deposition 3.2.3 Sputter deposition 3.2.4 Atomic layer deposition 3.2.5 Electro-polymerization of polypyrrole 3.3 Device characterization techniques 3.3.1 Kerr magnetometry 3.3.2 Electro-magnetic characterization of sensors 3.3.3 Electro-chemical analysis of polypyrrole 3.3.4 Preparation of model environments and materials 3.4 Sensor signal evaluation and processing 3.4.1 Signal processing 3.4.2 Cross correlation for phase analysis 3.4.3 PID feedback control 4 Electronically Integrated Self Assembled Micro Catheters 4.1 Design and Fabrication 4.1.1 Fabrication and self assembly 4.1.2 Features and design considerations 4.1.3 Electronic and fluidic connections 4.2 Integrated features and functionalities 4.2.1 Fluidic transport 4.2.2 Bending stability 4.2.3 Actuated micro manipulator 4.3 Magnetic position tracking 4.3.1 Integrated magnetic sensor 4.3.2 Position control with sensor feedback 4.3.3 Introduction of magnetic phase encoded tracking 4.3.4 Experimental realization 4.3.5 Simultaneous magnetic and ultrasound tracking 4.3.6 Discussion, limitations, and perspectives 5 Reshapeable Micro Electronic Devices 5.1 Design and fabrication 5.1.1 Estimation of optimal fabrication parameters 5.1.2 Device Fabrication 5.1.3 Control electronics and software 5.2 Performance of Actuators 5.2.1 Blocking force, speed, and durability 5.2.2 Curvature 5.3 Orientation control with magnetic sensors 5.3.1 Magnetic sensors on actuated device 5.3.2 Reference magnetic field 5.3.3 Feedback control 5.4 Shape control with integrated strain sensors 5.4.1 Strain gauge curvature sensors 5.4.2 Feedback control 5.4.3 Obstacle detection 5.5 Heterogenous integration with active electronics 5.5.1 Fabrication and properties of active matrices 5.5.2 Fabrication and operation of PPy actuators 5.5.3 Site selective actuation 6 Discussion and Outlook 6.1 Integrated self assembled catheters 6.1.1 Outlook 6.2 Reshapeable micro electronic devices 6.2.1 Outlook 7 Conclusion Appendix A1 Processing parameters for polymer stack layers A2 Derivation of magnetic phase profile in 3D Bibliography List of Figures and Tables Acknowledgements Theses List of Publication

    Cumulative index to NASA Tech Briefs, 1963-1967

    Get PDF
    Cumulative index to NASA survey on technology utilization of aerospace research outpu

    Research and technology at Kennedy Space Center

    Get PDF
    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of current mission, the technical tools are developed needed to execute Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1989 Annual Report

    Methods and Sensors for Slip Detection in Robotics: A Survey

    Get PDF
    The perception of slip is one of the distinctive abilities of human tactile sensing. The sense of touch allows recognizing a wide set of properties of a grasped object, such as shape, weight and dimension. Based on such properties, the applied force can be accordingly regulated avoiding slip of the grasped object. Despite the great importance of tactile sensing for humans, mechatronic hands (robotic manipulators, prosthetic hands etc.) are rarely endowed with tactile feedback. The necessity to grasp objects relying on robust slip prevention algorithms is not yet corresponded in existing artificial manipulators, which are relegated to structured environments then. Numerous approaches regarding the problem of slip detection and correction have been developed especially in the last decade, resorting to a number of sensor typologies. However, no impact on the industrial market has been achieved. This paper reviews the sensors and methods so far proposed for slip prevention in artificial tactile perception, starting from more classical techniques until the latest solutions tested on robotic systems. The strengths and weaknesses of each described technique are discussed, also in relation to the sensing technologies employed. The result is a summary exploring the whole state of art and providing a perspective towards the future research directions in the sector

    Swashplateless Helicopter Experimental Investigation: Primary Control with Trailing Edge Flaps Actuated with Piezobenders

    Get PDF
    Helicopter rotor primary control is conventionally carried out using a swashplate with pitch links. Eliminating the swashplate promises to reduce the helicopter's parasitic power in high speed forward flight, as well as may lead to a hydraulic-less vehicle. A Mach-scale swashplateless rotor is designed with integrated piezobender-actuated trailing edge flaps and systematically tested on the benchtop, in the vacuum chamber and on the hoverstand. The blade is nominally based on the UH-60 rotor with a hover tip Mach number of 0.64. The blade diameter is 66 inches requiring 2400 RPM for Mach scale simulation. The rotor hub is modified to reduce the blade fundamental torsional frequency to less than 2.0/rev by replacing the rigid pitch links with linear springs, which results in an increase of the blade pitching response to the trailing edge flaps. Piezoelectric multilayer benders provide the necessary bandwidth, stroke and stiffness to drive the flaps for primary control while fitting inside the blade profile and withstanding the high centrifugal forces. This work focuses on several key issues. A piezobender designed from a soft piezoelectric material, PZT-5K4, is constructed. The new material is used to construct multi-layer benders with increased stroke for the same stiffness relative to hard materials such as PZT-5H2. Each layer has a thickness of 10 mils. The soft material with gold electrodes requires a different bonding method than hard material with nickel electrodes. With this new bonding method, the measured stiffness matches precisely the predicted stiffness for a 12 layer bender with 1.26 inch length and 1.0 inch width with a stiffness of 1.04 lb/mil. The final in-blade bender has a length of 1.38 inches and 1.0 inch width with a stiffness of 0.325 lb/mil and stroke of 20.2 mils for an energy output of 66.3 lb-mil. The behavior of piezobenders under very high electric fields is investigated. High field means +18.9 kV/cm (limited by arcing in air) and -3.54kV/cm (limited by depoling). An undocumented phenomenon is found called bender relaxation where the benders lose over half of their initial DC stroke over time. While the bender stiffness is shown not to change with electric field, the DC stroke is significantly less than AC stroke. A two-bladed Mach-scale rotor is constructed with each blade containing 2 flaps each actuated by a single piezobender. Each flap is 26.5% chord and 14% span for a total of 28% span centered at 75% of the blade radius. Flap motion of greater than 10 degrees half peak-peak is obtained for all 4 flaps at 900 RPM on the hoverstand. So, the flaps show promise for the Mach-scale rotor speed of 2400 RPM. A PID loop is implemented for closed loop control of flap amplitude and mean position. On the hoverstand at 900 RPM, the swashplateless concept is demonstrated. The linear springs used to lower the torsional frequency are shown to have minimum friction during rotation. 1/rev blade pitching of ±1 degree is achieved at a torsional frequency of 1.5/rev for each blade. At resonance, the blade pitching for each blade is greater than ±4 degrees. Primary control is demonstrated by measuring hub forces and moments. At resonance state, the flaps in conjunction with the blade pitching provide ±15 lbs of normal force at a mean lift of 15 lbs yielding ±100% lift authority. Significant hub forces and moments are produced as well. For a production swashplateless helicopter, it may be prudent to eliminate the pitch links by reducing the blade structural stiffness. A novel wire sensor system network is proposed in order to measure blade elastic flap bending, lead-lag bending and torsion. The theory for measuring blade twist is rigorously derived. A blade is constructed with the wire sensor network and validated on the benchtop for blade elastic bending and twist. This work is a step forward in achieving a swashplateless rotor system. Not only would this reduce drag in high speed forward flight, but it would lead to a hydraulic-less rotorcraft. This would be a major step in vertical flight aviation

    On the development of a cybernetic prosthetic hand

    Get PDF
    The human hand is the end organ of the upper limb, which in humans serves the important function of prehension, as well as being an important organ for sensation and communication. It is a marvellous example of how a complex mechanism can be implemented, capable of realizing very complex and useful tasks using a very effective combination of mechanisms, sensing, actuation and control functions. In this thesis, the road towards the realization of a cybernetic hand has been presented. After a detailed analysis of the model, the human hand, a deep review of the state of the art of artificial hands has been carried out. In particular, the performance of prosthetic hands used in clinical practice has been compared with the research prototypes, both for prosthetic and for robotic applications. By following a biomechatronic approach, i.e. by comparing the characteristics of these hands with the natural model, the human hand, the limitations of current artificial devices will be put in evidence, thus outlining the design goals for a new cybernetic device. Three hand prototypes with a high number of degrees of freedom have been realized and tested: the first one uses microactuators embedded inside the structure of the fingers, and the second and third prototypes exploit the concept of microactuation in order to increase the dexterity of the hand while maintaining the simplicity for the control. In particular, a framework for the definition and realization of the closed-loop electromyographic control of these devices has been presented and implemented. The results were quite promising, putting in evidence that, in the future, there could be two different approaches for the realization of artificial devices. On one side there could be the EMG-controlled hands, with compliant fingers but only one active degree of freedom. On the other side, more performing artificial hands could be directly interfaced with the peripheral nervous system, thus establishing a bi-directional communication with the human brain

    NASA patent abstracts bibliography: A continuing bibliography. Section 2: Indexes (supplement 13)

    Get PDF
    This issue of the Index Section contains entries for 3386 patent and application for patent citations covering the period May 1969 through June 1978. The Index Section contains five indexes --- subject, inventor, source, number, and accession number

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs
    • …
    corecore