7 research outputs found

    An Adaptive Partial Response Data Channel for Hard Disk Magnetic Recording

    Get PDF
    An adaptive data channel is proposed which is better able to deal with the variations in performance typically found in the recording components of a hard disk drive. Three such categories of variation were investigated in order to gain an understanding of their relative and absolute significance; variations over radius, along the track length, and between different head / media pairs. The variations were characterised in terms of their effects on the step-response pulse width and signal-to-noise ratio. It was found that in each of the categories investigated, significant variations could be found in both longitudinal and perpendicular recording systems which, with the exception of radial variations, were nondeterministic over different head / media pairs but were deterministic for any particular head / media pair characterised. Conventional data channel design assumes such variations are non-deterministic and is therefore designed to provide the minimum error rate performance for the worst case expected recording performance within the range of accepted manufacturing tolerance. The proposed adaptive channel works on the principle that once a particular set of recording components are assembled into the disk drive, such variations become deterministic if they are able to be characterised. Such ability is facilitated by the recent introduction of partial response signalling to hard disk magnetic recording which brings with it the discrete-time sampler and the ability of the microprocessor to analyse signals digitally much more easily than analogue domain alternatives. Simple methods of measuring the step-response pulse width and signal to noise ratio with the partial response channel's electronic components are presented. The expected error rate as a function of recording density and signal to noise ratio is derived experimentally for the PR4 and EPR4 classes of partial response. On the basis of this information and the recording performance it has measured, the adaptive channel is able to implement either PR4 or EPR4 signalling and at any data rate. The capacity advantage over the non-adaptive approach is investigated for the variables previously identified. It is concluded on the basis of this investigation that the proposed adaptive channel could provide significant manufacturing yield and capacity advantages over the non-adaptive approach for a modest increase in electronic complexity

    EQUALISATION TECHNIQUES FOR MULTI-LEVEL DIGITAL MAGNETIC RECORDING

    Get PDF
    A large amount of research has been put into areas of signal processing, medium design, head and servo-mechanism design and coding for conventional longitudinal as well as perpendicular magnetic recording. This work presents some further investigation in the signal processing and coding aspects of longitudinal and perpendicular digital magnetic recording. The work presented in this thesis is based upon numerical analysis using various simulation methods. The environment used for implementation of simulation models is C/C + + programming. Important results based upon bit error rate calculations have been documented in this thesis. This work presents the new designed Asymmetric Decoder (AD) which is modified to take into account the jitter noise and shows that it has better performance than classical BCJR decoders with the use of Error Correction Codes (ECC). In this work, a new method of designing Generalised Partial Response (GPR) target and its equaliser has been discussed and implemented which is based on maximising the ratio of the minimum squared euclidean distance of the PR target to the noise penalty introduced by the Partial Response (PR) filter. The results show that the new designed GPR targets have consistently better performance in comparison to various GPR targets previously published. Two methods of equalisation including the industry's standard PR, and a novel Soft-Feedback- Equalisation (SFE) have been discussed which are complimentary to each other. The work on SFE, which is a novelty of this work, was derived from the problem of Inter Symbol Interference (ISI) and noise colouration in PR equalisation. This work also shows that multi-level SFE with MAP/BCJR feedback based magnetic recording with ECC has similar performance when compared to high density binary PR based magnetic recording with ECC, thus documenting the benefits of multi-level magnetic recording. It has been shown that 4-level PR based magnetic recording with ECC at half the density of binary PR based magnetic recording has similar performance and higher packing density by a factor of 2. A novel technique of combining SFE and PR equalisation to achieve best ISI cancellation in a iterative fashion has been discussed. A consistent gain of 0.5 dB and more is achieved when this technique is investigated with application of Maximum Transition Run (MTR) codes. As the length of the PR target in PR equalisation increases, the gain achieved using this novel technique consistently increases and reaches up to 1.2 dB in case of EEPR4 target for a bit error rate of 10-5

    CONVERGENCE IMPROVEMENT OF ITERATIVE DECODERS

    Get PDF
    Iterative decoding techniques shaked the waters of the error correction and communications field in general. Their amazing compromise between complexity and performance offered much more freedom in code design and made highly complex codes, that were being considered undecodable until recently, part of almost any communication system. Nevertheless, iterative decoding is a sub-optimum decoding method and as such, it has attracted huge research interest. But the iterative decoder still hides many of its secrets, as it has not been possible yet to fully describe its behaviour and its cost function. This work presents the convergence problem of iterative decoding from various angles and explores methods for reducing any sub-optimalities on its operation. The decoding algorithms for both LDPC and turbo codes were investigated and aspects that contribute to convergence problems were identified. A new algorithm was proposed, capable of providing considerable coding gain in any iterative scheme. Moreover, it was shown that for some codes the proposed algorithm is sufficient to eliminate any sub-optimality and perform maximum likelihood decoding. Its performance and efficiency was compared to that of other convergence improvement schemes. Various conditions that can be considered critical to the outcome of the iterative decoder were also investigated and the decoding algorithm of LDPC codes was followed analytically to verify the experimental results

    New structures and algorithms for adaptive system identification and channel equalization

    Get PDF
    The main drawback of the ADF is that it takes lot of iteration and fails to identify nonlinear systems. BAF converges fast while maintaining the same performance as ADF but its performance degrades at nonlinear conditions.In this thesis we propose an ANN, which provides better and faster converges when employed for identifying nonlinear systems. This network employs chebyschev based nonlinear inputs updated with the RLS algorithm. Through extensive computer simulation it is demonstrated that CFLANN updated with RLS is a better candidate compared to FLANN and MLP in terms of less complex structure, less number of input simple needed and does accurate identification

    REAL TIME MICROPROCESSOR TECHNIQUES FOR A DIGITAL MULTITRACK TAPE RECORDER

    Get PDF
    Transport properties of a standard compact - cassette tape system are measured and software techniques devised to configure a low - cost,direct digital recording system. Tape - velocity variation is typically ± 10% of standard speed over tape lengths of 5 µm.with occasional variations of ±40%. Static tape - skew can result due to axial movement of the tape reel when it spools.Dynamic tape skew occurs and is primarily caused by tape - edge curvature with a constant contribution due to the transport mechanism.Spectral skew components range from 0.32 Hz to 8 Hz with magnitude normally within one 10 kbit/ sec- bit cell.The pinch roller works against the friction of the tape guides to cause tape deformation.Average values of tape deformation are 0.67 µm,0.85 µm and 1.08 µm for C60,C90 and C120 tape respectively. Parallel,software encoding / decoding algorithms have been developed for several channel codes.Adaptive software methods permit track data rates up to 3.33 k bits/sec in a rnultitrack system using a simple microcomputer.For a 4 - track system,raw error rates vary from 10ˉ⁷ at 500 bits/sec/track to 10ˉ⁵ at 3.33 kbits/sec/track.Adaptive software reduces skew - induced errors by 50%.A skew - correction technique has been developed and implemented on an 8 - track system at a track data rate of 10 k bits/sec. Real - time error correction gives a theoretical corrected error rate of 10ˉ¹¹for a raw error rate of 10ˉ⁷. Multiple track errors can cause mis - correction and interleaving is advised. Software algorithms have been devised for Reed - Solomon code. With a more powerful microprocessor this code m ay be combined with the above techniques in a layered error-correction scheme. The software techniques developed may be applied to N tracks with an N - bit computer.Recording density may be increased by using thin - film,multitrack heads and a faster computer.British Broadcasting Corporatio

    Advanced Modulation and Coding Technology Conference

    Get PDF
    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions
    corecore