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Abstract 
 

 
Over the last several years, adaptive digital filtering has been an active area of research and it 

has been considered for a variety of applications in signal processing and communications 

Systems. 

An object formally referred to as a system is known through modeling and identification and 

can be understood by analysis. The main draw back of System Identification and Channel 

Equalization using ADF using LMS algorithm is that it takes a large number of iteration. 

BADF calculates a block or a finite set of filter outputs from a block of input values. From 

extensive computer simulation it is shown that BADF permits fast implementations while 

maintaining performance equivalent to that of the LMS. Furthermore efficient block 

algorithms such as the Fast Fourier Transform (FFT) can be used to advantage in terms of 

mathematical complexity and faster convergence when implementing block filters in 

frequency domain. But Adaptive filters perform poorly when it has to be operated in 

nonlinear dynamic systems. 

 

 In this thesis we propose an artificial neural network, which provides better and faster 

convergence performance when used for identifying nonlinear systems. The network employs 

chebyschev based nonlinear inputs updated with RLS algorithm. Through extensive computer 

simulation it is demonstrated that CFLANN updated with RLS is a better candidate compared 

to FLANN and CFANN updated with LMS. Along with these the proposed model requires 

less complex structure, less no of input samples and does accurate identification. 
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Introduction 

1.1 Introduction  

    Over the last several years adaptive digital filtering is a major area of research and has been 

applied in many contexts such as non-linear system identification, forecasting of time-series, 

channel equalization, linear prediction, line enhancer and noise cancellation. Adaptive digital 

filter self adjusts its transfer function according to an optimizing algorithm to minimize the mean 

square between its output and that of an unknown system. 

In recent years major advances are made in structures and optimizing algorithms to identify 

nonlinear systems with less mathematical complexity and with less no of input samples. Block 

adaptive digital filter calculates a block or finite set of filter outputs from a block of input values 

resulting in saving of lot of mathematical complexity. Block implementations allow efficient use 

of parallel processors, which results in speed gains while maintaining performance equivalent to 

that of the adaptive digital filter. Furthermore efficient block algorithms such as the Fast Fourier 

Transform (FFT) can be used to advantage when implementing block filters in frequency 

domain.  

Recently, artificial neural networks (ANN) have emerged as a powerful learning technique to 

perform complex tasks in highly nonlinear dynamic environments. Some of the prime 

advantages of using ANN models are: their ability to learn based on optimization of an appropriate error 

function and their excellent performance for approximation of nonlinear function [1.1]-[1.2]. 

The functional link ANN  (FLANN) proposed by Pao [1.3]-[1.4] has shown that this network can 

be used for function approximation and pattern classification with faster convergence rate and 

lesser computational complexity than a MLP network. The performance of the FLANN for the 

task of identification of nonlinear systems has been reported [1.5]. Using trigonometric functions as 

functional expansion, superior performance of the FLANN with respect to MLP network has been 

obtained. Here, we propose an alternate FLANN structure, which has been shown to provide effective 

identification of nonlinear dynamic systems. For functional expansion of the input pattern, we have 

chosen the Chebyschev polynomials [1.6] instead of trigonometric and the network is updated with 

recursive least mean square algorithm. Being a single layer neural network, its computational 

complexity is less intensive as compared to (MLP) and can be used for on-line learning. Pattern 

classification using CNN has been reported in [1.7]. It is shown that CNN based identification 

requires less computation as compared to MLP, less sample to converge.   

  The primary purpose of this chapter is to develop a computationally efficient and accurate 

algorithm for on-line system identification that is applicable to a variety of problems.  

 - 1 - 
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The Chebyschev neural network models to identify time series problem as well as discrete time 

plants. The identification scheme exhibits a learning-while-functioning feature instead of 

learning-then-functioning, so that the identification is on-line without any need of off-line 

learning phase. The training scheme is based on recursive least squares algorithm which 

guarantees convergence of the Chebyschev neural network weights. The proposed scheme also 

ensures good performance in the sense that the identification error is small and bounded. The 

convergence issue is shown through Lyapunov stability theory. The results are compared with 

certain existing identification algorithm. 

1.2 Motivation 

    In the field of signal processing and communication Adaptive Filtering has a tremendous 

application such as non-linear system identification, forecasting of time-series, channel 

equalization, linear prediction, and noise cancellation. Adaptive digital filtering self adjusts its 

transfer function to get an optimal model for the unknown system based on some function of 

error based on the output of the adaptive filter and the unknown system. To get an optimal model 

of the unknown system it depends on the structure, adaptive algorithm and nature of input signal. 

System Identification estimates models of dynamic systems by observing their input output 

response when it is difficult obtain the mathematical model of the system. 

DSP-based equalizer systems have become ubiquitous in many diverse applications including 

voice, data, and video communications via various transmission media. Typical applications 

range from acoustic echo cancellers for full-duplex speakerphones to video deghosting systems 

for terrestrial television broadcasts to signal conditioners for wire line modems and wireless 

telephony. The effect of an equalization system is to compensate for transmission-channel 

impairments such as frequency-dependent phase and amplitude distortion. Besides correcting for 

channel frequency-response anomalies, cancel the effects of Multipath signal and to reduce the 

intersymbol interference. So, designing of Equalizer to work for the above specifications is 

always a challenge and an active field of research. 

On-line system identification or identification of complex systems is a major area of research 

from last several years. To give new solution to some long standing necessities of automatic 

control and to work with more and more complex system to satisfy stricter design criteria and to 

fulfill previous points with less and less a priori knowledge of the unknown system. In this 

context a great effort is being made within the system identification towards the development of  

 - 2 - 
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nonlinear models of real processes with less no of mathematical complexity, less no of input 

sample, faster matching and better convergence. 

1.3  Thesis Layout 

In Chapter2, the Adaptive Filter and System Identification problem are discussed in brief and an 

Adaptive Model for System Identification problem is given. Further more the nonlinear issues in 

the System Identification problems are discussed. 

In Chaper3, the problem of Channel Equalization is discussed in detail. A basic model for 

Channel Equalization is given with LMS Equalizer and the concept of bit error rate was given. 

In Chapter4, the System Identification and Channel equalization problem was solved with LMS 

and BLMS algorithm in time domain and it was shown that BLMS algorithm works faster than 

the conventional LMS algorithm. 

In Chapter5, the BLMS algorithm in frequency domain for both overlap add and save sectioning 

was discussed. It was shown with computer simulation that BLMS algorithm converges much 

faster and gives better bit error rate with less number of computational complexity. 

In Chapter6, the concept of Neuron, MLP, FLANN and CFLANN was discussed and the RLS 

algorithm has been derived. Comparison of the above structures for nonlinear system 

identification and channel equalization problem was given through extensive computer 

simulation and it was seen that in almost all cases CFLANN is always a better candidate in terms 

of faster convergence less mathematical complexity. Further more CFLANN has a simple 

structure gives a better Bit Error Rate for all non-linear channels. 

In Chapter6, the proposed structure is used for on-line identification problem. Some standard 

problems such as box and Jenkins identification problem, SISO Plant, MIMO Plant identification 

was solved through the proposed structure and its value is compared with other values with other 

structures. 
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Adaptive System Identification 

2.1. Introduction 

    System identification [2.1, 2.2] is the experimental approach to process modeling. System 

identification includes the following steps  

     (a) Experiment design:  Its purpose is to obtain good experimental data and it includes the  

           choice of   the measured variables and of the character of the input signals.                          

     (b) Selection of model structure: A suitable model structure is chosen using prior knowledge  

           and trial and error.  

     (c) Choice of the criterion to fit: A suitable cost function is chosen, which reflects how well  

           the model fits the experimental data.  

     (d) Parameter estimation: An optimization problem is solved to obtain the numerical values of  

          the model parameters.  

     (e) Model validation: The model is tested in order to reveal any inadequacies.  

    The key problem in system identification is to find a suitable model structure, within which a 

good model is to be found. Fitting a model within a given structure (parameter estimation) is in 

most cases a common problem. A basic rule in estimation is not to estimate what you already 

know. In other words, one should utilize prior knowledge and physical insight about the system 

when selecting the model structure. It is customary to distinguish between three levels of prior 

knowledge, which have been color-coded as follows. 

              White Box models: This is the case when a model is perfectly known; it has been possible 

to construct it entirely from prior knowledge and physical insight. 

             Grey Box models: This is the case when some physical insight is available, but several 

parameters remain to be determined from observed data. It is useful to consider two sub cases: 

 Physical Modeling: A model structure can be built on physical grounds, which has a certain number 

of parameters to be estimated from data.  

Semi-physical modeling:  Physical insight is used to suggest certain nonlinear combinations of 

measured data signal. These new signals are then subjected to model structures of black box 

character. 

            Black Box models: No physical insight is available or used, but the chosen model structure 

belongs to families that are known to have good flexibility and have been "successful in the past". 

     A nonlinear black box [2.1] structure for a dynamical system is a model structure that is 

prepared to describe virtually any nonlinear dynamics. There has been considerable recent interest  
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in this area with structures based on simple LMS [2.3], RLS [2.4], Multilayer Perceptron, FLANN, 

radial basis networks [2.9] based methods. Here we have discussed the common framework for 

these approaches. 

    Basic techniques for estimating the parameters in the structures are criterion minimization, as 

well as two step procedures, where first the relevant basis functions are determined, using data, 

and then a linear least squares step to determine the coordinates of the function approximation. A 

particular problem is to deal with the large number of potentially necessary parameters. This is 

handled by making the number of "used" parameters considerably less than the number of 

"offered" parameters, by regularization, shrinking, pruning or regressor selection. 

    In Section 2.2, we present the general basic system identification problem, solution via 

adaptive approach and introduce the mathematical notation for representing the form and 

operation of the adaptive filter. We then discuss several different linear models that 

have been proven to be useful in practical applications for FIR channels in Section 2.3. 

We provide an overview of the many and varied applications in which adaptive filters 

have been successfully used. We give a simple derivation of the least-mean-square (LMS) 

algorithm, which is perhaps the most popular method for adjusting the coefficients of an 

adaptive filter, and we discuss some of this algorithm's properties and shortcomings in 

Section 2.4. We discuss recursive LMS algorithm & its limitation and finally, we discuss 

new algorithms and techniques, which can be applied in place of conventional methods 

for nonlinear case.  

2.2 Basics of System Identification 

    System Identification is the art and methodology of building mathematical models of dynamical 

systems based on input-output data. We denote the output of the dynamical system at time t by 

y(t) and the input by u(t). The data are assumed to be collected in discrete time. At time t we 

thus have available the data set & the most basic relationship between the input and output in 

form of linear differential equation    

    1 1( ) ( 1) ........ ( ) ( 1) ......... ( )n my t a y t a y t n b u t b u t m+ − + + − = − + + −                                    (2.1)   

The system represented above is in discrete time, primarily since sampling always collects 

observed data. A pragmatic way to see Eq. (2.1) is to view it as a way of determining the next 

output value given the previous observations: 

    1 1( ) ( 1) ........ ( ) ( 1) ......... ( )n my t a y t a y t n b u t b u t m= − − − − − + − + + −                                  (2.2) 
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This can be written in a more compact form as follows: 

                                                                                      (2.3) 1 1[ ,........ , ,.......... ]T
na a b bθ = m

                                                               (2.4) ( ) [ ( 1)...... ( ) ( 1)....... ( )]Tt y t y t n u t u t mϕ = − − − − − −

With above two equations, we can write 

        ( ) ( )Ty t tϕ θ=                                                                                                                   (2.5) 

To emphasize that the calculation of y (t) from past data indeed depends on the parameterθ , we 

shall rather call this calculated value ˆ( / )y t θ and write  

         ˆ( / ) ( )Ty t tθ ϕ= θ                                                                                                             (2.6) 

2.3 Adaptive Filter  

    An adaptive filter [2.3, 2.4] is a computational device that attempts to model the 

relationship between two signals in real time in an iterative manner. Adaptive filters are 

often realized either as a set of program instructions running on an arithmetical processing 

device such as a microprocessor or DSP chip, or as a set of logic operations implemented 

in a field-programmable gate array (FPGA) or in a semi-custom or custom VLSI 

integrated circuit. An adaptive filter is defined by four aspects: 

1. The signals being processed by the filter . 

2. The structure that defines how the output signal of the filter is computed from its 

input signal. 

3.  The parameters within this structure that can be iteratively changed to alter the 

filter's input-output relationship. 

4. The adaptive algorithm that describes how the parameters are adjusted from one 

time instant to the next. 

     By choosing a particular adaptive filter structure, one has to specify the number and 

type of parameters that has to be adjusted. An adaptive algorithm is use to update the 

parameter values of the system to minimize the mean square between its output and that of an 

unknown system. 

 

 

 

                                   

Adaptive 
Filter Σ

+ 
- 

d(n) 

e(n) 

y(n) x(n) 

Fig 2.1: The general adaptive filtering problem. 
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Fig. 2.1 shows a basic block diagram in which a sample from a digital input signal  

is fed into a device, called an adaptive filter, that computes a corresponding output 

signal sample at time n. For the moment, the structure of the adaptive filter is not 

important; except for the fact that it contains adjustable parameters whose values affect 

how is computed. The output signal is compared to a second signal ,called the 

desired response signal, by subtracting the two samples at time n . This difference signal, 

given by 

)(nx

)(ny

)(ny )(nd

)()().( nyndne −=                                                                                                  (2.7) 

is known as the error signal. The error signal is fed into a procedure which alters or 

adapts the parameters of the filter from time  to time n ).1( +n in a well-defined manner. 

This process of adaptation is represented by the oblique arrow that pierces the adaptive 

filter block in the figure. As the time index n is incremented, it is desired that the output of 

the adaptive filter becomes a better matched to the desired response of the signal through 

this adaptation process, such that the magnitude of decreases over time. In the 

adaptive filtering task, adaptation refers to the method by which the parameters of the 

system are changed from time index  to time index 

).(ne

n ).1( +n The number and types of 

parameters within this system depend on the computational structure chosen for the 

system. We now discuss different filter structures that have been proven useful for 

adaptive filtering tasks. 

FIR Filter 

 
                         

Fig. 2.2 Structure of an FIR filter 

 

          In general, any system with a finite number of parameters that affect how is 

computed from could be used for the adaptive filter in Fig. 2.1. Define the parameter 

or coefficient vector as 

)(ny

)(nx

)(nW
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                                                                                   (2.8) T
L nwnwnwnW )]()()([)( 110 −= K

Fig. 2.2 shows the structure of a direct-form FIR [2.5,2.6] filter, also known as a tapped-delay-line 

or transversal filter, where denotes the unit delay element and each is a multiplicative 

gain within the system. In this case, the parameters in correspond to the impulse response 

values of the filter at time .  

1−z )(nwi

)(nW

n

We can write the output signal   y(n) as 

                                                                                               (2.9)          ∑
−

=

−=
1

0
)()()(

L

i
i inxnwny

                                                     (2.10) )()( nXnWT=

Where denotes the input signal vector. TLnxnxnxnxnx )]1()1()()([)( +−−= K

The general form of an adaptive FIR filtering algorithm is   

          )()()()()1( nXnGnnWnW μ+=+                                                       (2.11) 

Where G (-) is a particular vector-valued nonlinear function, μ (n) is a step size 

parameter, e(n) and X(n) are the error signal and input signal vector, respectively. Much 

research effort has been spent characterizing the role that μ(n) plays in the performance of 

adaptive filters in terms of the statistical or frequency characteristics of the input and 

desired response signals.  

     We now consider one particular cost function that yields a popular adaptive 

algorithm. Define the mean-squared error (MSE) [2.3] cost function as 

         ∫
∞

∞−

= )())(()(
2
1)( 2 ndenepnenJ nMSE        

           )}({
2
1 2 neE=                       (2.12) 

Where   )  represents the probability density function of the error at time n  and 

is shorthand for the expectation integral of error square.  ) has a well-defined 

minimum with respect to the parameters in ,The coefficient values obtained at this 

minimum are the ones that minimize the power in the error signal ,indicating that 

has approached J

(ePn

{.}E (NJ MSE

)(nW

)(ne

)(ny ),(nd MSE is a smooth function of each of the parameters in 

.such that it is differentiable with respect to each of the parameters in . )(nW )(nW

 - 8 -   



Adaptive System Identification 

    The third point is important in that it enables us to determine both the optimum 

coefficient values from the given knowledge of the of and as well as a simple 

iterative procedure for adjusting the parameters of an FIR filter. For the FIR filter 

structure, the coefficient values in that minimize are well defined if the 

statistics of the input and desired response signals are known. The formulation of this 

problem for continuous-time signals and the resulting solution was first derived by 

Wiener [2.4]. Hence, this optimum coefficient vector is often called the 

Wiener solution [2.3] to the adaptive filtering problem. To determine we note 

that the function in Eq.(2.12) is quadratic in the parameters   , and the 

function is also differentiable. Thus, we can use a result from optimization theory that 

states that the derivatives of a smooth cost function with respect to each of the parameters 

is zero at a minimizing point on the cost function error surface. Thus,  can be 

found from the solution to the system of equations  

)(ne )(nx

)(nW )(nJ MSE

)(NWMSE

)(NWMSE

)(NJ MSE )]([ nwi

)(nWMSE

      0
)(
)(
=

∂
∂

nw
nJ

i

MSE ,                                        (2.13) 10 −≤≤ Li

Taking derivatives of in Eq.(2.12) and noting that are given by 

Eq.(2.7) and (2.9), respectively, we obtain 

)(NJ MSE )()( nyandne

     }
)(
)()({

)(
)(

nw
neneE

nw
nJ

ii

MSE

∂
∂

=
∂
∂                                                  (2.14) 

          }
)(
)()({

nw
nyneE

i∂
∂

−=                             

                                   )}()({ inxneE −−=

                                           

(2.15) 

∑
=

=
1-L

0j
j ))(j)}w-i)x(n-E{x(n - i)}-E{d(n)x(n (- n

By defining the matrix and vector as  )(nRxx )(nPdx

      And   )}()({ nXnXER T
XX =

                                                                (2.16) )}().({)( nXndEnPdx =

respectively, we can combine Eq.(2.15) and (2.16) to obtain the system of equations in 

vector form as 
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                                          (2.17) 0)()()( =− nPnWnR dxMSEXX

Thus, so long as the matrix is invertible, the optimum Wiener solution vector for 

this problem is 

)(nRxx

                                                     (2.18) )()()( 1 nPnRnW dxXXMSE
−=

The method of steepest descent [2.3] is a celebrated optimization procedure for 

minimizing the value of a cost function  with respect to a set of adjustable 

parameters . This procedure adjusts each parameter of the system according to 

)(nJ

)(nW

     
)(
)()()()1(

nw
nJnnwnw

i
ii ∂

∂
−=+ μ                                              (2.19) 

In other words, the   parameter of the system is altered according to the derivative of 

the cost function with respect to the   parameter. Collecting these equations in vector 

form, we have 

thi
thi

     
)(
)()()()1(

nW
nJnnWnW

∂
∂

−=+ μ                                               (2.20) 

Where is a vector of derivatives . )(/)( ndWndJ )(/)( ndwndJ i

For an FIR adaptive filter that minimizes the MSE cost function, we can use the result in 

Eq. (2.15) to explicitly give the form of the steepest descent procedure in this problem. 

Substituting these results into Eq.(2.20) yields the update equation for as )(nW

     )()()()(()()1( nWnRnPnnWnW XXdx −+=+ μ                                             (2.21)    

    However, this steepest descent procedure depends on the statistical quantities 

 contained in and ,respectively. In 

practice, we only have measurements of both and to be used within the 

adaptation procedure. While suitable estimates of the statistical quantities needed for 

Eq. (2.21) could be determined from the signals and ,we instead develop an 

approximate version of the method of steepest descent that depends on the signal values 

themselves. This procedure is known as the LMS algorithm. 

)}()({)()({ jnxinxEandinxndE −−− )(nPdx )(nRxx

)(nd )(nx

)(nx )(nd

We can propose the simplified cost function  given by )(NJ MSE

    )(
2
1)( 2 nenJ LMS =                                                    (2.22)  
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     This cost function can be thought of as an instantaneous estimate of the MSE cost 

function, as .  Taking derivatives of with respect to the 

elements of and substituting the result into Eq. (2.20), we obtain the LMS 

adaptive algorithm given by 

)}({)( nJEnJ LMSMSE = )(NJ MSE

)(nW

     )()()()()1( nXnennWnW μ+=+                                               (2.23) 

The number and type of operations needed for the LMS algorithm is nearly the same as 

that of the FIR filter structure with fixed coefficient values, which is one of the reasons for 

the algorithm's popularity. 

2.4 Adaptive Model for System Identification 

      Consider Fig. 2.3, which shows the general problem of system identification. In this diagram, 

the system enclosed by dashed lines is a "black box,"[2.1] meaning that the quantities inside are not 

observable from the outside. Inside this box, there is an unknown system which represents a 

general input-output relationship. In many practical cases, the plant to be modeled is noisy, that is, 

has internal random disturbing forces. In our problem it is represented by the signal )(nη , called the 

observation noise signal because it corrupts the observations of the signal at the output of the 

unknown system. Internal plant noise appears at the plant output and is commonly represented 

there as an adaptive noise. This noise is generally uncorrelated with the plant input. If this is the 

case and if the adaptive model weights are adjusted to minimize mean-square error, it can be 

shown that the least square solutions will be unaffected by the presence of plant noise. This is 

difficult to say that the convergence of the adaptive process will be unaffected by plant noise, 

only that the expected weight vector of the adaptive model after convergence will be unaffected. 

 
Fig. 2.3 Model for System Identification 
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Let represent the output of the unknown system with as its input. Then, the desired 

response signal in this model is  .                                             

)(nd )(nx

)()()( nndnd η+=
∧

Here, the task of the adaptive filter is to accurately represent the signal at its output. If 

, then the adaptive filter has accurately modeled or identified the portion of the 

unknown system that is driven by . 

)(nd

)()( ndny =

)(nx

For our problem we have assumed that the input signal and noise signal )(nx )(nη are mutually 

uncorrelated white random sequences with zero mean.  And hence  

            [ ] [ ] 12/112/1 22 == nn ExE η                                                                              (2.34) 

The white noise is Gaussian in nature having probability density function as follows: 

             
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−
= 2

2

2 2
)(exp

2

1)(
δδ σ

δ

πσ
δ mp                                                                 (2.35) 

As the adaptation process reaches Wiener solution, the power of error signal will be exactly 

equal to the extra noise added. It is not exactly required that the impulse response of both 

unknown plant and adaptive model shown in Fig. 2.3 should match, but the desired output and 

estimated output should match.  

2.5 Nonlinear Issues  

    A system could be either linear or nonlinear, depending on the relation between the input and 

the output of the system. Accordingly, various linear and nonlinear filtering techniques have 

been developed to achieve certain predefined design goals. Systems are often modeled as linear 

since it makes the design and analysis tasks mathematically tractable. Accordingly, the theory of 

linear filtering has been extensively studied in above section and has reached a stage of sufficient 

maturity. If the system is either inherently linear or the degree of nonlinearity is negligible, the 

behavior of the system is as expected. Otherwise, there could be significant deviation from 

expected behavior and the performance of the system could degrade severely. In such cases, it is 

essential to apply nonlinear methods that properly characterize the system behavior. Moreover, 

when either the system is time-varying or certain parameters of the system are unknown, it is 

essential to adapt the filter to track the dynamics of the system or learn the unknown parameters. 

Hence in the next chapter we have focused on developing novel nonlinear adaptive filtering 

techniques and their applications to some practical problems of interest.  

 - 12 -   



Adaptive System Identification 

     Nonlinear systems/filters do not satisfy the property of superposition. Conventional linear 

filtering does not suffice in presence of nonlinearities. A few practical cases wherein 

nonlinearities are commonly encountered in signal processing and communications applications 

are listed here. 

• High power amplifiers (HPAs): In wireless communications, for higher power efficiency the 

HPAs are driven close to saturation. The HPAs are found to introduce nonlinear amplitude and 

phase distortion when operated near saturation. This causes degraded bit-error rate (BER) 

performance and 

also introduces adjacent channel interference (ACI) to systems operating in the neighboring 

frequency bands. 

• Magnetic Recording Channels: In high-density magnetic recording channels, nonlinearity is 

introduced in the form of nonlinear bit-shifts and partial erasure. They are modeled as nonlinear 

inter-symbol interference (ISI) channels. 

• Optical channels: Fiber optic receivers suffer from various sources of nonlinear distortion 

including the photo detector, which converts incident light into photocurrent, intensity 

dependence of the index of refraction of the fiber and amplified spontaneous emission, which has 

non-Gaussian distribution. 

• Speech and Image processing: Nonlinear modeling is frequently used to analyze the data in 

applications involving speech and image processing like image segmentation, image restoration, 

edge enhancement, speech coding, speech enhancement, etc. 

• Loudspeakers: Loudspeakers generate nonlinear distortion that degrades the quality of the 

audio. The sources of nonlinearity are nonlinearity in the suspension system and inhomogeneity 

in the flux density. 

• Echo Cancellation: Acoustic echo cancellers are predominantly used in speakerphones and 

video conferencing systems to minimize the undesirable echo. But the echo path is usually 

highly nonlinear and hence nonlinear echo cancellation methods are being used.  

• Biomedical Engineering: There is a lot of scope for modeling and analysis of nonlinear 

systems/signals in biomedical engineering like study of neural response, human visual system, 

nonlinear properties of tissue, speech pathology assessment to name a few. 

   Thus, as seen above, nonlinear distortions manifest in many practical systems and they need to 

be compensated for satisfactory performance. Hence we have considered some standard 
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nonlinearity for our experiment. Instead of using linear channel we have used nonlinear channel. 

Some standard nonlinear equations are given.   

  

3 2

2 3

( ) 0.3 0.4
( ) 0.6sin( ) 0.3sin(3 ) 0.1sin(5 )
( ) tanh( )
( ) 0.2 0.1 0.5cos( )

f u u u u
f u u u
f u u
f u u u u u

uπ π π

π

= + − →
= + −
=

= + − +

              

2.6 Summary 

    Studies on linear system identification have been carried out for more than three decades [2.4]. 

However, identification of nonlinear systems is a promising research area. Conventionally the 

identification of linear system is performed by using Least Mean Square (LMS) algorithm. 

However most of the dynamical systems exhibit nonlinearity. It has been studied that the LMS 

based technique [2.3, 2.4] does not perform satisfactorily to identify nonlinear systems. To 

improve the identification performance of nonlinear systems various techniques such as Block 

Adaptive filter(BAF) both in time domain and frequency domain, Multilayer Perceptron (MLP), 

Functional Link Neural Network (FLANN), Radial Basis Function  has been studied. 
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Adaptive Channel Equalization 

3.1 Introduction 

    DSP-based equalizer systems have become ubiquitous in many diverse applications including 

voice, data, and video communications via various transmission media. Typical applications 

range from acoustic echo cancellers for full-duplex speakerphones to video deghosting systems 

for terrestrial television broadcasts to signal conditioners for wire line modems and wireless 

telephony. The effect of an equalization system is to compensate for transmission-channel 

impairments such as frequency-dependent phase and amplitude distortion. Besides correcting for 

channel frequency-response anomalies, the equalizer can cancel the effects of multipath signal 

components, which can manifest themselves in the form of voice echoes, video ghosts or Raleigh 

fading conditions in mobile communications channels. Equalizers specifically designed for 

multipath correction are often termed echo-cancellers or deghosters. They may require 

significantly longer filter spans than simple spectral equalizers, but the principles of operation 

are essentially the same. A typical base band transmission system is depicted in Figure3.1. 

 

  Transmitter 
      Filter 

Channel 
Medium 

Receive
d

Equalizer +

Noise 

Fig.3.1 Baseband Communication System 

 

 

 

 

 
  

3.2 Intersymbol Interference 

    When pulsed information is transmitted over an analog channel such as a phone line or 

airwaves Even though the original signal is a discrete time sequence, the received signal is a 

continuous time signal. Heuristically, one can consider that the channel acts as an analog low-

pass filter, thereby spreading or smearing the shape of the impulse train into a continuous signal 

whose peaks relate to the amplitudes of the original pulses. Mathematically, the operation can be 

described as a convolution of the pulse sequence by a continuous time channel response. The 

operation starts with the convolution integral:  

∫∫
∞

∞−

∞

∞−

−=−= ττττττ dthxdtxhtr )()()()()(  
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Where is the received signal, is the channel impulse response, and is the input 

signal. The second half of the equation above is a result of the fact that convolution is a 

commutative operation. 

)(tr )(th )(tx

Component is the input pulse train, which consists of periodically transmitted impulses of 

varying amplitudes. Therefore, 

)(tx

KTtfortx ≠= 0)(   

KTtforXtx k ==)(                                                                                     (3.1) 

Where  represents the symbol period. This means that the only significant values of the 

variable of integration in the above integral are those for which 

T

KT=τ . Any other value ofτ  

amounts to multiplication by 0. Therefore  can be written as )(tr

                                                                                                      (3.2) ∑
∞

−∞=

−=
k

k kTthxtr )()(

This representation of more closely resembles the convolution sum familiar to DSP 

engineers. Note, however, that it still describes a continuous time system. It shows that the 

received signal consists of the sum of many scaled and shifted continuous time system impulse 

responses. The impulse responses are scaled by the amplitudes of the transmitted pulses of . 

)(tr

)(tx

3.2.1 Symbol Overlap 

The expected number of errors can be calculated by considering the amount of symbol 

interaction, assuming Gaussian noise. Taking any two neighboring symbols, the cumulative 

distribution function (CDF) can be used to describe the overlap between the two noise 

characteristics. The overlap is directly related to the probability of error between the two 

symbols and if these two symbols belong to opposing classes, a class error will occur. 

Figure 3.2 shows two Gaussian functions that could represent two symbol noise distributions. 

The Euclidean distance, L, between symbol canters and the noise variance, 2σ , can be used in 

the cumulative distribution function of Equation to calculate the area of overlap between the two 

symbol noise distributions and therefore the probability of error, as in Equation (3.3) 

          

2

2

1( ) exp
22

( ) 2
2

x xCDF x dx

LP e CDF

σπσ−∞

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫
                                                                          (3.3)   
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Figure 3.2       Interaction between two neighboring                                 
symbols. 

Area of overlap = 
Probability of error 

 

 

 

 

 

 

 

 

 

 

Since each channel symbol is equally likely to occur [2.3], the probability of unrecoverable 

errors occurring in the equalization space can be calculated using the sum of all the CDF overlap 

between each opposing class symbol. The probability of error is more commonly described as 

the BER. Equation 3.4 describes the BER based upon the Gaussian noise overlap, where spN is 

the number of symbols in the positive class,  is the number of number of symbols in the 

negative class and , is the distance between the positive symbol and its closest 

neighboring symbol in the negative class. 

mN

iΔ thi

           
1

2( ) log
2

spN
i

n
isp m n

BER CDF
N N

σ
σ=

⎡ ⎤⎛ ⎞Δ
= ⎢ ⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

∑ ⎥                                                                 (3.4) 

3.3 Multipath Effects On Frequency Response 

    Multipath effects describe the situation in which there are several propagation paths from 

transmitter to receiver. Most commonly, this results when there are reflected signals detected at 

the receiver following the direct path. The multipath phenomenon can be modeled by an FIR 

system. The center tap represents the direct path, while the succeeding tap weights represent the 

amplitudes, delays, and phases of the reflected paths. 

Figure 3.3(a) shows the time response of a system that contains a single multipath channel. The 

first nonzero sample of the response represents the direct path, while the second represents a 

delayed path to the receiver. In this instance, the pulses are identical in amplitude and phase and 

are separated by ten sample intervals. Notice in Figure 3.3(b) that the magnitude response 

exhibits  nulls, where  represents the sample delay. Even though you are effectively 2/0t 0t
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adding two identical flat spectra, the time delay results in a phase delay in the spectral domain. 

This phase delay results in nulls where the two signals are of equal amplitude but opposite phase. 

Obviously, multipath effects can have major effects on the system spectral response, thereby 

providing another justification for channel equalization. 

Fig.3.3 System with a single Unattenuated Multipath channel

3.4 Minimum And Nonminimum Phase Channels 

When all the roots of the model z-transform lie within the unit circle, the channel is termed 

minimum phase. [2.5] The inverse of a minimum phase channel is convergent, illustrated by 

Equation (3.5):    
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Where as the inverse of non-minimum phase channels are not convergent, as shown in  

Equation (3.6) 
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                                                                     (3.6)           

 

Since equalizers are designed to invert the channel distortion process they will in effect model 

the channel inverse. The minimum phase channel has a linear inverse model therefore a linear 

equalization solution exists. However, limiting the inverse model to m-dimensions will 

approximate the solution and it has been shown that non-linear solutions can provide a superior 

inverse model in the same dimension [2.2]. 

A linear inverse of a non-minimum phase channel does not exist without incorporating time 

delays. A time delay creates a convergent series for a non-minimum phase model, where longer 

delays are necessary to provide a reasonable equalizer. Equation (3.7) describes a non-minimum 

phase channel with a single delay inverse and a four-sample delay inverse. The latter of these is 

the more suitable form for a linear filter. 
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L
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                  (3.7) 

    The three-tap non-minimum phase channel  is used 

throughout this thesis for simulation purposes.  A channel delay,  is included to assist in the 

classification so that the desired output becomes 

-1 -2( )  0.26 0.93  0.26  H z z z= + +

D

).( Dnu −  

3.5 Channel Equalization  

    Two main techniques are employed to formulate the filter coefficients: automatic synthesis 

and adaptation. In automatic-synthesis methods, the equalizer typically compares a received 

time-domain reference signal to a stored copy of the undistorted training signal. By comparing 
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the two, a time-domain error signal is determined that may be used to calculate the coefficient of 

an inverse filter. The formulation of this inverse filter may be accomplished strictly in the time 

domain, as is done in the LMS systems, which are examined in more detail in following sections. 

Other methods involve conversion of the received training signal to a spectral representation. A 

spectral inverse response can then be calculated to compensate for the channel response. This 

inverse spectrum is then converted back to a time-domain representation so that filter tap weights 

may be extracted. 

3.5.1 LMS Equalization 

    The least mean squared (LMS) equalizer is a more general approach to automatic synthesis. 

The coefficients are gradually adjusted to converge to a filter that minimizes the error between 

the equalized signal and the stored reference. The filter convergence is based on approximations 

to a gradient calculation of the quadratic equation representing the mean square error. The beauty 

of the approach is that the only parameter to be adjusted is the adaptation step size. Through an 

iterative process, all filter tap weights are adjusted during each sample period in the training 

sequence. Eventually, the filter will reach a configuration that minimizes the mean square error 

between the equalized signal and the stored reference. As might be expected, the choice step size 

involves a tradeoff between rapid convergence and residual steady-state error. A too-large setting 

for step size can result in a system that converges rapidly on start-up, but then chops around the 

optimal coefficient settings at steady state. 

The optimal BER equalization performance is obtained using a maximum likelihood sequence 

estimator (MLSE) on the entire transmitted data sequence [2.7]. A more practical MSE would 

operate on smaller data sequences but these can still be computationally expensive, they also 

have problems tracking time-varying channels and can only produce sequences of outputs with a 

significant time delay. Another equalization approach implements a symbol-by-symbol detection 

procedure and is based upon adaptive filters [2.1]. The symbol-by-symbol approach to 

equalization applies the channel output samples to a decision classifier that separates the symbol 

into their respective classes. 

3.6 Summary 

To compensate the ISI, Multipath channel effects on frequency response and other types of noise 

effects an equalizer placed at the receiver end. Since equalizer comes under inverse modeling it 

is difficult to design. Proper care is taken in choosing the while training the channel.  LMS types  
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equalizer performs well in case of linear channels but its performance degrades while the channel 

becomes nonlinear. So different nonlinear structures are being used to design nonlinear equalizer 

like MLP, RBF, FLANN and many more.  
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Time Domain Block Adaptive Filter 

4.1 Introduction 

     Adaptive filters are digital filters self adjust its transfer function according to an optimizing 

algorithm with the change in their input signals. The adaptive filter adjusts its coefficient to 

minimize the mean square between its output and that of an unknown system. 

    Block digital filtering calculates a block of data from a finite set of filter outputs from a block 

of input values. Block adaptive filter adjusts its filter coefficients once per each block according 

to some optimizing algorithm such as LMS or RLS [4.1]-[4.2]. Hence the traditional LMS 

adaptive filter, which adjusts the weights once each data sample, is a special case of block 

adaptive filter with a block length one. Block implementation of adaptive digital filter permits 

fast implementation while maintaining the performance equivalent to that of widely used LMS 

adaptive filter. Also efficient block algorithms such as Fast Fourier Transform (FFT) can be used 

when implementing filters in serial processors [4.3]-[4.5]. 

 

                                      
 

Fig.4.1 Basic Adaptive Digital Filter 
 

Fig.4.1 shows the basic adaptive digital filter of LMS type presented by Widrow [4.6]-[4.8] for 

which the performance index is mean square error (MSE=ξ ). All the inputs are real and for the 

FIR digital filter of order  for which the output  at discrete instant  is given by the 

convolution sum of the input and the filter weights : 

1−N ky k

kx lkw

                                                                                     (4.1) ,.....,3,2,1,
1

1 == ∑
=

+− kxwy
N

l
lklkk

The Widrow-Hoff LMS algorithm adjusts the filter weights in accordance with: 

        kkkk XWW με21 +=+                                                                                                     (4.2)        

Where μ  is the convergence constant, and  and  are, respectively, the weight vector and 

the  input vector: 

kW kX

1×N
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and kε is the error vector at the  instant given by the difference between the desired output 

and the actual output that is: 

kth
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                                    Fig.4.2 General block adaptive filtering configuration. 

                                    S/P = Serial to Parallel converter 

                                                P/S = Parallel to Serial converter 

Fig.4.2 shows the basic block diagram of the Block Adaptive Digital Filter for which a block 

mean square error (BMSE) performance criterion is defined, resulting in a BMSE gradient 

estimate that is a correlation (over a block of data) between the error and the input signal. This 

gradient estimate leads to a weight adjustment that allows the block implementation with either 

parallel processor or serial processor and the FFT. 

For the time invariant case, (4.1) can be written in matrix form as: 

. .. 

.

.

. . 
..
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         .                                                                                                 (4.4) WXXWy T
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T
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Letting L  represents block length and the following low order )3,3( == NL  example shows 

how this convolution is written in block form: 

                                                                       (4.5) 
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Using the block notation the output can be written as: 

                                                                                                                           (4.6) WxY jj =

Where j  are the block index,  and  are, respectively, the output vector of lengthjY jx jth L , and 

the  matrix of input vectors: NL×
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 4.2 The Block Wiener Filtering Problem      
    The classical Wiener filter can be extended to the block input case as shown next. Refer to 

Fig. 4.1. Assuming that all the inputs are stationary let  

                                                                                         (4.7)      T
jlljljj dddd ]...[ 2)1(1)1( +−+−

Δ

=

be the 1×L  vector of desired responses for block j , and let 

                                                                                         (4.8)      T
jlLjljj ]...[ 2)1(1)1( εεεε +−+−

Δ

=

be the 1×L  vector of errors for block j  where kε  is defined in (4.3) The key element of this 

analysis is the performance index, chosen to be a combination of the standard MSE and the sum 

square error used in least squares problems [16]. BMSE is defined by 

               BMSE = [ ] ⎥
⎦

⎤
⎢
⎣

⎡
==≡ ∑

+−=

Δ jl

ljk
kj

T
j L

EE
L 1)1(

211 εεε .                                                        (4.9)           

Clearly, the BMSE is the expected value of a smoothed estimate of the squared error over one 

block. This is appropriate because it combines a block's worth of error information into one 
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number for each value of the block index j . The MSE considers the error information one point 

at a time. Using (4.6) and (4.8), (4.9) becomes  

                WxxEWdxEWWddEL j
T
j

T
j

T
j

T
j

T
j }{}{}{ +−≡=

Where is the  desired output block. jd jth

The following correlation matrices are now defined: 

                                                                                                                (4.10) ][ T
kk XXER =

                                                                                                                  (4.11) ][ kk dXEP =

                
].[

][

j
T
j

j
T
j

dxE

xxE

=℘

=ℜ
                                                                                                 (4.12) 

Note that R  and , are, respectively, the ℜ NN ×  input autocorrelation and block input 

correlation matrices. Likewise, P  is the 1×N  cross-correlation vector between the input and the 

desired response whereas ℘ is the 1×N  cross-correlation vector between the block input and 

the block desired response. Using these definitions, the BMSE can be written compactly as: 

                 [ .}{1 WWWWddE ]
L

TTT
j

T
j ℜ+℘−℘−≡=                                                    (4.13) 

Using (4.6) and (4.12), and invoking stationarity, it can be shown that . A similar 

argument reveals that 

LR=ℜ

LP=℘ . Taking advantage of the above, (4.13) can be re-written as 

                                                                                    (4.14) ξ=−−≡= RWWWPdE TT
k 2][ 2

Thus the BMSE is equal to the MSE when the inputs are stationary.  It follows then that the 

optimal set of filter weights W* for the block Wiener filter is the same as for the Wiener filter, 

i.e., 

                                                                                                                      (4.15) PRW 1−∗ =

This can be shown using an extension of the orthogonality principle, which states that the weight 

vector minimizing the BMSE is the one for which the error vector∗W jε , is orthogonal to the 

block data . Also the minimum BMSE is given by jx minZ

                   [ ]j
T
jdE

L
ε1   

 and is equal to minξ  .The Wiener filtering problem is clearly a special case (for L= 1) of the 

block Wiener problem. 
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4.3 Block Adaptive Filtering and the BLMS Algorithm 

     Analogous to LMS adaptive filtering, a block wise algorithm can be derived to sequentially to 

solve for the Wiener weight vector in real time by a gradient search technique. Because it is 

desired to keep the weights constant while each block of data is being processed, the weight 

vector is adjusted once per data block rather than one per data sample as in the LMS algorithm. 

The algorithm then becomes 

            BjBjj WW Δ−=+ μ1                                                                                             (4.16) 

Where Bμ  is the convergence constant, BjΔ  is the 1×N  BMSE gradient at block j , and  is 

the  weight vector at block 

jW

1×N j . The gradient is taken with respect to the weights as follows: 

           
jWW

j
T
j

Bj W
E

L =

Δ

∂

∂
=Δ

][1 εε
                                                                                     (4.17) 

Because the computation of an ensemble average is difficult, an estimate of the gradient  is 

used in place of .  The BMSE gradient estimate at block 

Bj

∧

Δ

BjΔ j  is defined as 

          j
T
j

j

j
T
j

Bj x
LWL

ε
εε 21

−=
∂

∂
=Δ
Δ∧

                                                                                 (4.18)                    

Use of this unbiased block gradient estimate in the weight adjustment algorithm (4.16) gives the 

block least mean square (BLMS) algorithm: 

         j
T
j

B
jj x

L
WW ε

μ2
1 +=+                                       

                 j
B

j

jl

ljk
kk

B
j L

Wx
L

W φ
μ

ε
μ 22

1)1(

+=+= ∑
+−=

                                                        (4.19) 

The BLMS algorithm is identical to the LMS algorithm when the block length L  is equal to one. 

Also, the weight update term in (4.19) is an average of the L LMS-like terms kk Xε ,  generated 

by a block of data. Consider  jφ written out for the ith  weight: 

                                                   ∑
+−−=

+−=
jl

iljk
ikkij x

1)1(
1εφ .,....,2,1 Ni =   

Substituting , this becomes 1+−= ikn

                                                  

ii

ijL

iLjn
ninij

xe

x

∗=

=

−

+−

+−−=
−+∑

1

2)1(
1εφ

.,....,2,1 Ni =        

- 26 - 



Time Domain Block Adaptive Filter 

    Where  indicates convolution. Clearly, the weight update term is a correlation, 

implementable in block form with a parallel processor or with a serial processor and the FFT. 

∗

For BLMS adaptive filtering, both the convolution (4.6) and the weight update can be realized in 

block form, whereas neither can be realized in block form for LMS adaptive filtering. 

The choice of block length is important. Examination of (4.19) reveals that the algorithm is valid 

for any block length greater than or equal to one; however, the L equal’s case is probably 

preferred in most applications. This is because for 

N

L greater than , the gradient estimate, 

which is computed over 

N

L input points, uses more input information than the filter W uses, 

resulting in redundant operations. For L less than , the filter length is larger than the input 

block being processed, which is a waste of filter weights. 

N

4.4    Convergence Properties of The BLMS Algorithm 

    The convergence properties of interest in adaptive filtering are the required bounds on the 

convergence constant (μ  or Bμ ), adaption speed and adaption accuracy. Adaption speed refers 

to how fast the MSE is reduced to an estimate of the minimum MSE (MMSE or minξ ). The 

measure of how close the solution is to minξ  (adaptation accuracy) is called misadjustment and is 

defined as average excess MSE divided by minξ . These convergence properties are examined for 

block adaptive filters, and compared with the corresponding properties of conventional LMS 

adaptive filters. 

4.4.1 Bounds On Bμ  To Guarantee Convergence 

    It has been proved that the BLMS algorithm converges. The approach taken is to show that as 

the block number j approaches infinity, the expected value of the weight vector  

approaches the Wiener weight vector under the assumption that  and  are ergodic and that 

 for . The proof also shows that the requirements on the convergence 

constants (

])[( 1+jWE

jx jd

0][ 1 ≈+j
T
j xxE 0≠l

μ  for LMS, for Bμ  BLMS) are the same, that is, μ  and Bμ  must take on values in 

the same range in order to guarantee convergence of the respective algorithms. The bounds on 

the convergence constants are: 

       For LMS:               
max

10
λ

μ <<                                                                                  (4.20) 

       For BLMS:             
max

10
λ

μ << B                                                                               (4.21)        
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Where maxλ , is the largest eigen value of the matrix R . 

4.4.2 Adoption Speed 

    Adoption speed is given in terms of a time constant, which indicates how fast the weight 

vector converges to the Wiener weight vector (see Fig.4. 2). Actually, there are  time 

constants , one, for each  mode of the difference equation describing the adaption 

process. The derivations follow the form of the corresponding derivations for the LMS 

algorithm, but with some very important differences. The convergence constant 

N

pMSET )(Pth

μ  (for LMS) is 

replaced by Bμ   (for BLMS). The time unit for LMS is sample number  where as the time 

unit for BLMS is block number . Thus the equations for the two different algorithms have the 

same form, but much different meanings. This difference is resolved by converting the BLMS 

time constants to units of sample number so comparison with LMS time constants becomes 

meaningful. For the special case in which all eigen values of the input autocorrelation matrix 

)(k

)( j

R  

are equal, the  time constants can be lumped into one, giving N MSEτ  for LMS and  for 

BLMS. It is shown that: 

MSET

       For BLMS: 

                            
trR

NLTLT
B

MSE
pB

pMSE μλμ 4
,

4
==                                                               (4.22) 

       For LMS: 

                             
trR

N
MSE

p
pMSE μ

τ
μλ

τ
4

,
4

1
==                                                                 (4.23)                  

Where  Pthp =λ  eigen value of ),...,2,1( NpR = and trR  is the trace of R  or the sum of the 

diagonal elements of R . 

4.4.3 Adoption Accuracy 

    Adoption accuracy, or a measure of the weight noise, is measured by misadjustment, defined 

as follows  

For BLMS: 

            
minξ

ssBMSEAverageExem
Δ

=                                                                             (4.24) 

For LMS:                  

                    
minξ

sBMSEAvrageExesM
Δ

=                                                                             (4.25) 
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The misadjustment is caused by gradient noise in the BLMS or LMS algorithm. Misadjustment 

for the BLMS algorithm is derived in [4.11], where it is shown that: 

For BLMS: 

          Average Excess BMSE trR
L

mtrR
L

BB μ
ξ

μ
== ,min L                                             (4.26) 

For LMS:  

           Average Excess MSE trRmtrR μμξ == ,min                                                       (4.27) 

4.4.4 Comparison of Convergence Properties For The LMS And BLMS Algorithms 

    Comparing the quantities presented above by taking ratios yields some interesting properties: 

           
μ

μ
μ
μ

τ LM
mandLT B

BpMSE

pMSE ==                                                                                  (4.28) 

Hence it is observed that the BLMS and LMS algorithms converge at the same rate and achieve 

the same misadjustment if μμ LB = . 

 In using these relations for design purposes, one must remember that Bμ  and μ  have the same 

convergence bounds, because this fact limits the usable block length. For example, a possible 

situation is that μμ LB =  and, μ  satisfies (4.20), but μ  and L  are so large that (4.21) is not 

satisfied. This is less likely to occur, of course, for the case of slow adaption than for the case of 

fast adaption. 

  All the relations regarding BLMS convergence reduce to the LMS case when the block length L 

equals one. 

Convergence Properties When Data is correlated 

    Adaptive filter performance equations are traditionally derived assuming uncorrelated inputs 

because that is the case that is easily tractable. The convergence proof and derivations of 

convergence parameters for the BLMS algorithm are based on the assumption that the input 

matrices  and  are uncorrelated. For the LMS algorithm, the assumption is that , and 

 are uncorrelated. These assumptions lead to the assumptions that  is independent of  

for the BLMS algorithm and  is independent of , for the LMS algorithm. These 

assumptions simplify the proofs but are not appropriate for all data types. Both proofs also 

assume input stationary. 

jx 1+jx kX

1+kX jW jx

kW kX
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Based upon the work of Gersho, Kim and Davisson use a sample average over a block of L  data 

points to estimate the MSE gradient for adjusting the weights of an adaptive algorithm. They 

assume that the input data is M -dependent, which basically means that it is uncorrelated for 

autocorrelation lags greater than M   (where M  is a positive integer). Kim and Davisson show 

that when the inputs are M -dependent and the filter weights are adjusted once per block, the 

problems of analyzing convergence are overcome if ),1( −+≥ NML where  is the filter 

length and 

N

M  is the M -dependence constant. 

Keeler studied the, adaptive predictor with the LMS algorithm modified so that it adjusts the 

weights only once per input samples. He showed that convergence when the inputs are 

correlated could be analyzed if  is chosen to be sufficiently large. 

h

h

The point to remember about the above discussion is that block adaptive filtering has an analysis 

advantage over LMS filtering when inputs are correlated and fit the M  dependence condition 

simply because the weights are adjusted once per block. 

4.5 Computational Complexity of LMS and BLMS Adaptive Filtering 

    The main computational efficiency issues involved in algorithm implementation are storage 

(memory), time (number of machine cycles for CPU, input-output, etc.), and computational 

complexity measured in the number of real multiply and additions required. Because the first two 

issues are processor architecture-dependent, hence I concentrate on the computational 

complexity required when using a standard serial-type processor. This is done for convenience, 

even though the most efficient implementation of BLMS adaptive filters is probably with parallel 

processors. 

4.5.1 Computational Complexity Of LMS Adaptive Filters 

    The convolution operation (1) is done in direct form. To produce one output point requires  

real multiplies and real adds. Thus to produce 

N

1−N L output points requires  real multiplies 

and real adds.  

LN

)1( −NL

 To produce L  output points (one block) using the LMS algorithm requires  adaptions. The 

term 

LN

kk X)2( με requires real multiplies per block. The addition operation requires  

real additions per block. The cost of computing 

)1( +NL LN

kkk yd −=ε , is L  real adds per block. The total 

cost per block for the LMS algorithm is )1( +NL real multiplies and real additions. 

Thus, the total computational complexity of LMS adaptive filtering is real multiplies 

and  real adds. This result is shown in Table [2] 

)1( +NL

)12( +NL

LN2
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4.5.2 Computational Complexity of BLMS Adaptive Filters 

The convolution operation is implemented directly, so it is the same as for the LMS case. 

From (4.19) the weight update term jφ  requires  real multiplies and  real adds per 

block. Adding  

LN )1( −LN

jB L φμ )/2(  to  require  adds per block. Calculation of jW N LB /2μ  requires 

two multiplications, but this is true only for the first block, so it is ignored in the general count. 

Calculation of jB L φμ )./2( requires  real multiplies per block. The cost of calculating N

kkk yd −=ε  is L real adds per block. Thus the total complexity for standard BLMS adaptive 

filtering is  real multiplies and  real adds per block.  )12( +LN LN2

4.5.3 Complexity Analysis 

    There is very little complexity difference between LMS and direct BLMS filtering. Therefore, 

the comparisons of interest are between the LMS adaptive filter and the two fast implementations 

of the BLMS adaptive filter are discussed above. A complexity ratio CR is computed and 

tabulated versus the block length L in Table 111 for these implementations. 

          
eringofBLMSFiltComplexity
ringofLMSFilteComplexityCR =                                                                             (4.29) 

Only the case is analyzed because it provides for the most efficient use of the input data 

(Section 111). As discussed in the Appendix, the convolution implementations require sequence 

lengths of  because  must be a power of two for the equations in Table 11, and 

 is assumed, is used for simplicity in the complexity ratio calculations.  

NL =

1' −+≥ NLN 'N

NL = NN 2'=

4.6 Simulation Study and Discussion 

  Extensive computer simulations were carried out using the two structures using LMS 

algorithm. For both System Identification and Channel Equalization problem, a uniformly 

distributed random signal over the interval [-.5,.5] was applied to the FIR structure and a white 

Gaussian noise  of 30dB was added to the output of the system. The learning parameter μ  both 

for LMS and BLMS algorithm was suitably chosen to obtain best result. 

 Four different channels were studied with the following transfer function: 
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To study the effect of nonlinearity on the system performance four different nonlinear channel 

models with the following nonlinearities has been introduced. 

 

))((9.0)()(:3
)(1.0)(2.0)()(:2

))(tanh()(:1
)()(:0

3

32

kakakbNL
kakakakbNL

kakbNL
kakbNL

−==

−+==

==
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The comparison of the LMS and BLMS algorithm for the convergence characteristics and 

response-matching plot for System Identification and BER plot for the entire linear and nonlinear 

channel model has been given. Simulation result for channel 2 with 30 dB noise has been 

simulated for different linear and non linear channel has been studied. From Fig. it is seen that  

convergence characteristics of  BLMS algorithm faster converges than the LMS algorithm while 

from response matching plot for both the case is same. From BER plots it is seen that BLMS 

algorithm performs better than the LMS algorithm for all the linear and nonlinear channels. 
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                           4.3(a)                                                                           4.3(b) 

 

Fig 4.3(a) ,(b)  are the corresponding MSE and Response matching plot for System Identification 

problem for LMS and BLMS algorithm without noise condition 
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4.4(e) 

Fig.4.4 (a),(b),(c),(d),(e) ,corresponds to the respective BER plot for LMS and BLMS Equalizer 

structure for  NL=0,NL=1,NL=2,NL=3 and NL=4 
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4.7 Conclusion 

Here a BAF was derived which allows fast implementation while maintaining performance equal 

to that of the LMS adaptive filter in case of System Identification problem and better in Channel 

Equalization problem. It was seen that BLMS Adaptive filters have an advantage over an LMS 

algorithm when the inputs are correlated and finally BLMS involves less computational 

complexity when implemented using efficient convolution algorithms on serial processors. 
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Frequency Domain Adaptive Filter  

5.1 Introduction 

    Adaptive filtering in the frequency domain is the Fourier Transform of the input signal and 

independent weightings of the contents of each frequency bin. FIR adaptive filters can be 

implemented efficiently in the time domain as well as in the frequency domain. Frequency 

domain filter performs in a manner similar to a conventional time domain adaptive transversal 

filter with a significant reduction in computational complexity. Using an FDAF results in block 

processing in which one block of input data is processed simultaneously, producing one block of 

output data. With different efficient algorithm such as Fast Fourier Transform (FFT) block 

processing is done. In this way, the amount of computational requirements in terms of multiply-

adds per one block of N output samples can be greatly reduced compared with time-domain 

approaches. This is accomplished by replacing convolution with a multiplication of transforms, 

which implies a complexity reduction from . ))log(()( 2 NNOtoNO

The same frequency-domain filter is obtained whether time-domain mean-square error or 

frequency-domain mean square error is minimized, as long as data sectioning is done correctly. 

In other words, the time-domain block adaptive filter implemented in the frequency domain is 

equivalent to the frequency-domain adaptive filters (derived in the frequency domain) provided 

data sectioning is done properly. Data sectioning is the procedure for breaking the continuous 

data stream into blocks before processing and reassembling the resulting data blocks into a 

continuous data stream after processing. All block algorithms require such a procedure, whether 

they process the data in the time domain or the frequency domain, and the sectioning procedures 

must be carefully integrated into the processing algorithms. The two most common sectioning 

procedures are the overlap-save and overlap-add methods [5.1] - [5.3].  

A large number of equivalent time- and frequency-domain filter structures are possible for the 

basic block adaptive filter. It can be shown that all of the frequency-domain adaptive filters in 

the literature [5.4] - [5.5] belong to the set of possible block adaptive filter structures, and that 

they differ only in the sectioning procedures used. 

From the two most common sectioning procedures (overlap-save and overlap-add) in the 

frequency domain adaptive filter it shows that the overlap-save method is preferred over the 

overlap-add method because it requires fewer computations. Sectioning procedures are well 

known and straightforward for fixed coefficient filters. However, this is not the case for adaptive 

filters because of the necessity of changing the filter coefficients at each iteration of the filter, so 

special care must be exercised.  
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5.2 .  The Equivalence of Time And Frequency-Domain FIR Adaptive Filter 

We have discussed the BAF in time domain in chapter-4, here we will discuss the weight 

adjustment in the frequency domain. Many such implementations exist, depending upon how the 

convolution, correlation and weight adjustment operation are realized by various combinations of 

time- and frequency- Domain methods. 

The frequency-domain adaptive filter is derived from two perspectives: first, as an 

implementation of the time-domain block adaptive filter, and second, as the frequency-domain 

adaptive filter considered entirely in the frequency domain. From simulation study it is seen that 

the two filters are equivalent, provided data sectioning is done properly. 

5.2.1 Implementation of the Time-Domain Block Adaptive Filter in the Frequency 

Domain 

The  augmented vectors shall be denoted in general by 1×′N ,,,, a

j

a
j

a
j

a
j

a
j andYWX φε , but their 

actual contents depend upon whether overlap-save or overlap-add sectioning is used.   is an 

circulant matrix composed of augmented input vectors. In this section, the contents of 

these augmented vectors/matrices are not unspecified, in the latter sections contents are given. 

Frequency-Domain Notation: Define the following single sample notation for the DFT of the 

above augmented vectors, where 

a
jx

NN ′×′

1,,2,1,0 −′= Nl K is the discrete frequency index. 

                                                                                                         (5.1) }{)( a
jj XDFTlX =

    }{)( a
jj WDFTlW =                                                                                                      (5.2  

    }{)( a
jj YDFTlY =                                                                                                        (5.3) 

    }{)( a
jj DFTlE ε=                                                                                                        (5.4) 

    )()(}{)( * lXlEDFTl jj
a

jj == φφ                                                                                  (5.5) 

The asterisk denotes complex conjugation. DFT }{ av denotes the N ′  point discrete Fourier 

transform of the elements of the general 1×′N vector av for the discrete frequency index l  [5.6]. 

Vector Frequency-Domain Notation: The quantities above can be written in a convenient 

matrix notation using the following definitions. Let 
j

y  and jw be 1×′N  vectors of transforms, 

the elements of which are given by (21) and (20), respectively, 
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T

jjj

a
jj

NYYY

YDFTy

)]1()1()0([

}]{[

−′=

=

K
                                                                        (5.6) 

     
T

jjj

a
jj

NWWW

WDFTw

)]1()1()0([

}]{[

−′=

=

K
                                                                       (5.7) 

Let  be a diagonal matrix with its nonzero elements consisting of the transforms of the 

inputs given by (5.1). 

jx NN ′×′

Let the  DFT of the augmented error vector be defined by 1×′N

    }{)( a
jj DFTl εξ =                                                                                                       (5.8) 

Frequency-Domain Weight Adjustment Algorithm:  A frequency-domain adaptive filter is 

derived by augmenting the vectors of 
j

y and 1+jw , and writing the DFT’s of the resulting 

equations, using the definitions above. The result is an adaptive filter implemented as follows in 

single point form for 1,,2,1,0 −′= Nl K : 

                                                                                                      (5.9) )()()( lWlXlY jjj =

     )(2)()(1 l
L

lWlW j
B

jj
′+=+ φ

μ
                                                                                 (5.10) 

 Where 

     .)}({)( lFl
jj φφ =′                                                   (5.11) 

The notation refers to a projection operator, which constrains to zero all but the first  

time-domain values corresponding to the inverse DFT (IDFT) of the 

{.}F N

1×′N sequence in brackets. 

This projection operator is necessary because the sectioning procedure used (overlap-save or 

overlap-add) with the DFT requires use of −′N point sequences )1( −+≥′ NLN in both the time 

and frequency domains. Therefore, at each iteration the frequency-domain BLMS algorithm 

produces frequency domain weights, implying N ′ N ′  time-domain weights. This creates a 

problem because the filter has only  time domain weights, making the other N NN −′ time-

domain weights extraneous and harmful if used. The projection operation  above solves this 

problem by constraining the time-domain weights  to be zero for 

{.}F

jiw , 1−′≤≤ NiN . It is shown 

in latter Sections that the implementations of for overlap-save and overlap-add sectioning 

are similar. In matrix notation, (5.9) and (5.10) become 

{.}F

 37



Frequency Domain Adaptive Filter  

   jjj
wxy =                                                                                                     (5.12) 

   }{2 *
1 jj

B
jj xF

L
ww ξ

μ
+=+   .                                                                               (5.13) 

5.2.2   Derivation of the Frequency-Domain Adaptive Filter 

The filter of Section 5.2.1-A time-domain filter is designed to minimize time-domain block 

mean-square error and implemented it in the frequency domain. Here, the frequency-domain 

adaptive filter is derived entirely in the frequency domain, using frequency-domain mean square 

error. 

This derivation assumes no particular sectioning procedure. Although the sectioning method is 

unspecified, the analysis must allow for it because the frequency-domain convolutions/ 

correlations must correspond to time-domain linear convolutions/ correlations. Thus, all 

frequency-domain vectors are 1×′N and imply the use of 1×′N augmented time-domain 

vectors.The goal is to minimize frequency-domain sum-square error given by 

        
j

H

j

N

l
j lEJ ξξ== ∑

−′

=

1

0

2
)(                                                                                        (5.14) 

Where is defined by (22), , and the superscript )(lE j NL = H  denotes the complex conjugate 

transpose. 

The filter output in the frequency domain is given by 

           ,)()()( lWlXlY jjj = 1,,2,1,0 −′= Nl K                                                    (5.15)   

  Where are defined according to (5.1)- (5.3). )()(),( lYandlWlX jjj

The gradient J∇ of  is given by  J
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Since 

        jjjj
wxD −=ξ   

Where ]}{[ a
jj dDFTD = and a

jd  is the augmented desired response vector, it follows that 

  
jjxJ ξ*2−=∇  .                                                                                                 (5.16)     

A single element of this gradient is given by 

       )()(2)( * lXlElJ jj−=∇ , 1,,2,1,0 −′= Nl K                                                  (5.17)      
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Using this gradient to adjust the frequency-domain weights once per data block yields the 

following weight adjustment formula used in [5.l] , [5.2] : 

                                                                (5.18)      )}()({)()( *
1 lXlEFlWlW jjjj β−=+

For , where 1,,2,1,0 −′= Nl K β  is a convergence constant equivalent to LB /2μ− in (A10) 

and  is the projection operator described in (5.11). {.}F

To summarize this section, the frequency-domain filter equations (5.15) and (5.18) are written in 

vector forma s follows: 

 jjj
wxy =                                                                                                 (5.19)                    

}{ *
1 ξβ jjj xFww −=+                                                                                          (5.20)     

Note that techniques exist for improving the convergence speed of gradient algorithms by using a 

different step size for each weight at each iteration [5.7], [5.8], Such schemes can be applied to 

block adaptive filters in either the time domain or the frequency domain. 

5.2.3 A General Structure for Frequency-Domain Adaptive Filters 

Clearly Equations (5.12), (5.13) and (5.19), (5.20) are equivalent, and the same frequency-

domain filter has been derived from two different approaches. In Section 5.2.1- time-domain 

mean-square error is minimized by a time-domain algorithm implemented in the frequency 

domain. In Section 5.2.1 -frequency-domain mean-square error is minimized by a frequency-

domain algorithm. This equivalence is expected by Parseval’s theorem 
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Fig.5.1 Generalized structure for all known FDAF 
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Fig. 5.1 shows the generalized structure for all known frequency domain adaptive filter and that 

they differ only in the boxes labeled “sectioning.” This is shown in latter sections which 

describes in detail the overlap save and overlap-add sectioning procedures for adaptive filters, 

5.3. Sectioning Procedure Applied to Frequency-Domain Adaptive Filters 

Methods for doing overlap-save and overlap add sectioning with frequency-domain adaptive FIR 

filters are derived in this section. 

5.3.1. Some Useful Definitions 

In order to simplify analysis, the following projection operators for the general vector 1×′N v  

are defined, where K  is an integer and NK ′≤≤0 . 
T

KK vvvvP ]000[}{ 1100, KK −=                                                                                   (5.21)    

T
KK vvvvP ][}{ 110, −= K                                                                                                (5.22)    

     T
NKNKNK vvvvP ][}{ 11 −′+−′−′= K  

5.3.2. Example 

In the following two sections, the overlap-save and overlap add implementations of the FDAF 

are demonstrated with a low-order )4,2( =′== NNL filter example. In all cases, it circular 

convolutions and correlations implemented using sectioning techniques are equal to the linear 

convolutions and correlations, which for the low order example are 
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5.3.3. Overlap-Save Implementation  
The convolution operation can be implemented with overlap-save sectioning by defining the 

following augmented vectors. 

  }{ jj
a
j

a
j

a
j wxIDFTWXY == .                                                                                          (5.25)      

Where, 

 T
LjjLjLjLjLLNjL

a
j yyyyyyY ][ 1)1(112)( −++−−−′−= KMK                                                     (5.26)           

T
jNjj

a
j wwwW ]000[ ),1(,1,0 KMK −=                                                                              (5.27)        
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][ 11
a

NjL
a
jL

a
jL

a
j XXXx +′−−= K                                                                                         (5.28)        

T
LjjLjLjLjLLNjL

a
jL xxxxxxX ][ 1)1(112)( −++−−−′−= KMK                                                   (5.29)   

and 

                                                                                                   (5.30)     }{ 1
a

pjL
a

pjL XCDSX +−− =

Where and CDS means "circular down shift," so that successive columns 

of (5.28) are obtained by a vertical rotation of the previous column (shifting the elements of the 

previous column down one position and moving the bottom element to the top position). The 

first column is a CDS of the last column. 

1,,2,1,0 −′= Np K

The matrix is circulant [5.9] as defined by (5.28)-(5.30). To avoid overlap and obtain the 

desired linear convolution, the last 

]a
jx

NN −′  elements of a
jW  must be zero, and the first LN −′  

elements of a
jY  must be discarded as indicated in (5.26) and (5.27).  Projection operator  

indicates the discarding of points in (5.26). 

LP,

    ]}[{}{ ,, jwxIDFTPYPY jL
a
jLj == .                                                                           (5.31)         

Abutting the vectors end to end for K,2,1,0=j  now creates the final output sequence . 

To illustrate the above convolution, consider the following low-order 

example for which (5.25) becomes )4,2( =′== NNL
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                           (5.32)        

 

The results of (5.23) are obtained using (5.3 l). 
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The correlation operation is found by defining, in addition to the above quantities, the following 

augmented vectors. 

     }{ *
jj

a
j

aT
j

a
j

xIDFTx ξεφ ==                                                                                    (5.34)          

Where 
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    T
LjjLjL

a
j ]000[ 1)1(1 −++= εεεε KMK                                                                   (5.35)    

    T
jNjNjNjNjj

a
j

][ ),1()1(,),1(,1,0 −′+−= φφφφφφφ KMK                                                 (5.36)    

The projection  indicates the discarding of points in (56). NP

   ]}[{}{ *
,, jjN

a
jNj

xIDFTPP ξφφ ==                                                                          (5.37)        

Again the low order )4,2( =′== NNL  example is used to describe (5.34) 
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Finally using (5.37) the results of (5.24) is obtained. 
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Fig2. Shows the straightforward implementation of the above procedure in block form. From 

overlap sectioning the vector frequency domain weight adjustment algorithm is 

     }{2 *
1 jj

B
jj xF

L
ww ξ

μ
+=+                                                                                    (5.40)        

Operation of discarding all but the first  correlation points shown in the realization of 

in Fig. 2 is equivalent to multiplication in the time domain by a window function where  

N )( 0,NP

{.}F ih

                                                                                          (5.41)          
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1,,1,0,1

NiN
Ni

hi

K

By observing the multiplication of in the time domain is equivalent to the convolution with DFT 

in the frequency domain.  

5.3.4. Overlap-Add Implementation 

The convolution operation can be implemented with overlap-add sectioning by defining the 

following augmented vectors: 

   T
jNjj

a
j wwwW ]000[ ),1(,1,0 KMK −=                                                                     (5.42)       

                                                                                    (5.43)      ][ 11
a

NjL
a
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a
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a
j XXXx +′−−= K

Where, 
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                                                                  (5.44)       T
LjjLjL

a
jL xxxX ]000[ 1)1(1 KMK −++=

and 

}{ 1
a

pjL
a

pjL XCDSX +−− =     For   1,,2,1,0 −′= Np K   

and CDS means “circular down shift” .  

To obtain the final outputs for block j , the partial results from block j  must be added to the 

partial results obtained by convolving the inputs of block 1−j with the weights of block This is 

written as follows using the projection notation of (5.21)-(5.23) for the case in which NL = and 

 : LN 2=′
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The general  , form of (5.45) is more difficult to write. As discussed in 

[5.9] ,  must be a power of two for use with fast DFT algorithms, and the most efficient block 

length is . Therefore, the set of parameters most likely to be used in practice is 

NL ≠ 1−+≥′ NLN

N ′

NL = NL = and 

LN 2=′  . 

The low-order example for (5.45) gives )4,2( =′== NNL
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Assembling the results of (5.45) and (5.46) we get  
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The correlation operation for overlap add sectioning is found similarly by defining, in addition to 

the above quantities, the following error vector: 

  T
LjjLjL

a
j ]000[ 1)1(1 KMK −++= εεεε                                                                    (5.49)   

The final correlations for block j  are obtained by adding the partial results from block j  to the 

partial results obtained by correlating the inputs of block 1−j with the errors of block j . This is 

written as follows using the projection notation of  (5.21)-(5.23) for the case in which NL = and 

LN 2=′  . 
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From (5.50) that for the overlap-add sectioning, the vector frequency-domain weight adjustment 

algorithm of (5.13) and (5.20) becomes  
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The low-order example for (5.50) gives 
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Assembling the results of (5.52) and (5.53) and according to (5.50) it becomes  

⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
=

−+

++

jjjj

jjjj

j xx

xx

212122

121222 0
εε

εε
φ  

                                                                                                  (5.54)      
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+
=

+−

++

122212

121222

jjjj

jjjj

xx

xx

εε

εε

For overlap-add sectioning. Notice that seven DFT’s are required, whereas five DFT’s are 

required for overlap-save sectioning. This is because of the necessity to add the results of 

convolving the current weights jW  with the previous input block and correlating the current 
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error block with the previous input block. If the weights were not changing once per block (as in 

a time-invariant filter), the quantities }{ 1,
a
j

a
jN WXP −  and }{ 1,

a
j

aT
jN XP ε− could be stored and used 

for the computation without requiring the two additional DFT’s. This indicates that a price of 

two DFT’s is paid for the luxury of changing weights midstream when using the overlap-add 

sectioning procedure. The overlap-save procedure automatically includes inputs from the 

previous block in the augmented input vector , eliminating the above problem. a
jLX

5.4 Computational Complexity Of LMS And BLMS Adaptive Filtering 

The main computational efficiency issues involved in algorithm implementation are storage 

(memory), time (number of machine cycles for CPU, input-output, etc.), and computational 

complexity measured in the number of real multiply and additions required. Here I have given 

the comparison of the computation complexity of LMS and BLMS in the frequency domain I 

have given. 

5.4.1 Computational Complexity of LMS Adaptive Filters 

The convolution operation (1) is done in direct form. To produce one output point requires  

real multiplies and real adds. Thus to produce 

N

1−N L output points requires  real multiplies 

and real adds.  

LN

)1( −NL

 To produce L  output points (one block) using the LMS algorithm requires  adaptions. The 

term 

LN

kk X)2( με requires real multiplies per block. The addition operation requires  

real additions per block. The cost of computing 

)1( +NL LN

kkk yd −=ε , is L  real adds per block. The total 

cost per block for the LMS algorithm is )1( +NL real multiplies and real additions. 

Thus, the total computational complexity of LMS adaptive filtering is real multiplies 

and  real adds. This result is shown in Table [5.1] 

)1( +NL

)12( +NL

LN2

5.4.2 Computational Complexity of FFT-Implemented Convolution  

The FFT algorithm used is for complex data. The relationship between complex and real 

arithmetic operations is  

1 complex add = 2 real adds 

1 complex multiply = 4 real multiplies + 2 real adds. 

A linear convolution of two sequences of length L  and  produces a sequence of length 

. Thus an FFT implementation of such a convolution must use sequences of length 

to avoid overlapping sections. 

N

1−+ NL

1−+≥′ NLN
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 The radix 4 FFT complexity formulas are useful only when the number of butterfly sections 

is even. For odd, an efficient radix 2 section is used for the first 

section, and radix 4 sections are used for the remainder. Sorting out the results of 

the efficient procedure for real data requires 

))2/((log2 N ′ ))2/((log2 N ′

))4/((log4 N ′

N ′2 real multiplies and N ′5  real adds. The FFT 

complexity per block of outputs is then NbNNQN ′+′+−′−′ 2)12/(4)4/3( real multiplies and 

)2/3(5)12/(2)8/11( NbNNQN ′+′+−′−′ real adds, where  

            
⎩
⎨
⎧

′′
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=
oddNN
evenNN

Q
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)2/(log).2/(log

22

22

and 
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⎨
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′
′

=
oddN
evenN

b
)2/(log,1
)2/(log.0

2

2

 A convolution requires one FFT each for the weights and the input. It also requires one complex 

multiply and one inverse FFT, leading to a total of )3(8)12/(12)4/9( NbNNQN ′+′+−′−′ real 

multiplies and )2/9(16)12/(6)8/33( NbNNQN ′+′+−′−′ real adds per block.  

   The correlation required for the gradient estimate is similar to the convolution above but 

requires one less FFT because the transform of the inputs exists previously (see Fig. 8). This 

leads to a correlation complexity of )2(6)12/(8)2/3( NbNNQN ′+′+−′−′ real multiplies and 

)3(11)12/(4)4/11( NbNNQN ′+′+−′−′  real adds per block. 

Table 5.1 

 (Computational Complexity (Number of Real ADD’s and Real Multiplies) Required to Compute 

L output data points, ) 1−+≥′ NLN

Implementation Real multiplies Real adds 

LMS adaptive filter )12( +NL  LN2  

BLMS adaptive 

filter 

)12( +LN  LN2  

FFT-

implemented,BLM

S adaptive filter 

)5(14
)12/(20)4/15(

NbN
NQN

′+′+
−′−′

 
)2/15(

27)12/(10)8/55(
NbLN

NNQN
′+++

′+−′−′
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with radix 4 FFT 

and efficient 

algorithm for Real 

Adds 
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5.4.3 FFT implementation of BLMS Adaptive Filters 

With BLMS adaptive filtering, the convolution operation can be implemented using the FFT and 

an overlap-add or overlap-save procedure. Throughout this analysis, input and output signals are 

assumed to be real and the FFT is used for complex data. This permits use of the efficient 

convolution procedure in which the transform of an N ′ -point real sequence is computed by 

properly using the real and imaginary parts of an 2/N ′ -point complex FFT algorithm. To make 

further complexity reductions, a radix 4 FFT with one radix 2 sections is used. The FFT length 

 must be a power of two where 2/N ′ 1−+≥′ NLN . The complexity of the FFT algorithm and 

the convolution are discussed in the previous section.  

The gradient estimate term jφ  in the BLMS algorithm can be written in the form of a correlation. 

Therefore, it can be realized with the FFT by the same technique used for the convolution above. 

The only difference is that the FFT of iε  must be conjugated before it is multiplied by the FFT 

of . Its complexity is discussed before. Note that the correlation operation produces ix N ′  points, 

but that only the first  of them have meaning, because there are only  weights to adjust. The 

remaining points are discarded (set to zero). 

N N

NN −′

Once the correlation (gradient estimate) is computed, the BLMS algorithm requires N real 

multiplies and real adds per block of outputs. Table 5.1 shows the total complexity LN +

of the FFT-implemented BLMS adaptive filter. 

5.5 Simulation and Results 

     Extensive computer simulations were carried out using the two structures using LMS 

algorithm. For both System Identification and Channel Equalization problem, a uniformly 

distributed random signal over the interval [-.5,.5] was applied to the FIR structure and a white 

Gaussian noise  of 30dB was added to the output of the system. The learning parameter μ  both 

for LMS and BLMS algorithm was suitably chosen to obtain best result. 

 Four different channels were studied with the following transfer function: 
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To study the effect of nonlinearity on the system performance four different nonlinear channel 

models with the following nonlinearities has been introduced. 

 

))((9.0)()(:3
)(1.0)(2.0)()(:2

))(tanh()(:1
)()(:0

3

32

kakakbNL
kakakakbNL

kakbNL
kakbNL

−==

−+==

==
==

 

 

 

The comparison of the LMS and BLMS algorithm in frequency domain  for the convergence 

characteristics and response-matching plot for System Identification and BER plot for all the 

linear and nonlinear channel model has been given.  

Simulation result for channel 2 with 30 dB noises has been simulated for different linear and 

non-linear channel has been studied.  
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5.2 (a)                                                                         5.2 (b) 

Fig 5.(a) ,(b)  are the corresponding MSE and Response matching plot for System Identification 

problem for LMS and BLMS algorithm without noise condition 

 

 

From MSE plot it is seen BAF in frequency domain converges much faster than the 

corresponding LMS adaptive filter. It takes around 100 samples where as LMS takes 500 

samples to converge to the resultant value keeping the matching performance constant. 
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From computer simulation for the Channel equalization case it is seen that BLMS converges 

much faster and better accurately to the equalizer coefficients both in linear and nonlinear cases 

with having the advantage of less computation complexity.  
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5.3 (e) 

Fig.5. (a),(b),(c),(d),(e) ,corresponds to the respective BER plot for LMS and BLMS 

Equalizer structure with NL=0,NL=1,NL=2,NL=3 and NL=4 

 

 

5.6 Conclusion 

Specific implementation of the block adaptive filter in the frequency domain has been presented 

in this chapter. From extensive computer simulation it is seen that whether derived in time 

domain or in frequency domain frequency domain adaptive filter results the same if the data 

sectioning is done correctly. It has been seen that though results for the overlap save and overlap 

add sectioning is same overlap add method requires more mathematical computation so overlap 

save sectioning is preferred. Through computer simulation is seen that BLMS in frequency 

domain requires less computation complexity and converge faster than LMS AF in system 

Identification case and a much better candidate in comparison in channel equalization case seen 

from the BER plots.  
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Equalization and Identification using ANN 

6.1 Introduction 

    Recently, artificial neural networks (ANN) have emerged as a powerful learning technique to 

perform complex tasks in highly nonlinear dynamic environments. Some of the prime 

advantages of using ANN models are: their ability to learn based on optimization of an 

appropriate error function and their excellent performance for approximation of nonlinear 

function [6.1]-[6.2]. The ANN’s are capable of generating complex mapping between the input 

and output and thus, arbitrarily complex decision boundaries can be formed by these networks. 

    The functional link ANN (FLANN) has been proposed by Pao [6.3]-[6.4]. It is shown that this 

network can be used for function approximation and pattern classification with faster 

convergence rate and lesser computational complexity than a MLP network. The performance of 

the FLANN for the task of identification of nonlinear systems has been reported [6.5]. Using 

trigonometric functions as functional expansion, superior performance of the FLANN with 

respect to MLP network has been obtained. In this paper, we propose an alternate FLANN 

structure, which has been shown to provide effective identification of nonlinear dynamic 

systems. For functional expansion of the input pattern, we have chosen the Chebyschev 

polynomials [6.6] instead of trigonometric and the network is updated with recursive least mean 

square algorithm. The input noise is also considered during the identification of the nonlinear 

systems and it is pointed out that this network has universal approximation capability and has 

faster than a MLP and FLANN network of trigonometric expansion. 

6.2 Single Neuron Structure  

    In 1958, Rosenblatt demonstrated some practical applications using the perceptron .The 

perceptron is a single level connection of McCulloch-Pitts neurons sometimes called single-layer 

feed forward networks. The network is capable of linearly separating the input vectors into 

pattern of classes by a hyper plane. A linear associative memory is an example of a single-layer 

neural network. In such an application, the network associates an output pattern (vector) with an 

input pattern (vector), and information is stored in the network by virtue of modifications made 

to the synaptic weights of the network.  

∑ f(.) 

• •
 • 

x 

x2 

xN 

Bias 
 

 
y(n) 

 

Fig. 6.1 A single Neuron 
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     The structure of a single neuron is presented in Fig. 6.1. In an artificial neuron involves the 

computation of the weighted sum of inputs and threshold. The resultant signal is then passed 

through a non-linear activation function. The output of the neuron may be represented as,    

                                                                                 (6.1) ( ) ( ) ( )
1

N

j j
j

y n f w n x n bias
=

⎡ ⎤
= ⎢

⎣ ⎦
∑ + ⎥

Where bias = threshold to the neurons at the first layer,  

wj(n) = weight associated with the jth input, and N = no. of inputs to the neuron. 

6.2.1 Activation Function 

     The perceptron internal sum of the inputs is passed through an activation function, which can 

be any monotonic function. Linear functions can be used but these will not contribute to a non-

linear transformation within a layered structure, which defeats the purpose of using a neural filter 

implementation. A function that squashes the amplitude range and limits the output strength of 

each perceptron of a layered network to a defined range in a non-linear manner will contribute to 

a nonlinear transformation. There are many forms of activation functions, which are selected 

according to the specific problem. All the neural network architectures employ the activation 

function ,which defines as the output of a neuron in terms of the activity level at its input (ranges 

from -1 to 1 or 0 to 1). Table 6.1 summarizes the basic types of activation functions. The most 

practical activation functions are the sigmoid and the hyperbolic tangent functions. This is 

because they are differentiable. 

Table 6.1 

 (Common Activation Functions) 

Name      Definition 

Linear    ( )f x kx=  

Step  
( ) ,

,
f x if x

if x k
kβ

δ
= ≥
= <

 

Sigmoid    1( ) , 0
1 xf x

e α α−= >
+

 

Hyperbolic Tangent 1( ) tanh( ) , 0
1

x

x

ef x x
e

γ

γγ γ
−

−

−
= = >

+

Gaussian 
2

22

1 (( ) exp
22

xf x μ
σπσ

)⎡ ⎤−
= −⎢ ⎥

⎣ ⎦
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6.2.2 Learning Processes 

    The property that is of primary significance for a neural network is that the ability of the 

network to learn from its environment, and to improve its performance through learning. The 

improvement in performance takes place over time in accordance with some prescribed measure. 

A neural network learns about its environment through an interactive process of adjustments 

applied to its synaptic weights and bias levels. Ideally, the network becomes more 

knowledgeable about its environment after each iteration pf learning process. Hence we define 

learning as: “Learning is a process by which the free environment of a neural network is adapted 

through a process of stimulation by the environment in which the network is embedded.”  

 The processes used are classified into two categories as described in [6.1]: 

1. Supervised Learning (Learning With a Teacher) 

2. Unsupervised Learning (Learning Without a Teacher) 

6.2.2.1 Supervised Learning: 

    We may think of the teacher as having knowledge of the environment, with that knowledge 

being represented by a set of input-output examples. The environment is, however unknown to 

neural network of interest. Suppose now the that the teacher and the neural network are both 

exposed to a training vector , by virtue of built-in knowledge , the teacher is able to provide the 

neural network with a desired response for that training vector. Hence the desired response 

represents the optimum action to be performed by the neural network. The network parameters 

such as the weights and the thresholds are chosen arbitrarily and are updated during the training 

procedure to minimize the difference between the desired and the estimated signal. This updation 

is carried out iteratively in a step-by-step procedure with the aim of eventually making the neural 

network emulate the teacher. In this way knowledge of the environment available to the teacher 

is transferred to the neural network. When this condition is reached, we may then dispense with 

the teacher and let the neural network deal with the environment completely by itself. This is the 

form of supervised learning. 

6.2.2.1unsupervised Learning:  

    In unsupervised learning or self-supervised learning there is no teacher to over-see the 

learning process, rather provision is made for a task independent measure of the quantity of 

representation that the network is required to learn, and the free parameters of the network are 

optimized with respect to that measure. Once the network has become turned to the statistical 

regularities of the input data, it develops the ability to form the internal representations for 
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encoding features of the input and thereby to create new classes automatically. In this learning 

the weights and biases are updated in response to network input only. There are no desired 

outputs available. Most of these algorithms perform some kind of clustering operation. They 

learn to categorize the input patterns into some classes. 

6.3 Multilayer Perceptron  

    In 1969 Minsky and Papert mathematically demonstrated that there were fundamental limits 

on what a single layer perceptron could compute and he suggested the concept of the multilayer 

perceptron or Multilayer perceptron (MLP) feed forward networks. 

    The MLP is one of several non-linear architectures that use layers of processing functions to 

map signals onto a series of planes so that they can be grouped into disconnected and non-linear 

classes. Any linearly non-separable pattern problem can be solved if a mapping transformation of 

sufficient dimension is used.The Multilayer Perceptron (MLP) or Multilayer Artificial Neural 

Network (MLANN) introduce one more hidden layers, whose computation nodes are 

correspondingly, called hidden neurons. The function of the hidden neurons is to intervene 

between the external input and the network output. The activation functions are listed in Table 

6.1. The scheme of multi-layer neural network (MLANN) using three layers structure is shown 

in Fig. 6.2. 

 

 

 

 

 

      

 

 

                                                                                                             

Fig. 6.2 Structure of multilayer perceptron  
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          xi(n) represent the input to the network, fj and fk represent the output of the 1st hidden and 

2nd hidden layers respectively and yl(n) represents the output of the neural network. The 

connecting weights between the input to the first layer, first to second layer and the second layer 

to the output layers are represented by wi, wjk
 and wkl respectively. If P1 is the number of neurons 

in the first layer, each element of the output vector may be calculated as, 

        ( )
1

N

j j ij i j
i

f w x n bϕ
=

⎡ ⎤
= +⎢

⎣ ⎦
∑ ⎥                                                             (6.2) 

    j=1, 2, 3… P1

     Where jb  is the threshold to the neurons at the first layer, N is the no. of inputs and φ (.) is the 

non-linear activation function. The time index n has been dropped to make the equations simpler. 

Let P2 be the number of neurons in the second layer. Each element of this output vector, fk may 

be written as: 

          
1

1

P

k k jk j k
j

f w f bϕ
=

⎡ ⎤
= ⎢

⎣ ⎦
∑ + ⎥

l

                                                                      (6.3) 

    k=1, 2, 3… P2 

Where,  is the threshold to the neurons at the second layer. The input signal is passed through 

a tapped delay filter. 

kb

The output of the final layer can be calculated as: 

                                                         (6.4) ( )
2

1

P

l l kl k
k

y n w f bϕ
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑

    l=1, 2, 3… P3 

    Where, is the threshold to the neuron at the final layer and Plb 3 is the no. of neurons in the 

output layer. The activation functions are described in Table 6.1. The most popular and 

successful learning method for training the multilayer perceptron is the back propagation 

algorithm. Rumelhart Hinton and Williams reported the development of the back propagation 

learning in 1986 [6.1]. The algorithm employs an iterative gradient-descent method of 

minimization which minimizes the mean squared error (L2 norm) between the desired output and 

network output (supervised learning). Using the Back Propagation (BP) Neural Algorithm, the 

parameters of the neural network are updated in a batching mode. The final output is compared 

with the desired output and the resulting error signal is obtained. This error signal is used to 
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update the weights and thresholds of the hidden layers as well as the output layer. The weights 

and the thresholds are updated in an iterative method until the difference between the desired and 

the estimated output becomes minimum. For measuring the degree of matching, the Mean 

Square Error (MSE) is taken as a performance measurement. 

The updated weights are, 

                                                                                      (6.5) ( ) ( ) ( )1+ = +Δkl kl klw n w n w n

         ( ) ( ) ( )1+ = +Δjk jk jkw n w n w n                                                           (6.6) 

                                                                        (6.7) ( ) ( ) ( )1+ = + Δij ij ijw n w n w n

Where, ( ) ( ) ( ),  and Δ Δ Δkl jk ijw n w n w n  are the changes in weights of the output, hidden 

and input layer respectively. 
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l kl k l
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d n d

kl

y n
w n e n

dw n dw n

e n w f b w

ξ
μ μ

μ ϕ
=

Δ = − =

⎡ ⎤
′= +⎢ ⎥
⎣ ⎦
∑

                                            (6.8) 

Where, μ  is the convergence coefficient ( 0 1μ≤ ≤ ). Similarly the ( )  and Δ Δjk ijw n w n( )  can be 

computed. 

          The back propagation algorithm provides an “approximation” to the trajectory in the 

weight space computed by the method of steepest gradient rule. This algorithm has some 

drawbacks. The smaller we make the learning parameterμ , the smaller the change in synaptic 

weights, and the smoother will be the trajectory in weight space. The improvement, however, is 

attained at the cost of a slower rate of learning. If, we make the learning rate much higher in 

order to speed the rate of learning, the resulting large changes in the synaptic weights assume 

such a form that the network may become unstable (i.e., oscillatory).  Another demerit of this 

algorithm is local minima. While the performance surface for a single layer has a single 

minimum point, and constant curvature, the performance surface for a multilayer network may 

have many local minimum points and the curvature can vary widely in different regions of the 

parameter space. For this reason it is difficult to choose an appropriate learning rate for the 

steepest descent rule. A simple method of increasing the rate of learning yet avoiding the danger 

of instability is to modify the weight update rule by including a momentum rule as follows: 
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( ) ( ) ( ) ( )1 1kl kl kl klw n w n w n w nα+ = + Δ + Δ −  

( ) ( ) ( ) ( )1 1jk jk jk jkw n w n w n w nα+ = + Δ + Δ −  

( ) ( ) ( ) ( )1 1ij ij ij ijw n w n w n w nα+ = + Δ + Δ −  

 

 

                     (6.9) 

 

Where α  is usually a positive number called the momentum constant having range between 0 

and 1. 

6.4 The FLANN 

    The FLANN, initially proposed by Pao is a single layer ANN structure capable of forming 

complex decision regions by generating nonlinear decision boundaries .It consists of a functional 

expansion block and a single layer perceptron network. The main purpose of the functional 

expansion block is to increase the dimension of the input pattern so as to enhance its 

representation in a high-dimensional space. This enhanced space is then used for the system 

identification problem. For this paper, we consider an m-dimensional input pattern at the kth  
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Fig.6.3. Block diagram for the FLANN system identification model 
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Instance given by T (k) = {T1 T2 ... Tm}. Each element in the vector is T(k) expanded into 

several terms, which is obtained by using trigonometric functions and the first few terms are 

given as : 
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)sin()(

1)(
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This network is then used for system identification problem .The FLANN network is trained 

using the generalized delta-learning algorithm.  

6.5 The Chebyschev Neural Network (CFLANN) 

    The Chebyschev polynomials are a set of orthogonal Polynomials defined as the solution to 

the Chebyschev differential equation and denoted as .It is similar to FLANN except the 

difference is that the input vector into the functional block is now expanded with Chebyschev 

polynomials. The higher order chebyschev polynomials for –1<x<1 can be generated using the 

recursive formula given by  

)(xTn

                                                                                                (6.10)   )()(2)( 11 xTxxTxT nnn −+ −=

The first few chebyschev polynomials are given as: 

xxxxT
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The advantage of CHNN over FLANN is that the Chebyschev polynomials are computationally 

more efficient than using trigonometric polynomials to expand the input space. 

6.6 Recursive Least Square (RLS) Algorithms 

    The algorithms that result from the gradient descent methods has the disadvantages that they 

can be slow to approach the optimal weight vector and, once close to it, usually” rattle around” 

the optimal; vector rather than actually converge to it, due to the effects of approximations made 

in the estimate of the performance function gradient. To overcome these difficulties, another 

 58



Equalization and Identification using ANN 

approach is discussed in this section. Here we develop algorithms that use the input data {x,d} in 

such a way as to ensure optimality at each step. If we can be done, then clearly the result of the 

algorithm for the last data point is the overall optimal weight vector. 

Suppose that we refine the sum squared performance function Jss by the expression 

          ∑
−

−=

−=
1

1

2)()(
k

Nl
k ldlyJ , 11 −≤≤− LkN                                                                   (6.11) 

This form of J simply reflects how much data have been used so far. Clearly, JL uses all the 

available data from k=0 to k=L-1. Suppose we define  as the impulse response vector that o
kW

minimizes Jk .By this definition,  equals , and the optimal impulse vector over all the o
LW 1−

o
ssW

data. 

The motivation for developing”recursive-in-time” algorithms can be seen as follows. Suppose 

x(l) and d(l) have been received for time up through k-1 and that  has  been computed. Now o
kW

suppose that x(k)and d(k)are received, allowing us to form 

          2

1

2
1 )()()()( kdkyJldlyJ k

k

Nl
k −+=−= ∑

−=

Δ

+                                                             (6.12) 

Wee desire to find some procedure by which  can be updated to produce , the new o
kW o

kW 1+

optimal vector. If we can develop such a procedure, then we can build up the optimal weight 

vector step by step until the final pair of data points x(L-1) are received. With these points, W  o
L 1−

can be computed, which, by definition, is the global optimum vector . o
ssW

The update formula: 

The simplest approach to updating  is the following procedure: o
kW

(a) Update Rss via             )()(,1, kXkXRR t
ksskss +=+

(b) Update Pss via            )()(,1, kXkdPP ksskss +=+         

 (c) Invert                                 1, +kssR

(d)Compute  via        o
kW 1+ 1,

1
1,1 +

−
++ = ksskss

o
k PRW
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The autocorrelation matrix and cross correlation vectors are updated and then used to 

compute . While direct, this technique is computationally wasteful. Approximately o
kW 1+

N3+2N2+N multiplications is required at each update, where N is the impulse response length, 

and have that N3 are required for the matrix inversion if done with the classical Gaussian 

elimination technique. 

In an effort to reduce the computational requirement for this algorithm, we focus first on this 

inversion. We notice that Gaussian elimination makes no use whatsoever have the special form 

of  or of the special form of the update from  to . We now set out to take kssR , kssR , 1, +kssR

advantage of it. We do so by employing the well-known matrix inversion lemma, also sometimes 

called the ABCD lemma, 

                                                             (6.13) 1111111 )()( −−−−−−− +−=+ DACBDABAABCDA

We use this lemma by making the following associations: 
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With these associations, Rk+1 can be represented as 
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Thus, given  and a new input x(k), hence X(k) , we  can compute  directly. We never 1−
kR 1

1
−
+kR

compute ,nor do we invert it directly. 1+kR

The optimal weight vector  is given by o
kW 1+

                                                                                                                  (6.17) 1
1
11 +

−
++ = Kk

o
k PRW

This can be obtained by combining (3.43) with update Pss 
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To simplify this result, we make the following associations and definitions. The kth optimal 

weight vector: 
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The filtered information vector: 
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With these expressions, the optimal weight vector  becomes o
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Equations (6.16) and (6.19)-(6.23) comprise the recursive least squares (RLS) algorithm. 

Steps for RLS Algorithm: 

The step-by-step procedures for updating  are given in this section. This set of steps is o
kW

efficient in the sense that no unneeded variable is computed and that no needed variable is 
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computed twice. We do, however, need assurance that  exists. The procedure then goes as 1−
kR

follows: 

(i)   Accept new samples x(k), d(k). 

(ii)  Form X(k) by shifting x(k) into the information vector. 

(iii)   Compute the a priori output yo(k) : 

                                                                                                               (6.24) )()( kxWky ot
ko =

(iv)   Compute a priori error  eo (k): 

                                                                                                         (6.25) )()()( kykdke oo −=

(v)   Compute the filtered information vector Zk  : 

                                                                                                                   (6.26) )(1 kXRZ kk
−=

(vi) Compute the normalized error power q: 

                                                                                                                      (6.27) k
t ZkXq )(=

(vii)   Compute the gain constant v: 

                
q

v
+

=
1

1                                                                                                        (6.28) 

(viii) Compute the normalized filtered information vector kZ~ : 

               kk ZvZ .~ =                                                                                                       (6.29) 

(ix) Update the optimal weight vector  to : o
kW o

kW 1+

             ko
o

k
o

k ZkeWW ~)(1 +=+                                                                                     (6.30) 

(x) Update the inversion correlation matrix  to  in preparation for the next iteration: 1−
kR 1

1
−
+kR

               t
kkkk ZZRR ~~11

1 −= −−
+                                                                                         (6.31) 

This procedure assumes that  exists at the initial time in the recursion. As a result, two 1−
kR

initialization procedures are commonly used. The first is to build up  and PkkR    until R has full 
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rank, i.e. at least N input vectors X(k) are acquired. At this point  is computed directly and 1−
kR

then Wk. Given these, the recursion can proceed as described above indefinitely or until k=L-1. 

The advantage of the first technique is that optimality is preserved at each step. The major price 

paid is that is about N3 computations are required once to perform that initial inversion. 

 A second, much simpler approach is also commonly used. In this case  is 1
1

−
−NR

initialized as: 

                                                                                                                  (6.32) Nn IR η=−
−
1
1

ˆ

Where η  is a large positive constant and IN  is the N-by-N  identity matrix. Since  almost 1
1

−
−NR

certainly will not equal η IN, this inaccuracy will influence the final estimate of  and hence kR

Wk. A s a practical matter, however, η  can usually be made large enough to avoid significant 

impact on  while still making  invertible. Because of the simplicity and the low o
LW 1− 1−NR

computational cost, the second approach is the one of the most commonly used. It becomes even 

more theoretically justifiable when used with the exponentially weighted RLS algorithm to be 

discussed shortly. 

The computational cost for the RLS algorithm: 

As a prelude to developing even more efficient adaptive algorithms, we first should determine 

how much computation is required to execute the RLS algorithm. 

We define that the 10 steps in the procedure can be grouped by their computational complexity: 

(a) Order 1: Steps(iv) and (vii) require only a few simple operations, such as a subtraction or 

an addition and division. These are termed as order1 and denoted O(1) because the 

amount of computation required is not related to the filter order. 

(b) Order N : Steps (iii), (vi), (viii), and (ix) each require a vector dot product, a scalar-vector 

product, or a vector scale and sum operation. Each of these requires N additions for each 

iteration of the algorithm .The actual number of multiplications required for these steps is 

4N, but we refer to them as order N, or O(N) ,because the computation requirement is 

proportional to N, the length of the filter impulse response. 
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(c) Order N2: Step (v), a matrix vector product, and step (x) , the vector outer product, both 

require N2 multiplications and approximately N2 additions. These are termed O(N2) 

procedures. 

    The total number of computations needed to execute the RLS algorithm for each input sample 

pair { x(k), d(k) } is  2N2+4N  multiplications, an approximately equal number of additions ,and 

on division. Because this amount of computation is required for each sample pair, the total 

requirement of multiplications to process the sample window is 

     CRLS = (L-N+1). 2N 2 + (L-N+1). 4N    

There are several reasons for exploring and using RLS techniques: 

(a) RLS can be numerically better behaved than the direct inversion of Rss; 

(b) RLS provides an optimal weight vector estimate at every sample time, while the direct 

method produce a weight vector estimate only at the end of the data sequence; and 

(c) This recursive formulation leads the way to even lower-cost techniques. 

Table 6.2 

(Comparison of Computational Complexity between an L-Layer MLP, a FLANN and a 

CFLANN in One Iteration with BP Algorithm) 

Operations MLP FLANN CFLANN 

Weights  
∑
−

=
++

1

0
1)1(
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l
ll nn  )1( 01 +nn  )1( 01 +nn  

Additions 
∑
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+ −+
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101 33
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l
lll nnnnn  101 )1(2 nnn ++  101 )1(2 nnn ++  
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∑∑
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−
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+ +−+

L
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Ll

L

l
ll nnnnnn

1
10

1

0
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L
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1
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6.7 Comparison of Computational Complexity 

Here, we present a comparison of computational complexity between an MLP and FLANN 

structure trained by the BP algorithm and CFLANN structure trained by RLS algorithm. Let us 

consider an L -layer MLP with   number of nodes (excluding the threshold unit) in layer l , 

where  and   are the number of nodes in the input layer and output layer, 

respectively. Three basic computations, i.e., the addition, the multiplication and the computation 

of  are involved for updating the weights of an MLP. In the case of FLANN, in addition, 

computations of are also involved. The computations in the network are due to 

ln

Ll ,,1,0 K= 0n ln

tanh(.)

sin(.)cos(.) and

1) Forward calculation to find the activation value of all nodes of the entire network; 

2) Back error propagation for calculation of square error derivatives; 

3) Updating of the weights of the entire network.  

The total number of weights to be updated in one iteration in an MLP structure is given by 

where as in the case of a FLANN the same is only )1)1((
1

0
∑
−

=

=+
L

l
ll nn )1( 0 +n . For the CFLANN 

case all the cases for FLANN are same except here functions are not needed. 

Since hidden layer does not exist in a FLANN and CFLANN , the computational complexity is 

drastically reduced in comparison to that of an MLP. A comparison of computational load in   

one iteration, for an MLP and a FLANN structure is provided in Table 6.2. 

sin(.)cos(.) and

6.8 Simulation and Results 

    Extensive computer simulations were carried out for MLP,FLANN and CFLANN  structures. 

For both System Identification and Channel Equalization problem, a uniformly distributed 

random signal over the interval [-.5,.5] was applied to the FIR structure and a white Gaussian 

noise  of 30dB was added to the output of the system. The learning parameter μ  was suitably 

chosen for each structure to obtain best result. 

 Four different channels were studied with the following transfer function: 

21

21

21

21
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To study the effect of nonlinearity on the system performance four different nonlinear channel 

models with the following nonlinearities has been introduced. 
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The Convergence Characteristic 

The convergence characteristics for CH=2 at SNR of 30 dB is simulated for the linear and 

nonlinear models. From MSE plot of the System Identification for NL=0,NL=1 and NL=3 was 

given. The MSE floor corresponding to the steady state value of the MSE is obtained after 

averaging over 100 independent runs each consisting of 3000 iterations to obtain optimal weight. 

The learning parameter μ is chosen to be 0.02. It can be observed that LMS based FLANN based 

structure shows much faster convergence and better MSE floor than MLP. Where as CFLANN updated 

with RLS shows faster and better convergence and it takes much less iteration than FLANN and MLP 

updated with LMS. Where as the repose matching plots for all the MLP, FLANN and CFLANN structure 

is same. 

MSE = Mean Square Error 
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6.4(a)                                                                6.4(b) 

Fig.6.4 (a),(b) corresponds to the respective MSE and response matching plot of MLP, FLANN 

and CFLANN structure with the desired signal of NL=0. 
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6.5(a)                                                                6.5(b) 
 

Fig.6.5 (a),(b) corresponds to the respective MSE and response matching plot of MLP, FLANN 

and CFLANN structure with the desired signal of NL=1. 
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6.6(a)                                                                    6.6(b) 
 

Fig.6.4 (a),(b) corresponds to the respective MSE and response matching plot of MLP, FLANN 

and CFLANN structure with the desired signal of NL=1. 

 

BER performance study 
The BER provides the true picture of the performance of an equalizer. The computation of BER 
was carried out for the channel equalization using the three ANN structures and one FIR based 
structure updated with RLS algorithm is carried out. From the extensive computer simulation it 
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is seen that for all the linear and non linear cases works better than MLP and RLS based structure 
and performs almost same and in some cases better than FLANN structure with less no of 

computational complexity and faster convergence.  
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6.7(e) 

Fig.6.7 (a), (b), (c), (d), (e), corresponds to the respective BER plot for RLS, MLP, FLANN 

and CFLANN equalizer structure with NL=0,NL=1,NL=2,NL=3 and NL=4 

6.9 Summary 

    The present paper proposes a novel Chebyschev Functional Link ANN model for 

identification of nonlinear systems and equalizer structure for adaptive channel equalization with 

noise. Since it is a single layer structure and uses Chebyschev polynomials for expansion instead 

of trigonometric expansion it offers advantage in terms of computational complexity over MLP 

and FLANN structure. For faster and efficient training the RLS algorithm has been employed. 

Simulation study using known nonlinear plants has been carried out employing FLANN, MLP 

and the proposed model results show that the proposed model outperforms the other two models 

both in terms of convergence rate, MSE floor and BER performance. This structure may 

efficiently used in other signal processing applications including noise cancellation, prediction, 

system identification and control. 
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Online System Identification 

7.1. Introduction 

Identification of a complex dynamic plant is a major concern in control theory. This interest 

stems from the need to give new solutions to some long standing necessities of automatic 

control; to work with more and more complex systems, to satisfy stricter design criteria, and to 

fulfill previous points with less and less a priori knowledge of the plant. In this context, a great 

effort is being made within the area of system identification, towards the development of 

nonlinear models of real processes [7.1]. 

Because of nonlinear signal processing and learning capability, artificial neural networks 

(ANN’s) have become a powerful tool for many complex applications including functional 

approximation, nonlinear system identification and control, pattern recognition and 

classification, and optimization. The ANN’s are capable of generating complex mapping 

between the input and the output space and thus, these networks can form arbitrarily complex 

nonlinear decision boundaries. 

In contrast to the static systems that are described by algebraic equations, the dynamic systems 

are described by difference or differential equations. It has been reported that even if only the 

outputs are available for measurement, under certain assumptions, it is possible to identify the 

dynamic system from the delayed inputs and outputs using a multilayer perceptron (MLP) 

structure [7.2]. Narendra and Parthasarathy proposed the problem of nonlinear dynamic system 

identification using MLP structure trained by BP algorithm [7.3], [7.4]. At present most of the 

works on system identification using neural networks are based on multilayer feed forward 

neural networks with back propagation learning or more efficient variations of this algorithm n 

Identification based control approaches are reported in [7.8]-[7.9]. An approach for integrating 

evolutionary computation applied to the problem of system identification is presented in [7.10]. 

These methods have been applied to real processes and they have shown an adequate behaviour. 

However, most of the schemes for system identification have been demonstrated through 

empirical studies, or convergence of the output error has been shown under ideal conditions 

except in [7.11]. where detailed convergence analysis is given. As an alternative to the MLP, 

there has been considerable interest in radial basis function (RBF) networks [7.12]–[7.15], 

primarily because of its simpler structure. The RBF networks can learn functions with local 

variations and discontinuities effectively and also possess universal approximation capability 

[7.15]. This network represents a function of interest by using members of a family of compactly 

or locally supported basis functions, among which radially symmetric Gaussian functions, are 
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found to be quite popular. A RBF network has been proposed for effective identification of 

nonlinear dynamic systems [7.16], [7.17]. In these networks, however, choosing an appropriate 

set of RBF centers for effective learning, still remains as a problem. Considering as a special 

case of RBF networks, the use of wavelets in neural networks has been proposed [7.18], [7.19]. 

In these networks, the radial basis functions are replaced by wavelets, which are not necessarily 

radial-symmetric. Wavelet neural networks for function learning and nonparametric estimation 

can be found in [7.20], [7.21].  

Originally, the Pao [7.22] proposed Functional link ANN (FLANN). He has shown that, this 

network may be conveniently used for function approximation and pattern classification with 

faster convergence rate and lesser computational load than an MLP structure. The FLANN is 

basically a single layer neural network and the need of the hidden layer is removed and hence, 

the BP learning algorithm used in this network becomes very simple. The functional expansion 

effectively increases the dimensionality of the input vector and hence the hyper planes generated 

by the FLANN provide greater discrimination capability in the input pattern space. Pao et al. 

have reported identification and control of nonlinear systems using a FLANN [7.23]. Chen and 

Billings [7.24] have reported nonlinear dynamic system modeling and identification using three 

different ANN structures. They have studied this problem using an MLP structure, a radial basis 

function (RBF) network and a FLANN and have obtained satisfactory results with all the three 

networks. 

Pattern classification using Chebyschev neural networks has been reported in [7.25].It has been 

proved that Chebyschev neural network (CNN) has powerful representation capabilities whose 

input is generated by using a subset of Chebyschev polynomials [7.26]. CNN is a functional link 

networks based on Chebyschev polynomials. Being a single layer neural network, its 

computational complexity is less intensive as compared to (MLP) and can be used for on-line 

learning. Pattern classification using CNN has been reported in [7.25]. System identification 

using CNN in discrete time domain is reported in [7.27] where it is shown that CNN based 

identification requires less computation as compared to MLP. Additionally, the identification 

method uses off-line training of discrete time plants. In [7.28] on-line system identification using 

CNN of SISO systems in both discrete and continuous time domain is taken up. 

  The primary purpose of this chapter is to develop a computationally efficient and accurate 

algorithm for on-line system identification that is applicable to a variety of problems. This paper 

highlights the use of Chebyschev neural network models to identify time series problem as well 
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as discrete time plants. The identification scheme exhibits a learning-while-functioning feature 

instead of learning-then-functioning, so that the identification is on-line without any need of off-

line learning phase. The training scheme is based on recursive least squares algorithm which 

guarantees convergence of the Chebyschev neural network weights. The proposed scheme also 

ensures good performance in the sense that the identification error is small and bounded. The 

convergence issue is shown through Lyapunov stability theory. The results are compared with 

certain existing identification algorithm. 

7.2. Problem Statement 

 

Plant

  ANN 
  model 

u(k) 

d(k) y(k+1) 

+

__ 

)1( +
∧

ky  

e(k+1) 

 

 

 

 

 

 

 

                              Fig.7.1. Basic Block diagram System Identification Model 

                                 

The method for system identification of a time invariant, causal, discrete time plant is depicted in 

Fig.7.1. the plant is excited by a signal , and the output )(ku )1( +ky is measured. The plant is 

assumed to be stable with known parameterization but with unknown values of the parameters. 

The objective is to construct a suitable identification model which when subjected to the same 

input  as the plant, produces an output which approximates )(ku )1( +ky  in the sense described 

by ε≤−
∧

yy for some desired 0>ε and a suitably defined norm. The choice of the 

identification model and the method of adjusting its parameters based on the identification error 

constitute the two principal parts of the identification problem. This method of identification is 

applied to time series problem and SISO and MIMO discrete time plants.  
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The SISO and MIMO plants are described by the difference equations: 

Model 1:  
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Where ,  and  represent the input of the plant, output of the plant and disturbance 

acting on the plant, respectively, at the kth  instant of time. Here,  

with 

)(ku )(ky )(kd

,(.),(.) nn gf ℜ∈ℜ∈

nmn
i

mn
i

nn k ∈)(duky ℜℜ∈ℜ∈ℜ∈ℜ∈ ×× ,,,(.),)( βα Mdkd ≤)(   a known constant. 

These four models taken from the literature represent a fairly large class of systems. The ability 

of neural networks to approximate large classes of nonlinear function makes them prime 

candidates for the identification of nonlinear plants. Under fairly weak conditions on the 

functions and/o   f g , CNN can be constructed to approximate such mappings over compact 

sets. 

7.3. Chebyschev Neural Network 

7.3.1 Structure of CNN 

Chebyschev neural network is a single layer NN structure. CNN is a functional link network 

(FLANN) based on Chebyschev polynomials. One way to approximate a function by a 

polynomial is to use a truncated power series. The power series expansion represents the 
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function with very small error near the point of expansion, but the error increases rapidly as we 

employ it at points farther away. The computational economy to be gained by Chebyschev series 

increases when the power series is slowly convergent. Therefore, Chebyschev series are 

frequently used for approximations to functions and are much more efficient than other power 

series of the same degree. Among orthogonal polynomials, the Chebyschev polynomials occupy 

an important place, since, in the case of a broad class of functions, expansions in Chebyschev 

polynomials converge more rapidly than expansions in other set of polynomials. Hence, we 

consider the Chebyschev polynomials as basis functions for the neural network. 

The Chebyschev polynomials can be generated by the following recursive formula: 

         1)(),()(2)( 011 =−= −+ xTxTxxTxT iii                                                                       (7.5)         

For example, consider a two dimensional input pattern . An enhanced pattern 

obtained by using Chebyschev functions is given by: 

TxxX ][ 21=

                                                                           (7.6) TxTxTxTxT )....]2()2()....2()1(1[ 2121=φ

Where is a Chebyschev polynomial, ithorder of polynomials chosen and j = 1, 2. The 

different choices of are

)( ji xT

)(1 xT 1212,2, +− xandxxx . In this chapter,  is chosen as)(1 xT x . 

The following results are stated for the function approximation capability of CNN in the form of 

Theorem1. 

Theorem 1:  Assume a feed forward MLP neural network with only one hidden layer and 

activation functions of the output layer are all linear. If all the activation functions of the hidden 

layer satisfy the Riemann integrable condition, then the feed forward neural network can always 

be represented as a Chebyschev neural network. The detailed proof of the theorem can be found 

in [29]. 

The architecture of the CNN consists of two parts, namely numerical transformation part and 

learning part. Numerical transformation deals with the input to the hidden layer by approximate 

transformable method. The transformation is the functional expansion (FE) of the input pattern 

comprising of a finite set of Chebyschev polynomials. As a result the Chebyschev polynomial 

basis can be viewed as a new input vector. The learning part is a functional link neural network 

based on Chebyschev polynomials.  

The output of the single layer neural network is given by: 

                                                                                                                           (7.7)    φ
T

Wy
∧∧

=

 74



Online System Identification 

Where are the weights of the neural network given by . 
∧

W TwwW .....]21[=
∧

A general nonlinear function  can be approximated by CNN as: StxSCxf n ∈∈ )(),()(

                                                                                                             (7.8) εφ +=
∧ T

Wxf )(

Where ε  is the CNN functional reconstruction error vector. In CNN, functional expansion of the 

input increases the dimension of the input pattern. Thus, creation of nonlinear decision 

boundaries in the multidimensional input space and approximation of complex nonlinear systems 

becomes easier. 

7.3.2. Learning Algorithm 

The problem of identification consists in setting up a suitably parameterized identification model 

and adjusting the parameters of the model to optimize a performance function based on the error 

between the plant and identification model outputs. CNN, which is a single layered neural 

network, is linear in the weights and nonlinear in the inputs is the identification model used in 

this paper. We shall use the recursive least squares method with forgetting factor as the learning 

algorithm for the purpose of on-line weight updation. The performance function to be minimized 

is given by: 
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The algorithm for the discrete time model is given by: 
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Whereλ  is the forgetting factor and φ  is the basis function formed by the functional expansion 

of the input and is a positive constantccIP ,)0( = 00 ,)( RRtP < is a constant that serves an 

upper bound for )(tP . All matrix and vectors are of compatible dimension for the purpose of 

computation. The following assumption is needed for the stability analysis. 

A3. The ideal weights of the CNN are bounded so that MWW ≤∗ where are the ideal 

weights. We only need to know that ideal weights exist to prove the convergence analysis. The 

∗W
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exact values of the ideal weights need not be known as they are not required for the purpose of 

identification. 

7.3.3. Stability Analysis 

The convergence of CNN weights is shown through Lyapunov stability theory. Consider a 

Lyapunov function candidate: 
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This shows that and . By using Lyapunov second method, 0<nV 0<Δ nV 0~ →W  as ∞→n this 

implies that     . ∞→→ nasWnW *)(

Table 7.1 

(Comparison of the number of variables chosen and the MSE obtained using Chebyschev neural 

networks.) 

No. of inputs Inputs chosen Mean Square error 

2 y(k-1),u(k-4) 9.214 

3 y(k-1,u(k-1),u(k-2) 0.1016 

6 y(k-1),y(k-2),y(k-3),u(k-1),u(k-2),u(k-3) 0.0695 

10 y(k-1),…,y(k-4).u(k-1),…,u(k-6) 8.6684 
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Table 7.2 

(Mean square error comparison by different identification methods)  

Model Identification method Mean Square Error 

Kukolj and Levi [7.14] Neuro-fuzzy (off-line) 0.129 

Oh and Pedryez [7.10] Polynomial NN (off-line) 0.027 

Proposed model Chebyschev NN (on-line) 0.0695 

 

7.4 Simulations 

The developed model is now applied to three different problems: Box Jenkins identification 

problem, a SISO and a MIMO problem. The CNN identifier derived here require no apriori 

knowledge of the dynamics of the nonlinear system. Moreover no offline learning phase is 

required. 

7.4.1. Box and Jenkins’ Identification Problem 

Box and Jenkins’ gas furnace data are frequently used in performance evaluation of system 

identification methods. The data can be obtained from the site 

http://www.stat.wisc.edu/_reinsel/bjr-data/gasfurnace. The example consists of 296 inputs–

output samples recorded with a sampling period of 9 s. The gas combustion process has one 

variable, gas flow u(k), and one output variable, the concentration of CO2, y(k). The 

instantaneous values of output y(k) have been regarded as being influenced by six 

variables ).3(),2(),1(),3(),2(),1( −−−−−− kukukukykyky  In the literature, the number of 

variables influencing the output varies from 2 to 10. In the proposed method, six variables were 

chosen after several trials. Table 7.1. gives a comparison of the number of variables chosen and 

the MSE obtained using Chebyschev neural networks. The MSE turned out to be the least with 

six variables. Fig 7.2. shows actual and estimated values, obtained by means of the proposed on-

line neuro-identification model. An MSE of 0.0695 was achieved with the weights of the CNN 

initialized to zero and each of the six inputs in to two terms. The result achieved belongs to the 

category of the best available results that have been reported in the literature. The results 

obtained by the proposed method have been compared with two of the results that have been 

recently reported in the literature in Table 7.2. Each model is identified by the name of the 

author, publication year and reference number. The next column lists the model used and the  
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                          Fig.7.2. response matching plot for the Box and Jenkins’ Identification problem 

 

mode of  identification (on-line or off-line). The last column illustrates the accuracy of the model 

using MSE. Table 7.2. Contrasts the performance of the proposed method with the other two 

models studied recently in the literature based on off-line techniques. The results clearly reveal 

that the proposed method being fast and simple can be used on-line whereas the other two 

methods being off-line methods involve a training phase and a testing phase. Moreover, the 

proposed model clearly outperforms [7.4] and also [7.10] where it can be seen that the MSE in 

the testing data is 0.085. The detailed comparisons of the various methods reported in the 

literature can be found in [7.4] and also [7.10]. When the six inputs are expanded into three terms 

the MSE in this case as can be seen from Table 7.3 is 0.1572. Table 7.3 gives the MSE for the 

proposed model for inputs expanded to different number of terms along with the number of 

weights to be updated in the CNN. From this table it becomes clear that when the order of the 

Chebyschev polynomial expansion is taken as two, the MSE is minimum. Therefore, for this 

problem we have expanded the six inputs to two terms each. 
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Table 7.3 

(MSE for the proposed model for inputs expanded to different number of terms along with the 

number of weights to be updated) 

No of Chebyschev 

Polynomials  

No. of  weights of  CNN Mean Squared Error 

1 7 0.0740 

2 13 0.0695 

3 19 0.1572 

4 25 8.7764 

 

Table 7.4   

(Comparison of computational complexity and performance between (CNN and MLP)) 

    Number of CNN MLP 

    Weights 11 120 

     Tan h - 20 

     MSE 41077.2 −×  41015.5 −×  

 

7.4.2. SISO Plant 

We consider a single input single output discrete time plant described by [7.26]. 
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Where the unknown nonlinear function f is given by: 
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To identify the plant, the model is governed by the difference equation given by and is 

estimated using a CNN. For the CNN, the input 

)1( +
∧

kx
∧

f

)}1(),(),2(),1(),({ −−− kukukxkxkx  is 
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expanded to 11 terms using Chebyschev polynomials. The input to the actual system and the 

neural network model is given by Eq (7.20). The CNN weights are initialized to zero. Weights of  
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                                  Fig.7.3.  Response matching plot of the SISO Plant 

 

the CNN are updated using the algorithm given by Eq. (7.10). The performance of the proposed 

CNN is compared with that of an MLP. For this purpose, the MLP architecture, initial weights of 

the neural network, the parameters of the learning law and the learning law are the same as used 

by them. Matlab’s randn (-) function is used to generate noise, with mean value zero and 

covariance value . This noise is then added to the true output obtained from the system 

given by Eq (7.17). The performance of the identification model with this noise level is shown in 

12)01.0( −s

Fig 7.3 for CNN. In both the cases the performance is satisfactory. A standard quantitative 

measure for performance evaluation is the mean squared error. Table 7.4 gives a comparison of 

the computational complexity and the performance of the proposed method using CNN and the 

method proposed by Yu and Li using MLP. From Table 7.4 it becomes clear that the CNN is not 

only computationally less intensive but also gives a better performance as compared to MLP. 

 

 80



Online System Identification 

7.4.3. MIMO Plant 

Consider the two input two output nonlinear discrete time system described by [7.5] 
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Where the inputs u1(k) and u2(k) is given by: 
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A single CNN with two outputs is used to approximate . For the CNN, the inputs 

are which are expanded to nine terms using Chebyschev 

polynomials. The neural network weights are initialized to zero. The weights of the neural 

network are updated using the algorithm given by Eq (7.10). A white Gaussian noise with mean 

zero and covariance of is then added to the true output obtained from the system given by 

Eq (7.21).Fig 7.4(a),(b) and Fig 7.5(a),(b)  (presents the responses of the identifier for the 

proposed algorithm without and with noise condition. The upper graph gives the actual output, 

estimated output and error of the first output and the lower graph for the second output. It is clear 

from these figures that the response of the identifier is extremely impressive though the noise 

condition is extremely high. 

21 fandf
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                    Fig 7.4.(a),(b) are the corresponding matching of desired ,estimated 

                                    and error plot of  output1 and output2 without noise 
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                          Fig 7.5.(a),(b) are the corresponding matching of desired ,estimated 

                                    and  error plot of  output1 and output2  with noise 

 

7.5 Summary 

In this chapter, we have presented identification schemes in a feed forward neural network 

framework that ensures identification of general nonlinear dynamical systems with smooth 

nonlinearities. Our proposed scheme firstly does not need any off-line training, secondly requires 
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no initialization of neural network weights. Initially, the neural network weights are assumed to 

be zero. As the neural network structure is single layer network, it is computationally fast and 

simple. The proposed method is applied to a time series problem and nonlinear SISO and MIMO 

discrete time systems. It is important to remark that the identification model formed in this way 

can be used to characterize a wide class of very diverse problems. The recursive least squares 

algorithm captures the dynamics of the systems through the updation of the weights of the neural 

network model. The computational efficiency and the accuracy of the proposed methodology 

make it very well suited for applications in the design of on-line adaptive identification models 

for a wide class of complex systems. Currently, work is going on the use of evolutionary 

computation with CFLANN structure to approximate time series problem and to identify the 

time varying discrete time system. 
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Conclusion and References 

8.1 Conclusion 

In this thesis with extensive computer simulation we have studied about the behavior of the 

nonlinear systems and channels with different types of linear and nonlinear structures like FIR, 

MLP, FLANN and CFLANN with different types of algorithm. The objective of this research is 

to evaluate the performance of the proposed model for the linear and nonlinear identification, 

equalization problem.  

Through computer simulation we have seen that BLMS algorithm works much faster and gives 

better bit error rate performance than the conventional than the conventional LMS algorithm for 

System Identification and Channel Equalization problem. Furthermore efficient block algorithms 

such as the Fast Fourier Transform (FFT) was used to advantage in terms of faster convergence 

and less mathematical complexity when implementing block filters in frequency domain but its 

performance degrades for nonlinear conditions. 

We have discussed and simulated a lot of nonlinear structures for nonlinear problems such as 

MLP, FLANN and CFLANN. Since   RLS algorithm works much faster than the conventional 

LMS algorithm we have combined it with CFLANN structure and the proposed structure works 

much better than its counterparts in terms of faster convergence, less mathematical complexity, 

better MSE floor and  BER plot  in case of non linear equalizer case. 

In the chapter,6 the proposed structure was successfully tested with non-linear dynamic systems 

Such as Box and Jenkins problem, SISO and MIMO plant identification problem ands its value 

was compared with standard nonlinear structures and it was seen that our proposed scheme much 

better than its counterpart. It was concluded that the proposed structure exhibits can learning-

while functioning instead of learning then functioning likes the other structures and needs no 

offline-learning phase.  

8.2 Future Work 

Sometimes we face multimodal problems. There we fail to find the solution because of the 

inability of the gradient-based algorithms to reach the global solution. In those cases stochastic 

algorithms gives better result. Evolutionary computation technique such as Genetic Algorithm, 

Bacteria Foraging, PSO many more gives better results in theses conditions. But these algorithms 

takes a lots of time, so work should be carried on to develop some faster hybrid Evolutionary 

algorithms  and be implemented with these systems to give better results. 
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