

 NEW STRUCTURES AND ALGORITHMS FOR
ADAPTIVE SYSTEM IDENTIFICATION AND

CHANNEL EQUALIZATON

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology
in

Telematics and Signal Processing

By

NIHAR RANJAN PANDA

Department of Electronics and Communication Engineering

National Institute Of Technology

Rourkela

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NEW STRUCTURES AND ALGORITHMS FOR
ADAPTIVE SYSTEM IDENTIFICATION AND

CHANNEL EQUALIZATON

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology
in

Telematics and Signal Processing

By

NIHAR RANJAN PANDA

Under the Guidance of

Prof. G. Panda

Department of Electronics and Communication Engineering

National Institute Of Technology

Rourkela

2007

National Institute Of Technology

Rourkela

CERTIFICATE

This is to certify that the thesis entitled, “New structures and Algorithms for Adaptive

System Identification and Channel Equalization” submitted by Sri Nihar Ranjan panda

in partial fulfillment of the requirements for the award of Master of Technology Degree in

Electronics & communication Engineering with specialization in “Telematics and Signal

Processing” at the National Institute of Technology, Rourkela (Deemed University) is an

authentic work carried out by him under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to any

other University / Institute for the award of any Degree or Diploma.

 Prof. G. Panda
 Dept. of Electronics & Communication Engg.

Date: National Institute of Technology
 Rourkela-769008

ACKNOWLEDGEMENTS

This project is by far the most significant accomplishment in my life and it would be

impossible without people who supported me and believed in me.

I would like to extend my gratitude and my sincere thanks to my honorable, esteemed

supervisor Prof. G. Panda, Head, Department of Electronics and Communication

Engineering. He is not only a great lecturer with deep vision but also and most importantly a

kind person. I sincerely thank for his exemplary guidance and encouragement. His trust and

support inspired me in the most important moments of making right decisions and I am glad

to work with him.

I want to thank all my teachers Prof. G.S. Rath, Prof. K. K. Mahapatra, Prof. S.K.

Patra and Prof. S.K. Meher for providing a solid background for my studies and research

thereafter. They have been great sources of inspiration to me and I thank them from the

bottom of my heart.

I would like to thank all my friends and especially my classmates for all the

thoughtful and mind stimulating discussions we had, which prompted us to think beyond the

obvious. I’ve enjoyed their companionship so much during my stay at NIT, Rourkela.

I would like to thank all those who made my stay in Rourkela an unforgettable and

rewarding experience.

Last but not least I would like to thank my parents, who taught me the value of hard

work by their own example. They rendered me enormous support during the whole tenure of

my stay in NIT Rourkela.

 Nihar Ranjan Panda

CONTENTS

 Page No.

Abstract. i

List of Figures. ii

List of Tables. iv

Abbreviations Used v

Chapter 1. Introduction.

1.1 Introduction. 1

1.2 Motivation 2

1.3 Thesis Layout 3

Chapter 2. Adaptive System Identification.

2.1 Introduction 4

2.2 Basics of System Identification 5

2.3 Adaptive Filter 6

2.4 Adaptive Model for System Identification 11

2.5 Nonlinear Issues 12

2.6 Summary 14

Chapter 3. Adaptive Channel Equalization.

3.1 Introduction 15

3.2 Intersymbol Interference 15

3.2.1 Symbol Overlap 16

3.3 Multipath Effects on Frequency Response 17

3.4 Minimum and Nonminimum Phase Channels 18

3.5 Channel Equalization 19

 3.5.1 LMS Channel Equalization 20

3.6 Summary 20
Chapter 4. Time Domain Block Adaptive Filter

4.1 Introduction 22

4.2 The Block Wiener Filtering Problem 24

4.3 Block Adaptive Filtering and the BLMS Algorithm. 26

4.4 Convergence Properties of the BLMS Algorithm 27

 4.4.1 Bounds On Bμ To Guarantee Convergence 27

 4.4.2 Adoption Speed 28

 4.4.3 Adoption Accuracy 28

 4.4.4 Comparison of Convergence Properties for the LMS and BLMS Algorithms 29

4.5 Computational Complexity of LMS and BLMS Adaptive Filtering 30

 4.5.1 Computational Complexity of LMS Adaptive Filters 30

 4.5.2 Computational Complexity of BLMS Adaptive Filters 31

 4.5.3 Complexity Analysis 31

4.6 Simulation Study and discussion 31

4.7 Conclusion 34

Chapter 5. Frequency Domain Block Adaptive Filter

5.1 Introduction 35

5.2 The Equivalence of Time and Frequency-Domain Fir Adaptive Filter 36

 5.2.1 Implementation Of The Time-Domain Block Adaptive Filter In The Frequency

 Domain 36

 5.2.2 Derivation of the Frequency-Domain Adaptive Filter 38

 5.2.3 A General Structure for Frequency-Domain Adaptive Filters 39

5.3 Sectioning Procedure Applied To Frequency-Domain Adaptive Filters 40

 5.3.1. Some Useful Definitions 40

 5.3.2. Example 40

 5.3.3. Overlap-Save Implementation 40

 5.3.4. Overlap-Add Implementation 42

 5.4 Computational Complexity o LMS a BLMS 45

 5.4.1 Computational Complexity of LMS Adaptive Filters 45

 5.4.2 Computational Complexity of FFT-Implemented Convolution 45

 5.4.3 FFT Implementation of BLMS Adaptive Filters 47

5.5 Simulation and Results 47

5.6 Conclusion 50

Chapter 6. Equalization and Identification using ANN

6.1 Introduction 51

6.2 Single Neuron Structure 51

 6.2.1 Activation Function 52

 6.2.2 Learning Processes 53

6.3 Multilayer Perceptron 54

6.4 The FLANN 57

6.5 The Chebyschev Neural Network (CFLANN) 58

6.6 Recursive Least Square (RLS) Algorithms 58

6.7 Comparison of Computational Complexity 64

6.8 Simulation and Result 65

6.9 Summary 69

Chapter 7 Online System Identification

7.1 Introduction 70

7.2 Problem Statement 72

7.3 Chebyschev CNN 73

 7.3.1 Structure of CNN 73

 7.3.2. Learning Algorithm of CNN 75

 7.3.3. Stability Analysis 76

7.4 Simulations 77

 7.4.1. Box and Jenkins Identification Problem 77

 7.4.2. SISO Plant 79

 7.4.3. MIMO Plant 81

 7.5 Summary 82

Chapter 8 Conclusion and Reference

8.1 Conclusion 84

8.2 Future work 84

8.3 References 85

Abstract

Over the last several years, adaptive digital filtering has been an active area of research and it

has been considered for a variety of applications in signal processing and communications

Systems.

An object formally referred to as a system is known through modeling and identification and

can be understood by analysis. The main draw back of System Identification and Channel

Equalization using ADF using LMS algorithm is that it takes a large number of iteration.

BADF calculates a block or a finite set of filter outputs from a block of input values. From

extensive computer simulation it is shown that BADF permits fast implementations while

maintaining performance equivalent to that of the LMS. Furthermore efficient block

algorithms such as the Fast Fourier Transform (FFT) can be used to advantage in terms of

mathematical complexity and faster convergence when implementing block filters in

frequency domain. But Adaptive filters perform poorly when it has to be operated in

nonlinear dynamic systems.

 In this thesis we propose an artificial neural network, which provides better and faster

convergence performance when used for identifying nonlinear systems. The network employs

chebyschev based nonlinear inputs updated with RLS algorithm. Through extensive computer

simulation it is demonstrated that CFLANN updated with RLS is a better candidate compared

to FLANN and CFANN updated with LMS. Along with these the proposed model requires

less complex structure, less no of input samples and does accurate identification.

 i

LIST OF FIGURES

Figure No Figure Title Page No.

Fig.2.1 General Adaptive Filtering 6

Fig.2.2 Structure of an FIR Filter 7

Fig.2.3 Block diagram of system identification 11

Fig.3.1 A Baseband Communication System 15

Fig.3.2. Interaction between two neighboring symbols 17

Fig.3.3 System with single unattenuated multipath channel 18

Fig.4.1 Basic Adaptive Digital Filter 22

Fig.4.2 General block adaptive filtering configuration. 23

Fig 4.3 MSE and Response matching plot of the System

 Identification problem for LMS and BLMS algorithm 32

without noise condition

Fig.4.4 Comparison of BER for LMS and BLMS in Time domain 33

Fig.5.1 Generalized structure for all known FDAF 39

Fig.5.2 MSE and Response matching plot for System Identification

 Problem for LMS and BLMS algorithm without noise condition 48

Fig.5.3 Comparison of BER for LMS and BLMS in Frequency domain 49

Fig.6.1 A single neuron structure 51

 ii

Fig. 6.2 Structure for multilayer perceptron 54

Fig.6.3. Block diagram for the FLANN system identification model 57

Fig.6.4-6.6 MSE and Response matching plot of FLANN and CFLANN structure 66

Fig.6.7 Comparison of MLP, FLANN, CFLANN and FIR structure 68

Fig.7.1. Basic Block diagram of Plant Identification Model 72

Fig.7.2. Response matching plot for the Box and Jenkins’ Identification problem 78

Fig.7.3. Response matching plot of the SISO Plant 80

Fig 7.4 . Response matching and error plot of output1 and output2 82

 without noise for MIMO plant

Fig 7.5 . Response matching and error plot of output1 and output2 82

with noise for MIMO plant

 iii

LIST OF TABLES

Table No. Table Title Page No.

5.1 Comparison of computational complexity between 46

 LMS, BLMS in time domain and frequency domain.

6.1 Common activation functions. 52

6.2 Comparison of computational complexity between MLP, 64

 FLANN and CFLANN structure for static systems.

7.1 Comparison of the number of variables chosen and the 76

 MSE obtained using CFLANN.

7.2 Mean square error comparison by different identification 77

 methods.

7.3 MSE for the proposed model for inputs expanded to different

 number of terms along with the number of weights to be updated. 79

7.4 Comparison of computational complexity and performance 79

 between CFLANN and MLP

 iv

ABBREVIATIONS USED

AF Adaptive Filter

BAF Block Adaptive Filter

LMS Least Mean Square

RLS Recursive Least Square

ANN Artificial Neural Network

MLP Multi layer perceptron

FLANN Functional Link Artificial Neural Network

CFLANN Chebyschev Functional Link Artificial Neural Network

CNN Chebyschev Neural Network

DSP Digital Signal Processing

FIR Finite Impulse Response

MSE Mean Square Error

BER Bit Error Rate

 v

Chapter 1

INTRODUCTION

Introduction

1.1 Introduction

 Over the last several years adaptive digital filtering is a major area of research and has been

applied in many contexts such as non-linear system identification, forecasting of time-series,

channel equalization, linear prediction, line enhancer and noise cancellation. Adaptive digital

filter self adjusts its transfer function according to an optimizing algorithm to minimize the mean

square between its output and that of an unknown system.

In recent years major advances are made in structures and optimizing algorithms to identify

nonlinear systems with less mathematical complexity and with less no of input samples. Block

adaptive digital filter calculates a block or finite set of filter outputs from a block of input values

resulting in saving of lot of mathematical complexity. Block implementations allow efficient use

of parallel processors, which results in speed gains while maintaining performance equivalent to

that of the adaptive digital filter. Furthermore efficient block algorithms such as the Fast Fourier

Transform (FFT) can be used to advantage when implementing block filters in frequency

domain.

Recently, artificial neural networks (ANN) have emerged as a powerful learning technique to

perform complex tasks in highly nonlinear dynamic environments. Some of the prime

advantages of using ANN models are: their ability to learn based on optimization of an appropriate error

function and their excellent performance for approximation of nonlinear function [1.1]-[1.2].

The functional link ANN (FLANN) proposed by Pao [1.3]-[1.4] has shown that this network can

be used for function approximation and pattern classification with faster convergence rate and

lesser computational complexity than a MLP network. The performance of the FLANN for the

task of identification of nonlinear systems has been reported [1.5]. Using trigonometric functions as

functional expansion, superior performance of the FLANN with respect to MLP network has been

obtained. Here, we propose an alternate FLANN structure, which has been shown to provide effective

identification of nonlinear dynamic systems. For functional expansion of the input pattern, we have

chosen the Chebyschev polynomials [1.6] instead of trigonometric and the network is updated with

recursive least mean square algorithm. Being a single layer neural network, its computational

complexity is less intensive as compared to (MLP) and can be used for on-line learning. Pattern

classification using CNN has been reported in [1.7]. It is shown that CNN based identification

requires less computation as compared to MLP, less sample to converge.

 The primary purpose of this chapter is to develop a computationally efficient and accurate

algorithm for on-line system identification that is applicable to a variety of problems.

 - 1 -

Introduction

The Chebyschev neural network models to identify time series problem as well as discrete time

plants. The identification scheme exhibits a learning-while-functioning feature instead of

learning-then-functioning, so that the identification is on-line without any need of off-line

learning phase. The training scheme is based on recursive least squares algorithm which

guarantees convergence of the Chebyschev neural network weights. The proposed scheme also

ensures good performance in the sense that the identification error is small and bounded. The

convergence issue is shown through Lyapunov stability theory. The results are compared with

certain existing identification algorithm.

1.2 Motivation

 In the field of signal processing and communication Adaptive Filtering has a tremendous

application such as non-linear system identification, forecasting of time-series, channel

equalization, linear prediction, and noise cancellation. Adaptive digital filtering self adjusts its

transfer function to get an optimal model for the unknown system based on some function of

error based on the output of the adaptive filter and the unknown system. To get an optimal model

of the unknown system it depends on the structure, adaptive algorithm and nature of input signal.

System Identification estimates models of dynamic systems by observing their input output

response when it is difficult obtain the mathematical model of the system.

DSP-based equalizer systems have become ubiquitous in many diverse applications including

voice, data, and video communications via various transmission media. Typical applications

range from acoustic echo cancellers for full-duplex speakerphones to video deghosting systems

for terrestrial television broadcasts to signal conditioners for wire line modems and wireless

telephony. The effect of an equalization system is to compensate for transmission-channel

impairments such as frequency-dependent phase and amplitude distortion. Besides correcting for

channel frequency-response anomalies, cancel the effects of Multipath signal and to reduce the

intersymbol interference. So, designing of Equalizer to work for the above specifications is

always a challenge and an active field of research.

On-line system identification or identification of complex systems is a major area of research

from last several years. To give new solution to some long standing necessities of automatic

control and to work with more and more complex system to satisfy stricter design criteria and to

fulfill previous points with less and less a priori knowledge of the unknown system. In this

context a great effort is being made within the system identification towards the development of

 - 2 -

Introduction

nonlinear models of real processes with less no of mathematical complexity, less no of input

sample, faster matching and better convergence.

1.3 Thesis Layout

In Chapter2, the Adaptive Filter and System Identification problem are discussed in brief and an

Adaptive Model for System Identification problem is given. Further more the nonlinear issues in

the System Identification problems are discussed.

In Chaper3, the problem of Channel Equalization is discussed in detail. A basic model for

Channel Equalization is given with LMS Equalizer and the concept of bit error rate was given.

In Chapter4, the System Identification and Channel equalization problem was solved with LMS

and BLMS algorithm in time domain and it was shown that BLMS algorithm works faster than

the conventional LMS algorithm.

In Chapter5, the BLMS algorithm in frequency domain for both overlap add and save sectioning

was discussed. It was shown with computer simulation that BLMS algorithm converges much

faster and gives better bit error rate with less number of computational complexity.

In Chapter6, the concept of Neuron, MLP, FLANN and CFLANN was discussed and the RLS

algorithm has been derived. Comparison of the above structures for nonlinear system

identification and channel equalization problem was given through extensive computer

simulation and it was seen that in almost all cases CFLANN is always a better candidate in terms

of faster convergence less mathematical complexity. Further more CFLANN has a simple

structure gives a better Bit Error Rate for all non-linear channels.

In Chapter6, the proposed structure is used for on-line identification problem. Some standard

problems such as box and Jenkins identification problem, SISO Plant, MIMO Plant identification

was solved through the proposed structure and its value is compared with other values with other

structures.

 - 3 -

Chapter 2

ADAPTIVE
SYSTEM IDENTIFICATION

Adaptive System Identification

2.1. Introduction

 System identification [2.1, 2.2] is the experimental approach to process modeling. System

identification includes the following steps

 (a) Experiment design: Its purpose is to obtain good experimental data and it includes the

 choice of the measured variables and of the character of the input signals.

 (b) Selection of model structure: A suitable model structure is chosen using prior knowledge

 and trial and error.

 (c) Choice of the criterion to fit: A suitable cost function is chosen, which reflects how well

 the model fits the experimental data.

 (d) Parameter estimation: An optimization problem is solved to obtain the numerical values of

 the model parameters.

 (e) Model validation: The model is tested in order to reveal any inadequacies.

 The key problem in system identification is to find a suitable model structure, within which a

good model is to be found. Fitting a model within a given structure (parameter estimation) is in

most cases a common problem. A basic rule in estimation is not to estimate what you already

know. In other words, one should utilize prior knowledge and physical insight about the system

when selecting the model structure. It is customary to distinguish between three levels of prior

knowledge, which have been color-coded as follows.

 White Box models: This is the case when a model is perfectly known; it has been possible

to construct it entirely from prior knowledge and physical insight.

 Grey Box models: This is the case when some physical insight is available, but several

parameters remain to be determined from observed data. It is useful to consider two sub cases:

 Physical Modeling: A model structure can be built on physical grounds, which has a certain number

of parameters to be estimated from data.

Semi-physical modeling: Physical insight is used to suggest certain nonlinear combinations of

measured data signal. These new signals are then subjected to model structures of black box

character.

 Black Box models: No physical insight is available or used, but the chosen model structure

belongs to families that are known to have good flexibility and have been "successful in the past".

 A nonlinear black box [2.1] structure for a dynamical system is a model structure that is

prepared to describe virtually any nonlinear dynamics. There has been considerable recent interest

 - 4 -

Adaptive System Identification

in this area with structures based on simple LMS [2.3], RLS [2.4], Multilayer Perceptron, FLANN,

radial basis networks [2.9] based methods. Here we have discussed the common framework for

these approaches.

 Basic techniques for estimating the parameters in the structures are criterion minimization, as

well as two step procedures, where first the relevant basis functions are determined, using data,

and then a linear least squares step to determine the coordinates of the function approximation. A

particular problem is to deal with the large number of potentially necessary parameters. This is

handled by making the number of "used" parameters considerably less than the number of

"offered" parameters, by regularization, shrinking, pruning or regressor selection.

 In Section 2.2, we present the general basic system identification problem, solution via

adaptive approach and introduce the mathematical notation for representing the form and

operation of the adaptive filter. We then discuss several different linear models that

have been proven to be useful in practical applications for FIR channels in Section 2.3.

We provide an overview of the many and varied applications in which adaptive filters

have been successfully used. We give a simple derivation of the least-mean-square (LMS)

algorithm, which is perhaps the most popular method for adjusting the coefficients of an

adaptive filter, and we discuss some of this algorithm's properties and shortcomings in

Section 2.4. We discuss recursive LMS algorithm & its limitation and finally, we discuss

new algorithms and techniques, which can be applied in place of conventional methods

for nonlinear case.

2.2 Basics of System Identification

 System Identification is the art and methodology of building mathematical models of dynamical

systems based on input-output data. We denote the output of the dynamical system at time t by

y(t) and the input by u(t). The data are assumed to be collected in discrete time. At time t we

thus have available the data set & the most basic relationship between the input and output in

form of linear differential equation

 1 1() (1) () (1) ()n my t a y t a y t n b u t b u t m+ − + + − = − + + − (2.1)

The system represented above is in discrete time, primarily since sampling always collects

observed data. A pragmatic way to see Eq. (2.1) is to view it as a way of determining the next

output value given the previous observations:

 1 1() (1) () (1) ()n my t a y t a y t n b u t b u t m= − − − − − + − + + − (2.2)

 - 5 -

Adaptive System Identification

This can be written in a more compact form as follows:

 (2.3) 1 1[,........ , ,..........]T
na a b bθ = m

 (2.4) () [(1)...... () (1)....... ()]Tt y t y t n u t u t mϕ = − − − − − −

With above two equations, we can write

 () ()Ty t tϕ θ= (2.5)

To emphasize that the calculation of y (t) from past data indeed depends on the parameterθ , we

shall rather call this calculated value ˆ(/)y t θ and write

 ˆ(/) ()Ty t tθ ϕ= θ (2.6)

2.3 Adaptive Filter

 An adaptive filter [2.3, 2.4] is a computational device that attempts to model the

relationship between two signals in real time in an iterative manner. Adaptive filters are

often realized either as a set of program instructions running on an arithmetical processing

device such as a microprocessor or DSP chip, or as a set of logic operations implemented

in a field-programmable gate array (FPGA) or in a semi-custom or custom VLSI

integrated circuit. An adaptive filter is defined by four aspects:

1. The signals being processed by the filter .

2. The structure that defines how the output signal of the filter is computed from its

input signal.

3. The parameters within this structure that can be iteratively changed to alter the

filter's input-output relationship.

4. The adaptive algorithm that describes how the parameters are adjusted from one

time instant to the next.

 By choosing a particular adaptive filter structure, one has to specify the number and

type of parameters that has to be adjusted. An adaptive algorithm is use to update the

parameter values of the system to minimize the mean square between its output and that of an

unknown system.

Adaptive
Filter Σ

+
-

d(n)

e(n)

y(n) x(n)

Fig 2.1: The general adaptive filtering problem.

 - 6 -

Adaptive System Identification

Fig. 2.1 shows a basic block diagram in which a sample from a digital input signal

is fed into a device, called an adaptive filter, that computes a corresponding output

signal sample at time n. For the moment, the structure of the adaptive filter is not

important; except for the fact that it contains adjustable parameters whose values affect

how is computed. The output signal is compared to a second signal ,called the

desired response signal, by subtracting the two samples at time n . This difference signal,

given by

)(nx

)(ny

)(ny)(nd

)()().(nyndne −= (2.7)

is known as the error signal. The error signal is fed into a procedure which alters or

adapts the parameters of the filter from time to time n).1(+n in a well-defined manner.

This process of adaptation is represented by the oblique arrow that pierces the adaptive

filter block in the figure. As the time index n is incremented, it is desired that the output of

the adaptive filter becomes a better matched to the desired response of the signal through

this adaptation process, such that the magnitude of decreases over time. In the

adaptive filtering task, adaptation refers to the method by which the parameters of the

system are changed from time index to time index

).(ne

n).1(+n The number and types of

parameters within this system depend on the computational structure chosen for the

system. We now discuss different filter structures that have been proven useful for

adaptive filtering tasks.

FIR Filter

Fig. 2.2 Structure of an FIR filter

 In general, any system with a finite number of parameters that affect how is

computed from could be used for the adaptive filter in Fig. 2.1. Define the parameter

or coefficient vector as

)(ny

)(nx

)(nW

 - 7 -

Adaptive System Identification

 (2.8) T
L nwnwnwnW)]()()([)(110 −= K

Fig. 2.2 shows the structure of a direct-form FIR [2.5,2.6] filter, also known as a tapped-delay-line

or transversal filter, where denotes the unit delay element and each is a multiplicative

gain within the system. In this case, the parameters in correspond to the impulse response

values of the filter at time .

1−z)(nwi

)(nW

n

We can write the output signal y(n) as

 (2.9) ∑
−

=

−=
1

0
)()()(

L

i
i inxnwny

 (2.10))()(nXnWT=

Where denotes the input signal vector. TLnxnxnxnxnx)]1()1()()([)(+−−= K

The general form of an adaptive FIR filtering algorithm is

)()()()()1(nXnGnnWnW μ+=+ (2.11)

Where G (-) is a particular vector-valued nonlinear function, μ (n) is a step size

parameter, e(n) and X(n) are the error signal and input signal vector, respectively. Much

research effort has been spent characterizing the role that μ(n) plays in the performance of

adaptive filters in terms of the statistical or frequency characteristics of the input and

desired response signals.

 We now consider one particular cost function that yields a popular adaptive

algorithm. Define the mean-squared error (MSE) [2.3] cost function as

 ∫
∞

∞−

=)())(()(
2
1)(2 ndenepnenJ nMSE

)}({
2
1 2 neE= (2.12)

Where) represents the probability density function of the error at time n and

is shorthand for the expectation integral of error square.) has a well-defined

minimum with respect to the parameters in ,The coefficient values obtained at this

minimum are the ones that minimize the power in the error signal ,indicating that

has approached J

(ePn

{.}E (NJ MSE

)(nW

)(ne

)(ny),(nd MSE is a smooth function of each of the parameters in

.such that it is differentiable with respect to each of the parameters in .)(nW)(nW

 - 8 -

Adaptive System Identification

 The third point is important in that it enables us to determine both the optimum

coefficient values from the given knowledge of the of and as well as a simple

iterative procedure for adjusting the parameters of an FIR filter. For the FIR filter

structure, the coefficient values in that minimize are well defined if the

statistics of the input and desired response signals are known. The formulation of this

problem for continuous-time signals and the resulting solution was first derived by

Wiener [2.4]. Hence, this optimum coefficient vector is often called the

Wiener solution [2.3] to the adaptive filtering problem. To determine we note

that the function in Eq.(2.12) is quadratic in the parameters , and the

function is also differentiable. Thus, we can use a result from optimization theory that

states that the derivatives of a smooth cost function with respect to each of the parameters

is zero at a minimizing point on the cost function error surface. Thus, can be

found from the solution to the system of equations

)(ne)(nx

)(nW)(nJ MSE

)(NWMSE

)(NWMSE

)(NJ MSE)]([nwi

)(nWMSE

 0
)(
)(
=

∂
∂

nw
nJ

i

MSE , (2.13) 10 −≤≤ Li

Taking derivatives of in Eq.(2.12) and noting that are given by

Eq.(2.7) and (2.9), respectively, we obtain

)(NJ MSE)()(nyandne

 }
)(
)()({

)(
)(

nw
neneE

nw
nJ

ii

MSE

∂
∂

=
∂
∂ (2.14)

 }
)(
)()({

nw
nyneE

i∂
∂

−=

)}()({ inxneE −−=

(2.15)

∑
=

=
1-L

0j
j))(j)}w-i)x(n-E{x(n - i)}-E{d(n)x(n (- n

By defining the matrix and vector as)(nRxx)(nPdx

 And)}()({ nXnXER T
XX =

 (2.16))}().({)(nXndEnPdx =

respectively, we can combine Eq.(2.15) and (2.16) to obtain the system of equations in

vector form as

 - 9 -

Adaptive System Identification

 (2.17) 0)()()(=− nPnWnR dxMSEXX

Thus, so long as the matrix is invertible, the optimum Wiener solution vector for

this problem is

)(nRxx

 (2.18))()()(1 nPnRnW dxXXMSE
−=

The method of steepest descent [2.3] is a celebrated optimization procedure for

minimizing the value of a cost function with respect to a set of adjustable

parameters . This procedure adjusts each parameter of the system according to

)(nJ

)(nW

)(
)()()()1(

nw
nJnnwnw

i
ii ∂

∂
−=+ μ (2.19)

In other words, the parameter of the system is altered according to the derivative of

the cost function with respect to the parameter. Collecting these equations in vector

form, we have

thi
thi

)(
)()()()1(

nW
nJnnWnW

∂
∂

−=+ μ (2.20)

Where is a vector of derivatives .)(/)(ndWndJ)(/)(ndwndJ i

For an FIR adaptive filter that minimizes the MSE cost function, we can use the result in

Eq. (2.15) to explicitly give the form of the steepest descent procedure in this problem.

Substituting these results into Eq.(2.20) yields the update equation for as)(nW

)()()()(()()1(nWnRnPnnWnW XXdx −+=+ μ (2.21)

 However, this steepest descent procedure depends on the statistical quantities

 contained in and ,respectively. In

practice, we only have measurements of both and to be used within the

adaptation procedure. While suitable estimates of the statistical quantities needed for

Eq. (2.21) could be determined from the signals and ,we instead develop an

approximate version of the method of steepest descent that depends on the signal values

themselves. This procedure is known as the LMS algorithm.

)}()({)()({ jnxinxEandinxndE −−−)(nPdx)(nRxx

)(nd)(nx

)(nx)(nd

We can propose the simplified cost function given by)(NJ MSE

)(
2
1)(2 nenJ LMS = (2.22)

 - 10 -

Adaptive System Identification

 This cost function can be thought of as an instantaneous estimate of the MSE cost

function, as . Taking derivatives of with respect to the

elements of and substituting the result into Eq. (2.20), we obtain the LMS

adaptive algorithm given by

)}({)(nJEnJ LMSMSE =)(NJ MSE

)(nW

)()()()()1(nXnennWnW μ+=+ (2.23)

The number and type of operations needed for the LMS algorithm is nearly the same as

that of the FIR filter structure with fixed coefficient values, which is one of the reasons for

the algorithm's popularity.

2.4 Adaptive Model for System Identification

 Consider Fig. 2.3, which shows the general problem of system identification. In this diagram,

the system enclosed by dashed lines is a "black box,"[2.1] meaning that the quantities inside are not

observable from the outside. Inside this box, there is an unknown system which represents a

general input-output relationship. In many practical cases, the plant to be modeled is noisy, that is,

has internal random disturbing forces. In our problem it is represented by the signal)(nη , called the

observation noise signal because it corrupts the observations of the signal at the output of the

unknown system. Internal plant noise appears at the plant output and is commonly represented

there as an adaptive noise. This noise is generally uncorrelated with the plant input. If this is the

case and if the adaptive model weights are adjusted to minimize mean-square error, it can be

shown that the least square solutions will be unaffected by the presence of plant noise. This is

difficult to say that the convergence of the adaptive process will be unaffected by plant noise,

only that the expected weight vector of the adaptive model after convergence will be unaffected.

Fig. 2.3 Model for System Identification

 - 11 -

Adaptive System Identification

Let represent the output of the unknown system with as its input. Then, the desired

response signal in this model is .

)(nd)(nx

)()()(nndnd η+=
∧

Here, the task of the adaptive filter is to accurately represent the signal at its output. If

, then the adaptive filter has accurately modeled or identified the portion of the

unknown system that is driven by .

)(nd

)()(ndny =

)(nx

For our problem we have assumed that the input signal and noise signal)(nx)(nη are mutually

uncorrelated white random sequences with zero mean. And hence

 [] [] 12/112/1 22 == nn ExE η (2.34)

The white noise is Gaussian in nature having probability density function as follows:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−
= 2

2

2 2
)(exp

2

1)(
δδ σ

δ

πσ
δ mp (2.35)

As the adaptation process reaches Wiener solution, the power of error signal will be exactly

equal to the extra noise added. It is not exactly required that the impulse response of both

unknown plant and adaptive model shown in Fig. 2.3 should match, but the desired output and

estimated output should match.

2.5 Nonlinear Issues

 A system could be either linear or nonlinear, depending on the relation between the input and

the output of the system. Accordingly, various linear and nonlinear filtering techniques have

been developed to achieve certain predefined design goals. Systems are often modeled as linear

since it makes the design and analysis tasks mathematically tractable. Accordingly, the theory of

linear filtering has been extensively studied in above section and has reached a stage of sufficient

maturity. If the system is either inherently linear or the degree of nonlinearity is negligible, the

behavior of the system is as expected. Otherwise, there could be significant deviation from

expected behavior and the performance of the system could degrade severely. In such cases, it is

essential to apply nonlinear methods that properly characterize the system behavior. Moreover,

when either the system is time-varying or certain parameters of the system are unknown, it is

essential to adapt the filter to track the dynamics of the system or learn the unknown parameters.

Hence in the next chapter we have focused on developing novel nonlinear adaptive filtering

techniques and their applications to some practical problems of interest.

 - 12 -

Adaptive System Identification

 Nonlinear systems/filters do not satisfy the property of superposition. Conventional linear

filtering does not suffice in presence of nonlinearities. A few practical cases wherein

nonlinearities are commonly encountered in signal processing and communications applications

are listed here.

• High power amplifiers (HPAs): In wireless communications, for higher power efficiency the

HPAs are driven close to saturation. The HPAs are found to introduce nonlinear amplitude and

phase distortion when operated near saturation. This causes degraded bit-error rate (BER)

performance and

also introduces adjacent channel interference (ACI) to systems operating in the neighboring

frequency bands.

• Magnetic Recording Channels: In high-density magnetic recording channels, nonlinearity is

introduced in the form of nonlinear bit-shifts and partial erasure. They are modeled as nonlinear

inter-symbol interference (ISI) channels.

• Optical channels: Fiber optic receivers suffer from various sources of nonlinear distortion

including the photo detector, which converts incident light into photocurrent, intensity

dependence of the index of refraction of the fiber and amplified spontaneous emission, which has

non-Gaussian distribution.

• Speech and Image processing: Nonlinear modeling is frequently used to analyze the data in

applications involving speech and image processing like image segmentation, image restoration,

edge enhancement, speech coding, speech enhancement, etc.

• Loudspeakers: Loudspeakers generate nonlinear distortion that degrades the quality of the

audio. The sources of nonlinearity are nonlinearity in the suspension system and inhomogeneity

in the flux density.

• Echo Cancellation: Acoustic echo cancellers are predominantly used in speakerphones and

video conferencing systems to minimize the undesirable echo. But the echo path is usually

highly nonlinear and hence nonlinear echo cancellation methods are being used.

• Biomedical Engineering: There is a lot of scope for modeling and analysis of nonlinear

systems/signals in biomedical engineering like study of neural response, human visual system,

nonlinear properties of tissue, speech pathology assessment to name a few.

 Thus, as seen above, nonlinear distortions manifest in many practical systems and they need to

be compensated for satisfactory performance. Hence we have considered some standard

 - 13 -

Adaptive System Identification

nonlinearity for our experiment. Instead of using linear channel we have used nonlinear channel.

Some standard nonlinear equations are given.

3 2

2 3

() 0.3 0.4
() 0.6sin() 0.3sin(3) 0.1sin(5)
() tanh()
() 0.2 0.1 0.5cos()

f u u u u
f u u u
f u u
f u u u u u

uπ π π

π

= + − →
= + −
=

= + − +

2.6 Summary

 Studies on linear system identification have been carried out for more than three decades [2.4].

However, identification of nonlinear systems is a promising research area. Conventionally the

identification of linear system is performed by using Least Mean Square (LMS) algorithm.

However most of the dynamical systems exhibit nonlinearity. It has been studied that the LMS

based technique [2.3, 2.4] does not perform satisfactorily to identify nonlinear systems. To

improve the identification performance of nonlinear systems various techniques such as Block

Adaptive filter(BAF) both in time domain and frequency domain, Multilayer Perceptron (MLP),

Functional Link Neural Network (FLANN), Radial Basis Function has been studied.

 - 14 -

Chapter 3

ADAPTIVE
CHANNEL EQUALIZATION

Adaptive Channel Equalization

3.1 Introduction

 DSP-based equalizer systems have become ubiquitous in many diverse applications including

voice, data, and video communications via various transmission media. Typical applications

range from acoustic echo cancellers for full-duplex speakerphones to video deghosting systems

for terrestrial television broadcasts to signal conditioners for wire line modems and wireless

telephony. The effect of an equalization system is to compensate for transmission-channel

impairments such as frequency-dependent phase and amplitude distortion. Besides correcting for

channel frequency-response anomalies, the equalizer can cancel the effects of multipath signal

components, which can manifest themselves in the form of voice echoes, video ghosts or Raleigh

fading conditions in mobile communications channels. Equalizers specifically designed for

multipath correction are often termed echo-cancellers or deghosters. They may require

significantly longer filter spans than simple spectral equalizers, but the principles of operation

are essentially the same. A typical base band transmission system is depicted in Figure3.1.

 Transmitter
 Filter

Channel
Medium

Receive
d

Equalizer +

Noise

Fig.3.1 Baseband Communication System

3.2 Intersymbol Interference

 When pulsed information is transmitted over an analog channel such as a phone line or

airwaves Even though the original signal is a discrete time sequence, the received signal is a

continuous time signal. Heuristically, one can consider that the channel acts as an analog low-

pass filter, thereby spreading or smearing the shape of the impulse train into a continuous signal

whose peaks relate to the amplitudes of the original pulses. Mathematically, the operation can be

described as a convolution of the pulse sequence by a continuous time channel response. The

operation starts with the convolution integral:

∫∫
∞

∞−

∞

∞−

−=−= ττττττ dthxdtxhtr)()()()()(

- 15 -

Adaptive Channel Equalization

Where is the received signal, is the channel impulse response, and is the input

signal. The second half of the equation above is a result of the fact that convolution is a

commutative operation.

)(tr)(th)(tx

Component is the input pulse train, which consists of periodically transmitted impulses of

varying amplitudes. Therefore,

)(tx

KTtfortx ≠= 0)(

KTtforXtx k ==)((3.1)

Where represents the symbol period. This means that the only significant values of the

variable of integration in the above integral are those for which

T

KT=τ . Any other value ofτ

amounts to multiplication by 0. Therefore can be written as)(tr

 (3.2) ∑
∞

−∞=

−=
k

k kTthxtr)()(

This representation of more closely resembles the convolution sum familiar to DSP

engineers. Note, however, that it still describes a continuous time system. It shows that the

received signal consists of the sum of many scaled and shifted continuous time system impulse

responses. The impulse responses are scaled by the amplitudes of the transmitted pulses of .

)(tr

)(tx

3.2.1 Symbol Overlap

The expected number of errors can be calculated by considering the amount of symbol

interaction, assuming Gaussian noise. Taking any two neighboring symbols, the cumulative

distribution function (CDF) can be used to describe the overlap between the two noise

characteristics. The overlap is directly related to the probability of error between the two

symbols and if these two symbols belong to opposing classes, a class error will occur.

Figure 3.2 shows two Gaussian functions that could represent two symbol noise distributions.

The Euclidean distance, L, between symbol canters and the noise variance, 2σ , can be used in

the cumulative distribution function of Equation to calculate the area of overlap between the two

symbol noise distributions and therefore the probability of error, as in Equation (3.3)

2

2

1() exp
22

() 2
2

x xCDF x dx

LP e CDF

σπσ−∞

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫
 (3.3)

- 16 -

Adaptive Channel Equalization

Figure 3.2 Interaction between two neighboring
symbols.

Area of overlap =
Probability of error

Since each channel symbol is equally likely to occur [2.3], the probability of unrecoverable

errors occurring in the equalization space can be calculated using the sum of all the CDF overlap

between each opposing class symbol. The probability of error is more commonly described as

the BER. Equation 3.4 describes the BER based upon the Gaussian noise overlap, where spN is

the number of symbols in the positive class, is the number of number of symbols in the

negative class and , is the distance between the positive symbol and its closest

neighboring symbol in the negative class.

mN

iΔ thi

1

2() log
2

spN
i

n
isp m n

BER CDF
N N

σ
σ=

⎡ ⎤⎛ ⎞Δ
= ⎢ ⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

∑ ⎥ (3.4)

3.3 Multipath Effects On Frequency Response

 Multipath effects describe the situation in which there are several propagation paths from

transmitter to receiver. Most commonly, this results when there are reflected signals detected at

the receiver following the direct path. The multipath phenomenon can be modeled by an FIR

system. The center tap represents the direct path, while the succeeding tap weights represent the

amplitudes, delays, and phases of the reflected paths.

Figure 3.3(a) shows the time response of a system that contains a single multipath channel. The

first nonzero sample of the response represents the direct path, while the second represents a

delayed path to the receiver. In this instance, the pulses are identical in amplitude and phase and

are separated by ten sample intervals. Notice in Figure 3.3(b) that the magnitude response

exhibits nulls, where represents the sample delay. Even though you are effectively 2/0t 0t

- 17 -

Adaptive Channel Equalization

adding two identical flat spectra, the time delay results in a phase delay in the spectral domain.

This phase delay results in nulls where the two signals are of equal amplitude but opposite phase.

Obviously, multipath effects can have major effects on the system spectral response, thereby

providing another justification for channel equalization.

Fig.3.3 System with a single Unattenuated Multipath channel

3.4 Minimum And Nonminimum Phase Channels

When all the roots of the model z-transform lie within the unit circle, the channel is termed

minimum phase. [2.5] The inverse of a minimum phase channel is convergent, illustrated by

Equation (3.5):

1

1

0

1 2 3

() 1.0 0.5
1 1
() 1.0 0.5

1
2

1 0.5 0.25 0.125

i
i

i

H z z

H z z

z

z z z

−

−

∞
−

=

− − −

= +

=
+

⎛ ⎞= −⎜ ⎟
⎝ ⎠

= − + − +

∑
L

 (3.5)

- 18 -

Adaptive Channel Equalization

Where as the inverse of non-minimum phase channels are not convergent, as shown in

Equation (3.6)

1

0

2 3

() 0.5 1.0
1
() 1.0 0.5

1.
2

. 1 0.5 0.25 0.125

i
i

i

H z z
z

H z z

z z

z z z

−

∞
−

=

= +

=
+

⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤= − + −⎣ ⎦

∑

z

 (3.6)

Since equalizers are designed to invert the channel distortion process they will in effect model

the channel inverse. The minimum phase channel has a linear inverse model therefore a linear

equalization solution exists. However, limiting the inverse model to m-dimensions will

approximate the solution and it has been shown that non-linear solutions can provide a superior

inverse model in the same dimension [2.2].

A linear inverse of a non-minimum phase channel does not exist without incorporating time

delays. A time delay creates a convergent series for a non-minimum phase model, where longer

delays are necessary to provide a reasonable equalizer. Equation (3.7) describes a non-minimum

phase channel with a single delay inverse and a four-sample delay inverse. The latter of these is

the more suitable form for a linear filter.

1

1 2 3

4 3 2 1

() 0.5 1.0
1 1 1 0.5 0.25 0.125 ()
() 1 0.5
1 0.5 0.25 0.125 ()
()

H z z

z z z z non causal
H z z

z z z z z truncated and causal
H z

−

−

− − − −

= +

= = − + − +
+

= − + − +

L

L

 (3.7)

 The three-tap non-minimum phase channel is used

throughout this thesis for simulation purposes. A channel delay, is included to assist in the

classification so that the desired output becomes

-1 -2() 0.26 0.93 0.26 H z z z= + +

D

).(Dnu −

3.5 Channel Equalization

 Two main techniques are employed to formulate the filter coefficients: automatic synthesis

and adaptation. In automatic-synthesis methods, the equalizer typically compares a received

time-domain reference signal to a stored copy of the undistorted training signal. By comparing

- 19 -

Adaptive Channel Equalization

the two, a time-domain error signal is determined that may be used to calculate the coefficient of

an inverse filter. The formulation of this inverse filter may be accomplished strictly in the time

domain, as is done in the LMS systems, which are examined in more detail in following sections.

Other methods involve conversion of the received training signal to a spectral representation. A

spectral inverse response can then be calculated to compensate for the channel response. This

inverse spectrum is then converted back to a time-domain representation so that filter tap weights

may be extracted.

3.5.1 LMS Equalization

 The least mean squared (LMS) equalizer is a more general approach to automatic synthesis.

The coefficients are gradually adjusted to converge to a filter that minimizes the error between

the equalized signal and the stored reference. The filter convergence is based on approximations

to a gradient calculation of the quadratic equation representing the mean square error. The beauty

of the approach is that the only parameter to be adjusted is the adaptation step size. Through an

iterative process, all filter tap weights are adjusted during each sample period in the training

sequence. Eventually, the filter will reach a configuration that minimizes the mean square error

between the equalized signal and the stored reference. As might be expected, the choice step size

involves a tradeoff between rapid convergence and residual steady-state error. A too-large setting

for step size can result in a system that converges rapidly on start-up, but then chops around the

optimal coefficient settings at steady state.

The optimal BER equalization performance is obtained using a maximum likelihood sequence

estimator (MLSE) on the entire transmitted data sequence [2.7]. A more practical MSE would

operate on smaller data sequences but these can still be computationally expensive, they also

have problems tracking time-varying channels and can only produce sequences of outputs with a

significant time delay. Another equalization approach implements a symbol-by-symbol detection

procedure and is based upon adaptive filters [2.1]. The symbol-by-symbol approach to

equalization applies the channel output samples to a decision classifier that separates the symbol

into their respective classes.

3.6 Summary

To compensate the ISI, Multipath channel effects on frequency response and other types of noise

effects an equalizer placed at the receiver end. Since equalizer comes under inverse modeling it

is difficult to design. Proper care is taken in choosing the while training the channel. LMS types

- 20 -

Adaptive Channel Equalization

equalizer performs well in case of linear channels but its performance degrades while the channel

becomes nonlinear. So different nonlinear structures are being used to design nonlinear equalizer

like MLP, RBF, FLANN and many more.

- 21 -

Chapter 4

TIME DOMAIN
BLOCK ADAPTIVE FILTER

Time Domain Block Adaptive Filter

4.1 Introduction

 Adaptive filters are digital filters self adjust its transfer function according to an optimizing

algorithm with the change in their input signals. The adaptive filter adjusts its coefficient to

minimize the mean square between its output and that of an unknown system.

 Block digital filtering calculates a block of data from a finite set of filter outputs from a block

of input values. Block adaptive filter adjusts its filter coefficients once per each block according

to some optimizing algorithm such as LMS or RLS [4.1]-[4.2]. Hence the traditional LMS

adaptive filter, which adjusts the weights once each data sample, is a special case of block

adaptive filter with a block length one. Block implementation of adaptive digital filter permits

fast implementation while maintaining the performance equivalent to that of widely used LMS

adaptive filter. Also efficient block algorithms such as Fast Fourier Transform (FFT) can be used

when implementing filters in serial processors [4.3]-[4.5].

Fig.4.1 Basic Adaptive Digital Filter

Fig.4.1 shows the basic adaptive digital filter of LMS type presented by Widrow [4.6]-[4.8] for

which the performance index is mean square error (MSE=ξ). All the inputs are real and for the

FIR digital filter of order for which the output at discrete instant is given by the

convolution sum of the input and the filter weights :

1−N ky k

kx lkw

 (4.1) ,.....,3,2,1,
1

1 == ∑
=

+− kxwy
N

l
lklkk

The Widrow-Hoff LMS algorithm adjusts the filter weights in accordance with:

 kkkk XWW με21 +=+ (4.2)

Where μ is the convergence constant, and and are, respectively, the weight vector and

the input vector:

kW kX

1×N

- 22 -

Time Domain Block Adaptive Filter

T

Nkkkk

T
Nkkkk

xxxX

wwwW

]....[

]....[

11

21

+−−

Δ

Δ

=

=

and kε is the error vector at the instant given by the difference between the desired output

and the actual output that is:

kth

kd ky

 (4.3) kkk yd −=
Δ

ε

kx ky

 kd

 S/P

 Block FIR
 Filter W
 (Time or
Frequency
domain)

 P/S

Sectioning
Procedure

 Block correlation
 Operator and
weight update
Algorithm (Time or
Frequency domain)

 S/P

. .

.

.

.

 Fig.4.2 General block adaptive filtering configuration.

 S/P = Serial to Parallel converter

 P/S = Parallel to Serial converter

Fig.4.2 shows the basic block diagram of the Block Adaptive Digital Filter for which a block

mean square error (BMSE) performance criterion is defined, resulting in a BMSE gradient

estimate that is a correlation (over a block of data) between the error and the input signal. This

gradient estimate leads to a weight adjustment that allows the block implementation with either

parallel processor or serial processor and the FFT.

For the time invariant case, (4.1) can be written in matrix form as:

. ..

.

.

. .
..

- 23 -

Time Domain Block Adaptive Filter

 . (4.4) WXXWy T
kk

T
k ==

Letting L represents block length and the following low order)3,3(== NL example shows

how this convolution is written in block form:

 (4.5)

⎪
⎩

⎪
⎨

⎧

⎪
⎩

⎪
⎨

⎧

2

1

x

x

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

456

345

234

123

12

1

0
00

xxx
xxx
xxx
xxx

xx
x

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

6

5

4

3

2

1

3

2

1

y
y
y
y
y
y

w
w
w

2

1

Y

Y

⎪
⎭

⎪
⎬

⎫

⎪
⎭

⎪
⎬

⎫

Using the block notation the output can be written as:

 (4.6) WxY jj =

Where j are the block index, and are, respectively, the output vector of lengthjY jx jth L , and

the matrix of input vectors: NL×

.]....[

]....[

2)1(1)1(

2)1(1)1(

T
jLLjLjj

T
jLljLjj

XXXx

yyyY

+−+−

Δ

+−+−

Δ

=

=

 4.2 The Block Wiener Filtering Problem
 The classical Wiener filter can be extended to the block input case as shown next. Refer to

Fig. 4.1. Assuming that all the inputs are stationary let

 (4.7) T
jlljljj dddd]...[2)1(1)1(+−+−

Δ

=

be the 1×L vector of desired responses for block j , and let

 (4.8) T
jlLjljj]...[2)1(1)1(εεεε +−+−

Δ

=

be the 1×L vector of errors for block j where kε is defined in (4.3) The key element of this

analysis is the performance index, chosen to be a combination of the standard MSE and the sum

square error used in least squares problems [16]. BMSE is defined by

 BMSE = [] ⎥
⎦

⎤
⎢
⎣

⎡
==≡ ∑

+−=

Δ jl

ljk
kj

T
j L

EE
L 1)1(

211 εεε . (4.9)

Clearly, the BMSE is the expected value of a smoothed estimate of the squared error over one

block. This is appropriate because it combines a block's worth of error information into one

- 24 -

Time Domain Block Adaptive Filter

number for each value of the block index j . The MSE considers the error information one point

at a time. Using (4.6) and (4.8), (4.9) becomes

 WxxEWdxEWWddEL j
T
j

T
j

T
j

T
j

T
j }{}{}{ +−≡=

Where is the desired output block. jd jth

The following correlation matrices are now defined:

 (4.10)][T
kk XXER =

 (4.11)][kk dXEP =

].[

][

j
T
j

j
T
j

dxE

xxE

=℘

=ℜ
 (4.12)

Note that R and , are, respectively, the ℜ NN × input autocorrelation and block input

correlation matrices. Likewise, P is the 1×N cross-correlation vector between the input and the

desired response whereas ℘ is the 1×N cross-correlation vector between the block input and

the block desired response. Using these definitions, the BMSE can be written compactly as:

 [.}{1 WWWWddE]
L

TTT
j

T
j ℜ+℘−℘−≡= (4.13)

Using (4.6) and (4.12), and invoking stationarity, it can be shown that . A similar

argument reveals that

LR=ℜ

LP=℘ . Taking advantage of the above, (4.13) can be re-written as

 (4.14) ξ=−−≡= RWWWPdE TT
k 2][2

Thus the BMSE is equal to the MSE when the inputs are stationary. It follows then that the

optimal set of filter weights W* for the block Wiener filter is the same as for the Wiener filter,

i.e.,

 (4.15) PRW 1−∗ =

This can be shown using an extension of the orthogonality principle, which states that the weight

vector minimizing the BMSE is the one for which the error vector∗W jε , is orthogonal to the

block data . Also the minimum BMSE is given by jx minZ

 []j
T
jdE

L
ε1

 and is equal to minξ .The Wiener filtering problem is clearly a special case (for L= 1) of the

block Wiener problem.

- 25 -

Time Domain Block Adaptive Filter

4.3 Block Adaptive Filtering and the BLMS Algorithm

 Analogous to LMS adaptive filtering, a block wise algorithm can be derived to sequentially to

solve for the Wiener weight vector in real time by a gradient search technique. Because it is

desired to keep the weights constant while each block of data is being processed, the weight

vector is adjusted once per data block rather than one per data sample as in the LMS algorithm.

The algorithm then becomes

 BjBjj WW Δ−=+ μ1 (4.16)

Where Bμ is the convergence constant, BjΔ is the 1×N BMSE gradient at block j , and is

the weight vector at block

jW

1×N j . The gradient is taken with respect to the weights as follows:

jWW

j
T
j

Bj W
E

L =

Δ

∂

∂
=Δ

][1 εε
 (4.17)

Because the computation of an ensemble average is difficult, an estimate of the gradient is

used in place of . The BMSE gradient estimate at block

Bj

∧

Δ

BjΔ j is defined as

 j
T
j

j

j
T
j

Bj x
LWL

ε
εε 21

−=
∂

∂
=Δ
Δ∧

 (4.18)

Use of this unbiased block gradient estimate in the weight adjustment algorithm (4.16) gives the

block least mean square (BLMS) algorithm:

 j
T
j

B
jj x

L
WW ε

μ2
1 +=+

 j
B

j

jl

ljk
kk

B
j L

Wx
L

W φ
μ

ε
μ 22

1)1(

+=+= ∑
+−=

 (4.19)

The BLMS algorithm is identical to the LMS algorithm when the block length L is equal to one.

Also, the weight update term in (4.19) is an average of the L LMS-like terms kk Xε , generated

by a block of data. Consider jφ written out for the ith weight:

 ∑
+−−=

+−=
jl

iljk
ikkij x

1)1(
1εφ .,....,2,1 Ni =

Substituting , this becomes 1+−= ikn

ii

ijL

iLjn
ninij

xe

x

∗=

=

−

+−

+−−=
−+∑

1

2)1(
1εφ

.,....,2,1 Ni =

- 26 -

Time Domain Block Adaptive Filter

 Where indicates convolution. Clearly, the weight update term is a correlation,

implementable in block form with a parallel processor or with a serial processor and the FFT.

∗

For BLMS adaptive filtering, both the convolution (4.6) and the weight update can be realized in

block form, whereas neither can be realized in block form for LMS adaptive filtering.

The choice of block length is important. Examination of (4.19) reveals that the algorithm is valid

for any block length greater than or equal to one; however, the L equal’s case is probably

preferred in most applications. This is because for

N

L greater than , the gradient estimate,

which is computed over

N

L input points, uses more input information than the filter W uses,

resulting in redundant operations. For L less than , the filter length is larger than the input

block being processed, which is a waste of filter weights.

N

4.4 Convergence Properties of The BLMS Algorithm

 The convergence properties of interest in adaptive filtering are the required bounds on the

convergence constant (μ or Bμ), adaption speed and adaption accuracy. Adaption speed refers

to how fast the MSE is reduced to an estimate of the minimum MSE (MMSE or minξ). The

measure of how close the solution is to minξ (adaptation accuracy) is called misadjustment and is

defined as average excess MSE divided by minξ . These convergence properties are examined for

block adaptive filters, and compared with the corresponding properties of conventional LMS

adaptive filters.

4.4.1 Bounds On Bμ To Guarantee Convergence

 It has been proved that the BLMS algorithm converges. The approach taken is to show that as

the block number j approaches infinity, the expected value of the weight vector

approaches the Wiener weight vector under the assumption that and are ergodic and that

 for . The proof also shows that the requirements on the convergence

constants (

])[(1+jWE

jx jd

0][1 ≈+j
T
j xxE 0≠l

μ for LMS, for Bμ BLMS) are the same, that is, μ and Bμ must take on values in

the same range in order to guarantee convergence of the respective algorithms. The bounds on

the convergence constants are:

 For LMS:
max

10
λ

μ << (4.20)

 For BLMS:
max

10
λ

μ << B (4.21)

- 27 -

Time Domain Block Adaptive Filter

Where maxλ , is the largest eigen value of the matrix R .

4.4.2 Adoption Speed

 Adoption speed is given in terms of a time constant, which indicates how fast the weight

vector converges to the Wiener weight vector (see Fig.4. 2). Actually, there are time

constants , one, for each mode of the difference equation describing the adaption

process. The derivations follow the form of the corresponding derivations for the LMS

algorithm, but with some very important differences. The convergence constant

N

pMSET)(Pth

μ (for LMS) is

replaced by Bμ (for BLMS). The time unit for LMS is sample number where as the time

unit for BLMS is block number . Thus the equations for the two different algorithms have the

same form, but much different meanings. This difference is resolved by converting the BLMS

time constants to units of sample number so comparison with LMS time constants becomes

meaningful. For the special case in which all eigen values of the input autocorrelation matrix

)(k

)(j

R

are equal, the time constants can be lumped into one, giving N MSEτ for LMS and for

BLMS. It is shown that:

MSET

 For BLMS:

trR

NLTLT
B

MSE
pB

pMSE μλμ 4
,

4
== (4.22)

 For LMS:

trR

N
MSE

p
pMSE μ

τ
μλ

τ
4

,
4

1
== (4.23)

Where Pthp =λ eigen value of),...,2,1(NpR = and trR is the trace of R or the sum of the

diagonal elements of R .

4.4.3 Adoption Accuracy

 Adoption accuracy, or a measure of the weight noise, is measured by misadjustment, defined

as follows

For BLMS:

minξ

ssBMSEAverageExem
Δ

= (4.24)

For LMS:

minξ

sBMSEAvrageExesM
Δ

= (4.25)

- 28 -

Time Domain Block Adaptive Filter

The misadjustment is caused by gradient noise in the BLMS or LMS algorithm. Misadjustment

for the BLMS algorithm is derived in [4.11], where it is shown that:

For BLMS:

 Average Excess BMSE trR
L

mtrR
L

BB μ
ξ

μ
== ,min L (4.26)

For LMS:

 Average Excess MSE trRmtrR μμξ == ,min (4.27)

4.4.4 Comparison of Convergence Properties For The LMS And BLMS Algorithms

 Comparing the quantities presented above by taking ratios yields some interesting properties:

μ

μ
μ
μ

τ LM
mandLT B

BpMSE

pMSE == (4.28)

Hence it is observed that the BLMS and LMS algorithms converge at the same rate and achieve

the same misadjustment if μμ LB = .

 In using these relations for design purposes, one must remember that Bμ and μ have the same

convergence bounds, because this fact limits the usable block length. For example, a possible

situation is that μμ LB = and, μ satisfies (4.20), but μ and L are so large that (4.21) is not

satisfied. This is less likely to occur, of course, for the case of slow adaption than for the case of

fast adaption.

 All the relations regarding BLMS convergence reduce to the LMS case when the block length L

equals one.

Convergence Properties When Data is correlated

 Adaptive filter performance equations are traditionally derived assuming uncorrelated inputs

because that is the case that is easily tractable. The convergence proof and derivations of

convergence parameters for the BLMS algorithm are based on the assumption that the input

matrices and are uncorrelated. For the LMS algorithm, the assumption is that , and

 are uncorrelated. These assumptions lead to the assumptions that is independent of

for the BLMS algorithm and is independent of , for the LMS algorithm. These

assumptions simplify the proofs but are not appropriate for all data types. Both proofs also

assume input stationary.

jx 1+jx kX

1+kX jW jx

kW kX

- 29 -

Time Domain Block Adaptive Filter

Based upon the work of Gersho, Kim and Davisson use a sample average over a block of L data

points to estimate the MSE gradient for adjusting the weights of an adaptive algorithm. They

assume that the input data is M -dependent, which basically means that it is uncorrelated for

autocorrelation lags greater than M (where M is a positive integer). Kim and Davisson show

that when the inputs are M -dependent and the filter weights are adjusted once per block, the

problems of analyzing convergence are overcome if),1(−+≥ NML where is the filter

length and

N

M is the M -dependence constant.

Keeler studied the, adaptive predictor with the LMS algorithm modified so that it adjusts the

weights only once per input samples. He showed that convergence when the inputs are

correlated could be analyzed if is chosen to be sufficiently large.

h

h

The point to remember about the above discussion is that block adaptive filtering has an analysis

advantage over LMS filtering when inputs are correlated and fit the M dependence condition

simply because the weights are adjusted once per block.

4.5 Computational Complexity of LMS and BLMS Adaptive Filtering

 The main computational efficiency issues involved in algorithm implementation are storage

(memory), time (number of machine cycles for CPU, input-output, etc.), and computational

complexity measured in the number of real multiply and additions required. Because the first two

issues are processor architecture-dependent, hence I concentrate on the computational

complexity required when using a standard serial-type processor. This is done for convenience,

even though the most efficient implementation of BLMS adaptive filters is probably with parallel

processors.

4.5.1 Computational Complexity Of LMS Adaptive Filters

 The convolution operation (1) is done in direct form. To produce one output point requires

real multiplies and real adds. Thus to produce

N

1−N L output points requires real multiplies

and real adds.

LN

)1(−NL

 To produce L output points (one block) using the LMS algorithm requires adaptions. The

term

LN

kk X)2(με requires real multiplies per block. The addition operation requires

real additions per block. The cost of computing

)1(+NL LN

kkk yd −=ε , is L real adds per block. The total

cost per block for the LMS algorithm is)1(+NL real multiplies and real additions.

Thus, the total computational complexity of LMS adaptive filtering is real multiplies

and real adds. This result is shown in Table [2]

)1(+NL

)12(+NL

LN2

- 30 -

Time Domain Block Adaptive Filter

4.5.2 Computational Complexity of BLMS Adaptive Filters

The convolution operation is implemented directly, so it is the same as for the LMS case.

From (4.19) the weight update term jφ requires real multiplies and real adds per

block. Adding

LN)1(−LN

jB L φμ)/2(to require adds per block. Calculation of jW N LB /2μ requires

two multiplications, but this is true only for the first block, so it is ignored in the general count.

Calculation of jB L φμ)./2(requires real multiplies per block. The cost of calculating N

kkk yd −=ε is L real adds per block. Thus the total complexity for standard BLMS adaptive

filtering is real multiplies and real adds per block.)12(+LN LN2

4.5.3 Complexity Analysis

 There is very little complexity difference between LMS and direct BLMS filtering. Therefore,

the comparisons of interest are between the LMS adaptive filter and the two fast implementations

of the BLMS adaptive filter are discussed above. A complexity ratio CR is computed and

tabulated versus the block length L in Table 111 for these implementations.

eringofBLMSFiltComplexity
ringofLMSFilteComplexityCR = (4.29)

Only the case is analyzed because it provides for the most efficient use of the input data

(Section 111). As discussed in the Appendix, the convolution implementations require sequence

lengths of because must be a power of two for the equations in Table 11, and

 is assumed, is used for simplicity in the complexity ratio calculations.

NL =

1' −+≥ NLN 'N

NL = NN 2'=

4.6 Simulation Study and Discussion

 Extensive computer simulations were carried out using the two structures using LMS

algorithm. For both System Identification and Channel Equalization problem, a uniformly

distributed random signal over the interval [-.5,.5] was applied to the FIR structure and a white

Gaussian noise of 30dB was added to the output of the system. The learning parameter μ both

for LMS and BLMS algorithm was suitably chosen to obtain best result.

 Four different channels were studied with the following transfer function:

21

21

21

21

341.0876.0341.0:4
304.0903.0340.0:3
260.0930.0260.0:2
209.0995.0209.0:1

−−

−−

−−

−−

++=

++=

++=

++=

zzCH
zzCH
zzCH
zzCH

- 31 -

Time Domain Block Adaptive Filter

To study the effect of nonlinearity on the system performance four different nonlinear channel

models with the following nonlinearities has been introduced.

))((9.0)()(:3
)(1.0)(2.0)()(:2

))(tanh()(:1
)()(:0

3

32

kakakbNL
kakakakbNL

kakbNL
kakbNL

−==

−+==

==
==

The comparison of the LMS and BLMS algorithm for the convergence characteristics and

response-matching plot for System Identification and BER plot for the entire linear and nonlinear

channel model has been given. Simulation result for channel 2 with 30 dB noise has been

simulated for different linear and non linear channel has been studied. From Fig. it is seen that

convergence characteristics of BLMS algorithm faster converges than the LMS algorithm while

from response matching plot for both the case is same. From BER plots it is seen that BLMS

algorithm performs better than the LMS algorithm for all the linear and nonlinear channels.

0 500 1000 1500 2000
-40

-30

-20

-10

0

 No of iteration

 M
ea

n
S

qu
ar

e
E

rro
r

LMS
BLMS

BLMS

LMS

0 5 10 15 20
-0.4

-0.2

0

0.2

0.4

0.6

 No of iteration

 re
sp

on
se

 m
at

ch
in

g

desired
LMS

BLMS
T

 4.3(a) 4.3(b)

Fig 4.3(a) ,(b) are the corresponding MSE and Response matching plot for System Identification

problem for LMS and BLMS algorithm without noise condition

- 32 -

Time Domain Block Adaptive Filter

0 5 10 15 20
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 SNR in dB

 B
E

R

LMS
BLMS

0 5 10 15 20
-5

-4

-3

-2

-1

0

 SNR in dB

 B
E

R

LMS
BLMS

 4.4(a) 4.4(b)

0 5 10 15 20
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 SNR in dB

 B
E

R

LMS
BLMS

0 5 10 15 20
-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

 SNR in dB

 B
E

R

LMS
BLMS

 4.4(c) 4.4(d)

0 5 10 15 20
-3

-2.5

-2

-1.5

-1

-0.5

0

 SNR in dB

 B
E

R

LMS
BLMS

4.4(e)

Fig.4.4 (a),(b),(c),(d),(e) ,corresponds to the respective BER plot for LMS and BLMS Equalizer

structure for NL=0,NL=1,NL=2,NL=3 and NL=4

- 33 -

Time Domain Block Adaptive Filter

4.7 Conclusion

Here a BAF was derived which allows fast implementation while maintaining performance equal

to that of the LMS adaptive filter in case of System Identification problem and better in Channel

Equalization problem. It was seen that BLMS Adaptive filters have an advantage over an LMS

algorithm when the inputs are correlated and finally BLMS involves less computational

complexity when implemented using efficient convolution algorithms on serial processors.

- 34 -

Chapter 5

FREEQUENCY DOMAIN
BLOCK ADAPIVE FILTER

Frequency Domain Adaptive Filter

5.1 Introduction

 Adaptive filtering in the frequency domain is the Fourier Transform of the input signal and

independent weightings of the contents of each frequency bin. FIR adaptive filters can be

implemented efficiently in the time domain as well as in the frequency domain. Frequency

domain filter performs in a manner similar to a conventional time domain adaptive transversal

filter with a significant reduction in computational complexity. Using an FDAF results in block

processing in which one block of input data is processed simultaneously, producing one block of

output data. With different efficient algorithm such as Fast Fourier Transform (FFT) block

processing is done. In this way, the amount of computational requirements in terms of multiply-

adds per one block of N output samples can be greatly reduced compared with time-domain

approaches. This is accomplished by replacing convolution with a multiplication of transforms,

which implies a complexity reduction from .))log(()(2 NNOtoNO

The same frequency-domain filter is obtained whether time-domain mean-square error or

frequency-domain mean square error is minimized, as long as data sectioning is done correctly.

In other words, the time-domain block adaptive filter implemented in the frequency domain is

equivalent to the frequency-domain adaptive filters (derived in the frequency domain) provided

data sectioning is done properly. Data sectioning is the procedure for breaking the continuous

data stream into blocks before processing and reassembling the resulting data blocks into a

continuous data stream after processing. All block algorithms require such a procedure, whether

they process the data in the time domain or the frequency domain, and the sectioning procedures

must be carefully integrated into the processing algorithms. The two most common sectioning

procedures are the overlap-save and overlap-add methods [5.1] - [5.3].

A large number of equivalent time- and frequency-domain filter structures are possible for the

basic block adaptive filter. It can be shown that all of the frequency-domain adaptive filters in

the literature [5.4] - [5.5] belong to the set of possible block adaptive filter structures, and that

they differ only in the sectioning procedures used.

From the two most common sectioning procedures (overlap-save and overlap-add) in the

frequency domain adaptive filter it shows that the overlap-save method is preferred over the

overlap-add method because it requires fewer computations. Sectioning procedures are well

known and straightforward for fixed coefficient filters. However, this is not the case for adaptive

filters because of the necessity of changing the filter coefficients at each iteration of the filter, so

special care must be exercised.

 35

Frequency Domain Adaptive Filter

5.2 . The Equivalence of Time And Frequency-Domain FIR Adaptive Filter

We have discussed the BAF in time domain in chapter-4, here we will discuss the weight

adjustment in the frequency domain. Many such implementations exist, depending upon how the

convolution, correlation and weight adjustment operation are realized by various combinations of

time- and frequency- Domain methods.

The frequency-domain adaptive filter is derived from two perspectives: first, as an

implementation of the time-domain block adaptive filter, and second, as the frequency-domain

adaptive filter considered entirely in the frequency domain. From simulation study it is seen that

the two filters are equivalent, provided data sectioning is done properly.

5.2.1 Implementation of the Time-Domain Block Adaptive Filter in the Frequency

Domain

The augmented vectors shall be denoted in general by 1×′N ,,,, a

j

a
j

a
j

a
j

a
j andYWX φε , but their

actual contents depend upon whether overlap-save or overlap-add sectioning is used. is an

circulant matrix composed of augmented input vectors. In this section, the contents of

these augmented vectors/matrices are not unspecified, in the latter sections contents are given.

Frequency-Domain Notation: Define the following single sample notation for the DFT of the

above augmented vectors, where

a
jx

NN ′×′

1,,2,1,0 −′= Nl K is the discrete frequency index.

 (5.1) }{)(a
jj XDFTlX =

 }{)(a
jj WDFTlW = (5.2

 }{)(a
jj YDFTlY = (5.3)

 }{)(a
jj DFTlE ε= (5.4)

)()(}{)(* lXlEDFTl jj
a

jj == φφ (5.5)

The asterisk denotes complex conjugation. DFT }{ av denotes the N ′ point discrete Fourier

transform of the elements of the general 1×′N vector av for the discrete frequency index l [5.6].

Vector Frequency-Domain Notation: The quantities above can be written in a convenient

matrix notation using the following definitions. Let
j

y and jw be 1×′N vectors of transforms,

the elements of which are given by (21) and (20), respectively,

 36

Frequency Domain Adaptive Filter

T

jjj

a
jj

NYYY

YDFTy

)]1()1()0([

}]{[

−′=

=

K
 (5.6)

T

jjj

a
jj

NWWW

WDFTw

)]1()1()0([

}]{[

−′=

=

K
 (5.7)

Let be a diagonal matrix with its nonzero elements consisting of the transforms of the

inputs given by (5.1).

jx NN ′×′

Let the DFT of the augmented error vector be defined by 1×′N

 }{)(a
jj DFTl εξ = (5.8)

Frequency-Domain Weight Adjustment Algorithm: A frequency-domain adaptive filter is

derived by augmenting the vectors of
j

y and 1+jw , and writing the DFT’s of the resulting

equations, using the definitions above. The result is an adaptive filter implemented as follows in

single point form for 1,,2,1,0 −′= Nl K :

 (5.9))()()(lWlXlY jjj =

)(2)()(1 l
L

lWlW j
B

jj
′+=+ φ

μ
 (5.10)

 Where

 .)}({)(lFl
jj φφ =′ (5.11)

The notation refers to a projection operator, which constrains to zero all but the first

time-domain values corresponding to the inverse DFT (IDFT) of the

{.}F N

1×′N sequence in brackets.

This projection operator is necessary because the sectioning procedure used (overlap-save or

overlap-add) with the DFT requires use of −′N point sequences)1(−+≥′ NLN in both the time

and frequency domains. Therefore, at each iteration the frequency-domain BLMS algorithm

produces frequency domain weights, implying N ′ N ′ time-domain weights. This creates a

problem because the filter has only time domain weights, making the other N NN −′ time-

domain weights extraneous and harmful if used. The projection operation above solves this

problem by constraining the time-domain weights to be zero for

{.}F

jiw , 1−′≤≤ NiN . It is shown

in latter Sections that the implementations of for overlap-save and overlap-add sectioning

are similar. In matrix notation, (5.9) and (5.10) become

{.}F

 37

Frequency Domain Adaptive Filter

 jjj
wxy = (5.12)

 }{2 *
1 jj

B
jj xF

L
ww ξ

μ
+=+ . (5.13)

5.2.2 Derivation of the Frequency-Domain Adaptive Filter

The filter of Section 5.2.1-A time-domain filter is designed to minimize time-domain block

mean-square error and implemented it in the frequency domain. Here, the frequency-domain

adaptive filter is derived entirely in the frequency domain, using frequency-domain mean square

error.

This derivation assumes no particular sectioning procedure. Although the sectioning method is

unspecified, the analysis must allow for it because the frequency-domain convolutions/

correlations must correspond to time-domain linear convolutions/ correlations. Thus, all

frequency-domain vectors are 1×′N and imply the use of 1×′N augmented time-domain

vectors.The goal is to minimize frequency-domain sum-square error given by

j

H

j

N

l
j lEJ ξξ== ∑

−′

=

1

0

2
)((5.14)

Where is defined by (22), , and the superscript)(lE j NL = H denotes the complex conjugate

transpose.

The filter output in the frequency domain is given by

 ,)()()(lWlXlY jjj = 1,,2,1,0 −′= Nl K (5.15)

 Where are defined according to (5.1)- (5.3).)()(),(lYandlWlX jjj

The gradient J∇ of is given by J

j

j

H
j

j

j
H
j

ww
J ξ

ξξξ

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂

∂
=

∂

∂
=∇ 2 .

Since

 jjjj
wxD −=ξ

Where]}{[a
jj dDFTD = and a

jd is the augmented desired response vector, it follows that

jjxJ ξ*2−=∇ . (5.16)

A single element of this gradient is given by

)()(2)(* lXlElJ jj−=∇ , 1,,2,1,0 −′= Nl K (5.17)

 38

Frequency Domain Adaptive Filter

Using this gradient to adjust the frequency-domain weights once per data block yields the

following weight adjustment formula used in [5.l] , [5.2] :

 (5.18))}()({)()(*
1 lXlEFlWlW jjjj β−=+

For , where 1,,2,1,0 −′= Nl K β is a convergence constant equivalent to LB /2μ− in (A10)

and is the projection operator described in (5.11). {.}F

To summarize this section, the frequency-domain filter equations (5.15) and (5.18) are written in

vector forma s follows:

 jjj
wxy = (5.19)

}{ *
1 ξβ jjj xFww −=+ (5.20)

Note that techniques exist for improving the convergence speed of gradient algorithms by using a

different step size for each weight at each iteration [5.7], [5.8], Such schemes can be applied to

block adaptive filters in either the time domain or the frequency domain.

5.2.3 A General Structure for Frequency-Domain Adaptive Filters

Clearly Equations (5.12), (5.13) and (5.19), (5.20) are equivalent, and the same frequency-

domain filter has been derived from two different approaches. In Section 5.2.1- time-domain

mean-square error is minimized by a time-domain algorithm implemented in the frequency

domain. In Section 5.2.1 -frequency-domain mean-square error is minimized by a frequency-

domain algorithm. This equivalence is expected by Parseval’s theorem

xk

 a

j
X
~ jχ

j
y
−

a

j
Y
− kY

j

w
−

a
jχ

 }{ *

−
ξχ jF

−
ξχ *

j
−
ξ a

j−
ε kε kd

Sectioning Sectioning DFT-1DFT

Sectioning Sectioning DFT
Frequency
 Domain
 Weight
 Update

c
o
n
j
u
g
a
t
e

Fig.5.1 Generalized structure for all known FDAF
 39

Frequency Domain Adaptive Filter

Fig. 5.1 shows the generalized structure for all known frequency domain adaptive filter and that

they differ only in the boxes labeled “sectioning.” This is shown in latter sections which

describes in detail the overlap save and overlap-add sectioning procedures for adaptive filters,

5.3. Sectioning Procedure Applied to Frequency-Domain Adaptive Filters

Methods for doing overlap-save and overlap add sectioning with frequency-domain adaptive FIR

filters are derived in this section.

5.3.1. Some Useful Definitions

In order to simplify analysis, the following projection operators for the general vector 1×′N v

are defined, where K is an integer and NK ′≤≤0 .
T

KK vvvvP]000[}{ 1100, KK −= (5.21)

T
KK vvvvP][}{ 110, −= K (5.22)

 T
NKNKNK vvvvP][}{ 11 −′+−′−′= K

5.3.2. Example

In the following two sections, the overlap-save and overlap add implementations of the FDAF

are demonstrated with a low-order)4,2(=′== NNL filter example. In all cases, it circular

convolutions and correlations implemented using sectioning techniques are equal to the linear

convolutions and correlations, which for the low order example are

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==

+

−

j

j

jj

jj
jjj w

w

xx

xx
wxy

,1

,0

212

122 (5.23)

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==

+−

+

12

2

212

122

j

j

jj

jj
j

T
jj xx

xx
x

ε

ε
εφ (5.24)

5.3.3. Overlap-Save Implementation
The convolution operation can be implemented with overlap-save sectioning by defining the

following augmented vectors.

 }{ jj
a
j

a
j

a
j wxIDFTWXY == . (5.25)

Where,

 T
LjjLjLjLjLLNjL

a
j yyyyyyY][1)1(112)(−++−−−′−= KMK (5.26)

T
jNjj

a
j wwwW]000[),1(,1,0 KMK −= (5.27)

 40

Frequency Domain Adaptive Filter

][11
a

NjL
a
jL

a
jL

a
j XXXx +′−−= K (5.28)

T
LjjLjLjLjLLNjL

a
jL xxxxxxX][1)1(112)(−++−−−′−= KMK (5.29)

and

 (5.30) }{ 1
a

pjL
a

pjL XCDSX +−− =

Where and CDS means "circular down shift," so that successive columns

of (5.28) are obtained by a vertical rotation of the previous column (shifting the elements of the

previous column down one position and moving the bottom element to the top position). The

first column is a CDS of the last column.

1,,2,1,0 −′= Np K

The matrix is circulant [5.9] as defined by (5.28)-(5.30). To avoid overlap and obtain the

desired linear convolution, the last

]a
jx

NN −′ elements of a
jW must be zero, and the first LN −′

elements of a
jY must be discarded as indicated in (5.26) and (5.27). Projection operator

indicates the discarding of points in (5.26).

LP,

]}[{}{ ,, jwxIDFTPYPY jL
a
jLj == . (5.31)

Abutting the vectors end to end for K,2,1,0=j now creates the final output sequence .

To illustrate the above convolution, consider the following low-order

example for which (5.25) becomes)4,2(=′== NNL

⎩
⎨
⎧
⎩
⎨
⎧

−′

Lkeep

LNdiscard

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−+

+−−

+−−

−+−

0
0

,1

,0

1212212

1222122

2122212

1221222

j

j

jjjj

jjjj

jjjj

jjjj

w

w

xxxx

xxxx

xxxx

xxxx

NN

N

−′
⎭
⎬
⎫
⎭
⎬
⎫

 (5.32)

The results of (5.23) are obtained using (5.3 l).

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

+

−

+ jjjj

jjjj

j

j
j wxwx

wxwx

y

y
Y

,12,012

,112,02

12

2 (5.33)

The correlation operation is found by defining, in addition to the above quantities, the following

augmented vectors.

 }{ *
jj

a
j

aT
j

a
j

xIDFTx ξεφ == (5.34)

Where

 41

Frequency Domain Adaptive Filter

 T
LjjLjL

a
j]000[1)1(1 −++= εεεε KMK (5.35)

 T
jNjNjNjNjj

a
j

][),1()1(,),1(,1,0 −′+−= φφφφφφφ KMK (5.36)

The projection indicates the discarding of points in (56). NP

]}[{}{ *
,, jjN

a
jNj

xIDFTPP ξφφ == (5.37)

Again the low order)4,2(=′== NNL example is used to describe (5.34)

⎩
⎨
⎧

−′

⎩
⎨
⎧

NNdiscard

Nkeep

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

j

j

j

j

,3

,2

,1

,0

φ

φ

φ

φ

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−+−

−−+

−−+

+−−

1212212

1222122

2122212

1221222

jjjj

jjjj

jjjj

jjjj

xxxx

xxxx

xxxx

xxxx

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+12

2

0
0

.

j

j

ε

ε
L

LN

⎭
⎬
⎫

−′
⎭
⎬
⎫

 (5.38)

Finally using (5.37) the results of (5.24) is obtained.

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

+−

++

122212

121222

,1

,0

jjjj

jjjj

j

j

j xx

xx

εε

εε

φ

φ
φ (5.39)

Fig2. Shows the straightforward implementation of the above procedure in block form. From

overlap sectioning the vector frequency domain weight adjustment algorithm is

 }{2 *
1 jj

B
jj xF

L
ww ξ

μ
+=+ (5.40)

Operation of discarding all but the first correlation points shown in the realization of

in Fig. 2 is equivalent to multiplication in the time domain by a window function where

N)(0,NP

{.}F ih

 (5.41)
⎩
⎨
⎧

−′≤≤
−=

=
1,0
1,,1,0,1

NiN
Ni

hi

K

By observing the multiplication of in the time domain is equivalent to the convolution with DFT

in the frequency domain.

5.3.4. Overlap-Add Implementation

The convolution operation can be implemented with overlap-add sectioning by defining the

following augmented vectors:

 T
jNjj

a
j wwwW]000[),1(,1,0 KMK −= (5.42)

 (5.43)][11
a

NjL
a
jL

a
jL

a
j XXXx +′−−= K

Where,

 42

Frequency Domain Adaptive Filter

 (5.44) T
LjjLjL

a
jL xxxX]000[1)1(1 KMK −++=

and

}{ 1
a

pjL
a

pjL XCDSX +−− = For 1,,2,1,0 −′= Np K

and CDS means “circular down shift” .

To obtain the final outputs for block j , the partial results from block j must be added to the

partial results obtained by convolving the inputs of block 1−j with the weights of block This is

written as follows using the projection notation of (5.21)-(5.23) for the case in which NL = and

 : LN 2=′

.]}[{]}[{

}{}{

1

1,

jjNjjN

a
j

a
jN

a
j

a
jLj

wxIDFTPwxIDFTP

WXPWXPY

−

−

+=

+=
 (5.45)

The general , form of (5.45) is more difficult to write. As discussed in

[5.9] , must be a power of two for use with fast DFT algorithms, and the most efficient block

length is . Therefore, the set of parameters most likely to be used in practice is

NL ≠ 1−+≥′ NLN

N ′

NL = NL = and

LN 2=′ .

The low-order example for (5.45) gives)4,2(=′== NNL

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+

+

+

+

0
0

.

00

00

00

00

,1

,0

212

212

212

122

j

j

jj

jj

jj

jj

a
j

a
j

w

w

xx

xx

xx

xx

WX (5.46)
NN

N

−′
⎭
⎬
⎫
⎭
⎬
⎫

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−

−−

−−

−−

−

0
0

.

00

00

00

00

,1

,0

2212

2212

2212

1222

1
j

j

jj

jj

jj

jj

a
j

a
j

w

w

xx

xx

xx

xx

WX
NN

N

−′
⎭
⎬
⎫
⎭
⎬
⎫

 (5.47)

Assembling the results of (5.45) and (5.46) we get

 ⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
= −

+ 0
,112

,12,012

,02 jj

jjjj

jj
j

wx
wxwx

wx
Y

 = (5.48)
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+

+

−

jjjj

jjjj

wxwx

wxwx

,12,012

,112,02

 43

Frequency Domain Adaptive Filter

The correlation operation for overlap add sectioning is found similarly by defining, in addition to

the above quantities, the following error vector:

 T
LjjLjL

a
j]000[1)1(1 KMK −++= εεεε (5.49)

The final correlations for block j are obtained by adding the partial results from block j to the

partial results obtained by correlating the inputs of block 1−j with the errors of block j . This is

written as follows using the projection notation of (5.21)-(5.23) for the case in which NL = and

LN 2=′ .

.]}[{]}[{

}{}{
*

1
*

1

jjNjjN

a
j

aT
jN

a
j

aT
jLj

xIDFTPxIDFTP

XPXPY

ξξ

εε

−

−

+=

+=
 (5.50)

From (5.50) that for the overlap-add sectioning, the vector frequency-domain weight adjustment

algorithm of (5.13) and (5.20) becomes

 },{2 *
1

*
1 jjjj

B
jj xxF

L
ww ξξ

μ
−+ += (5.51)

The low-order example for (5.50) gives

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

= +

+

+

+

+

0
0

.

00

00
00

00

12

2

212

122

122

122

j

j

jj

jj

jj

jj

a
j

aT
j

xx

xx
xx

xx

X
ε

ε

ε
LN

N

−′
⎭
⎬
⎫
⎭
⎬
⎫

 (5.52)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

= +

−−

−−

−−

−−

−

0
0

.

00

00
00

00

12

2

2212

1222

1222

1222

1
j

j

jj

jj

jj

jj

a
j

aT
j

xx

xx
xx

xx

X
ε

ε

ε
LN

N

−′
⎭
⎬
⎫
⎭
⎬
⎫

 (5.53)

Assembling the results of (5.52) and (5.53) and according to (5.50) it becomes

⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
=

−+

++

jjjj

jjjj

j xx

xx

212122

121222 0
εε

εε
φ

 (5.54)
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+
=

+−

++

122212

121222

jjjj

jjjj

xx

xx

εε

εε

For overlap-add sectioning. Notice that seven DFT’s are required, whereas five DFT’s are

required for overlap-save sectioning. This is because of the necessity to add the results of

convolving the current weights jW with the previous input block and correlating the current

 44

Frequency Domain Adaptive Filter

error block with the previous input block. If the weights were not changing once per block (as in

a time-invariant filter), the quantities }{ 1,
a
j

a
jN WXP − and }{ 1,

a
j

aT
jN XP ε− could be stored and used

for the computation without requiring the two additional DFT’s. This indicates that a price of

two DFT’s is paid for the luxury of changing weights midstream when using the overlap-add

sectioning procedure. The overlap-save procedure automatically includes inputs from the

previous block in the augmented input vector , eliminating the above problem. a
jLX

5.4 Computational Complexity Of LMS And BLMS Adaptive Filtering

The main computational efficiency issues involved in algorithm implementation are storage

(memory), time (number of machine cycles for CPU, input-output, etc.), and computational

complexity measured in the number of real multiply and additions required. Here I have given

the comparison of the computation complexity of LMS and BLMS in the frequency domain I

have given.

5.4.1 Computational Complexity of LMS Adaptive Filters

The convolution operation (1) is done in direct form. To produce one output point requires

real multiplies and real adds. Thus to produce

N

1−N L output points requires real multiplies

and real adds.

LN

)1(−NL

 To produce L output points (one block) using the LMS algorithm requires adaptions. The

term

LN

kk X)2(με requires real multiplies per block. The addition operation requires

real additions per block. The cost of computing

)1(+NL LN

kkk yd −=ε , is L real adds per block. The total

cost per block for the LMS algorithm is)1(+NL real multiplies and real additions.

Thus, the total computational complexity of LMS adaptive filtering is real multiplies

and real adds. This result is shown in Table [5.1]

)1(+NL

)12(+NL

LN2

5.4.2 Computational Complexity of FFT-Implemented Convolution

The FFT algorithm used is for complex data. The relationship between complex and real

arithmetic operations is

1 complex add = 2 real adds

1 complex multiply = 4 real multiplies + 2 real adds.

A linear convolution of two sequences of length L and produces a sequence of length

. Thus an FFT implementation of such a convolution must use sequences of length

to avoid overlapping sections.

N

1−+ NL

1−+≥′ NLN

 45

Frequency Domain Adaptive Filter

 The radix 4 FFT complexity formulas are useful only when the number of butterfly sections

is even. For odd, an efficient radix 2 section is used for the first

section, and radix 4 sections are used for the remainder. Sorting out the results of

the efficient procedure for real data requires

))2/((log2 N ′))2/((log2 N ′

))4/((log4 N ′

N ′2 real multiplies and N ′5 real adds. The FFT

complexity per block of outputs is then NbNNQN ′+′+−′−′ 2)12/(4)4/3(real multiplies and

)2/3(5)12/(2)8/11(NbNNQN ′+′+−′−′ real adds, where

⎩
⎨
⎧

′′
′′

=
oddNN
evenNN

Q
)2/(log),4/(log
)2/(log).2/(log

22

22

and

⎩
⎨
⎧

′
′

=
oddN
evenN

b
)2/(log,1
)2/(log.0

2

2

 A convolution requires one FFT each for the weights and the input. It also requires one complex

multiply and one inverse FFT, leading to a total of)3(8)12/(12)4/9(NbNNQN ′+′+−′−′ real

multiplies and)2/9(16)12/(6)8/33(NbNNQN ′+′+−′−′ real adds per block.

 The correlation required for the gradient estimate is similar to the convolution above but

requires one less FFT because the transform of the inputs exists previously (see Fig. 8). This

leads to a correlation complexity of)2(6)12/(8)2/3(NbNNQN ′+′+−′−′ real multiplies and

)3(11)12/(4)4/11(NbNNQN ′+′+−′−′ real adds per block.

Table 5.1

 (Computational Complexity (Number of Real ADD’s and Real Multiplies) Required to Compute

L output data points,) 1−+≥′ NLN

Implementation Real multiplies Real adds

LMS adaptive filter)12(+NL LN2

BLMS adaptive

filter

)12(+LN LN2

FFT-

implemented,BLM

S adaptive filter

)5(14
)12/(20)4/15(

NbN
NQN

′+′+
−′−′

)2/15(

27)12/(10)8/55(
NbLN

NNQN
′+++

′+−′−′

 46

Frequency Domain Adaptive Filter

with radix 4 FFT

and efficient

algorithm for Real

Adds

⎩
⎨
⎧

′′
′′

=
oddNN
evenNN

Q
)2/(log),4/(log
)2/(log).2/(log

22

22

⎩
⎨
⎧

′
′

=
oddN
evenN

b
)2/(log,1
)2/(log.0

2

2

5.4.3 FFT implementation of BLMS Adaptive Filters

With BLMS adaptive filtering, the convolution operation can be implemented using the FFT and

an overlap-add or overlap-save procedure. Throughout this analysis, input and output signals are

assumed to be real and the FFT is used for complex data. This permits use of the efficient

convolution procedure in which the transform of an N ′ -point real sequence is computed by

properly using the real and imaginary parts of an 2/N ′ -point complex FFT algorithm. To make

further complexity reductions, a radix 4 FFT with one radix 2 sections is used. The FFT length

 must be a power of two where 2/N ′ 1−+≥′ NLN . The complexity of the FFT algorithm and

the convolution are discussed in the previous section.

The gradient estimate term jφ in the BLMS algorithm can be written in the form of a correlation.

Therefore, it can be realized with the FFT by the same technique used for the convolution above.

The only difference is that the FFT of iε must be conjugated before it is multiplied by the FFT

of . Its complexity is discussed before. Note that the correlation operation produces ix N ′ points,

but that only the first of them have meaning, because there are only weights to adjust. The

remaining points are discarded (set to zero).

N N

NN −′

Once the correlation (gradient estimate) is computed, the BLMS algorithm requires N real

multiplies and real adds per block of outputs. Table 5.1 shows the total complexity LN +

of the FFT-implemented BLMS adaptive filter.

5.5 Simulation and Results

 Extensive computer simulations were carried out using the two structures using LMS

algorithm. For both System Identification and Channel Equalization problem, a uniformly

distributed random signal over the interval [-.5,.5] was applied to the FIR structure and a white

Gaussian noise of 30dB was added to the output of the system. The learning parameter μ both

for LMS and BLMS algorithm was suitably chosen to obtain best result.

 Four different channels were studied with the following transfer function:

 47

Frequency Domain Adaptive Filter

21

21

21

21

341.0876.0341.0:4
304.0903.0340.0:3
260.0930.0260.0:2
209.0995.0209.0:1

−−

−−

−−

−−

++=

++=

++=

++=

zzCH
zzCH
zzCH
zzCH

To study the effect of nonlinearity on the system performance four different nonlinear channel

models with the following nonlinearities has been introduced.

))((9.0)()(:3
)(1.0)(2.0)()(:2

))(tanh()(:1
)()(:0

3

32

kakakbNL
kakakakbNL

kakbNL
kakbNL

−==

−+==

==
==

The comparison of the LMS and BLMS algorithm in frequency domain for the convergence

characteristics and response-matching plot for System Identification and BER plot for all the

linear and nonlinear channel model has been given.

Simulation result for channel 2 with 30 dB noises has been simulated for different linear and

non-linear channel has been studied.

0 500 1000 1500 2000
-40

-30

-20

-10

0

 No of iteration

 M
ea

n
S

qu
ar

e
E

rro
r

LMS
BLMS

BLMS

LMS

0 5 10 15 20
-0.5

0

0.5

1

 No of iteration

 re
sp

on
se

 m
at

ch
in

g

desired
LMS
BLMS

5.2 (a) 5.2 (b)

Fig 5.(a) ,(b) are the corresponding MSE and Response matching plot for System Identification

problem for LMS and BLMS algorithm without noise condition

From MSE plot it is seen BAF in frequency domain converges much faster than the

corresponding LMS adaptive filter. It takes around 100 samples where as LMS takes 500

samples to converge to the resultant value keeping the matching performance constant.

 48

Frequency Domain Adaptive Filter

From computer simulation for the Channel equalization case it is seen that BLMS converges

much faster and better accurately to the equalizer coefficients both in linear and nonlinear cases

with having the advantage of less computation complexity.

0 5 10 15 20
-5

-4

-3

-2

-1

0

 SNR in dB

 B
E

R

LMS
BLMS

0 5 10 15 20

-5

-4

-3

-2

-1

0

 SNR in dB

 B
E

R

LMS
BLMS

 5.3(a) 5.3(b)

0 5 10 15 20
-4

-3

-2

-1

0

 SNR in dB

 B
E

R

LMS
BLMS

0 5 10 15 20

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

 SNR in dB

 B
E

R

LMS
BLMS

 5 .3(c) 5.3 (d)

 49

Frequency Domain Adaptive Filter

0 5 10 15 20
-4

-3

-2

-1

0

 SNR in dB

 B
E

R

LMS
BLMS

5.3 (e)

Fig.5. (a),(b),(c),(d),(e) ,corresponds to the respective BER plot for LMS and BLMS

Equalizer structure with NL=0,NL=1,NL=2,NL=3 and NL=4

5.6 Conclusion

Specific implementation of the block adaptive filter in the frequency domain has been presented

in this chapter. From extensive computer simulation it is seen that whether derived in time

domain or in frequency domain frequency domain adaptive filter results the same if the data

sectioning is done correctly. It has been seen that though results for the overlap save and overlap

add sectioning is same overlap add method requires more mathematical computation so overlap

save sectioning is preferred. Through computer simulation is seen that BLMS in frequency

domain requires less computation complexity and converge faster than LMS AF in system

Identification case and a much better candidate in comparison in channel equalization case seen

from the BER plots.

 50

Chapter 6

EQUALIZATION AND
IDENTIFICATION USING ANN

Equalization and Identification using ANN

6.1 Introduction

 Recently, artificial neural networks (ANN) have emerged as a powerful learning technique to

perform complex tasks in highly nonlinear dynamic environments. Some of the prime

advantages of using ANN models are: their ability to learn based on optimization of an

appropriate error function and their excellent performance for approximation of nonlinear

function [6.1]-[6.2]. The ANN’s are capable of generating complex mapping between the input

and output and thus, arbitrarily complex decision boundaries can be formed by these networks.

 The functional link ANN (FLANN) has been proposed by Pao [6.3]-[6.4]. It is shown that this

network can be used for function approximation and pattern classification with faster

convergence rate and lesser computational complexity than a MLP network. The performance of

the FLANN for the task of identification of nonlinear systems has been reported [6.5]. Using

trigonometric functions as functional expansion, superior performance of the FLANN with

respect to MLP network has been obtained. In this paper, we propose an alternate FLANN

structure, which has been shown to provide effective identification of nonlinear dynamic

systems. For functional expansion of the input pattern, we have chosen the Chebyschev

polynomials [6.6] instead of trigonometric and the network is updated with recursive least mean

square algorithm. The input noise is also considered during the identification of the nonlinear

systems and it is pointed out that this network has universal approximation capability and has

faster than a MLP and FLANN network of trigonometric expansion.

6.2 Single Neuron Structure

 In 1958, Rosenblatt demonstrated some practical applications using the perceptron .The

perceptron is a single level connection of McCulloch-Pitts neurons sometimes called single-layer

feed forward networks. The network is capable of linearly separating the input vectors into

pattern of classes by a hyper plane. A linear associative memory is an example of a single-layer

neural network. In such an application, the network associates an output pattern (vector) with an

input pattern (vector), and information is stored in the network by virtue of modifications made

to the synaptic weights of the network.

∑ f(.)

• •
 •

x

x2

xN

Bias

y(n)

Fig. 6.1 A single Neuron

 51

Equalization and Identification using ANN

 The structure of a single neuron is presented in Fig. 6.1. In an artificial neuron involves the

computation of the weighted sum of inputs and threshold. The resultant signal is then passed

through a non-linear activation function. The output of the neuron may be represented as,

 (6.1) () () ()
1

N

j j
j

y n f w n x n bias
=

⎡ ⎤
= ⎢

⎣ ⎦
∑ + ⎥

Where bias = threshold to the neurons at the first layer,

wj(n) = weight associated with the jth input, and N = no. of inputs to the neuron.

6.2.1 Activation Function

 The perceptron internal sum of the inputs is passed through an activation function, which can

be any monotonic function. Linear functions can be used but these will not contribute to a non-

linear transformation within a layered structure, which defeats the purpose of using a neural filter

implementation. A function that squashes the amplitude range and limits the output strength of

each perceptron of a layered network to a defined range in a non-linear manner will contribute to

a nonlinear transformation. There are many forms of activation functions, which are selected

according to the specific problem. All the neural network architectures employ the activation

function ,which defines as the output of a neuron in terms of the activity level at its input (ranges

from -1 to 1 or 0 to 1). Table 6.1 summarizes the basic types of activation functions. The most

practical activation functions are the sigmoid and the hyperbolic tangent functions. This is

because they are differentiable.

Table 6.1

 (Common Activation Functions)

Name Definition

Linear ()f x kx=

Step
() ,

,
f x if x

if x k
kβ

δ
= ≥
= <

Sigmoid 1() , 0
1 xf x

e α α−= >
+

Hyperbolic Tangent 1() tanh() , 0
1

x

x

ef x x
e

γ

γγ γ
−

−

−
= = >

+

Gaussian
2

22

1 (() exp
22

xf x μ
σπσ

)⎡ ⎤−
= −⎢ ⎥

⎣ ⎦

 52

Equalization and Identification using ANN

6.2.2 Learning Processes

 The property that is of primary significance for a neural network is that the ability of the

network to learn from its environment, and to improve its performance through learning. The

improvement in performance takes place over time in accordance with some prescribed measure.

A neural network learns about its environment through an interactive process of adjustments

applied to its synaptic weights and bias levels. Ideally, the network becomes more

knowledgeable about its environment after each iteration pf learning process. Hence we define

learning as: “Learning is a process by which the free environment of a neural network is adapted

through a process of stimulation by the environment in which the network is embedded.”

 The processes used are classified into two categories as described in [6.1]:

1. Supervised Learning (Learning With a Teacher)

2. Unsupervised Learning (Learning Without a Teacher)

6.2.2.1 Supervised Learning:

 We may think of the teacher as having knowledge of the environment, with that knowledge

being represented by a set of input-output examples. The environment is, however unknown to

neural network of interest. Suppose now the that the teacher and the neural network are both

exposed to a training vector , by virtue of built-in knowledge , the teacher is able to provide the

neural network with a desired response for that training vector. Hence the desired response

represents the optimum action to be performed by the neural network. The network parameters

such as the weights and the thresholds are chosen arbitrarily and are updated during the training

procedure to minimize the difference between the desired and the estimated signal. This updation

is carried out iteratively in a step-by-step procedure with the aim of eventually making the neural

network emulate the teacher. In this way knowledge of the environment available to the teacher

is transferred to the neural network. When this condition is reached, we may then dispense with

the teacher and let the neural network deal with the environment completely by itself. This is the

form of supervised learning.

6.2.2.1unsupervised Learning:

 In unsupervised learning or self-supervised learning there is no teacher to over-see the

learning process, rather provision is made for a task independent measure of the quantity of

representation that the network is required to learn, and the free parameters of the network are

optimized with respect to that measure. Once the network has become turned to the statistical

regularities of the input data, it develops the ability to form the internal representations for

 53

Equalization and Identification using ANN

encoding features of the input and thereby to create new classes automatically. In this learning

the weights and biases are updated in response to network input only. There are no desired

outputs available. Most of these algorithms perform some kind of clustering operation. They

learn to categorize the input patterns into some classes.

6.3 Multilayer Perceptron

 In 1969 Minsky and Papert mathematically demonstrated that there were fundamental limits

on what a single layer perceptron could compute and he suggested the concept of the multilayer

perceptron or Multilayer perceptron (MLP) feed forward networks.

 The MLP is one of several non-linear architectures that use layers of processing functions to

map signals onto a series of planes so that they can be grouped into disconnected and non-linear

classes. Any linearly non-separable pattern problem can be solved if a mapping transformation of

sufficient dimension is used.The Multilayer Perceptron (MLP) or Multilayer Artificial Neural

Network (MLANN) introduce one more hidden layers, whose computation nodes are

correspondingly, called hidden neurons. The function of the hidden neurons is to intervene

between the external input and the network output. The activation functions are listed in Table

6.1. The scheme of multi-layer neural network (MLANN) using three layers structure is shown

in Fig. 6.2.

Fig. 6.2 Structure of multilayer perceptron

••
•

••
• ••

•

First
Hidden
 layer

(Layer-2)

Input
layer

(Layer-1)

Output
layer

(Layer-4)

Input
Signal,

()ix n

Output
Signal

()ly n

Second
 Hidden

layer
(Layer-3)

+1
+1

+1ijw jkw
klw

 54

Equalization and Identification using ANN

 xi(n) represent the input to the network, fj and fk represent the output of the 1st hidden and

2nd hidden layers respectively and yl(n) represents the output of the neural network. The

connecting weights between the input to the first layer, first to second layer and the second layer

to the output layers are represented by wi, wjk
 and wkl respectively. If P1 is the number of neurons

in the first layer, each element of the output vector may be calculated as,

 ()
1

N

j j ij i j
i

f w x n bϕ
=

⎡ ⎤
= +⎢

⎣ ⎦
∑ ⎥ (6.2)

 j=1, 2, 3… P1

 Where jb is the threshold to the neurons at the first layer, N is the no. of inputs and φ (.) is the

non-linear activation function. The time index n has been dropped to make the equations simpler.

Let P2 be the number of neurons in the second layer. Each element of this output vector, fk may

be written as:

1

1

P

k k jk j k
j

f w f bϕ
=

⎡ ⎤
= ⎢

⎣ ⎦
∑ + ⎥

l

 (6.3)

 k=1, 2, 3… P2

Where, is the threshold to the neurons at the second layer. The input signal is passed through

a tapped delay filter.

kb

The output of the final layer can be calculated as:

 (6.4) ()
2

1

P

l l kl k
k

y n w f bϕ
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑

 l=1, 2, 3… P3

 Where, is the threshold to the neuron at the final layer and Plb 3 is the no. of neurons in the

output layer. The activation functions are described in Table 6.1. The most popular and

successful learning method for training the multilayer perceptron is the back propagation

algorithm. Rumelhart Hinton and Williams reported the development of the back propagation

learning in 1986 [6.1]. The algorithm employs an iterative gradient-descent method of

minimization which minimizes the mean squared error (L2 norm) between the desired output and

network output (supervised learning). Using the Back Propagation (BP) Neural Algorithm, the

parameters of the neural network are updated in a batching mode. The final output is compared

with the desired output and the resulting error signal is obtained. This error signal is used to

 55

Equalization and Identification using ANN

update the weights and thresholds of the hidden layers as well as the output layer. The weights

and the thresholds are updated in an iterative method until the difference between the desired and

the estimated output becomes minimum. For measuring the degree of matching, the Mean

Square Error (MSE) is taken as a performance measurement.

The updated weights are,

 (6.5) () () ()1+ = +Δkl kl klw n w n w n

 () () ()1+ = +Δjk jk jkw n w n w n (6.6)

 (6.7) () () ()1+ = + Δij ij ijw n w n w n

Where, () () (), and Δ Δ Δkl jk ijw n w n w n are the changes in weights of the output, hidden

and input layer respectively.

() ()
() () ()

()

()
2

1

2 2

2

l
kl

kl kl

P

l kl k l
k

d n d

kl

y n
w n e n

dw n dw n

e n w f b w

ξ
μ μ

μ ϕ
=

Δ = − =

⎡ ⎤
′= +⎢ ⎥
⎣ ⎦
∑

 (6.8)

Where, μ is the convergence coefficient (0 1μ≤ ≤). Similarly the () and Δ Δjk ijw n w n() can be

computed.

 The back propagation algorithm provides an “approximation” to the trajectory in the

weight space computed by the method of steepest gradient rule. This algorithm has some

drawbacks. The smaller we make the learning parameterμ , the smaller the change in synaptic

weights, and the smoother will be the trajectory in weight space. The improvement, however, is

attained at the cost of a slower rate of learning. If, we make the learning rate much higher in

order to speed the rate of learning, the resulting large changes in the synaptic weights assume

such a form that the network may become unstable (i.e., oscillatory). Another demerit of this

algorithm is local minima. While the performance surface for a single layer has a single

minimum point, and constant curvature, the performance surface for a multilayer network may

have many local minimum points and the curvature can vary widely in different regions of the

parameter space. For this reason it is difficult to choose an appropriate learning rate for the

steepest descent rule. A simple method of increasing the rate of learning yet avoiding the danger

of instability is to modify the weight update rule by including a momentum rule as follows:

 56

Equalization and Identification using ANN

() () () ()1 1kl kl kl klw n w n w n w nα+ = + Δ + Δ −

() () () ()1 1jk jk jk jkw n w n w n w nα+ = + Δ + Δ −

() () () ()1 1ij ij ij ijw n w n w n w nα+ = + Δ + Δ −

 (6.9)

Where α is usually a positive number called the momentum constant having range between 0

and 1.

6.4 The FLANN

 The FLANN, initially proposed by Pao is a single layer ANN structure capable of forming

complex decision regions by generating nonlinear decision boundaries .It consists of a functional

expansion block and a single layer perceptron network. The main purpose of the functional

expansion block is to increase the dimension of the input pattern so as to enhance its

representation in a high-dimensional space. This enhanced space is then used for the system

identification problem. For this paper, we consider an m-dimensional input pattern at the kth

X

X
FE1

FE2

FE3

X1(1)

X5(5)

X2(1)

X2(5)

X3(1)

X3(5)

W1(k)

W5(k)

W6(k)

W10(k)

W11(k)

W15(k)

Adaptive Algorithm

e(k)

y(k)

Functional
Expansion

x1(k)

x2(k)

x3(k)

x2(k)=x1(k-1)
x3(k)=x1(k-2)

X

X

X

X

∑

d(k)
+

-∑

Fig.6.3. Block diagram for the FLANN system identification model

 57

Equalization and Identification using ANN

Instance given by T (k) = {T1 T2 ... Tm}. Each element in the vector is T(k) expanded into

several terms, which is obtained by using trigonometric functions and the first few terms are

given as :

)2cos()(
)2sin()(

)cos()(
)sin()(

1)(

4

3

2

1

0

xkT
xkT

xkT
xkT

kT

π
π
π
π

=
=
=
=
=

This network is then used for system identification problem .The FLANN network is trained

using the generalized delta-learning algorithm.

6.5 The Chebyschev Neural Network (CFLANN)

 The Chebyschev polynomials are a set of orthogonal Polynomials defined as the solution to

the Chebyschev differential equation and denoted as .It is similar to FLANN except the

difference is that the input vector into the functional block is now expanded with Chebyschev

polynomials. The higher order chebyschev polynomials for –1<x<1 can be generated using the

recursive formula given by

)(xTn

 (6.10))()(2)(11 xTxxTxT nnn −+ −=

The first few chebyschev polynomials are given as:

xxxxT
xxxT

xxxT

xxT

xxT
xT

52016)(
188)(

34)(

12)(

)(
1)(

35
5

24
4

3
3

2
2

1

0

+−=

+−=

−=

−=

=
=

The advantage of CHNN over FLANN is that the Chebyschev polynomials are computationally

more efficient than using trigonometric polynomials to expand the input space.

6.6 Recursive Least Square (RLS) Algorithms

 The algorithms that result from the gradient descent methods has the disadvantages that they

can be slow to approach the optimal weight vector and, once close to it, usually” rattle around”

the optimal; vector rather than actually converge to it, due to the effects of approximations made

in the estimate of the performance function gradient. To overcome these difficulties, another

 58

Equalization and Identification using ANN

approach is discussed in this section. Here we develop algorithms that use the input data {x,d} in

such a way as to ensure optimality at each step. If we can be done, then clearly the result of the

algorithm for the last data point is the overall optimal weight vector.

Suppose that we refine the sum squared performance function Jss by the expression

 ∑
−

−=

−=
1

1

2)()(
k

Nl
k ldlyJ , 11 −≤≤− LkN (6.11)

This form of J simply reflects how much data have been used so far. Clearly, JL uses all the

available data from k=0 to k=L-1. Suppose we define as the impulse response vector that o
kW

minimizes Jk .By this definition, equals , and the optimal impulse vector over all the o
LW 1−

o
ssW

data.

The motivation for developing”recursive-in-time” algorithms can be seen as follows. Suppose

x(l) and d(l) have been received for time up through k-1 and that has been computed. Now o
kW

suppose that x(k)and d(k)are received, allowing us to form

 2

1

2
1)()()()(kdkyJldlyJ k

k

Nl
k −+=−= ∑

−=

Δ

+ (6.12)

Wee desire to find some procedure by which can be updated to produce , the new o
kW o

kW 1+

optimal vector. If we can develop such a procedure, then we can build up the optimal weight

vector step by step until the final pair of data points x(L-1) are received. With these points, W o
L 1−

can be computed, which, by definition, is the global optimum vector . o
ssW

The update formula:

The simplest approach to updating is the following procedure: o
kW

(a) Update Rss via)()(,1, kXkXRR t
ksskss +=+

(b) Update Pss via)()(,1, kXkdPP ksskss +=+

 (c) Invert 1, +kssR

(d)Compute via o
kW 1+ 1,

1
1,1 +

−
++ = ksskss

o
k PRW

 59

Equalization and Identification using ANN

The autocorrelation matrix and cross correlation vectors are updated and then used to

compute . While direct, this technique is computationally wasteful. Approximately o
kW 1+

N3+2N2+N multiplications is required at each update, where N is the impulse response length,

and have that N3 are required for the matrix inversion if done with the classical Gaussian

elimination technique.

In an effort to reduce the computational requirement for this algorithm, we focus first on this

inversion. We notice that Gaussian elimination makes no use whatsoever have the special form

of or of the special form of the update from to . We now set out to take kssR , kssR , 1, +kssR

advantage of it. We do so by employing the well-known matrix inversion lemma, also sometimes

called the ABCD lemma,

 (6.13) 1111111)()(−−−−−−− +−=+ DACBDABAABCDA

We use this lemma by making the following associations:

 (6.14)

)(
1

)(

kXD
C

kXB
RA

t

k

=

=
=
=

With these associations, Rk+1 can be represented as

 (6.15) BCDAkXkXRR t
kk +=+=+)()(1

and is given by 1
1

−
+kR

)()(1

)()(
1

11
11

1 kXRkX
RkXkXR

RR
k

t
k

t
k

kk −

−−
−−

+ +
−= (6.16)

Thus, given and a new input x(k), hence X(k) , we can compute directly. We never 1−
kR 1

1
−
+kR

compute ,nor do we invert it directly. 1+kR

The optimal weight vector is given by o
kW 1+

 (6.17) 1
1
11 +

−
++ = Kk

o
k PRW

This can be obtained by combining (3.43) with update Pss

 60

Equalization and Identification using ANN

{ })()(.
)()(1

)()(
1

11
1

1 kXkdP
kXRkX

RkXkXR
RW k

k
t

k
t

k
k

o
k +

⎭
⎬
⎫

⎩
⎨
⎧

+
−=

−

−−
−

+

)()(1

)()()().(
)()(

)()(1
)()(

1

11
1

1

11
1

kXRkX
kXRkXkXRkd

kXRkd
kXRkX
PRkXkXR

PR
k

t
k

t
k

k
k

t
kk

t
k

kk −

−−
−

−

−−
−

+
−+

+
−= (6.18)

To simplify this result, we make the following associations and definitions. The kth optimal

weight vector:

 (6.19) o
kkk WPR =−1

The filtered information vector:

 (6.20))(1 kXRZ kk
−

Δ

=

The priori output:

 (6.21) o
k

t
o WkXky)()(

Δ

=

The normalized input power:

 (6.22))()()(1 kXRkXZkXq k
t

k
t −==

With these expressions, the optimal weight vector becomes o
kW 1+

k

t
k

t
k

k
k

t

o
k

t
ko

k
o

k ZkX
ZkXZkd

Zkd
ZkX

WkXZ
WW

)(1
)()(

)(
)(1
)(

1 +
−+

+
−=+

{ }
q

Zkykd
W

q
Zkd

q
kyZ

W

q
qZkd

kZkd
q
kyZ

W

koo
k

koko
k

koko
k

+
−

+=

+
+

+
−=

+
−+

+
−=

1
.)()(

1
)(

1
)(

1
)(

)()(
1

)(

 (6.23)

Equations (6.16) and (6.19)-(6.23) comprise the recursive least squares (RLS) algorithm.

Steps for RLS Algorithm:

The step-by-step procedures for updating are given in this section. This set of steps is o
kW

efficient in the sense that no unneeded variable is computed and that no needed variable is

 61

Equalization and Identification using ANN

computed twice. We do, however, need assurance that exists. The procedure then goes as 1−
kR

follows:

(i) Accept new samples x(k), d(k).

(ii) Form X(k) by shifting x(k) into the information vector.

(iii) Compute the a priori output yo(k) :

 (6.24))()(kxWky ot
ko =

(iv) Compute a priori error eo (k):

 (6.25))()()(kykdke oo −=

(v) Compute the filtered information vector Zk :

 (6.26))(1 kXRZ kk
−=

(vi) Compute the normalized error power q:

 (6.27) k
t ZkXq)(=

(vii) Compute the gain constant v:

q

v
+

=
1

1 (6.28)

(viii) Compute the normalized filtered information vector kZ~ :

 kk ZvZ .~ = (6.29)

(ix) Update the optimal weight vector to : o
kW o

kW 1+

 ko
o

k
o

k ZkeWW ~)(1 +=+ (6.30)

(x) Update the inversion correlation matrix to in preparation for the next iteration: 1−
kR 1

1
−
+kR

 t
kkkk ZZRR ~~11

1 −= −−
+ (6.31)

This procedure assumes that exists at the initial time in the recursion. As a result, two 1−
kR

initialization procedures are commonly used. The first is to build up and PkkR until R has full

 62

Equalization and Identification using ANN

rank, i.e. at least N input vectors X(k) are acquired. At this point is computed directly and 1−
kR

then Wk. Given these, the recursion can proceed as described above indefinitely or until k=L-1.

The advantage of the first technique is that optimality is preserved at each step. The major price

paid is that is about N3 computations are required once to perform that initial inversion.

 A second, much simpler approach is also commonly used. In this case is 1
1

−
−NR

initialized as:

 (6.32) Nn IR η=−
−
1
1

ˆ

Where η is a large positive constant and IN is the N-by-N identity matrix. Since almost 1
1

−
−NR

certainly will not equal η IN, this inaccuracy will influence the final estimate of and hence kR

Wk. A s a practical matter, however, η can usually be made large enough to avoid significant

impact on while still making invertible. Because of the simplicity and the low o
LW 1− 1−NR

computational cost, the second approach is the one of the most commonly used. It becomes even

more theoretically justifiable when used with the exponentially weighted RLS algorithm to be

discussed shortly.

The computational cost for the RLS algorithm:

As a prelude to developing even more efficient adaptive algorithms, we first should determine

how much computation is required to execute the RLS algorithm.

We define that the 10 steps in the procedure can be grouped by their computational complexity:

(a) Order 1: Steps(iv) and (vii) require only a few simple operations, such as a subtraction or

an addition and division. These are termed as order1 and denoted O(1) because the

amount of computation required is not related to the filter order.

(b) Order N : Steps (iii), (vi), (viii), and (ix) each require a vector dot product, a scalar-vector

product, or a vector scale and sum operation. Each of these requires N additions for each

iteration of the algorithm .The actual number of multiplications required for these steps is

4N, but we refer to them as order N, or O(N) ,because the computation requirement is

proportional to N, the length of the filter impulse response.

 63

Equalization and Identification using ANN

(c) Order N2: Step (v), a matrix vector product, and step (x) , the vector outer product, both

require N2 multiplications and approximately N2 additions. These are termed O(N2)

procedures.

 The total number of computations needed to execute the RLS algorithm for each input sample

pair { x(k), d(k) } is 2N2+4N multiplications, an approximately equal number of additions ,and

on division. Because this amount of computation is required for each sample pair, the total

requirement of multiplications to process the sample window is

 CRLS = (L-N+1). 2N 2 + (L-N+1). 4N

There are several reasons for exploring and using RLS techniques:

(a) RLS can be numerically better behaved than the direct inversion of Rss;

(b) RLS provides an optimal weight vector estimate at every sample time, while the direct

method produce a weight vector estimate only at the end of the data sequence; and

(c) This recursive formulation leads the way to even lower-cost techniques.

Table 6.2

(Comparison of Computational Complexity between an L-Layer MLP, a FLANN and a

CFLANN in One Iteration with BP Algorithm)

Operations MLP FLANN CFLANN

Weights
∑
−

=
++

1

0
1)1(

L

l
ll nn)1(01 +nn)1(01 +nn

Additions
∑
−

=
+ −+

1

0
101 33

L

l
lll nnnnn 101)1(2 nnn ++ 101)1(2 nnn ++

Multiplications
∑∑
=

−

=
+ +−+

L

l
Ll

L

l
ll nnnnnn

1
10

1

0
1 234 001)1(3 nnn ++ 001)1(3 nnn ++

Tanh(.)
∑
=

L

l
ln

1

 1n 1n

Cos(.)/sin(.) --- 0n ---

 64

Equalization and Identification using ANN

6.7 Comparison of Computational Complexity

Here, we present a comparison of computational complexity between an MLP and FLANN

structure trained by the BP algorithm and CFLANN structure trained by RLS algorithm. Let us

consider an L -layer MLP with number of nodes (excluding the threshold unit) in layer l ,

where and are the number of nodes in the input layer and output layer,

respectively. Three basic computations, i.e., the addition, the multiplication and the computation

of are involved for updating the weights of an MLP. In the case of FLANN, in addition,

computations of are also involved. The computations in the network are due to

ln

Ll ,,1,0 K= 0n ln

tanh(.)

sin(.)cos(.) and

1) Forward calculation to find the activation value of all nodes of the entire network;

2) Back error propagation for calculation of square error derivatives;

3) Updating of the weights of the entire network.

The total number of weights to be updated in one iteration in an MLP structure is given by

where as in the case of a FLANN the same is only)1)1((
1

0
∑
−

=

=+
L

l
ll nn)1(0 +n . For the CFLANN

case all the cases for FLANN are same except here functions are not needed.

Since hidden layer does not exist in a FLANN and CFLANN , the computational complexity is

drastically reduced in comparison to that of an MLP. A comparison of computational load in

one iteration, for an MLP and a FLANN structure is provided in Table 6.2.

sin(.)cos(.) and

6.8 Simulation and Results

 Extensive computer simulations were carried out for MLP,FLANN and CFLANN structures.

For both System Identification and Channel Equalization problem, a uniformly distributed

random signal over the interval [-.5,.5] was applied to the FIR structure and a white Gaussian

noise of 30dB was added to the output of the system. The learning parameter μ was suitably

chosen for each structure to obtain best result.

 Four different channels were studied with the following transfer function:

21

21

21

21

341.0876.0341.0:4
304.0903.0340.0:3
260.0930.0260.0:2
209.0995.0209.0:1

−−

−−

−−

−−

++=

++=

++=

++=

zzCH
zzCH
zzCH
zzCH

 65

Equalization and Identification using ANN

To study the effect of nonlinearity on the system performance four different nonlinear channel

models with the following nonlinearities has been introduced.

))((9.0)()(:3
)(1.0)(2.0)()(:2

))(tanh()(:1
)()(:0

3

32

kakakbNL
kakakakbNL

kakbNL
kakbNL

−==

−+==

==
==

The Convergence Characteristic

The convergence characteristics for CH=2 at SNR of 30 dB is simulated for the linear and

nonlinear models. From MSE plot of the System Identification for NL=0,NL=1 and NL=3 was

given. The MSE floor corresponding to the steady state value of the MSE is obtained after

averaging over 100 independent runs each consisting of 3000 iterations to obtain optimal weight.

The learning parameter μ is chosen to be 0.02. It can be observed that LMS based FLANN based

structure shows much faster convergence and better MSE floor than MLP. Where as CFLANN updated

with RLS shows faster and better convergence and it takes much less iteration than FLANN and MLP

updated with LMS. Where as the repose matching plots for all the MLP, FLANN and CFLANN structure

is same.

MSE = Mean Square Error

0 500 1000 1500 2000
-40

-30

-20

-10

0

 No of iteration

 M
S

E
 in

 d
B

MLP

CFLANN

FLANN

MLP

FLANN

CFLANN

0 5 10 15 20
-1

-0.5

0

0.5

1

 No of iteration

 re
sp

on
se

 m
at

ch
in

g

desired
CFLANN
FLANN
MLP

6.4(a) 6.4(b)

Fig.6.4 (a),(b) corresponds to the respective MSE and response matching plot of MLP, FLANN

and CFLANN structure with the desired signal of NL=0.

 66

Equalization and Identification using ANN

0 500 1000 1500 2000
-40

-30

-20

-10

0

 No of iteration

 M
S

E
 in

 d
B

MLP
CFLANN
FLANN

MLP

CFLANN

FLANN

0 5 10 15 20
-1

-0.5

0

0.5

1

 No of iteration

 re
sp

on
se

 m
at

ch
in

g

desired
CFLANN
FLANN
MLP

6.5(a) 6.5(b)

Fig.6.5 (a),(b) corresponds to the respective MSE and response matching plot of MLP, FLANN

and CFLANN structure with the desired signal of NL=1.

0 500 1000 1500 2000
-30

-25

-20

-15

-10

-5

0

 No of iteration

 M
S

E
 in

 d
B

MLP
CFLANN
FLANN

MLP

FLANN

CFLANN

0 5 10 15 20
-1

-0.5

0

0.5

1

 No of iteration

 re
sp

on
se

 m
at

ch
in

g

desired
CFLANN
FLANN
MLP

6.6(a) 6.6(b)

Fig.6.4 (a),(b) corresponds to the respective MSE and response matching plot of MLP, FLANN

and CFLANN structure with the desired signal of NL=1.

BER performance study
The BER provides the true picture of the performance of an equalizer. The computation of BER
was carried out for the channel equalization using the three ANN structures and one FIR based
structure updated with RLS algorithm is carried out. From the extensive computer simulation it

 67

Equalization and Identification using ANN

is seen that for all the linear and non linear cases works better than MLP and RLS based structure
and performs almost same and in some cases better than FLANN structure with less no of

computational complexity and faster convergence.

0 5 10 15 20
-4

-3

-2

-1

0

 SNR in dB

 B
E

R

LMS
MLP
FLANN
CFLANN

0 5 10 15 20
-4

-3

-2

-1

0

 SNR in dB
 B

E
R

LMS
MLP
FLANN
CFLANN

 6.7(a) 6.7(b)

0 5 10 15 20
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 SNR in dB

 B
E

R

LMS
MLP
FLANN
CFLANN

0 5 10 15 20
-4

-3

-2

-1

0

 SNR in dB

 B
E

R

LMS
MLP
FLANN
CFLANN

 6.7.(c) 6.7(d)

 68

Equalization and Identification using ANN

0 5 10 15 20
-4

-3

-2

-1

0

 SNR in dB

 B
E

R

LMS
MLP
FLANN
CFLANN

6.7(e)

Fig.6.7 (a), (b), (c), (d), (e), corresponds to the respective BER plot for RLS, MLP, FLANN

and CFLANN equalizer structure with NL=0,NL=1,NL=2,NL=3 and NL=4

6.9 Summary

 The present paper proposes a novel Chebyschev Functional Link ANN model for

identification of nonlinear systems and equalizer structure for adaptive channel equalization with

noise. Since it is a single layer structure and uses Chebyschev polynomials for expansion instead

of trigonometric expansion it offers advantage in terms of computational complexity over MLP

and FLANN structure. For faster and efficient training the RLS algorithm has been employed.

Simulation study using known nonlinear plants has been carried out employing FLANN, MLP

and the proposed model results show that the proposed model outperforms the other two models

both in terms of convergence rate, MSE floor and BER performance. This structure may

efficiently used in other signal processing applications including noise cancellation, prediction,

system identification and control.

 69

Chapter 7

ONLINE

SYSTEM IDENTIFICAION

Online System Identification

7.1. Introduction

Identification of a complex dynamic plant is a major concern in control theory. This interest

stems from the need to give new solutions to some long standing necessities of automatic

control; to work with more and more complex systems, to satisfy stricter design criteria, and to

fulfill previous points with less and less a priori knowledge of the plant. In this context, a great

effort is being made within the area of system identification, towards the development of

nonlinear models of real processes [7.1].

Because of nonlinear signal processing and learning capability, artificial neural networks

(ANN’s) have become a powerful tool for many complex applications including functional

approximation, nonlinear system identification and control, pattern recognition and

classification, and optimization. The ANN’s are capable of generating complex mapping

between the input and the output space and thus, these networks can form arbitrarily complex

nonlinear decision boundaries.

In contrast to the static systems that are described by algebraic equations, the dynamic systems

are described by difference or differential equations. It has been reported that even if only the

outputs are available for measurement, under certain assumptions, it is possible to identify the

dynamic system from the delayed inputs and outputs using a multilayer perceptron (MLP)

structure [7.2]. Narendra and Parthasarathy proposed the problem of nonlinear dynamic system

identification using MLP structure trained by BP algorithm [7.3], [7.4]. At present most of the

works on system identification using neural networks are based on multilayer feed forward

neural networks with back propagation learning or more efficient variations of this algorithm n

Identification based control approaches are reported in [7.8]-[7.9]. An approach for integrating

evolutionary computation applied to the problem of system identification is presented in [7.10].

These methods have been applied to real processes and they have shown an adequate behaviour.

However, most of the schemes for system identification have been demonstrated through

empirical studies, or convergence of the output error has been shown under ideal conditions

except in [7.11]. where detailed convergence analysis is given. As an alternative to the MLP,

there has been considerable interest in radial basis function (RBF) networks [7.12]–[7.15],

primarily because of its simpler structure. The RBF networks can learn functions with local

variations and discontinuities effectively and also possess universal approximation capability

[7.15]. This network represents a function of interest by using members of a family of compactly

or locally supported basis functions, among which radially symmetric Gaussian functions, are

 70

Online System Identification

found to be quite popular. A RBF network has been proposed for effective identification of

nonlinear dynamic systems [7.16], [7.17]. In these networks, however, choosing an appropriate

set of RBF centers for effective learning, still remains as a problem. Considering as a special

case of RBF networks, the use of wavelets in neural networks has been proposed [7.18], [7.19].

In these networks, the radial basis functions are replaced by wavelets, which are not necessarily

radial-symmetric. Wavelet neural networks for function learning and nonparametric estimation

can be found in [7.20], [7.21].

Originally, the Pao [7.22] proposed Functional link ANN (FLANN). He has shown that, this

network may be conveniently used for function approximation and pattern classification with

faster convergence rate and lesser computational load than an MLP structure. The FLANN is

basically a single layer neural network and the need of the hidden layer is removed and hence,

the BP learning algorithm used in this network becomes very simple. The functional expansion

effectively increases the dimensionality of the input vector and hence the hyper planes generated

by the FLANN provide greater discrimination capability in the input pattern space. Pao et al.

have reported identification and control of nonlinear systems using a FLANN [7.23]. Chen and

Billings [7.24] have reported nonlinear dynamic system modeling and identification using three

different ANN structures. They have studied this problem using an MLP structure, a radial basis

function (RBF) network and a FLANN and have obtained satisfactory results with all the three

networks.

Pattern classification using Chebyschev neural networks has been reported in [7.25].It has been

proved that Chebyschev neural network (CNN) has powerful representation capabilities whose

input is generated by using a subset of Chebyschev polynomials [7.26]. CNN is a functional link

networks based on Chebyschev polynomials. Being a single layer neural network, its

computational complexity is less intensive as compared to (MLP) and can be used for on-line

learning. Pattern classification using CNN has been reported in [7.25]. System identification

using CNN in discrete time domain is reported in [7.27] where it is shown that CNN based

identification requires less computation as compared to MLP. Additionally, the identification

method uses off-line training of discrete time plants. In [7.28] on-line system identification using

CNN of SISO systems in both discrete and continuous time domain is taken up.

 The primary purpose of this chapter is to develop a computationally efficient and accurate

algorithm for on-line system identification that is applicable to a variety of problems. This paper

highlights the use of Chebyschev neural network models to identify time series problem as well

 71

Online System Identification

as discrete time plants. The identification scheme exhibits a learning-while-functioning feature

instead of learning-then-functioning, so that the identification is on-line without any need of off-

line learning phase. The training scheme is based on recursive least squares algorithm which

guarantees convergence of the Chebyschev neural network weights. The proposed scheme also

ensures good performance in the sense that the identification error is small and bounded. The

convergence issue is shown through Lyapunov stability theory. The results are compared with

certain existing identification algorithm.

7.2. Problem Statement

Plant

 ANN
 model

u(k)

d(k) y(k+1)

+

__

)1(+
∧

ky

e(k+1)

 Fig.7.1. Basic Block diagram System Identification Model

The method for system identification of a time invariant, causal, discrete time plant is depicted in

Fig.7.1. the plant is excited by a signal , and the output)(ku)1(+ky is measured. The plant is

assumed to be stable with known parameterization but with unknown values of the parameters.

The objective is to construct a suitable identification model which when subjected to the same

input as the plant, produces an output which approximates)(ku)1(+ky in the sense described

by ε≤−
∧

yy for some desired 0>ε and a suitably defined norm. The choice of the

identification model and the method of adjusting its parameters based on the identification error

constitute the two principal parts of the identification problem. This method of identification is

applied to time series problem and SISO and MIMO discrete time plants.

 72

Online System Identification

The SISO and MIMO plants are described by the difference equations:

Model 1:

)()]1(

),....,(),([)(

)1(
1

0

kdmku

lkukugiky

ky
n

i
i

++−

−+−=

+

∑
−

=

α (7.1)

Model 2:

 (7.2)

∑
−

=

+−+

+−−=
+

1

1

)()1(

)]1(),....,1(),([
)1(

m

i
i kdku

nkykykyf
ky

β

Model 3:

 (7.3)
)()]1(),....,1(),([

)]1(),....,1(),([
)1(

kdmkukukug
nkykykyf

ky

++−−+
+−−=

+

Model 4:

 (7.4)
)()]1(),....,1(),(

),1(),....,1(),([
)1(

kdmkukuku
nkykykyf

ky

++−−
+−−=

+

Where , and represent the input of the plant, output of the plant and disturbance

acting on the plant, respectively, at the kth instant of time. Here,

with

)(ku)(ky)(kd

,(.),(.) nn gf ℜ∈ℜ∈

nmn
i

mn
i

nn k ∈)(duky ℜℜ∈ℜ∈ℜ∈ℜ∈ ×× ,,,(.),)(βα Mdkd ≤)(a known constant.

These four models taken from the literature represent a fairly large class of systems. The ability

of neural networks to approximate large classes of nonlinear function makes them prime

candidates for the identification of nonlinear plants. Under fairly weak conditions on the

functions and/o f g , CNN can be constructed to approximate such mappings over compact

sets.

7.3. Chebyschev Neural Network

7.3.1 Structure of CNN

Chebyschev neural network is a single layer NN structure. CNN is a functional link network

(FLANN) based on Chebyschev polynomials. One way to approximate a function by a

polynomial is to use a truncated power series. The power series expansion represents the

 73

Online System Identification

function with very small error near the point of expansion, but the error increases rapidly as we

employ it at points farther away. The computational economy to be gained by Chebyschev series

increases when the power series is slowly convergent. Therefore, Chebyschev series are

frequently used for approximations to functions and are much more efficient than other power

series of the same degree. Among orthogonal polynomials, the Chebyschev polynomials occupy

an important place, since, in the case of a broad class of functions, expansions in Chebyschev

polynomials converge more rapidly than expansions in other set of polynomials. Hence, we

consider the Chebyschev polynomials as basis functions for the neural network.

The Chebyschev polynomials can be generated by the following recursive formula:

 1)(),()(2)(011 =−= −+ xTxTxxTxT iii (7.5)

For example, consider a two dimensional input pattern . An enhanced pattern

obtained by using Chebyschev functions is given by:

TxxX][21=

 (7.6) TxTxTxTxT)....]2()2()....2()1(1[2121=φ

Where is a Chebyschev polynomial, ithorder of polynomials chosen and j = 1, 2. The

different choices of are

)(ji xT

)(1 xT 1212,2, +− xandxxx . In this chapter, is chosen as)(1 xT x .

The following results are stated for the function approximation capability of CNN in the form of

Theorem1.

Theorem 1: Assume a feed forward MLP neural network with only one hidden layer and

activation functions of the output layer are all linear. If all the activation functions of the hidden

layer satisfy the Riemann integrable condition, then the feed forward neural network can always

be represented as a Chebyschev neural network. The detailed proof of the theorem can be found

in [29].

The architecture of the CNN consists of two parts, namely numerical transformation part and

learning part. Numerical transformation deals with the input to the hidden layer by approximate

transformable method. The transformation is the functional expansion (FE) of the input pattern

comprising of a finite set of Chebyschev polynomials. As a result the Chebyschev polynomial

basis can be viewed as a new input vector. The learning part is a functional link neural network

based on Chebyschev polynomials.

The output of the single layer neural network is given by:

 (7.7) φ
T

Wy
∧∧

=

 74

Online System Identification

Where are the weights of the neural network given by .
∧

W TwwW]21[=
∧

A general nonlinear function can be approximated by CNN as: StxSCxf n ∈∈)(),()(

 (7.8) εφ +=
∧ T

Wxf)(

Where ε is the CNN functional reconstruction error vector. In CNN, functional expansion of the

input increases the dimension of the input pattern. Thus, creation of nonlinear decision

boundaries in the multidimensional input space and approximation of complex nonlinear systems

becomes easier.

7.3.2. Learning Algorithm

The problem of identification consists in setting up a suitably parameterized identification model

and adjusting the parameters of the model to optimize a performance function based on the error

between the plant and identification model outputs. CNN, which is a single layered neural

network, is linear in the weights and nonlinear in the inputs is the identification model used in

this paper. We shall use the recursive least squares method with forgetting factor as the learning

algorithm for the purpose of on-line weight updation. The performance function to be minimized

is given by:

 ∑
=

−=
k

i

ik ieE
1

2)(λ (7.9)

The algorithm for the discrete time model is given by:

)()1()(1
)()1()(

)()()1()(

1

1

nnPn
nnPnk

nenknWnW

T φφλ
φλ
−+

−
=

+−=

−

−

∧∧

 (7.10)

)1()()()1()(
)()()(

11 −−−=

−=
−−

∧

nPnnKnPnP
nynyne

Tφλλ
 (7.11)

Whereλ is the forgetting factor and φ is the basis function formed by the functional expansion

of the input and is a positive constantccIP ,)0(= 00 ,)(RRtP < is a constant that serves an

upper bound for)(tP . All matrix and vectors are of compatible dimension for the purpose of

computation. The following assumption is needed for the stability analysis.

A3. The ideal weights of the CNN are bounded so that MWW ≤∗ where are the ideal

weights. We only need to know that ideal weights exist to prove the convergence analysis. The

∗W

 75

Online System Identification

exact values of the ideal weights need not be known as they are not required for the purpose of

identification.

7.3.3. Stability Analysis

The convergence of CNN weights is shown through Lyapunov stability theory. Consider a

Lyapunov function candidate:

 (7.12))(~)()(~ 1 nWnPnWV Tnk
n

−−= λ

Where,

 . (7.13))()()(~ nWnWnW
∧

∗ −=

Then

 (7.14)
)1(~)()(~ 1

1

−=

−=Δ
−−

−

nWnPnW

VVV
Tnk

nnn

λ

From (7)

)1(~)1()(

)()()1(~)(~

1 −−=

−−=
− nWnPnP

nenknWnW T

λ
 (7.15)

Thus,

0
)()1()(

)(

)1(~)1()]1(~)(~[
21

11

<
−+

−
=

−−×−−=Δ
+−

−+−

nnPn
ne

nWnPnWnWV

T

nk

TTnk
n

φφλ
λ

λ
 (7.16)

This shows that and . By using Lyapunov second method, 0<nV 0<Δ nV 0~ →W as ∞→n this

implies that . ∞→→ nasWnW *)(

Table 7.1

(Comparison of the number of variables chosen and the MSE obtained using Chebyschev neural

networks.)

No. of inputs Inputs chosen Mean Square error

2 y(k-1),u(k-4) 9.214

3 y(k-1,u(k-1),u(k-2) 0.1016

6 y(k-1),y(k-2),y(k-3),u(k-1),u(k-2),u(k-3) 0.0695

10 y(k-1),…,y(k-4).u(k-1),…,u(k-6) 8.6684

 76

Online System Identification

Table 7.2

(Mean square error comparison by different identification methods)

Model Identification method Mean Square Error

Kukolj and Levi [7.14] Neuro-fuzzy (off-line) 0.129

Oh and Pedryez [7.10] Polynomial NN (off-line) 0.027

Proposed model Chebyschev NN (on-line) 0.0695

7.4 Simulations

The developed model is now applied to three different problems: Box Jenkins identification

problem, a SISO and a MIMO problem. The CNN identifier derived here require no apriori

knowledge of the dynamics of the nonlinear system. Moreover no offline learning phase is

required.

7.4.1. Box and Jenkins’ Identification Problem

Box and Jenkins’ gas furnace data are frequently used in performance evaluation of system

identification methods. The data can be obtained from the site

http://www.stat.wisc.edu/_reinsel/bjr-data/gasfurnace. The example consists of 296 inputs–

output samples recorded with a sampling period of 9 s. The gas combustion process has one

variable, gas flow u(k), and one output variable, the concentration of CO2, y(k). The

instantaneous values of output y(k) have been regarded as being influenced by six

variables).3(),2(),1(),3(),2(),1(−−−−−− kukukukykyky In the literature, the number of

variables influencing the output varies from 2 to 10. In the proposed method, six variables were

chosen after several trials. Table 7.1. gives a comparison of the number of variables chosen and

the MSE obtained using Chebyschev neural networks. The MSE turned out to be the least with

six variables. Fig 7.2. shows actual and estimated values, obtained by means of the proposed on-

line neuro-identification model. An MSE of 0.0695 was achieved with the weights of the CNN

initialized to zero and each of the six inputs in to two terms. The result achieved belongs to the

category of the best available results that have been reported in the literature. The results

obtained by the proposed method have been compared with two of the results that have been

recently reported in the literature in Table 7.2. Each model is identified by the name of the

author, publication year and reference number. The next column lists the model used and the

 77

Online System Identification

0 50 100 150 200 250 300

44

46

48

50

52

54

56

58

60

62

No of iteration

m
at

ch
in

g

desired
estimated

 Fig.7.2. response matching plot for the Box and Jenkins’ Identification problem

mode of identification (on-line or off-line). The last column illustrates the accuracy of the model

using MSE. Table 7.2. Contrasts the performance of the proposed method with the other two

models studied recently in the literature based on off-line techniques. The results clearly reveal

that the proposed method being fast and simple can be used on-line whereas the other two

methods being off-line methods involve a training phase and a testing phase. Moreover, the

proposed model clearly outperforms [7.4] and also [7.10] where it can be seen that the MSE in

the testing data is 0.085. The detailed comparisons of the various methods reported in the

literature can be found in [7.4] and also [7.10]. When the six inputs are expanded into three terms

the MSE in this case as can be seen from Table 7.3 is 0.1572. Table 7.3 gives the MSE for the

proposed model for inputs expanded to different number of terms along with the number of

weights to be updated in the CNN. From this table it becomes clear that when the order of the

Chebyschev polynomial expansion is taken as two, the MSE is minimum. Therefore, for this

problem we have expanded the six inputs to two terms each.

 78

Online System Identification

Table 7.3

(MSE for the proposed model for inputs expanded to different number of terms along with the

number of weights to be updated)

No of Chebyschev

Polynomials

No. of weights of CNN Mean Squared Error

1 7 0.0740

2 13 0.0695

3 19 0.1572

4 25 8.7764

Table 7.4

(Comparison of computational complexity and performance between (CNN and MLP))

 Number of CNN MLP

 Weights 11 120

 Tan h - 20

 MSE 41077.2 −× 41015.5 −×

7.4.2. SISO Plant

We consider a single input single output discrete time plant described by [7.26].

)]1(),(),2(),1(),([)1(−−−=+ kukukxkxkxfkx (7.17)

 (7.18))]1(),(),2(),1(),([)1(−−−=+
∧∧

kukukxkxkxfkx

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤<⎟
⎠
⎞

⎜
⎝
⎛

≤<⎟
⎠
⎞

⎜
⎝
⎛

=
2500

250
2sin8.0

2500
250
2sin

)(
kfork

kfork

ku
π

π

 (7.19)

Where the unknown nonlinear function f is given by:

)1(

))1(
],,,[2

3
2

2

435321
5432,1 aa

aaaaaa
aaaaaf

++
+−

= (7.20)

To identify the plant, the model is governed by the difference equation given by and is

estimated using a CNN. For the CNN, the input

)1(+
∧

kx
∧

f

)}1(),(),2(),1(),({ −−− kukukxkxkx is

 79

Online System Identification

expanded to 11 terms using Chebyschev polynomials. The input to the actual system and the

neural network model is given by Eq (7.20). The CNN weights are initialized to zero. Weights of

0 100 200 300 400 500 600
-8

-6

-4

-2

0

2

4

6

No of ieration

 m
at

ch
in

g

desired
estimated
error

 Fig.7.3. Response matching plot of the SISO Plant

the CNN are updated using the algorithm given by Eq. (7.10). The performance of the proposed

CNN is compared with that of an MLP. For this purpose, the MLP architecture, initial weights of

the neural network, the parameters of the learning law and the learning law are the same as used

by them. Matlab’s randn (-) function is used to generate noise, with mean value zero and

covariance value . This noise is then added to the true output obtained from the system

given by Eq (7.17). The performance of the identification model with this noise level is shown in

12)01.0(−s

Fig 7.3 for CNN. In both the cases the performance is satisfactory. A standard quantitative

measure for performance evaluation is the mean squared error. Table 7.4 gives a comparison of

the computational complexity and the performance of the proposed method using CNN and the

method proposed by Yu and Li using MLP. From Table 7.4 it becomes clear that the CNN is not

only computationally less intensive but also gives a better performance as compared to MLP.

 80

Online System Identification

7.4.3. MIMO Plant

Consider the two input two output nonlinear discrete time system described by [7.5]

 ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+
=⎥

⎦

⎤
⎢
⎣

⎡
+
+

)(
)(

)(
)(

)(1
)(

)(1
)(

)1(
)1(

2

1

2

1

2
1

1

2
1

2

2

1

kd
kd

ku
ku

kx
kx

kx
kx

kx
kx

 (7.21)

 (7.22)
)](),(),(),([)1(

)](),(),(),([)1(

212122

212111

kukukxkxfkx

kukukxkxfkx

=+

=+
∧

∧

Where the inputs u1(k) and u2(k) is given by:

⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛=

100
2sin)(

100
2cos)(

2

1

kku

kku

π

π

 (7.23)

A single CNN with two outputs is used to approximate . For the CNN, the inputs

are which are expanded to nine terms using Chebyschev

polynomials. The neural network weights are initialized to zero. The weights of the neural

network are updated using the algorithm given by Eq (7.10). A white Gaussian noise with mean

zero and covariance of is then added to the true output obtained from the system given by

Eq (7.21).Fig 7.4(a),(b) and Fig 7.5(a),(b) (presents the responses of the identifier for the

proposed algorithm without and with noise condition. The upper graph gives the actual output,

estimated output and error of the first output and the lower graph for the second output. It is clear

from these figures that the response of the identifier is extremely impressive though the noise

condition is extremely high.

21 fandf

)}(,)(,)(,)({ 2121 kxkxkuku

2)03.0(

 81

Online System Identification

0 500 1000 1500 2000

-1.5

-1

-0.5

0

0.5

1

1.5

No of iteration

m
at

ch
in

g
desired
estimated
error

0 500 1000 1500 2000

-1.5

-1

-0.5

0

0.5

1

1.5

No of ieration

m
at

ch
in

g

desired
estimated
error

 7.4 (a) 7.4(b)

 Fig 7.4.(a),(b) are the corresponding matching of desired ,estimated

 and error plot of output1 and output2 without noise

0 500 1000 1500 2000
-2

-1

0

1

2

No of ieteration

m
at

ch
in

g

desired
estimated
error

0 500 1000 1500 2000
-1.5

-1

-0.5

0

0.5

1

1.5

No of iteration

m
at

ch
in

g

desired
estimated
error

 7. 5(a) 7.5(b)

 Fig 7.5.(a),(b) are the corresponding matching of desired ,estimated

 and error plot of output1 and output2 with noise

7.5 Summary

In this chapter, we have presented identification schemes in a feed forward neural network

framework that ensures identification of general nonlinear dynamical systems with smooth

nonlinearities. Our proposed scheme firstly does not need any off-line training, secondly requires

 82

Online System Identification

no initialization of neural network weights. Initially, the neural network weights are assumed to

be zero. As the neural network structure is single layer network, it is computationally fast and

simple. The proposed method is applied to a time series problem and nonlinear SISO and MIMO

discrete time systems. It is important to remark that the identification model formed in this way

can be used to characterize a wide class of very diverse problems. The recursive least squares

algorithm captures the dynamics of the systems through the updation of the weights of the neural

network model. The computational efficiency and the accuracy of the proposed methodology

make it very well suited for applications in the design of on-line adaptive identification models

for a wide class of complex systems. Currently, work is going on the use of evolutionary

computation with CFLANN structure to approximate time series problem and to identify the

time varying discrete time system.

 83

Chapter 8

CONCLUSION
AND REFERENCES

Conclusion and References

8.1 Conclusion

In this thesis with extensive computer simulation we have studied about the behavior of the

nonlinear systems and channels with different types of linear and nonlinear structures like FIR,

MLP, FLANN and CFLANN with different types of algorithm. The objective of this research is

to evaluate the performance of the proposed model for the linear and nonlinear identification,

equalization problem.

Through computer simulation we have seen that BLMS algorithm works much faster and gives

better bit error rate performance than the conventional than the conventional LMS algorithm for

System Identification and Channel Equalization problem. Furthermore efficient block algorithms

such as the Fast Fourier Transform (FFT) was used to advantage in terms of faster convergence

and less mathematical complexity when implementing block filters in frequency domain but its

performance degrades for nonlinear conditions.

We have discussed and simulated a lot of nonlinear structures for nonlinear problems such as

MLP, FLANN and CFLANN. Since RLS algorithm works much faster than the conventional

LMS algorithm we have combined it with CFLANN structure and the proposed structure works

much better than its counterparts in terms of faster convergence, less mathematical complexity,

better MSE floor and BER plot in case of non linear equalizer case.

In the chapter,6 the proposed structure was successfully tested with non-linear dynamic systems

Such as Box and Jenkins problem, SISO and MIMO plant identification problem ands its value

was compared with standard nonlinear structures and it was seen that our proposed scheme much

better than its counterpart. It was concluded that the proposed structure exhibits can learning-

while functioning instead of learning then functioning likes the other structures and needs no

offline-learning phase.

8.2 Future Work

Sometimes we face multimodal problems. There we fail to find the solution because of the

inability of the gradient-based algorithms to reach the global solution. In those cases stochastic

algorithms gives better result. Evolutionary computation technique such as Genetic Algorithm,

Bacteria Foraging, PSO many more gives better results in theses conditions. But these algorithms

takes a lots of time, so work should be carried on to develop some faster hybrid Evolutionary

algorithms and be implemented with these systems to give better results.

 84

Conclusion and References

8.3 References

Chapter1 References
[1.1] Haykin S., Neural Networks, Ontario Canada:Maxwell Macmillan, 1994

[1.2] Nguyen D. H. and Pidrow B. ,” Neural networks for self- Learning control System,”

Int. J. Contr., vol. 54, no. 6, 1931, pp. 1439- 1451.

[1.3] Pao Y. H., Adaptive Pattern Recognition and Neural Networks ,Reading, MA:

Addision-Wesley, 1989.

[1.4] Chen S., Billings S. A. and Grant P.M. , ”Recursive hybrid algorithm for Nonlinear

System identification using radial basis function networks,” Int. J. Contr. vol. 55, no.

5,1992 , pp. 1051- 1070.

[1.5] Panda G. and Das D. P. , "Functional Link Artificial Neural Network for Active

Control of Nonlinear Noise Processes", Intl. Workshop Acoust. Echo Noise Control

(IWAENC''03), Kyoto, Japan, pp.163-166, Sep. 2003.

[1.6] Namatame A. and Uema N. , "Pattern Classification with Chebyschev Neural

Network,” Neural Networks, , vol 3, Mar. 1992, pp. 23-31.

[1.7] Namatame A. and Ueda N. , Pattern classification with Chebyschev neural network,

Int. J. Neural Netw. Vol.3 (March) (1992), pp.23–31.

Chapter2 References
[2.1] Ljung L. , System Identification. Englewood Cliffs, NJ: Prentice-Hall, 1987

[2.2] Akaike H. , . “A new look at the statistical model identification”. IEEE Trans. on

Automatic Control, AC-19, 1974,pp.716-723, 1974

[2.3] Widrow Bernard and Streans Samuel D., Adaptive Signal Processing, Pearson

Education Publisher.

[2.4] Haykin Simon , . Adaptive Filter Theory, Pearson Education Publisher,2003

[2.5] Oppenheim A. V. and Schafer R. W. , Discrete-Time Signal Processing, Prentice-

Hall,1989.

[2.6] Proakis J. G. and Manolakis D. G. , Digital Signal Processing - Principles,

Algorithms,and Applications, Prentice Hall, 1996.

[2.7] Larimore M.G. , Treicheler J.R. and.jhnson, C.R. ”SHARF: an algorithm for adaptive

IIR digital filters,” IEEE Trans.Acoust.Speech Signal Process., vol. ASSP-28,

1980,pp.428,Aug..

 85

Conclusion and References

[2.8] Chen S. , Billings S. A. and Grant P. M. “Nonlinear system identification using neural

networks”, Int. J. Contr., vol. 51, no. 6 ,June 1990, pp. 1191-1214.

[2.9] Narendra K. S. and Parthasarathy K. “Identification and control of dynamic systems

using neural networks”, IEEE Trans. Neural Networks, vol. 1, Mar, 1990, pp. 4-27.

[2.10] Shynk J. J. “Adaptive IIR filtering,” IEEE Acoust., Speech, Signal,Processing Mag.,

1989,pp. 4–21.

[2.11] Regalia P. A. , Adaptive IIR Filtering in Signal Processing and Control., New York:

Marcel Dekker Inc., 1995.

[2.12] Crawford D.H. , Stewart R.W. and Toma E. , An Alternative and Effective Adaptive

IIR Filter Structure” .IEE Electronics Letters, Vol. 31: 26th October 1995pp 1906-1907.

Chapter3 References
[3.1] Chen, S., Mulgrew, B., McLaughlin, S., “Adaptive Bayesian Equaliser with Decision

Feedback”, ”, IEEE Trans Signal Processing, vol.41, no.9, , Sept. 1993,pp.2918-2927.

[3.2] Macchi, O., “Adaptive processing, the least mean squares approach with applications

in transmission”, West Sussex:England ,John Wiley and Sons, 1995.

[3.3] Siu, S., “Non-linear Adaptive Equalisation based on multi-layer perceptron

Architecture”, Ph.D. Thesis, Faculty of Science, University of Edinburgh, 1990

[3.4] Forney, G., “Maximum-likelihood sequence estimation of digital sequences in the

presence of inter-symbol interference”, IEEE Trans, inform, theory, vol.IT-18,

1972,pp.363-378,

[3.5] Qureshi, S., “Adaptive equalization”, Proceedings of the IEEE, vol.73, Sept. 1985,no.9,

pp.1349-1387.

Chapter4 References
[4.1] Burrus C. , “Block implementation of digital filters,” IEEE Trans. Circuit Theory, vol.

CT- 18, Nov. 1971.

[4.2] “Block realization of digital filters,” IEEE Trans. Audio Electroacoust., vol. AU-20 Oct.

1972.

[4.3] Oppenheim A. V. and Schafer R. W., Digital Signal Processing. tion of IIR digital

filters,” Proc. IEEE, vol. 65, July 1977.

[4.4] Rabiner L. R. and Gold B. , Theov and Application of Digital Signal E. 0. Brigham,The

Fast Fourier Transform. New Jersey: Prentice- Processing. New Jersey: Prentice-Hall,

1975.

 86

Conclusion and References

[4.5] Brigham E. 0., The Fast Fourier Transform. New Jersey: Prentice- Processing. New

Jersey: Prentice-Hall, 1975.

[4.6] Widrow B., McCool J., Larimore M., and Johnson C., “Stationary and nonstationary

learning characteristics of the LMS adaptive filter,” Proc. IEEE, vol. 64, August 1976.

[4.7] Widrow B., McCool J.,, “A Comparison of Adaptive Algorithms Based on theMethods

of Steepest Descent and Random Search,” IEEE Trans. Antennas and Propagation. Vol.

AP-24. No. 5. September 1976.

[4.8] Widrow B., Mantey P. E., Griffiths L. J., and Goode B. B., “Adaptive antenna

systems,” Proc. IEEE, vol. 55, Dec. 1967.

Chapter5 References
[5.1] Clark Gregory A. and Parker Sydney R.,”A Unified Approach to Time Domain

Realization of FIR Adaptive Digital Filters”IEEE Trans. Acoust., Speech, signal

Process., vol. ASSP-31,no.5, Oct. 1983,pp.1073-1083,

[5.2] Oppenheim A. V. and Schafer R. W., Digital Signal Processing. Engelwood, Cliffs, NJ:

Prentice-Hall, 1975

[5.3] Brigham E.O., The Fast Fourier Transform. Englewood Cliffs, NJ: Prentice-Hall, 1974

[5.4] Walzman T. and Schwartz M., “Automatic equalization using the discrete frequency

domain,” IEEE Trans. Inform. Theory, vol. IT-19, Jan. 1973, pp. 59-68.

[5.5] Maiwald D., Kaeser H. P., and Closs F., “On reducing the number of operations in

adaptive equalizers,” IBM Rep. RZ 918,31394, pp. 1-29, Sept. 1978

[5.6] Dentino M. McCool J., J., and Widrow B., “Adaptive filtering in the frequency

domain,” Proc. IEEE, vol. 66, Dec. 1978,pp. 1658-1659.

[5.7] Reed F. A. and Feintuch P. L., “A comparison of LMS adaptive cancellers implemented

in the frequency domain and the time domain,” IEEE Trans. Circuits Syst., vol. CAS-28,

June 1981, pp. 610-615, and IEEE Trans. Acoust., Speech, Signal Processing, Joint

Special Issue on Adaptive Signal Processing, vol. ASSP-29, June 1981,pp. 770-775.

[5.8] Bershad N. J. and Feintuch P. L., “Analysis of the frequency domain adaptive filter,”

Proc. IEEE, vol. 67, Dec. 1979, pp. 1658-1659.

[5.9] Ferrara E. R., “Fast implementation of LMS adaptive filters,”IEEE Trans. Acoust.,

Speech, Signal Processing, vol. ASSP-28, Aug.1980, pp.474-475.

 87

Conclusion and References

[5.10] Mansour D. and Gray A. H., Jr., “Unconstrained frequency domain adaptive filter,”

IEEE Trans. Acoust., Speech, Signal Processing “, vol. ASSP-30, Oct. 1982.,pp. 726-

734.

[5.11] Parikh D., Mansour D., and Markel J. D., “Study of echo canceling algorithms for full

duplex telephone networks with vocoders,” in Proc. ICASSP, Atlanta, GA, 1981, pp.

1074-1077.

Chapter6 References

[6.1] Haykin S., Neural Networks ,Ontario Canada, Maxwell Macmillan, 1994.
[6.2] Nguyen D. H., and Pidrow B., ”Neural networks for self- Learning control System,”

Int. J. Contr., vol. 54, no. 6, 1931, pp. 1439- 1451.

[6.3] Y. H., Adaptive Pattern Recognition and Neural Networks. Reading, MA: Addision-

Wesley, 1989.

[6.4] Chen S., Billings S. A., and Grant P.M., ”Recursive hybrid algorithm for nonlinear

System identification using radial basis function networks,” Int. J. Contr. vol. 55, no. 5,

1992,pp. 1051- 1070.

[6.5] Panda G. and Das D. P.,"Functional Link Artificial Neural Network for Active Control

of Nonlinear Noise Processes" Intl. Workshop Acoust. Echo Noise Control

(IWAENC''03), Kyoto, Japan, Sep. 2003, pp.163-166, .

[6.6] Namatame A. and Uema N., "Pattern Classification with Chebyschev NeuralNetwork,”

Neural Networks, vol 3, Mar. 1992, pp. 23-31.

[6.7] Haykin S. and Kailath Thomas, Adaptive Filter theory, Ontario Canada, 2002.

Chapter7 References
[7.1] Pachter M., Reynolds O.R., Identification of a discrete time Dynamical system,” IEEE

Trans. Aerospace Electronic Syst “, Vol.36 ,no 1, 2000, pp 212–225.

[7.2] Chen S., Billings S. A. and Grant P. M., “Nonlinear system identification using neural

networks,” Int. J. Contr., vol. 51, no. 6, 1990,pp. 1191–1214. “Recursive hybrid

algorithm for nonlinear system identification using radial basis function networks,” Int. J.

Contr., vol.

[7.3] “Neural networks and dynamical systems, Part II: Identification,” Tech. Rep. 8902, CT,.

vol 55, no. 5, Feb. 1989,pp. 1051–1070, Center Syst. Sci., Dept. Elect. Eng., Yale Univ.,

New Haven, winter 2006

 88

Conclusion and References

[7.4] Nguyen D. H. and Widrow B., “Neural networks for self-learning control systems,” Int.

J. Contr., vol. 54, no. 6, 1991, pp. 1439–1451.
[7.5] Jagannathan S., Lewis F.L., Identification of a class of nonlinear dynamical systems

using multilayer neural networks, in: IEEE International Symposium on Intelligent

Control Columbus, Ohio, USA, 1994), pp. 345–351.1994.

[7.6] W.T. Miller, Sutton R.S., Werbos P.J., Neural Networks for Control, MIT Press,

Cambridge, MA, 1990

[7.7] Narendra K.S., Parthasarthy K., Identification and control of dynamical systems using

neural networks, IEEE Trans. Neural Net. Vol.1 ,1990,pp 4–26.

[7.8] Kiong L.C., Rajeswari M., Rao M.V.C., Nonlinear dynamic system identification

andcontrol via constructivism inspired neural networks, Appl. Soft Comput.

,vol.3,no.3,2003,pp 237–257.

[7.9] Castillo O., Melin P., Intelligent adaptive model based control of robotic dynamic

systems with a hybrid fuzzy neural approach, Appl. Soft Comput. ,vol. 3 ,no. 4, 2003,pp

363–378.

[7.10] Montiel O., Castillo O., Melin P., Sepulveda R., The evolutionary learning rule for

system identification, Appl. Soft Comput. , vol. 3,no. 4, 2003.pp 343–352.

[7.11] Jagannathan S., Lewis F.L., Identification of a class of nonlinear dynamical systems

using Multilayer neural networks, in: IEEE International Symposium on Intelligent

Control, Columbus, Ohio, USA, 1994, pp. 345–351.

[7.12] Poggio T and Girosi F., “Networks for approximation and learning, ”Proc. IEEE, vol. 78,

Sep. 1990 pp. 1481–1497,.

[7.13] Moody J. and Darken C. J., “Fast learning in networks of locally-tuned processing

units,” Neural Comput., vol. 1, 1989, pp. 281–294,.

[7.14] Park J. and Sandberg I. W. , “Universal approximation using radial basis function

networks,” Neural Comput., vol. 3, 1991 pp. 246–257,

[7.15] Hartman E. J., Keeler J. D., and Kowalski J. M., “Layered neural networks with

Gaussian hidden units as universal approximation,” Neural Comput., vol. 2, 1990,pp.

210–215.

[7.16] Chen S., Billings S. A., and Grant P. M., “Recursive hybrid algorithm for nonlinear

system identification using radial basis function networks,” Int. J. Contr., vol. 55, no. 5,

1992, pp. 1051–1070.

 89

Conclusion and References

[7.17] Elanayar S. V. T. and Shin Y. C., “Radial basis function neural network for

approximation and estimation of nonlinear stochastic dynamic systems,” IEEE Trans.

Neural Networks, vol. 5, July 1994, pp. 594–603.

[7.18] Zhang Q. and Benveniste A., “Wavelet networks,” IEEE Trans. Neural Networks, vol.

3, Mar. 1992,pp. 889–898.

[7.19] Pati Y. C. and Krishnaprasad P. S., “Analysis and synthesis of feed forward neural

networks using discrete affine wavelet transforms,” IEEE Trans. Neural Networks, vol. 4,

Jan. 1993, pp. 73–85.

[7.20] Zhang J., Walter G. G., Miao Y., and Lee W. G. W., “Wavelet neural networks for

function learning,” IEEE Trans. Signal Processing, vol. 43, , June 1995, pp. 1485–1497.

[7.21] Zhang Q., “Using wavelet network in nonparametric estimation,” IEEE Trans. Neural

Networks, vol. 8, Mar. 1997,pp. 227–236.

[7.22] Pao Y.H., Phillips S. M. and Sobajic D. J., “Neural-net computing and intelligent

control systems,” Int. J. Contr., vol. 56, no. 2, 1992,pp. 263–289.

[7.23] Patra J. C, “Some studies on artificial neural networks for signal processing

applications,” Ph.D. dissertation, Indian Inst. Technol., Kharagpur, Dec. 1996.

[7.24] Elanayar S. V. T. and Shin Y. C., “Radial basis function neural network for

approximation and estimation of nonlinear stochastic dynamic systems,” IEEE Trans .

Neural Networks, vol. 5, July 1994,pp. 594–603.

[7.25] Namatame A. and Ueda N., “Pattern classification with Chebyschev neural networks,”

Intl. J. Neural Networks, vol. 3, Mar. 1992, pp. 23–31.

[7.26] Namatame A., in: Boubakins N. (Ed.), Connectionist Learning with Chebyschev Neural

Network and Analyses of its Internal Representation, World Scientific, 1991, pp. 33–48.

[7.27] Patra J.C., Kot A.C., Nonlinear dynamic system identification using chebyschev

functional link artificial neural networks, IEEE Trans. Syst. Man Cybern. B vol.32 ,no.

4,2002,pp 505–511.

[7.28] Purwar S., Kar I.N., Jha A.N., On-line system identification using Chebyschev neural

networks, in: Proceedings of IEEE TENCON-2003 Conference, Bangalore, India, 2003.

[7.29] Lee T.T., Jeng J.T., The chebyschev polynomial based unified model neural networks

for function approximations, IEEE Trans. Syst. Man Cybern. B 28 ,1998,pp 925–935.

 90

	CONTENTS.pdf
	2.1 Introduction 4
	3.1 Introduction 15
	 3.5.1 LMS Channel Equalization 20
	4.1 Introduction 22
	 4.4.2 Adoption Speed 28
	 4.4.3 Adoption Accuracy 28
	5.2 The Equivalence of Time and Frequency-Domain Fir Adaptive Filter 36
	5.5 Simulation and Results 47
	6.1 Introduction 51
	Chapter 7 Online System Identification

	niharthesis.pdf
	chpt1.pdf
	1.1 Introduction
	1.2 Motivation
	

	chpt22.pdf
	2.1. Introduction

	chpt3.pdf
	3.1 Introduction

	chpt4.pdf
	4.1 Introduction
	4.4.2 Adoption Speed
	4.4.3 Adoption Accuracy
	4.5.3 Complexity Analysis

	chpt5.pdf
	5.2 . The Equivalence of Time And Frequency-Domain FIR Adaptive Filter
	5.5 Simulation and Results

	chpt6.pdf
	6.1 Introduction
	
	
	The Convergence Characteristic
	
	BER performance study

	chpt8.pdf
	8.3 References
	Chapter1 References
	[1.1] Haykin S., Neural Networks, Ontario Canada:Maxwell Macmillan, 1994
	[1.2] Nguyen D. H. and Pidrow B. ,” Neural networks for self- Learning control System,” Int. J. Contr., vol. 54, no. 6, 1931, pp. 1439- 1451.
	Chapter2 References
	Chapter3 References
	Chapter4 References
	Chapter5 References
	Chapter6 References
	Chapter7 References

	CONTENTS.pdf
	2.1 Introduction 4
	3.1 Introduction 15
	 3.5.1 LMS Channel Equalization 20
	4.1 Introduction 22
	 4.4.2 Adoption Speed 28
	 4.4.3 Adoption Accuracy 28
	5.2 The Equivalence of Time and Frequency-Domain Fir Adaptive Filter 36
	5.5 Simulation and Results 47
	6.1 Introduction 51
	Chapter 7 Online System Identification

