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ABSTRACT. 

REAL - TIME ~:ICROPROCESSOR TECHtliQUES FOR A DIGITAL 
MULTITRACK TAPE RECORDE~. 

by 

Terence Donnelly 

Transport properties of a standard compact - cassette t~pe 

systen1 are measured and software techniques devised to configure 
a low - cost, tcl.irect digital recording systen1. . / 

Tape - velocity variati.on is typically ± 10% of standard speed 
over tape lengths of 5 ~m. with occasional variations of + 40%. 
Static tape - skew can result due to axial moven1ent of the tape 
reel when it spools. Dynamic tape skew occurs and is primarily 
caused by tape - edge curvature with a constant contribution 
due to the transport mechanism. Spectral ske1·1 CCJJr.r.onents range 
from 0.32 Hz to 8 Hz with magnitude normally within one 10 kbit/ 
;:o;ec- bit cell.The pinch roller works against the· friction of the 
tape guides to cause tape deformation. Averaae values of tape 
deformation are. 0.67 ~m, 0.85 ~m and 1.08 ~m for C60, C90 and 
Cl20 tape respectively. 

Parallel, software encoding I decoding algoritl1ms have been 
developed for several c:l1annel codes. Adaf:tive software methods 
permit track data rates up to 3.33 k bits/sec in a rnultitrack 
system using a simple microcomputer. For a 4 - track system, raw 
error rates vary from lO~at 500 bits/sec/track to 10-~at 3.33 
kbits/sec/track. Adartive software reduces skew - induced errors 
by 50%. A skew - correction technique has been ~eveloped and 
ir..plewented on an 8 - track systel7\ at a track ciata rate of 10 k 
bits/sec. 

Real - time error correction aives a theoretical corrected 
error rate of lo-ll for a ra1v error rate of 10-7 • r·Jultiple track 
errors can cause mis - correction and interleaving is advised. 
Software algorithm& have been devised for Reed - Solomon code. 
\•!ith a more rowerful microprocessor this code rcay be corkined 
with the above techniques in a layered error-corr·ecticn scheme. 

The software techniqu~s developed 
witt1 an N - bit computer. Recordinc 
usina thin - film, multitrack heads 

Ill 

may be applied to N tracks 
density may be incre;::.sed oy 

and a faster computer. 
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INTRODUCTION. 

The demand for high density, low - cost, information - storage 

products can be attributed to the development of the small 

computer and the ease and accuracy with which analogue 

can be processed and stored if first converted to 

signals 

digital 

form. The widespread use and application of microcomputers 

with ever increasing operating speeds has not been 

without storage systems capable of accommodating 

possible 

the vast 

quantities of data microcomputers can generate.Not only do these 

systems compute data at extremely high rates they also process 

data bits simultaneously in parallel. Digital techniques are now 

applied extensively in the analogue field. Audio signals are 

digitised and stored on optical disc or magnetic tape. Magnetic 

tape is also used to store digitised analogue signals in data -

logging applications and digital video tape recorders are under 

development. 

The vast majority of digital storage systems utilise magnetic 

recording techniques. The ffiarket for these products has been 

estimated to be worth 35 billion dollars in 1986 and growing at 

a rate of 20% per year [1]. 

The two principa[ magnetic media are the hard disc and the tape. 

Currently,>-Jinchester discs are capable of storing up to 5 Gbytes 

of data at rates up to 3 Mbytes,,ec. These devices require a 

highly sophisticated mechanised drive and read I ~rite head 

assembly to accoffiplish these high storage capabilities. Strict 

environmental condjtions must be maintained to exclude possible 
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contaminants such as dust and smoke which, with a flying height 

measured in thousands of angstrom units, could cause the head to 

crash. 

Although hard disc offers a higher data throughput than magnetic 

tape their areal storage density is some two orders less. 

Helical scan and multitrack formats utilise the full area of 

tape in rotary head and stationary head recorders to bring 

about a higher areal storage density for tape systems compared 

to disc. Also, magnetically recorded tape has a higher archival 

life than magnetic disc. The foregoing characteristics of 

magnetic tape make it suitable for disc backup in addition to 

being used as a stand alone storage device. 

In increasing the areal storage density of a magnetic tape 

system an increase in the complexity of the tape I head inter -

face is usually necessary. This often results in a higher degree 

of mechanical tape - transport sophistication and a reduction in 

robustness. Attendant with these "improvements'' is an increase 

in system cost and volume. As recording density increases so 

too does error rate. Tape flaws, poor signal - to - noise ratio 

and increased time jitter, serve to iP-crease the nurr~er of 

errors as a proportion of error - free data. 

Digital tape recorders either incorporate n1icroprocessor 

technology or are used in connection with a microcomputer 

system. In seeking to improve the performance of such a recorder 

an alternative strategy to increasing its mechanical complexity 

is to utilise the decision - making properties of the micro -

2 



computer. In applying such a device intelligent methods can he 

used to compensate for the mechanical 

transport. A further advantage of this 

vagaries of the 

approach is that, 

tape 

for a 

stationary - head nultitrack recorder, each track can be 

sin1ultaneously processed - one bit of the nicroprocessor to each 

track. 

This permits the microcomputer to be used to fulfill some of 

the recording I reproduce functions such as encoder I decoder, 

write amplifier, clock regenerator 

in l1ardwired electronics. 

etc. normally implemented 

The above approach has been adopted in the work reported on in 

this thesis. Microprocessor techniques have been applied to 

implement a low - cost, compact - cassette digital recording 

system. This follows n1easurements made on the tape - transport 

characteristics of such a system. The first chapter reviews the 

area of recording and assesses the relative performance of 

existing, low - cost, tape recording systems. In chapter 2 the 

characteristics of r.;agnetic recording systerJs are exar;;ined. 

The theory of error correction and recording codes follows with 

some analysis :- consideration here is given to real - tin1e, 

software implementation. Chapter 4 covers the design of hardware 

and software used in the configuration of a nu~Jer of recording 

systems after which the data generated oy such syster..s is 

presented. Finally, the results of the resea1·ch ;>rograr;a"Oe are 

discussed with conclusions. 
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CHAPTER 1. 

BACKGROUND TO THE INVESTIGATION. 

1.1. OVERVIEW OF MODERN RECORDING METHODS. 

Various techniques have been developed for recording information 

which can be represented by an electrical signal. Due to the 

advantages of digital representation and the demand created by 

the widespread application of low - cost digital computers these 

techniques are almost exclusively in the digital domain. 

A brief review of modern recording methods is given. These fall 

into three broad categories: magnetic~ optical and solid state. 

1.1.1. Magnetic Recording. 

Advantages of magnetic recording include reversibility and non -

volatility. Media in disk or tape form is inexpensive,robust and 

portable. However, the precision with which the media can be 

transported across the read/write head is important in 

determining the density at which data may be stored. For this 

reason, tape transport mechanisms and disc drives are often 

mechanically sophisticated and thus represent a major cost item 

in a magnetic recording system. 

The vast majority of magnetic recording devices utilise 

longitudinal recording. A magnetic layer is passed across the 

fringing field formed by the pole pieces of a ring - type record 

head.This results in magnetisation in the direction of the media 

travel. (figure 1.1.). 

A limiting factor associated with longitudinal recording is the 

5 
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demagnetising field generated by the recording patterns. As the 

magnetisation reversal region is decrGased the demagnetising 

field increases setting an upper limit to the packing density. 

Demagnetising effects may be reduced by increasing the 

coercivity of the magnetic coating and/or reducing its depth. 

Improvements in tl1ese parameters are limited,however,because of 

pole - tip saturation and the need to rc,aintain a sufficient 

u:agnetising-layer. thickness to allow for wear· Densities greater 

* tl1an 100,000 fci.are now possible with longitudinal recording. 

The above packing density may be increa.sed if tile recording 

is made perpendicular to the direction of meC.ia travel, (figure 

1.2.). This is possible using a cobalt-chromium (CoCr) recording 

film depositec on a permalloy underlayer. CoCr has a 

perpendicular oriented crystalline anisotropy which permits 

media recording through the full deptl1 of the magnetic layer. 

Further, the fllagnetic field betv1een tv10 elements marking a 

transition re - enforce each other thus reducill0 tile transit:ion 

zone. Demagnetising effects reduce with increasing packing 

density and, theoretically, the transition zone is zero as tl1e 

recording density approaches infinity. The transition zone is, 

nowever,lin,ited by the size of the grains of CoCr ·.vhich, at 50nm. 

diameter gives a possible recording density of 500,000 fci. 

[ 1] has recorded data on C90 cor:1pact cassett:v uc:ing 

perpendicular recording techniques. Data are recorded at 19.2k 

bits/sec.to give an overall storage capacity of 20 tiliytes. 

As yet the prorr;ise of perpendicular recording techniques rer:1ains 
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to be realised on an economic scale. High - density systems have 

been demonstrated however. (2] and development continues. 

1.1.2. Optical Recording. 

With optical techniques it is possible to produce storage 

devices which are 

{a) for reading only 

{b) write once read many times {WORM) 

{c) rewritable. 

The read only method is exe~plified by the compact disk (3]. 

Data are stored in the form of indentations {pits) impressed 

into the surface of a disk. These form a spiral track onto which 

is focussed an AlGaAs laser of wavelength 780n~.The depth of the 

pits equals one quarter of the wavelength of the laser beam. The 

interference between the reflected and incident beam is used to 

differentiate between the pits and the interval between pits 

known as the land. Minimu~ pit length is lpm giving a lineal 

recording density of 25,400 bits/inch. Because of the high 

resolution of the laser spot, areal density is very high. The 

spiral track of pits is located below the surface of the disk 

giving a syste~ which is tolerant of surface conta~ination and 

minor damage.The "read" only disks are produced {recorded) under 

clean room conditions.By comparison the WORM disk is recorded on 

site. 

Several techniques are used to encode the data on a WORN disc, 

four of these are illustr·ated in figure 1.3., (4]. Essentially 

the reflective qualities of the disk surface are changed by 
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the local heating effect of a laser beam. These include 

decreasing or increasing surface reflectivity by 

respectively burning a hole or changing the surface texture of a 

tellurium alloy layer on a polymer substrate. Other methods 

involve the alloying together of two surface - coated films to 

give an area with different optical properties to the untreated 

surface and the formation of shallow bubbles in the platinum 

coating on a polycarbonate substrate.Data densities are the same 

as for the "read only" method and the recording process is once 

only and permanent. 

vJORr-1 systems are currently available but as yet they are costly 

when compared to magnetjc storage systems. 

Considerable interest is currently being generated with the 

announcement of optical tape [5]. This new,write - once ~ediu~ 

is a dye polymer coated onto a flexible polyester - based 

substrate. Packing densities are quoted as 600 Gbytes per 10.5 

inch tape reel with 1 terabyte tape reels under development. 

Although still at the experimental stage it is possible to 

record and read data many times. using optical methods. Two 

techniques are under development:phase change and magneto-optic. 

If heated to the molten state and allowed to cool rapidly the 

crystalline state of certain alloys changes to the amorphous 

state.This permits the writing of amorphous marks using a pulsed 

laser beam.These marks have different optical characteristics to 

tl1e unaffected,crystalline areas. Erasure is effected using an 

oblong laser spot to return the amorphous marks to the 
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crystalline state - the oblong spot heating the designated mark 

for some 10 ps compared to lOOns during recording . 

As the name implies magneto - optic recording invo lves the 

application of both magnetic and optical methods . The coercivity 

of a thin film is reduced locally by laser heating . This permits 

the magnetisation of the heated area to be switched by a general 

magnetjc field . Readout is accomplished by detecting the Kerr 

rotation in the polarisation of a light beam as it is reflected 

from the recorded areas of the disk. 

------
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Fig.1.4. Illustrating the variation of coercive 
force He, magnetisation Ms and Kerr 
rotation angle B1< with temperature for 
an amorphous rare earth transition 
metal alloy. 

Figure 1 . 4 . illustrates the variations of c o e rcive f o rce, 

mag netisation and Kerr ro tation a ngle, as a function of 
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tem9erature for an a21orphous rare earth transition ;;;etal alloy. 

These are ferrimagnetic materials and are used in the magneto

optic recording process. As the temperature of the material is 

increased the magnetisation, Ms falls until, at the compensation 

temperature for the material, Ms reaches zero. At Tcomp the 

coercive force, beihg inversely proportional to i·is, tends 

towards infinity. \•lith increasing temperature above Tcor.;r; the 

coercive force falls to reach zero at the Curie temperature. 

To record data a spot on the filrrt is heated by a laser beam 

(figure 1.5.). After an initial rise in coercive force it falls 

until it reaches a value below tl1at of an applied external field. 

The direction of tl1e field determines the direction of 

r.;agnetisation of the film after ti1e laser spot is turneci off. 

After recorciing, the film comprises areas of mac;netisation the 

directions of which represent logical 1 or logical 0. These are 

detected on readout by detenninincr the C:ifference in 

polc.rization of a light beam as it reflects from the areas of 

the film having opposite magnetic directions. Ti1is I<err effect 

gives a difference in the polarization of reflecteci light of the 

order of 0.25 to 0.5 degrees. 

r.;a,.neto optic recorC:ing material such 2.s ter:)iU!c' uac.iolinium iron 

are used. Cowpensation temperature for this cy::e of material i.s 

in the region of 150°C. Recorded bit diameters are of tl1e order 

of 1 pm thus givina a system \·litll a 90tentially high recorC.ing 

density. 
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1.1.3. Solid State Recording~ 

Although it is possible to utilise conventional crms 

semiconductor RAH with battery backup in a high - density 

recording system,at the time of writing,the high costs involved 

limit this form of storage to all but the specialist of 

applications [6]. Advantages of solid - state recording devices 

include durability and reliability under harsh environmental 

conditions,they are also maintenance free. Such a device is the 

magnetic bubble memory [7] which,unlike semiconductor memory,is 

non-volatile.Magnetic "bubbles" in the form of magnetic domains 

are generated in a magnetic garnet film and passed around a 

track of permalloy overlay elements by a circulating magnetic 

field. The "bit" size is typically 4pr.l x 4pm permitting a 4r-lbit 

device to be packaged in an area 4.25cm x 3.75cm. 

A limit on the packing density of bubble memories is the use of 

permalloy tracks - a number of factors are involved. The stray 

magnetic field from the bubbles increases as bubble size 

decreases. This stray field r.lagnetises the permalloy tracks and 

this has to be overcome by increasing the drive fielc. Further, 

higher densities require smaller track electrodes which i~ turn 

require increased drive field to overcome the weaker attractive 

forces of the electrodes. Suzuki [8) details the use of ion 

in1plantation techniques to overcome this limitation. The tracks 

are formed by ion implantation into a garnet f ilrr,. The easy 

direction of magnetisation of this film is perpendicular to the 

plane of the film. The easy direction of magnetisation of the 

implantea area is in-plane causing charqed walls to form in the 
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thickness of the implanted track. These charged walls attract 

the magnetic bubbles and pass them along the track when the in -

plane drive field is rotated. 16 r.fuit hybrid bubble memory 

devices using both permalloy and implanted tracks are under 

development with 64 ~1bit chips predicted. 

At the experimental stage is a development of the bubble memory: 

the Bloch line memory [9). Here binary data are stored in Bloch

line pairs which are formed in the wall of the magnetic bubble. 

The width of the Bloch lines is about one fourth the diameter of 

a bubble.Also,since the depth of the wall is much less than the 

bubble size the potential for storing data at ultra hi£h density 

is very great. Konishi [9) estimated a possible storage density 

of 1 Gbit/square cm using O.Spm bubble material. 

Of the various recording technologies optical devices currently 

offer the highest area! packing density. However,true read/write 

systems are still at the development stage and system costs 

will be high compared to magnetic recording. The density of 

optical devices is approached by the predicted capability of 

Bloch line memories, however, at the time of writing these are 

at the experimental stage. 

Cost - effective read/write storage is exemplified by magnetic 

recording devices,in particular tape systems which offer an 

area! density several times that of rigid disk. By comparison 

tape systems are inexpensive-particularly media costs which are 

significantly lower than rigid disk. The only serious dis

advantage to tape systems is the long access time compared to 
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magnetic and optical disk. There are, however, a number of 

applications where the inherent timeba~e of the tape system is 

of benefit and in disk back - up situations access time is 

irrelevant. Consequently the demand for digital tape systems is 

high (10]. 

1.2. APPLICATIONS OF DIGITAL TAPE SYSTE~1S. 

The market for digital tape systems covers the spectrum of 

storage applications from the entertainment field, video and 

audio,through industrial and military applications to computer 

mentory requirements. In computing and entertainment, tape 

recording is used both at the high volume,consun:er· level and at 

the high performance, professional level. There is also a 

substantial market for data - acquisition applications, partic

ularly in respect of inexpensive and pbrtable equipment. Each 

area of application: entertainment,instrumentation and computer 

storage is considered. 

1.2.1. Entertainment. 

There are a number of digital tape recording standards in the 

audio entertainn,ent area:rotary-head digital audio tape recorder 

(R-DAT) (11] and stationary - head digital audio tape recorder 

(S-DAT) (12] in the consumer field and (DASH) (13] ,digital audio 

stationary head,in the professional area.The high tape/tape head 

velocity of R-DAT plus use of the helical scan technique, 

permits th9 high density requirements of digital audio to be 

accomir,odatec on a tape cassette nteasuring 7. 2cm x 5. 2cm. Two, 

16-bit samples are stored at a rate of 44.1 kHz giving an areal 

storage density of 176 kbits/square mm.The raw error rate is 10-J 
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to 10-~necessi tating a c omprehen sive e r ror- correction strate~y . 

The R- DAT track format is shown in f i g u re 1 . 6 . 

3·81mm 

Q.Smm 

O.Sm m 

t 

optional linear track 

head motion 
3·133 m/s 

optional linear track 

azimuth 
0 

angle=:!: 20 

... '4f--- tape motion 8·15 m m{s 

Fi g.1.6. R-DAT track format. 

Azimuth recording is used t o accommodate heaci. P.li s - al ignmen t. The 

high tape/tape - head velocity ensu~es adequate bandwidth whilst 

the low tape veloc i t y gives playing times of up to 2 hours . 

This long playing time is achieved by using metal powder tape 

of overall thickness 13 p m, 3 pm of which is the magnetic 

coating . 

In t he S - OAT format (figure 1.7.) 20 data tracks plus 2 

auxiliary tracks occupy half the width of tape 3 . 81rrm . wide , a 
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! 19 - -j-- 1 
~ 18 

--} s;pm 

1-905m m 

l 
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~================~ t 

l Cue 

tape edge.-/' 

Fig.1. 7. S-DAT track format. 

similar track set occupies the other half of the tape permitting 

reverse play. Data-track width is 65~m wide requ iring thin- film 

record heads. The use of Magnetoresistive (MR) read heads 

permits the slow tape speed necessary to accomodate a play time 

of up to 180 minutes . Error correction is effected using Reed -

Solomon code in a co-ordinate format. As of the time of writing 

S - OAT products have yet to become availabe on the open market. 
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R-DAT has been developed as a consumer product and although its 

fidelity of reproduction approaches professional acceptability 

its mechanical shortcomings lin;it its use in this area. For 

professional applications tape splicing/editing requirements, 

plus the need for flexibility and greater dynamic range than 

consumer products,usually dictate the use of stationary - head, 

open - reel recorders such as the two - channel ''Prodigi'' format. 

This recorder is used extensively in the broadcast and recording 

studio areas [14]. Data are recorded at either 44.1, 48 or 96 

k.samples/sec. on 8 tracks with either 16 or 20 bit quantisation. 

Dash - format products are also used in the professional field. 

The data rate for recording video si~nals digitally (DVTR) is of 

the order of 150 nbits/sec.and much higher for high definition 

television (EDTV). To achieve this and still maintain a 

reasonable playing time slant - azinouth recorcing techniques are 

adopted with multiple heads used in the helical scan mode. To 

date the technical problems of DVTR places it in the ~evelopment 

stage,however a number of systems have been demonstrated and 

formats proposed [15] [16] [17]. 

1. 2. 2. Instrurnentation. 

Tape recorcers utilising both rotary and stationary heads are 

used extensively in applications where the requirement is to log 

data. Rotary-head recorders are now being used in flight - oorne 

recording. Considerations here are for low volume and ruggedised 

operation.Transverse scanning of the tape may be used to fulfill 

these requiren1ents [18]. Open - reel recorders are also used in 
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military and aerospace applications where the high system costs 

are justified by the very high performance specification. 

Terrestrial applications of tape recorders are too nwnerous and 

diverse to list [19] [20]. Open reel and closed reel stationary 

head syster.1s are comrnon.These are invariably multitrack/multi-

channel instruments. At the lower end of the market tape 

cartridges are used. These offer convenience and portability in 

addition to low cost. Compact cassette also offers these 

advantages. Compact cassette instrumentation tape recorC.ers are 

usually custom developed for a specific application. These are 

exan1ined in more detail in section 1.4. 

1.2.3. Computer Storage. 

At the professional end of the computer r;1arket 1/2 inch tape in 

open reel format is used to record data at up to 6250 bits/inch. 

Sophisticated tape transports are employed with vacuum columns 

buffering the tape reels from the tape head to perr.1i t high tape 

acceleration and low access time. Tl1e trend towards disk - based 

corc1puter syster:lS at both the high and low ends of the Darket has 

stimulated the need for tape back - up. A co~non technique is to 

use a single-track stationary head and record a nwn.ber of tracks 

in serpentine fashion.At the end of each ta;>e pass the tape head 

is moved transversally across the tape. Tape speed may be 

adjusted for either a high data rate or a long recording period. 

Track data rate at high tape speed is 48kbits/sec. giving a 

storage capacity of 5.8 i·rbits/track. At the tir,:e of '.vritin\J the 

R-DAT format is being developed as a computer storage device 

with a potential storage capacity of 2 Gbytes [21]. 
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Cornputer - generated digital data can also be stored on compact 

cassette.This form of secondary storage was widely used with the 

first generation of personal computers and although largely 

superseded by disk it still forms the bulk-storage requiren,ents 

of many operational systems. 

1. 3. CQ!.1PACT CASSETTE. 

Although the compact cassette tape system was originally 

conceived as a consumer product it can also be found in the 

professional recording area.Because the tape is protected inside 

a cassette,problems due to tape breakages and tape threading are 

eliminated. The format is robust,simple to use and economical to 

produce. Since its introduction it has gained a high degree of 

acceptance not least of all because of its ability to reproduce 

analogue signals of high quality. 

The above features of the compact-cassette tape system also make 

it an attractive mediur.l for recording digital data. However, 

the system requirements for digital tape recorcers are more 

stringent than those of analogue recorders. 

1.3.1. Compact - Cassette Format. 

The compact - cassette tape format figure 1.8. was developed by 

the Philips company and accepted as an international standard in 

1963 [22]. The three most popular tape lengths are C60,C90 and 

Cl20 where the nuElbers relate to the total playing time in 

minutes (on the assumption that the tape direction is reversed}. 

The standard tape speed is 4.75 ems/sec. The size of tl1e tape 

reel in each case is the same, tl1erefore the thicl~ness of the 
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Fig.1.8. Compact-cassette tapes. 
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tap e varies to accornri:odate the different playing times . The 

th i ckness of the polyester backing for Cl20, C90 and C60 tapes 

is 6pm, 7pm and 13pm respectively . Both the C90 anu C60 tapes 

have a magnetic coating of Spm whilst that of Cl20 tape i s 3pm 

thick. During producticn the tensile strength of the tape is 

increased by stretching. Even so , there reruains a significant 

difference in the transport proper ties of the tapes with the C60 

tape exhibiting better performance compared to the others -

especially the Cl20. 

The cassette-track geometry is shown in figure 1 . 9 . With a track 

( 

~----------~~1 
b d 

max m in 

a Q.66mm 0-56mm 

b 2·00mm 1·80mm 

c 2·70mm 2·40mm 

d 3·81m m 3·66mm 

Fi g.1.9. Compact cassette track dimensions. 
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width of 0.66 r;-,m a signal-to-noise ratio of approximately 58 dB 

is possible. The original concept was to acco~~odate four tracks 

ac:::-oss the width of the tape.This nu8ber may be exceeded,_however. 

Crucial factors to be considered when inceasing the track 

density are the reduction by 3dB in signal-to-noise ratio when 

track width is halved ,intertrack crosstalk and the problems 

associated with sensing all the tracks simultaneously. 

The cassette is usually constructed from plastic. Metal - housed 

tapes are also available but at a higher cost.The tape reels are 

held in position by the si~es of the casing which form bushes 

at the centres of the two reels. These bushes permit a high 

degree of radial ffiOvement of the reels within the casing. Axial 

movement of the reels is restricted by the sides of the casing 

and by plastic shiffiS positioned each side of each reel. A single 

pressure pad is located on the inside of the tape opposite the 

tape - head position. Since the tape drive force is low it is 

essential that the tape I casing friction is minimal. 

1.3.2. Tape Coating. 

Apart from their playing times cassette tapes are categorised in 

terms of the coercivity of their magnetic coatir1g. The magnetic 

coatings range from the low coercivity gamr..a ferric O):ide, Fe2 o3 

to chromiun dioxide, Cro2 and latterly the high coercivity metal 

particle tapes. The high coercivity tapes exhibit higher output 

and improved frequency response, Cr02 tape, for instance gives a 

SIJR improvement of 10-12 dB. cor:1pared to Fe 2 o3 .However, Cr01 

tape is more expensive and its abrasivness is greater than 

Fe 1 o3 tape. 
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The doping of oxides to improve magnetic tape characteristics 

has resulted in a range of tape coatings. Moir[23] has reported 

that, on the basis of their bias requirements, tapes can be 

divided into five classes. These range from ferric oxide 

coatings,requiring the minimum bias through to Qetallic tapes 

which require the maximum. This range also spans the coercivity 

of available tapes. Although bias is not used when saturated 

recording techniques are employed,the bias requirements do give 

an indication of the type of compact-cassette tape available. 

Metal evaporated tapes (~£Tl promise to offer improved 

performance compared to conventional roller - coated tapes [24]. 

One advantage of MET is that because the magnetic layer is 

much thinner than conventional tapes a greater tape length may 

be accor.~odated in the compact - cassette format. However, MET 

is not compatible with existing tape recorders and its 

incorporation into the compact cassette format will depend on 

the provision of tape decks with the appropriate head design and 

bias arrangements. 

1.3.3. The Compact - Cassette Channel. 

The compact-cassette tape is a low-cost, high-quality product 

which has yet to be fully exploited as a high - density. direct. 

digital recording medium. Mallinson has forecast that the limit 

on areal density of magnetic recording systems will depend on 

head signal- to - noise ratio and that densities of the order of 

several hundred megabits per square inch are possible [25]. This 

view is corroborated by Lemke who predicts future magnetic 

recording densities of up to 300 rnegabits per square inch [26]. 
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aefore these theoretical targets may be approached, however, a 

great nunber of mechanical problems would need to be solved to 

realise a viable system. 

1.3.4. Frequency Response 

Tl,e analogue bandwidth of the compact cassette system is a 

function of tape coating,tape speed and read -head gap 1ength.A 

typical response for an induct~ve head is shown in figure 2.8. 

In analogue cassette recorders the fre~uency response of the 

read - back channel is equalised by passing the replayed signal 

through a filter with an inverse response,figure 2.14.The minim~;~m 

of the filter characteristic depend'' on the type of tape used, 

for ferric tapes it is 1350 Hz. and for chrome tapes it is 

2250 Hz.Because the human ear is insensitive to phase difference 

between the frequency components of E complex signal the non -

linear pl1ase response of the systen1,implied by the bandlimited 

response of the channel, is not equalised in tape systems 

intended for analogue recording. 

The operational 

degredation as 

bandwidth of 

a consequence 

a tape recorder may suffer 

of two factors - tape/head 

separation and tape azimuth misalignment.If tape/head separation 

increases during play the amplitude of the readback signal 

will fall;this is classified as a dropout should signal loss be 

75% (12dB) or greater· [27]. The relationsi1iv between signal loss 

and tape/head separation is given by, 

signal loss = 54.6 d/A dB. ( 1. 1) • 

~here d is the tape/head separation and ~ is the wavelength of 

the recorded signal. This separation n1ay be caused by tape -
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surface asperities or tape dei::lris/c.ust accuwulating on the hea.d 

surface. 

If the longitudinal axis of the tape is not perpendicular to the 

read-head gap the effective length of the gap is increased. This 

tape azimuth misalignment increases the "gap loss" and the 

response of the system is reduced. The ac~litude level of the 

signal also falls,the loss being given by the expression, 

20 log 

sin { rrw tan a( 

X 
dB. {1.2). 

i·Jhere 6..r is the angular frequency of the recorded signal, A is the 

•.oJavelen~th of the recorced signal and o<. is the a.~imutlJ angle. 

1.4. COMPACT- CASSETTF: STORAGE: SYSTEMS. 

Although primarily designed to store analogue audio signals,the 

compact cassette can be used to store digital signals. The 

techniques employed fall into one of three categories: the 

unn>odified audio compact-cassette recorder may be utilised w!1ere 

the digital data are stored as analogue signals; the same 

recorder may be used with direct-digital recording codes{in this 

case it may be necessary to use some form of signal 

equalisation) ;the audio amplifier and bias arrangements of the 

stancard cassette player may be dispensed with and data applied 

directly to the record head via a write amplifier designed to 

handle the direct recording codes involved. In each of the above 

cases encoding and decoding circuitry must be proviaed. 
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The first generation of home personal computers utilised the 

con~act - cassette tape recorder as a secondary store. They 

incorporated the necessary encoding/decoding circuitry through 

which data were recorded onto a low - cost, portable cassette 

player. This provided an inexpensive back ~ up facility for the 

computer's random access memory (RAH). Also,cor.liTlercial software 

was n1ade available on compact cassette tape.The recent trend in 

secondary storage for home computers is,however, away from 

cassette and towards disc a.nd many current home computers are 

not equipped to interface to compact cassette tape. 

Compact cassette recording systems are also used in the field of 

data logging.Here,the qualities of the format,such as low- cost, 

robustness and convenience are ideal for on site 

instrumentation application. 

In the medical field development of off-line computer diagnostic 

procedures [28] has generated the need to store vast ~uantities 

of data. t··lagnetic recording systems are used extensively 

to fulfill this need [29) .Storing signals such as from electro -

cardiagrams (ECG), blood pressure and heart rate. 

The reliability and portability of comr:act cassette systen•s has 

been exploited in remote data - logging applications. Time -

dependent ciata such as electrical power load variations [30] and 

road traffic flow can be legged [31] using either remote control 

or timed recording. 

A number of attempts have been r.1ade to utilise the standard 

cassette recorder as a direct digital storage device [32 - 35]. 
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In the main these have been either experimental or 

specialised applications. The compact cassette format is however, 

used in some commercial applications. One such application is as 

a tape streamer. Tapes used in this application are design to 

operate at higher speeds than the standard compact cassette and 

are usually more expensive. 

The three methods of recording digital data using compact -

cassette equipment will now be considered in more detail. 

1.4.1. Analogue Recording of Digital Signals. 

With this technique digital data are encoded in the form of 

linear,analogue signals. Biassed recording is used and the 

amplifier channel of the recorder is utilised. Using frequency 

shift keying (FSK), figure 1.10 1 digital data are recorded onto 

a single track. A common format is the Kansas city standard [36). 

1 0 1 1 0 

Fig.1.10. Frequency shift keying (FSK) modulation. 

\vith this format a logical 0 is recorded as 4 sinusoidal cycles 

at 1200Hz with 8 cycles at 2400Hz representing logical 1. This 
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gives a data rate of 300 bits/sec and a capacity of 2 x 540 

k.bits for a C60 tape. 

Data are encoded in Kansas (ity format by switching the 

frequency of an oscillator with the two logic levels which are 

to be encoded.Since the amplifier channel of the cassette tape 

recorder is used the output level of the oscillator must be set 

to a level sufficient to withstand subsequent amplification. 

The decoding circuit comprises a 

followed by a comparator. 

frequency discriminator 

The encoding/decoding circuits are simple and are usually 

situated withir: the personal computer (PC) with which this forn; 

of recording is used. 

Error detection is employed which takes the form of insertir:g 

a cyclic redundancy check character (CRCC) at the end of a block 

of data from which the CRCC is calculated. On replay the PC 

associated with the recording system computes the same CRCC from 

the data block. This is compared to the recorded checksum and a 

match signals acceptance of the data block. Failure to match the 

CRCC requires the tape to be rewound and replayed,usually after 

readjusting the amplifier level of the recorder. 

The Kansas City format was designed for use with home computers 

and as such is robust and ir:expensive to implement. Bit 

synchronisation is not required and the two sign~lling 

frequencies are sufficiently far apart to give a tape speed 

tolerance of 30%. The system is also reasonably immune to tape 
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dropouts. In th~ event of loss of input the frequency 

discriminator "free wheels" and so the loss of a few cycles of 

signal can be accommodated. One problem associated with the 

system is that,unless care is taken during the recording process, 

the record amplifier overloads and the ensuing distortion causes 

errors which are detected on subsequent playback. The encoding/ 

decoding circuitry is specific to this application and therefore 

has to be provided by the PC manufacturer in addition to the 

usual serial/parallel,input/output interface chips. Also,tapes 

must be erased before recording. 

Various versions of the above frequency shift keying (FSK) 

recording method give data rates up to 2400 Baud. In one popular 

microcomputer logical ·o• is represented by one cycle of a 

1200Hz. sinusoid and logical '1' by a frequency of 2400Hz. [37], 

giving a data rate of 1200 Baud. 

1.4.2. Linear, Direct Recording of Digital Signals. 

There are a number of examples of utilising the unmodified 

compact cassette analogue recorder to record digital data 

directly. In one application the digital waveform of data in 

ASCII form is first differentiated before application to the 

standard recorder [38]. Peak detection is used on playback with 

the tape replayed at a higher tape speed. Data are recorded on a 

single track using a two-track head. The second trac}: is used to 

record a clock signal giving a system which is independent of 

tape velocity. This system achieves an error rate of 1 in 5 x 

10
6 

at 750 bits per second. 
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Smith and Zorkoczy [39) have used an audio cassette recorder as 

part of an Open University radio text project. Computer software 

is broadcast via VHF transmission to the homes of students where 

it is recorded on a low - cost audio cassette recorder. The 

recording code Biphase-M is used and a data rate of 2400 Baud is 

achieved. The signal is encoded onto a single track by a simple 

hardware encoder.Decoding is accomplished using a phase - locked 

loop synchronised to the data. This provides a clock which is 

counted between transitions of the playback signal.The number of 

clock pulses thus recorded determines the value of the decoded 

signal. The linear channel of the recorder is used with its 

inherent frequency equalisation.Additionally, phase equalisation 

is applied to the replay signal to increase the opening of the 

replay - signal eye pattern. Although no quantitive data on the 

error performance is given the authors report excellent 

performance of the system using a range of tapes. 

The above system offers a moderately high data rate at a low 

cost.The use of a more expensive "hi-fi'' tape recorder together 

with a higher sophistication of hardware can yield a system 

with higher data rate. 

Ewins [31] has used a high-quality cassette tape recorder as the 

basis for an instrumentation - standard data logger. The linear 

record/playback amplifier of the recorder has been retained 

enhanced by tape-speed control circuitry. Miller code is used to 

store data at a total data rate of 22.733k.bits/sec. Data are 

recorded on two tracks using the standard 2 - track head of the 

stereo cassette recorder. 
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In the simple system of Smith and Zorkoczy error detection 

methods are not applied. Ewins does employ simple parity error 

detection but in both cases a quantitdive assessment of the error 

performance of the systems is not given-this is unfortunate. The 

performance criteria of recording systems vary but as a general 

rule the objective is to maximise the data rate ( and thus the 

longitudinal packing density) and to minimise the errors which 

are observed on playback.An approximate figure of merit for such 

recording systems would be the data rate/error rate ratio. This, 

of course is only a guide to the effectiveness of a system.Other 

factors would have to be taken into account, not least of which 

would be the complexity of the implementation. 

Although still retaining the use of a high-quality cassette tape 

recorder Kageyama et al [40) have proposed the application of 

partial response signalling techniques in recording digital 

data. A data compression technique is used to store up to 

300 still- colour picture frames on a CgQ compact cassette tape. 

The application of (1,0,-1) class IV partial response signalling 

permits data to be stored on a single track. With data recorded 

in blocks of 136 bits the block error rate is less than 10-~. 

This error rate is achieved by applying error correction 

techniques.A 16-bit cyclic redundancy character (CRC) is applied 

to each block of 132 bits and interleaving to a depth of 4 

blocks is used. In addition a parity word is appended to every 9 

blocks to realise a coordinate errvr - correction scheme. 

Using the figure of merit criterion mentioned above the data 

rate/error rate ratio is 2.1 x 10' The nett error rate is 
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relatively high,however this is consistent with the high data 

rate achieved. The process of reproducing visual images from 

digital data is relatively error tolerant and the p~rsuit of a 

high data rate at the expense of error rate is justified in this 

case.This figure of merit is higher than that obtained by Ewins 

[31] which at 1.5 x 10? is two orders of magnitude lower.However, 

the sophisticated signalling technique adopted by Kageyama and 

the complexity of its implementation must also be considered 

when comparing the two systems. 

The recording and reproduction of still - picture data is an 

emerging field. Kihara [41] has reported on the prospects of an 

electronic still - picture camera and recording system and 

Konica [42] have demonstrated the operation of a "35mrn" 

still camera with integral 2 inch floppy disc capable of 

storing 50 still colour pictures. Also under develcpment is a 

WORM compact disc system capable of storing 800 still,colour 

pictures [43]. 

Although disc technology is used to store the i~ages,the autt1or 

envisages a demand for low-cost,tape back-up once the technology 

becomes available as a consumer product. 

The advantages of adapting the conventional audio cassette tape 

recorder to record digital data include inherent frequency 

compensation and user familiarity.However,since the recorder was 

initially designed for recording analogue signals this approach 

could lead to a sub - optimum system. A number of attempts have 

been made to develop a high - density direct recording systen1 
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using· the cor:'.pact- cassette format without the attendant "hi-fi" 

electronics. 

1.4.3. Saturated, Direct Recording of Digital Signals. 

Early work on the use of a compact - cassette system as a direct 

recording device in its own right is due to Weiler [33]. In a 

comprehensive investigation Weiler assessed performance by 

measuring bit error rate against data rate for the three 

recordin~ codes,ENRZ,Miller and Miller squared.A read/write head 

with a gap width of 3 ~m was 

single track.It is not clear 

irn):>lication is,however,that 

of the tape. The results are 

used and 

what the 

the hea.d 

shown in 

data were recorded on a 

track width used vJas, the 

spanned the full width 

figure 1.11. The three 

coding techniques shov1 equal performance up to 9kbits/sec, after 

which there is a rapid deterioration in bit error rate witl1 

t·!iller squared code and ENRZ code outperfo;:;ning 1-liller .The data 

rate is about one half that obtained by Ewins and Kageyar.ta, the 

figure of merit is, however, at 1.1 x 10
11 

sorne 50 times better 

than that of Kageyama. 

Weiler uses a transversal filter as a pulse slimmer. The slimmed 

pulses are then sliced in a circuit which employs decision 

feedback to equalise the low frequency content c;f the signal.The 

decoding circuitry is clocked from a rhase - locked loop 

synchronised to the replayed data. 

The recording systems discussed so far give varying degrees of 

performance at a cost of given complexity. One feature they all 

share is that in each case a single track is used to record data; 
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no attempt is made to utilise the potentially high areal density 

which tape offers by employing mult itrack techniques. 

1.4.4. Multitrack Recording Systems. 

Digital data are normally generated in parallel. To store these 

data in single - track format requires that nultiplexing 

techniques be ernployed.Similarly,the data must be de-multiplexed 

when they are played back. To utilise fully the potentially high 

areal density offered by tape a multitrack format can be used. 

This requires the operation of n channels in an n - track system, 

however, in some cases these n channels may be handled 

simultaneously by computer. 

Sakamoto et al. [44] have applied a multitrack format to compact-

cassette tape .A total of 24 tracks are arranged across the width 

of the tape, figure 1.12. To provide a reversible format 12 

,-tape 

12 

2 

I 11 

\ 
3·81 m m "rev er se" tracks "forward" tracks 

\ / )120~m 11 

2 

Fi g.1.12. Compact-cassette track form at due to 
Sakamoto et a! [45]. 
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"forward" tracks are arranged in the guard space of 12 "reverse" 

tracks . The spacing between tracks is 35 ~m giving a track width 

of 120 ~· A single , ferrite inductive head is used and the 

data are recorded on metal - evaporated tape. The base - layer 

thickness of the tape is the same as normal C90 tape. The 

magnetising layer thickness is, however , much less and although 

the tape speed is double that of a normal cassette system, the 

playing time of the tape is one hour . 

This prototype system is intended for the recording of "hi - fi " 

digital audio data . A single-track recording rate of 70.56k bits/ 

sec . is claimed using four - to-eight modulation (FEM) [45] and 

signal equalisation. No error rate performance is given to 

complement this ,very high,data rate . 

A feature of this recorder is the extensive tape-guidance system 

adopted, figure 1 . 13 . Four"pr ecision " tape guides are arranged 

tape guides in cassette shell. 

capstan / I pressure pad. I ~ 
tap e ~ /n 6 n""' 
u~ 0~~~- ~~---

~,head.i~ 
tapeguides. 

Fig.1.13. Modified ~ape guidance system for 
Sakamoto 's cassette recorder. 
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each side of the head. A dual capstan moves the tape across the 

head, a further four guides are located within the tape housing. 

This latter arrangement implies the modification of the normal 

compact cassette to suit the extensively re-modelled tape guide. 

The function of the tape guide is to maintain a constant tape 

tension and to reduce the effects of tape skew. The authors 

report that skew effects are held to within ± 10 - 15 pm by the 

guide. At the frequency of data recorded FEM gives a minimum 

wavelength of 2.lpm suggesting a bit - cell displacement across 

the tape of 5 to 7 bits due to skew. Although no mention is made 

of skew correction it must be assumed that some means of tape -

skew correction is employed. 

1.5. MECHANICAL PERFORMANCE OF COMPACT CASSETTE 'J'APE TRANSPORT. 

The compact cassette tape has been developed as a low - cost, 

robust item. This philosophy is 

the tape transport mechanism 

also reflected in the design of 

on which the tape is played. 

Cassette tape transport mechanisms are designed for analogue -

encoded tapes and range from the basic,portable player to the 

more expensive deck found in ''hi - fi'' equipment. However,even 

the mechanisms at the top end of the market are basic when 

compared to the professional reel - to - reel machines designed 

for broadcasting,instrumentation and computer storage. 

Problems associated with transporting the tape uniformly across 

the write/read head include tape -velocity variations,tape 

azimuth variations and maintaining a good contact with the head. 

Although to a great extent the above problems are tape dependent 
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careful design of the transport mechanism can reduce their 

effect. 

1.5.1. Tape -Velocity Variation. 

The quoted tolerance on the 4.75 cm./sec.velocity of the compact 

cassette tape transport ranges from~ 0.5% to ~ 2% depending on 

the quality of the deck. These values are aimed for through the 

application of speed control to the ~otor driving the capstan.It 

is,however,the relative tape/tape -head velocity which needs to 

be constant and this will only be so if the constar1t speed of 

the motor is transmitted to the tape/tape - head interface by 

constant tape tension. Actual velocity variations therefore 

depend on the tape used. In practice this velocity variation 

often falls outside the quoted tolerance [46] causing problems 

when digital data are recorded. These problems are compounded by 

static friction (stiction) which is an inherent r:roblem with 

slow - moving in - contact bodies. Thi~. latter velocity 

characteristic is in large part responsible for the jitter in 

the readback signal as the tape accelerates I decelerates across 

the read head. 

1.5.2. Tape - Azimutl1 Variation. 

The basic nature of the tape guidance of the compact cassette 

tape transport coupled with the less - than - ideal tape - edge 

straightness causes tape azimutl1 variation. This results in a 

reduction in the high frequency content of the reproC.uced si<;·nal. 

Additionally,if the systen1 is multitrack and digital data are 

recorded broadside across the tape,mis - detection may result as 
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data bits on the outside tracks are time displaced as they pass 

their respective read heads. 

Azimuth variation may be compensated for by dynamically rotating 

the read head by an amount equal to the azimuth angle [47]. The 

head is fixed to a pieozoelectric element which is pivoted about 

an axis in line with the head gap. The amplitude of the readback 

signal is monitored and controls the pivotal angle of the head 

via the pieozoelectric element. The whole device is small enough 

to fit inside the read head and it has been used on a high - end 

production compact cassette tape deck. Other methods of azimuth 

compensation have also been proposed which are similar [48 - 50] . 

The effects of azimuth variation on multitrack, digital 

recordings may also :Oe reduced by clocking the time - displaced 

data off each track.and reintroducing the correct tirnebase off 

line {chapter 2). This method is employed in stationary- head, 

multitrack recorders and although it is effective it does 

require a battery of switchable data buffers. Peri1aps the main 

disadvantage is the need to format the tape with control data to 

provide switching signals. 

1.6. ERROR CORRECTION 

Attempts to increase recording density are acco~panied by a 

reduction in SiJR and I or detection window tin1e, with a 

consequential adverse effect on error rate. To combat this, 

error-correction schemes are often applied. These displace data 

by the introduction of redundant information into the recorded 

data stream - usually to an extent proportional to the error -
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correcting power of the scheme. Error correction schemes 

inevitably increase the complexity of a recording system and 

their implementation involves a trade - off between the factors 

mentioned above. This section covers error correction methods 

suitable for tape systems. 

1.6.1. Simple Parity 

Error correction schemes which use simple parity are suitable 

for those applications where the requirement is for minimum 

delay in the correction of replayed data. Co - ordinate error 

correction schemes which use cyclic redundancy check characters 

to flag a track failure and simple parity checks across the tape 

to identify the failed track are simple to implement. Correction 

time is minimised in view of the simple parity equations which 

need to be solved to identify and correct replayed data. Some 

multitrack failures may not be corrected by this technique, in 

these cases it is often possible to signal track failure. 

Problems associated with simple - parity error correction 

include the ~eed to position check characters ''in - line" with 

the data at regular intervals. Not only does this displace data 

but also the detection circuitry must differentiate between data 

and parity bits on the same track. This latter restriction is 

overcome by rotating the co-ordinate axes of the parity elements 

by 45 degrees and locating them both on dedicated tracks. In 

doing this the CRCC, which normally covers long strings of cata, 

can be replaced by a sinople parity bit which is adequate for the 

shorter data string occupying a 45 degree line across the tape. 

This further decreases the time required to process the 

42 



corrected data. The above cross - parity error correction scheme 

has been applied by Pateland is treated i.n section 3.2.1. 

The incorporation of interleaving to disperse error cursts 

significantly enhances the error correcting power of simple 

parity systems. However, although interleaving reduces burst 

errors to random errors, isolated errors which occur adjacent to 

ti1e bursts will adversly affect performance as they could be 

de - interleaved with the bursts error to give multiple errors 

in one codeword. This effect is nUllified by the use of cross 

interleaving techni~ues [51). Cross interleaving is illustrated 

in figure 1.14. Parity check characters are £enerated for each 

codeword before and after interleaving, P and Q respectively. P 

and Q cover data organised in rows and diagonally respectively. 

Multiple errors occur~~g in rows are treated as simple diagonal 

errors and vice - versa. 

Cross interleaving is utilised in the DASH tape recorder format 

and it is also applied to the compact disc where ti1e Reed 

Solomon code is used to generate the parity check characters. 

1.6.2. B.C.H. Code 

The more sophisticated error codes such as the Base, Chaudhuri

Hocquengilem codes offer lower redundancy and greater error 

correcting power. These advantages, however, must be contraste~ 

against the cornple:'ity of their irr.plementation.Fast decoding may 

be achieved with the use of hardwired decoding circuitry but 

multitrack recorders could require either multiple circuitry or 

the use of multiplexing techniques. The flexibility of the 
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data words respectively. 

microproc essor has been used to simplify hardware complexity 

[ 52 ) b u t program execu tion time is a limiting factor . Shayan 

et al [ 53 ) have reduced the software decoding time for B C H 

codes by implementation of a fast Chien search algorithm . This 

reduces the search time by 50% t o improve the overall decoding 

time by 4/3 . 
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1.6.3. Intelligent Methods. 

The data - packing overhead incurred by the inclusion of error 

detection/correction ranges up to 100% and more,depending on the 

application. In such schemes not only are data displaced by 

parity bits but the cost of implementing parity - generating 

circuitry must also be borne. However,the detection of errors in 

reproduced data i s possible through the intelligent 

interpretation of the replayed data sequence. In these schemes 

the packing density overhead for error detection is zero. 

In certain,run - length limited channel codes the size of the 

intervals between transitions is fixed by the encoding algorithm. 

Variation of interval size from that determined by the encoding 

rules can then be used to flag errors. In Niller code,intervals 

of two,three and four clock periods occur between transitions 

(this assumes a double frequency clock). Csengery [54] has noted 

that the number of "three" intervals between a ny two "four" 

intervals must be even , figure 1.15.Also,a "two"interval changed 

1 0 1 0 0 0 1 1 0 0 1 0 1 
;---'-

--. I I 
I I I : I 

I I 

' ' ' 

J---t.-J-3- r--3-l l-3--3--f--4-J 

Fig.1.15. Miller-code sequence showing even number of "three" intervals 
between two"four"intervals (double frequency clock assumed). 
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to a ''three'' interval by error, or vice - versa, will add or 

subract one "three" interval from the correct number. In noting 

the occurrence of inter·val size on playbacl; a parity of 

''threes'' can be implemented. Csengery has us ea the above 

Miller - code characteristic to detect track errors in a multi

track tape recorder. One track is used to record a conventional 

parity bit covering the data across the tracks to form a co

ordinate error - correcting system. An improveE1ent in e1~ror rate 

of greater than an order of magnitude is claimed for a data -

packing overhead of 10%. 

1.7. PURPOSE OF THE INVESTIGATION. 

In terms of areal density, tape systems are currently the most 

cost effective for recording digital information. However, 

because of the need to transport the tape over the read/write 

head with precision, a high proportion of the cost is in the 

mechanical components. Costs may also be held high by the 

requirement to provide each track of a multitrack recorder with 

the appropriate encode/decode, error correcticn and clocl; 

electronics. 

Previous attempts to utilise a downgraded tape transport and 

tape, such as the compact - cassette system, result in a 

proportionate downgrading in system pe:::-formance. If system 

performance is maintained it may well be at a cost of increased 

support - electronics complexity and/or improved tape-transport 

E:echanics. 

It may be possible to compensate for the mechanical vagaries of 
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a downgraded system by employing intelligent techniques. This 

would require the application of programmable electronics which, 

in addition to providing the required flexibility of response, 

could also assun1e the functions associated with hardwired 

circuitry, such as, channel encoding/decoding, error correction, 

data synchronisation etc. Such a system would be inexpensive, 

robust and find application across the range of uses considered 

ir. this chapter. 

The purpose of this investigation is to apply intelligent 

software techniques to low - cost, compact - cassette n1echanical 

components with the aim of producing a high - density digital 

recording system. Implicit in this aim is a cocprehensive 

knowledge of tape - transport characteristics which have not 

previously been determined in terms of recording digital data 

directly. 
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CHAPTER 2. 

CHARAC'l'ERISTICS AND ANALYSIS OF ~1AGNETIC RECORDING SYSTEt-lS. 

2.1. THE RECORDING CHANNEL. 

A block diagram of a basic digital data recording channel is 

shown in figure 2.1. In essence the objective is to economically 

communicate information from source to sink,over a noisy channel 

with as low an error rate as possible.In the context of magnetic 

recording the term noise embraces the gaussian noise introduced 

by the tape,tape head and interface electronics. Due regard must 

also be paid to time limitations of jitter and timebase 

variation. 

Practical implementations of the above system vary according to 

application. Many basic systems do not incorporate error control 

or equalisation whereas channel encoding is an essential element. 

The specific requirement also dictates the complexity df each 

element employed since this can often be traded off against 

performance. 

This chapter is concerned with the fundamental theory of each 

element in the recording channel.The first section considers 

the recording channel from an overall viewpoint. 

2.2. CHANNEL CAPACITY. 

The maximum rate, R, at which information can reliably be 

trarsmitted through a channel is limited by the channel capacity, 

C.For R < C informaticn may be transmitted with an arbitrarily 

low error rate. The actual error rate is governed by the 
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quality of the channel and the ingenuity of the coding scheme 

employed. Channel capacity was determined by Shannon [1] as, 

C = B log
2 

[ 1 + P/NoB ] bits per sec ..•••••.•.••.•. (2.1) 

where, B = the channel bandwidth in Hz. 

P = the received signal power in watts. 

N0 = noise spectral density. 

P/NoB = signal-to-noise ratio (SNR) . 

This shows that the bandwidth of a channel and the power SNR 

may be traded off against each other in achieving the desired 

capacity.Although equation (2.1) indicates that channel capacity 

increases with bandwidth it is in fact limited by the signal-to

noise ratio. 

At channel capacity the bit period is 1/C secs. Thus,the energy 

per bit, 

Eb = P/C 

Equation (2.1) now becomes, 

C/B = log
1 

1 + Eb C/No B bits /sec. . . ..... (2.2). 

Two conditions pertain: 

(a) The power limited case when c < B. 

(b) The bandlimited case when c > B. 

These are plotted in figures 2.2 and 2.3 respectively. 

The ''Shannon limit" ~ives the minimua value of the received 

energy per bit - to noise ratio theoretically possible to ensure 

reliable data communication. When only a limited bandwidth is 

available the required energy is greater, for the same data rate, 

and the two may be traded off against each other. 

Although figure 2.2 gives the theoret~cal limits of possible 
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con~unication systems the engineering challenge is to ~esign 

viable and economical systems to come as close as possible to 

these limits. 

2.2.1. Capacity of Multitrack Tape Recorder. 

Equation (2.1) may be applied to a multitrack tape system. 

Consider a tape recorder with M tracks. The data capacity is 

increased by l·l but since halving tile track wicitb :-educes the 

signal by 6dB· and the noise by 3di3, the effective SNR is reduced 

oy a factol- Jr7(". therefore, 

bits/sec ...•....• (2.3). 

Taking the po~Jer-lifl'ited case (figure 2.2 ) . The" Sil.annon li;nit" 

is reached at a SNR of -1.6dB. Using ~allinson's [~) read - head 

noise figure of 20dB as the dominant parameter in a recording 

sys teE1, 

20d3 I .,JT;f = -1. 6dB, fret~ which~~= 21,000 ! 

This figure is well. outside that considered 9rftctical with 

conventional ~agnetic recording methods. 

T2c).;ing the more realistic case of a <1 - track con:~·Jact cussette 

recoruer '"ith a 51'1R of 30di3 a:1cl i.1andwicith 10kHz, the channel 

ca;:>acity Cmis, 

c, = 4 x 1 0 :: 1 0'3 1 og 
2 

[ 1 + 1 0 0 0 I 2 ] 

oits/sec. 

This gives a notional 

90 k'-.Jit.:s/sec. 

r:~ultit:r:ack r;:c.C!netic tape r2co:-6er are a·ieQ.uate tc ~Ju~:;:::ort a 
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theoretically high data rate. However, to record on a magnetic 

medium requires the use of a run - length - limited (RLL) code 

and this too impacts on the channel capacity. This aspect of 

channel capacity is treated in section 3.1.1. 

2.3. THE RECORDING PROCESS. 

A brief review o~ the fundamental ['recess of recording digital 

data on magnetic tape is given. Also,mechanical aspects of tape 

transportation are considered. 

2.3.1. The Write Process. 

Maxwell's equations for magnetic media yield the following two 

equations, 

f-;. di 

~ = f-s 
= !total ...••••.•.. (2.4) 

-dA .•....•....• ( 2 • 5 ) 

where the symbols have tbe usual rr.eanings. In the ring type 

inductive head the high permeability magnetic material forms 

a small,non - magnetic gap across which the tape passes. 

The fringing field clcse to the head is described by Karlquist 

[3) as, 

Hx Ho/71 [ 
_, 

g/2 
-I 

g/2 ( 2 • 6) = tan + X + tan - X 

y y 

1-!y = Ho/27T ln [ ( g/2 X )2 + y2 ........ ( 2. 7) • 
( 912 + X )2· + y2.) 

For distances d > g a si~pler fonn of equation may be deduced: 

Applying eGuation (2.4) around the flux path, ignoring head -

core reluctance, the deep gap field is, 

Ho ~ !H/g ••••• (2.8) 
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where N = number of turns on the head, 

I = current, 

g = gap length. 

Also,applying equation (2.4) through the fringing field of 

radius r, 

H = NI /7T r . • . • • • • ( 2. 9) 

From equations (2.8) and (2.9) the longitudinal, x and vertical, 

y components of the field may be deduced:. 

Hx = Ho g y/-,r 

Hy = - Ho g X /~ 

'L 2. 
(X+ Y) ••••••••••(2.10). 

Hx and Hy may be combined to give H = Ho g/1'( ../x2 + y!" .(2.12). 

Figure 2.4 shows the fringing field across the head gap.The tape 

is recordedonasit leaves the field after the trailing edge of 

the head gap. The first quadrant of the field is called the 

record zone. 

At high bit densities the bit length approaches half the record 

zone length,consequently,a recording loss ensues as the media 

particles of different coercivity are variously affected as they 

pass through the remanence gradient of the record zone, L. As 

the tape/head separation increases,L increases and this results 

in an increased cancellation loss. Bertram [4] has shown that 

for high - density media this cancellation results in a record 

loss of, 

- 44 d lA dB •••... (2.13) 

where d = tape/head separaticn. 

~ = twice tl1e bit length. 

In practice the demagnetisation field of the media elongates the 
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record zone and effectively increases L. However,L may be 

decreased by reducing the record-head gap g. 

In saturation recording Hx must switch the tape coating and 

therefore exceed the coercivity of the tape. In achieving this 

the recording- head material must not saturate. Since,to avoid 

stray demagnetisation,the coercive force of the tape cannot be 

too low,considerable care is required in' tape-head design.As can 

be seen from equation (2.12) the strength of the field in 

contact with the tape can be increased by increasing the gap 

g.In a write - only head this is an option since the recording 

pattern on the tape is determined as the tape leaves the 

trailing edge of the record gap. 

2.3.2. The Read Process. 

The record head may also be used in the readback process. The 

voltage induced in the head winding is given by, 

v=-Ndji/dt •••••••.••• (2.14). 

The readback voltage is thus phase shifted relative to the 

recording current. 

To achieve a high packing density the recorded flux transitions 

should be placed as close together as possible. Attempts to do 

this lead to peak shift or pulse crowding,figure 2.5 . Excessive 

peak shift impairs the detection process since the detector 

assumes that r:1agnetic transitions occur at the point where 

they were recorded. Peak shift also affects the amplitude of the 

playback signal. Dudson and Davies (5] have shown the 

relationship between packing density and output amplitude,figure 
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2. 6 • The packing density is shown in terms of the \dd th of the 

isolated playback pulse at 50% of its amplitude (P50). 

In a study of peak shii~ Chi [6] measured the effect of pulse 

crowding on the shift in peak position and the ensuing reduction 

in amplitude. A doublet test pattern was used and the equalised 
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results are shown in figure 2.7. Whilst the fall off in 

amplitude of the two peaks is the same the extent of the peak 

shift is different for both transitions. 

Pulse- slimming techniques have been advocated to reduce PSO 

and so increase packing density;these are considered in section 

2.5.1. 

From equation (2.14), v = - juN~ volts. If the medium passes an 

ideal tape head with velocity s and the wavelengtl1 of the 

recorded signal is A then the frequency of the playback signal 

is, f = s ;.,._ ,therefore, 

63 



Timing 
error 
(ns) 

+10 

0 

-10 

- T-

-20 

1 2 

-30+--------,r--------, 
50 100 

Tins) 
150 

(}9 

(}8 

Normalisedo=T 
amplitude 
error 

0·2+------..r-------, 
50 100 

Tins) 
150 

Fig.2.7 Effect of pulse crowding on readback pulse amplitude 
and position. 



v = - jksNj15 where k = 21f /)., .......•.. (2.15). 

If Hf is the field entering the head then, 

- = ~0 Hf W/jk •••••••••• (2.16), 

where the flux area is given by the width of the track, W, times 

>., 21T .From (2.15) and (2.16), 

V = - S Nl'l).l0 H f , , , • • • ( 2 , 17 ) , 

The significance of equation (2.17) for multitrack systems is 

the fall in replay signal amplitude of 6dB each time the track 

width is halved. Further, since track noise is random this 

reduces as the square root of track width,ie 3dB ,hence the 

signal-to- noise ratio deteriorates by 3da each ti~e the track 

width is halved. 

The frequency response of the replayed signal is given by, 

V (k) = K5k£ (1 -e-H)e_kJ. sin ( 1.11 kg/2 ) 

\: k 1.11 kg/2 

........••. (2.18). 

\·Jhere, b = thickness of magnetisation zone, 

d = tape head separation, 

K = constant 

k = wavelength number, 2 1T I',.. ' 

5 = velocity and 

g = gap length. 

The effect of the various component~ of equation (2.18) is shown 

in the response curve of figure 2.8 . From the null at d.c. the 

response increases by 6dB per octave. This rise is counteracted 

by the thickness-loss term as k exceeds 1. 

Thickness loss is brought about by the different vector 

magnetisations of the tape-coating lamina. This is caused by the 
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fringing field,figure 2.4. The lamina furthest away from the 

head receiving a magnetisation orthogonal to the nearest lamina 

with areas in between making the transition between these 

extremes.Because of thickness loss the read head only senses the 

magnetisation in the tape coati~g near the surface. Estimates of 

this effect [7] show that 90 % of output reproduction comes 

from a tape-coating penetration of X /3. 

In a practical system the magnetisation thickness may be made 

less by reducing the recording current; this increases the 

frequency at which thickness loss takes effect. The spacing 

loss makes some contribution to the reproduction loss since, 

because of tape - surface roughness and imperfections in the 

head profile,there is always a finite, but small, tape- head 

separation. The gap loss follows a sinx/x law which rapidly 

reduces the response to zero as the wavelength becomes 

approximately equal to the gap length. 

Unlike the record process the gap length of the readback head 

must be as short as possible. The foregoing to place the first 

zero in the frequency response as high as possible. 

The foregoing theory applies to conventional ring inductance 

heads. Reproduce heads fabricated from magneto - resistive (~Rl 

material may also be used [8 - 15]. 

One advantage of MR heads is that their response is media/head -

velocity independent.Also, their sensitivity is much higher than 

conventional inductance heads. MR heads do, however, require 

biassing and head wear can be a problem. 
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2.4. ~ECHANICAL CONSIDERATIONS. 

The aspects of magnetic tape recording so far consi~ered assume 

ideal tape/head contact. In practice,the transportation of the 

tape across the head is far from ideal and aspects of this non -

ideal behaviour will now be considered. 

2.4.1. Tape -Velocity. 

The frequency,£, of the reproduced signal is related to tape 

velocity,S,through the equation, 

f = 5 !'/'. ,where ~ is wavelength. 

At a given frequency the length of tape occupied by one 

wavelength depends on the tape velccity. Should tl1e velocity 

profile of the tape replay not be identical to that on record 

then the reproduced frequency will be different. The velocity of 

compact - cassette tape is standardised at 4.75 cm./sec. The 

tolerance on this speed is ~ 0.5 % for professional recorders 

and ± 2 % for domestic players [16]. These close tolerances are 

usually achieved through the application of speed control 

circuitry.Whilst the above velocity specification applies to the 

motor driving the tape it is the velocity of the tape across the 

head gap which determines performance. 

The effect of tape-velocity tolerances of magnitude 0.5i - 2% on 

digital recording would be negligible. Because of the low 

velocity of the tape,however, stiction is a problem. Th!s causes 

flutter the effect of which is to introduce jitter into the 

playback signal. Jitter reduces the timir1g window during which 

the playback pulses may be sampled,figure ~.9. 
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jitt~r tj. 

2.4.2. Tape/Head Separation. 

Equation (2.18) contains a spacing loss component which allows 

for the re~uction in head output due to the distance between tl1e 

tape anci the head gap.The spacing-loss terT.l gives an attenuation 

of, 

20 -k~ log e = 
/0 

54.6 d/).. dB. 

A head separation of some 22 % of tl1e recorded wavelengtll is all 

that is required to produce a dropout (-12dB.lossl. This 

translates into a tape/head separation of 2 pm for a bit rate 

of 10 kb/sec.at compact - cassette s!)eecl. The surface swoothness 

of audio tape is in the range 0.25 to 0.12 ).m. [17) and the 

worst-case contribution to signal loss from tl1is source is <1 dB. 

at 10 k.b/sec. 

At hirJh bit densities account must also be tc.ken cf the record 

loss which is also a function of tape/head separation (equation 

2.13). This coriliines with the srJacing- loss cor,,;)Or.C'nt to crive a 

total signal attenuation of 94.6 d/~ da.The tape/head separation 
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::-equireci to bring about amplitude loss of dropout 

propo::-tions falls to 12.7t of the recorded wavelength. 

The major cause of spacing loss is the build up of oxide and 

debris on the tape head. This cause of signal loss has sig -

nificant implications for the detection method employed. Its 

effect may be reduced through the use of automatic gai~ control 

(age) in the readback amplifier, although age cie;rades the 

signal - to - noise ratio. 

2.4.3. Tape -Azimuth. 

In the gap-loss component of equation (2.18) a constant gap loss 

is assu~ed. In practice an azimuth,or skew,angle occurs between 

tbe normal to the longitudinal direction of the tape and the 

head gap. The result is to effectively increase the gap length 

(figure 2.10) and consequently lower the first zero in the 

normal 
-head 

gap 

Fig. 2.10. Skew angle increases effective 
head gap for track width w. 
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replay response.The gap-loss component now 

sin : j_1. 11 x 2Tr 
L 2)\ 

( W tan d.. ~/[} .11 X 2 1f 
j L 2)( 

becomes, 

( W tan o<. ~ 

which results in an attenuation of approximately, 

20 log sin (! W ~an o<.) / 7T W ~an o<. dB. • ••• ( 2 • 2 0) • 

This loss component is shown in figure 2.11 for a compact -

cassette, 4-track format (track width 0.66 mm.) at a bit rate of 

10 kb/sec. The dropout level is reached at a tape/head 

mis-alignment of 0.65 degrees. 

Azimuth 
loss 
!dB) 

0+---~ 

-10 

-20 
displacement 

-30~-....----.---.---.----r---,---'-----..----!r-

o ().1 0·2 0·3 0·4 0·5 0·6 0'1 0·8 
Azimuth angle (degrees) 

Fig. 2.11. Azimuth loss and bit-cell displacement 
against azimuth angle for compact
cassette tape at 10 k b/s. 
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Tape azimuth loss is a function of track width - the narrower 

the track width the less is the effect. It also reduces as the 

tape velocity is increased since this gives a higher wavelength 

for a given frequency.In addit1on to the adverse effect of tape/ 

head alignment on amplitude response is its effect on multitrack 

digital recordings. This is illustrated in figure 2.12. A tape 

azimutt1 angle of ~ causes a track-space displacement of 66.5 pm 

across the tape.The implication of this for a recorded data rate 

of 10 k.bits/sec/track is that a bit - cell displacement of 14 

bits will occur between the outside tracks. The results shown 

assume a constant tape - azimuth angle across the width of the 

tape. 

- track sp(](ej
displacement 

Fig.2.12 Effect of tape skew on digital 
recording. 
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TY10 components of tape azimuth can be identified - static skew 

and dynamic skew.Compact - cassette tape heads are fitted with a 

single tape guide.This,coupled with possible axial movement of 

the tape. reels,permits the tape to lie across the tape head with 

a skew angle ot... > zero, static skew. In addition to this static 

skew the skew angle also varies under dynamic conditions.A major 

contribution to dynamic skew is the tape itself. During 

manufacture magnetically coated sheets are slit into tape. 

During this process a wavy edge can be imparted to the tape and 

as a result the tape"weaves" through the tape guide as it is 

transported causing skew - angle variation. A curvature of up to 

3 mm in 1 metre of tape length is possible [17]. 

The effect of tape - skew variation on the coherent detection of 

digitally recorded signals may be removed by employing data 

buffers at the outputs of each track,figure 2.13. The data from 

BUFFER A 

BUFFER B I -
L..._.__--,---------lr 

deskewed 
"---data 

out. 

~-----s_u_F_FE_R_A ______ ~~~ 

BUFFER B L_ ._______ _ ______.! 

""------deskewed 
data 
out . 

Fig.2.13. Oeskew circuitry for multitrack tape recorder 
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each of the tracks are clocked independently into their 

respective buffer. When all buffers 'A' are full the track data 

are clccked into the 'B' buffers whilst the data fro~ the 'A' 

buffers are clccked out uniformly. The length of the buffers is 

equal to the maximum bit - cell displacement due to skew. 

2.5. CHANNEL EQUALISATION. 

The mis - match between the frequency response of the recording 

channel and the frequency spectrum of the signal to be recorded 

imposes a limit on packing density. As the recording rate is 

increased intersymbol interference (IS!) and peak - shift 

effects reduce the opening of the detected eye ·pattern to 

inhibit data detection.These effects may be reduced by modifyicg 

the frequency and phase response of the recording channel to 

accommodate the spectral components of the recording code. 

Channel equalisation may be effected during the replay process, 

post equalisation, or during the recording process, pre -

equalisation. 

2.5.1. Post Equalisation. 

Frequency equalisation may be applied by placing the recording 

channel in series with a filter having a response which is the 

inverse of the channel, figure 2.1~. In addition the phase 

response of the channel should be equalised proportional to 

frequency. 

Selective frequency equalisation may also be applied. With an 

inductive head a d.c. null occurs. If the recording code to be 

employed is not d.c.free it may be necessary to compensate for 
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Fig.2.14. Frequency equalisation of recording channel. 

the null.The basis of d.c. ~qualisation is to re - introduce the 

d.c. content on playback. 

Conventional d.c. restoration techniques can be applied but the 

variable Qark space ratios of the playback waveform, coupled 

with amplitude variation, causes base - line wander and so 

impairs the detection process. Huber [18] addresses this probleQ 

by d.c. restoring both the positive and negative waveform peaks 

and sumwing the two signals. This fixes the base - line of the 

signal thus permitting peak detection. Equalisation of the d.c. 

null using decision feedback has also been proposed [19]. 

ISI is caused by the spectral response of recorded pulses 

overlapping into the time zone of adjacent pulses. The amplitude 

of these interfering pulse ''tails" will reduce rapidly if the 
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tLm~L 
channel is equalised to a raised cosine11 response. Kamayama et.al 

[20) has applied raised cosine equalisation to realise an 

improvement in packing density of 30% compared to the 

unequalised channel. 

The theory of superposition permits the recorded pulses to be 

slimmed during the replay process and so increase the packing 

density. This may be accomplished by adding a differentiated 

component of the replayed waveform to itself. Schneider [21) has 

proposed a pulse slimming technique which permits the leading 

and trailing edge of a replayed pulse to be slimmed 

independently. Results show pulse - slimming ratios of 3:1 with 

possible reductions of up to 10:1 with cascaded sections. 

One advantage of pulse slimming is that both frequency and phase 

are equalised in one operation. A disadvantage is that each time 
typicq/fy, 

the differential of the signal is taken the signal noise"doubles, 

thus the process degrades signal - to - noise ratio. 

The theoretical effect of pulse slimming on system performance 

has been investigated by Mackintosh [22) who reports 

improveDents in packing density of up to 20%. Balanced against 

this improvement one must weigh the degradation in SNR and the 

increase in system complexity.This latter point warrants serious 

consiceraticn where a multitrack format is proposed. 

2.5.2. Pre-Equalisation. 

Equalisation is also possible by modifying the spectral 

components of the recorded signal to match the response of the 

channel. 
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The interfering effect of adjacent pulses serves to shift the 

peaks of the recorded magnetic transitions relative to the 

position of the signal transition which caused it (figure 2.5). 

The extent of peak shift depends on the packing density of the 

recorded signal and the immediate pattern of ones and zeroes 

formed by the particular recording code employed. Peak shift is 

undesirable since it impairs the detection process. Whilst post-

equalisation reduces peak shift it may also be reduced by 

transition shifting [23]. 

The effect of transition shifting is shown in figure 2.15.If two 
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Fig.2 15. Transition shifting. 
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adjacent signal transitions are likely to cause peak shifting 

wher1 recorded the individual pulses are actually recorded with a 

reduced time ir.ter·val bet11Jeen their transi~tions. Vhen detecteC. 

on playback the effect of peakshift will have r.1oved the 

transitions back to their normal position. 

A r.1ajor probler.1 when transition shifting is employed is deciding 

which two adjacent signal transitions merit pre-compression.This 

would depend on the recording code adopted and in some cases on 

the transition pattern of the signals to be encoded. 

As il1 the case of post- equalisation the benefits of thi~ method 

are limited. Also,because pre - shifting transitions effectively 

moves the signal to a higher frequency one effect of transition 

shifting is to reduce the amplitude of the playback signal [24). 

The reduction in amplitude caused by transition shifting is 

capitalised upon by Schneider [25) to produce a flat response of 

tl1e replay signal. By adding higher frequency write pulses at 

strategic points in the write current waveform, pre-equalisation 

i~ effected. The resultant equalisation of the replayed waveform 

produces a signal whose amplitude i~ independent of flux -

transition density. 

In terns of utilising intelligent devices to parallel encode 

data in a multitrack format pre - equalisation i~ an attractive 

pro;:,osi t·.ion. 

As indicated in tl1e previous section tl1e effects cf intersyrnbol 

interfe:r:ence(ISI) limits the recording density of a magnetic 
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recording system. However, if the spectral response of the data 

cl1annel is accurately 

recording rate may be 

defined the ensuing 

predicted and thus 

ISI due to a hi0h 

allowed for in 

detection. This technique makes use of the partial response of 

the system at high data rates. 

Kretzmer[26] has classified a number of partial response systems 

in terms of the number of received signal levels. Of particular 

interest is class IV. The transfer function of tl1e class IV 

partial response channel is very similar to the bandpass 

characteristic of the standard recording channel. 

Class IV partial response offers a number of advantages. 

Signalling at the Nyquist rate is possible and the constraints 

placed on the level transitions endow it with an inherent error

detection capability. A number of researchers have proposed 

class IV partial response recording systen's which seek to 

exploit one or more of its advantages [27 - 29]. On the debit 

side implementation is complex and certain aspects of cetection 

performance are inferior to other methods [30]. 
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CHAP'l'ER 3. 

THEORY & ANALYSIS of ERROR CORREC1.'ION & RECORDING CODES. 

3.1. RECORDING CODES. 

The use of a modulation,or channel,code is beneficial for two 

reasons;to match the spectra of the raw digital data to the 

response of the recording channel and to increase the packing 

density above that which would obtain without the use of a 

channel cede. Selection criteria for a recording code include 

ease of implementation and the ability to decode efficiently. 

The basic characteristics of binary recording codes and their 

construction will be covered. A review of codes and coding 

techniques will also be given. Finally,a brief overview of.M-ary 

codes is given. 

3.1.1. Para~eters of Recording Code. 

A number of basic code parameters are first explained. 

Code rate:lvhen rn inforn,ation symbols are encoced into n code 

symbols the code rate is n/m.Code rate < 1. 

Run length:This relates to the distance between ~rarJsitions in 

the coded sequence.Two parameters,d and k are defined, 

a = The r.1inimum number of "zeroes" between adjacel"!t ones. (The 

highest transition density). 

k = The maxin1um nur.ber of "zeroes" between adjacent ones. (The 

lowest transition density). 

In this definition of d and k ones are interpreted as changes in 

sisnal level and zeroes as no change. 
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A low value of d is desirable to ensure synchronism between 

the code and the data clock during decoding. However,a low value 

of d restricts packing density.k should be limited to reduce the 

low-frequency components in the spectral response of the code. 

Digital sum variation (DSV) :The digital sum variation is the 

running integral of the area beneath the coded sequence assuming 

the binary levels to be + l. If the DSV of a code is bounded the 

code is d.c. free. 

Capacity:In his paper Shannon [1] showed that capacity in units 

of user bits per channel bit is given by, 

C = log2 x ,where x is the largest root of the equation, 

k+f 1<-J 
F (x) =X X - X + l = 0. •• ••••••• (3.1) 

d,k are the code parameters defined above. Equation 3.1 is 

derived from a consideration of the finite - state - timing 

diagram (FSTD) of the code. This is done in appendix A. 

In this form C < l and the Shannon capacity can be deterninecl in 

terms of the code parameters d and k. A code is deemed efficient 

if its rate is close to c. Consequently, 

code efficiency = code rate/capacity. 

In practice code rate is chosen as a rational nur.ber rn;n < C. 

The capacity of a code for various values of d,k is shown in 

f ig·ure 3. 1. 

3.1.2. Code Construction. 

A method of run length limited code construction using finite 

state rEc'chine graphing n,ethods is due to Franilszek [2]. Adler et. 

al. [3] have applied mathematical techniques to develop a 
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Fig. 3.1. Channel capacity C for various d,k 
constraints. 

structured method of generati~g run-length limited codes.This is 

known as a sliding block code algorithm and it can be used to 

generate efficient codes with limited e~ror propagation. The 

sliding block code algorithm incorporates tile FSM graphing 

methods of Franaszek. These ideas are demonstrated in Siegel's 

paper on recording codes [4]. 

Consider a d,k constraint of 1,3. The capacity for this cocle is 

0.5515, therefore choose a rate of 1/2. A finite state l:ransiticn 

diagram (FSTD) is constructed having k+l states, figure 3.2. 

The paths through the FSTD correspond to binary sequences 

satisfying the 1, 3 constrair1t. Fro.-:1 the FS'l'D a finite state 

r:•.:•ch::.ne (FSr-'d graph is developed \vhere each tranf;i.tion oetween 

states is labelled with a twc -bit codeword, figure 3.3. 
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Fig.3.3. FS M graph of FSTD in figure 3.2. 
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Figure 3.3. is now inspected and states ~ith less than 2 

outgoing edges are eliminated. In this case D is eliminated to 

yield figure 3.4. 

Fig. 3.4. FSM graph with 0 state eliminated. 

The final stage is the merging of any states which have 

identical outgoing labels,i.e.states Band c in figure 3.4. This 

results in the FSM graph of figure 3.5. 

Ofoo 

1fo1 

Fig.3.5. FSM graph for code with d.k 
constraint 1,3. 
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The binary value appended to each codeword is the information 

bit represented by that codeword. 

The state diagram of figure 3.5. gives the encoding rules for 

the code l'IFI\1, or t.Uller code. The wavefo1.-m for Mn1 is deduced by 

following the paths through figure 3.5. and ascribing a change 

in level to a logical 1 and no change to zero, figure 3.6. The 

above procedure r,1ay be followed to constr-uct efficient d,k codes 

where m;n < C. 

1 1 0 1 0 0 1 

Detection - window 

Fig. 3.6. Miller code waveform. 

The above method of code construction applies to a memoryless 

encoder. If the encoder can store information before it is 

encoded successive data bits may be inspected before encoding. 

This look - ahead technique permits coding decisions to be made 

based on present and future data thus overcoming the codeword -

length restriction encountered in the method described. 

Of fundamental importance is the ability to identify each 

codebit during playback. This process involves identifying the 
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time period of each codebit.A clock operating at codebit rate is 

used and this must be synchronised to the code. The ability of a 

code to synchronise a replay clock is quantified in terms of the 

d value of the d,k code.This should not be so high as to inhibit 

clock synchronisation. In terms of the frequency do~ain :- the 

spectral response of a recording code should ir.clude a strong 

component at either the bit rate or a multiple of it. 

Because of the importance of bit synchronisation a key parameter 

of a channel code is the detection or sample window.This relates 

to the timing interval during which the codebit may be sampled 

to determine its level. As an example the detection window for 

Miller code is shown in figure 3.6. to be one half of a bit 

cell. In practice this will be reduced considerably by timebase 

j it ter. 

3.1.3. Review of Channel Codes For Recording. 

Through the utilisation of channel codes the packing density of 

digital tape recorders used in computer storage has roughly 

doubled each decade since the 1950s (5]. In the relatively 

new field of digital - audio tape recording, where system 

requirements are not as stringent,channel codes have permitted 

packing densities to rise to five times that of cor.,puter· systems 

since the advent of the first digital - audio tape recorder 

constructed by the BBC in 1974 (6]. 

A brief review,with critique,now follows of cigital channel 

codes used in tape recording. 

A code adopted when digital tape recording began to emerge is 
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Non - Return to Zero (NRZ). The two r:;ost in,portant versions of 

this family are NRZ-L (L signifies level) and NRZ-M (M signifies 

mark),figure 3.7.These codes have a rate of unity and d,k = 0,00, 

l 1 0 1 0 
I 

0 1 
' 

Detection 
window N RZ-L 

. - -

Detection N 
window 

RZ-M 

-

Fig.3.7. NRZ Waveforms. 

consequently their efficiency is l.The detection window is equal 

to one bit-cell,T and a clock frequency of 1/T is necessary to 

decode.Two major disadvantages of the codes is that they are not 

run length limited nor are they self clocking. This latter 

Jisadvantage implies the requirement for a timing reference to 

be recorded alongside the encoded data. Enhanced versions of NRZ 

(E-NRZ) have been developed to overcoce these disadvantages. One 

technique is to randomise the data before encoding and so render 

the code run length limited. 

Perha~s tl1e earliest of self - clocking coces are the aiphase 

group of codes.These are variously known as Frequency Modulation 
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(F!'i) or Manchester codes.Two versions are in use:- Biphase-L and 

Biphase-M.Biphase-L is illustrated in figure 3.8. This is a run-

1 0 1 1 0 0 0 
.--- r-- r--

Oetechon 
window 1---

-r-- ;---- - -

Fig. 3.8. Bi phase- L waveform. 

length limited code with code rate 1/2 and a d,k constraint of 

0,1 which gives a capacity of 0.6942 and efficiency 72%.Biphase-

L has excellent clock synchronising characteristics and is d.c. 

free.Its disadvantages include a detection window of one half of 

one bit cell and a high transition density which lirr.its the 

potential packing density of the code. 

The Biphase family of codes have been n:odif ied to produce 

r-iodified Frequency Modulation (!1FN) ,also known as ~liller code 

after its inventor[?]. This code is classed as a double-density 

code since the transition density is one half that of the 

Biphase codes. The FSM graph and sample waveform for MFM code 

are shown in figure 3.5. and 3.6. As already statec its d,k 

value is 1,3 which permits clock synchronisatio~,although not 

with the same ease as Biphase code. The code rate of MFM is 

1/2 giving an efficiency of 90.6%. The detection window of MFM 

is one half of one bit cell and this code requires a detection 

clock rate which is 2 x the bit rate. MFM code is not entirely 

d.c. free. 
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The ~1ove towards d.c. free codes for magnetic recording began in 

1975 with the publication of Patel's paper :- '' Zero Modulation 

Encoding in r•lagnetic Recording " [8]. This was followed by 

Miller's modification to his namesake's code which resulted in 

~;iller Squared code [9]. The basic technique is to group the 

code sequences into consecutive ones bounded by ones and bounded 

by zeroes.If the DSV of these sequences is zero they are 

encoded in straight Miller code.Should the DSV of a sequence not 

be zero its transition positions are changed to give a zero DSV. 

A family of codes developed specifically for digital audio 

applications are the High density modulation codes {HDM) (5]. In 

particular HDM-1 code has been developed for use in stationary -

I head tape recorders.HDM-1 code has rate 1/2,and d,k = 2,8. This 

run-length constraint is achieved through the application of a 

complicated algorithm requiring look - uhead and look - back 

capability-The code is not d.c. free and the detection window is 

half of one bit cell. 

The final code to be considered in this brief overview is a 

group code which employs a look ahead technique. ISS 2/3 code is 

a 2/3 rate code invented by Cohn,Jacoby and Bates [10] who were 

wi tb the con1pany ISS Sperry/Univac at the tin•e. \·•ii th this code 

two data bits are encoded into three code bits, figure 3.9. The 

codebit ones represent a signal transition. No two adjacent code 

bits are ones,thus ISS 2/3 code offers a greater· ~:otential 

recording density when compared to 1·1iller Squared code. In the 

event of data ~equences occurring which would give adjacent code 

one~.; the code bits are n:odified to prevent this,figure 3.10. 
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Data 

00 
01 
10 
1 1 

Code 

101 
100 
001 
010 

Fig. 3.9. Encoding table for ISS 
2/3 code. 

Data sequence 

0000 
0001 
1000 
1001 

Replacement code 

101000 
100000 
001000 
010000 

Fig. 3.10. Replacement code for data sequences 
which would otherwise code into two 
adjacent transitions. ISS 2/3 code. 

With d,k = 1,7 the code efficiency is 98%, the detection 

window is 0.66 of one bit cell and the clock rate is 1.5 times 

bit rate. ISS 2/3 code is not d.c. free and it is not self 

clocking. 

A summary of the characteristics of the codes discussed above is 

given in figure 3.11. 

A number of atter.Jpts have been made to con~pare digital recording 

codes [11 - 14). Mackintosh [12) concludes that there is little 

to choose between all popular codes as regards maximur.J packing 
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Detection 
Code Rate Capacity Efficiency d,kconstraint window de free? 

NRZ-L 1 1 100% o.oo T No 

NRZ-M 1 1 100% O.oo T No 

E-NRZ 7'8 1 87-5% 0.13 T No 

Biphase-L 1/2 0-6942 72% 0.1 T/2 Yes 

Bip:,ase-M 1/2 0·6942 72% 0,1 Tt2 Yes 
..0 

Miller ~ 1/2 0-5515 90-6% 1.3 T/2 No 

Miller 2 1t2 0·6509 76·8 1,5 Tf2 Yes 

ZM ,,2 0·5515 90-6% 1,3 r,2 Yes 

ISS 2/3 213 0·6793 98% 1.7 0·66T No 

HDM-1 1/2 0-6266 79·8% 2,8 TJ2 No 

Fig.3.11. Summary of recording code parameters. 
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density \vhilst according to Ki\vimagi [13] there :i ~; no single 

best choice for all situations. It is indeed difficult to place 

codes in league order when considering them in isolation. No 

small consideration is the cost and complexity of impleDentation 

and since the objective is high data rate,error - free recording,. 

compatible equalisation and error detection/correction 

techniques must ~e considered. 

3.1.4. M- ary Codes. 

Increased packing density is possible through the use of multi -

state coding methods. If !VI states are recorded the packing 

density may be increased by a factor of ~i/2 compared to binary 

coding. The degrees of recording freedom are position,polarity 

and amplitude. M - ary coding schemes for ;~agnetic recording 

utilise one or more of these conditions with binary,being a 

class of M - ary codes,using the position of flux transitions to 

encode data. 

Data may be represented by one of a nuiT.ber of :nagnetisation 

levels on tape. Mackintosh and Jorgensen have conducted a 

theoretical investig-ation into the use of multi - level encoding 

[15]. They examined a 2 - ary recording syster.1 \vith fixed 

transition density and signal - to - noise ~atio (Sl~R). As the 

transition density falls the Sl.JR improves. This improvement ir1 

Sl·JR can be utilised by incr·easir.g the number of encoding levels 

to a point where the SUR is agair: the same.This procedure yields 

a value for improved packing density against SNR. For any 

improverJent over a conventional system the required SPR was 

found to be outside that of practical tape recording equip~ent. 
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Also,in view of tape-separation losses,and the loss in benefits 

of saturation methods,the use of multi - level encoding for 

reliable data recording is very dubious. 

M - ary code implementation using saturation recording has been 

proposed.Jacoby [16] has published details of a ternary "Three -

Position Modulation "(3PM) coding scheme. This uses the peak 

shift between two closely - spaced flux transitions (doublet) as 

the third signalling element. The three elements are 0,1 and 2 

represented by the absence and presence of magnetic flux and a 

doublet respectively. These are illustrated in figure 3.12. From 

102001002 
+SOt--- - r---

-sat -
Fig.3.12. Elements of Ternary 3PM 

Recording code. 

Chi's results on peak shift [17],figure 2.7., the crossover 

position for a recorded doublet is well defined. The detection 

of the replay waveform is determined by identifying the position 

at which the peak of a singlet pulse or the crossover point of a 

doublet pulse occurs. Packing densities double that of MFM code 

are possible using ternary 3PM and the detection window is 66% 
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of one" bit" cell. The recording of consecutive ones and twos is 

not permitted and codi ng algorithms to avoid this must be 

applied . 

Chi has utilised a change in the polarity sequence of two 

recorde d doublets in a ternary recording scheme [18] . In 

"Controlled Re t urn t o AC" (CRA ) code a high frequency AC erasure 

pattern is continuously recorded only to be broken for short 

d urations to mark either one o r two doublets , figure 3.13 . The 

high-frequency 
erasure pattern 

J 

Fig. 3.13. Two doublets from CRA code. 

elegance of this scheme is that true saturation methods are not 

sacrificed for the additional signalling element . The code is d.c . 

free and its oven1rite properties are excellent . It offers a 50% 

increase in packing density compared to MFM code with a 

detection window of 50% of one CRA digit. One disadvantage is 

that since the flux change is from +~ or -~ to zero the 

amplitude of the readback signal is 6dB down compared to a 

conventional recording code . 
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Encoding/decoding methods for N-ary codes are often complex and 

this usually offsets the improvements in packing density.However, 

data synchronising techniques developed in Chapter 4 may be 

applied to identify each CRA cell. In a later EIOC.ification [17] 

Chi incorporated an additional dimension by varying the duration 

of recorded doublets and thus exploited the change in amplitude 

in readback signal between doublets of two different durations. 

This gives a density ratio improvement of 130% over MFM code 

although system complexity is considerably increased. 

The sliding block coding algorithm of Adler et.al. [3] may also 

be applied to t•l - ary codes. Dixon et.al. [19] have used this 

algorithm to deduce capacities for a number of codes including 

the 3P~l and CRA codes described above.Capacity values of 0.747 

and 1.5458 for 3PM and CRA yield efficiences of 89.2% and 97% 

respectively for the two codes. 

3.2. ERROR CORRECTION CODES. 

Although Shannon l•redicts that for code rate R < capacity C data 

ri1ay be transrnitted at an arbitrarily low error rate it is often 

expedient to rraximise R at the expense of C.ata integrity and to 

use error - correction techniques to reduce the resultant errors. 

This section deals with error - correction methods suitable 

for application to digital data tape recordicg. It opens with an 

exa~tination of spatial techniques which utilise simple parity 

after which cyclic codes are exarn~ned. 

3.2.1. Spatial Error Detection/Correction. 

In order to detect/correct errors ic a received codeword it is 
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necessary to add redundant data to the information to be 

transmitted. The power of an error detection/correction code is 

usually proportional to tl1e extent of this redundancy. In 

multi-track tape recorders advantage may be taken of the spatial 

distribution of the data bits on the tape and so reduce the 

redundancy requirement. 

Data are arranged to configure a co-ordinate system,figure 3.14. 

Data block 

\ 

dn,dntdn 3 · 
Vertical R 
parity- v1 

Horizontal 
parity 
t 

d1m P,h 

~h 

Fig. 3.14. Co-ordinate error correction. 

Solution of equations Pv~ and Ptk identify the bit in error which 

subsequently may be corrected:- only single errors may be 

corrected. Multiple errors may be detected although some error 

patterns will be missed.This latter disadvantage ~ay be overcome 

by replacing the horizontal parity bit by a polynomial cyclic 

redundancy check character (CRCC). This has been applied in some 

multitrack recorders [6) [20) where the vertical parity 0its 

are recorded on a single parity track and the CRCC is placed on 

each track at regular intervals. This technique works well since 
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when errors occur they are likely to be confined to one track. A 

disadvantage of this method is that track data are interrupted 

by the CRCC and additional synchronising patterns need to be 

incorpora ted on each track to discriminate between data and 

parity bits. 

If uninterrupted track data is required the parity bits may be 

placed on dedicated tracks with the parity bits covering data 

lying at ± 45 degrees across the tape. Patel [21) has used this 

technique with two additional"vertical" parity tracks in a cross 

parity error-correction scheme,figure 3.15 . This can correct up 

to two tracks in error out of fourteen data tracks .Data lying at 

other than + 45 degrees across the tape ma y al s o be covered by 

parity tracks[22). 
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3.2.2. Interleaving. 

Isolated errors are easier to correct than burst errors. However, 

this latter error pattern is cor;u;;on in tape systerr,s where the 

build up of debris on the head can wipe out a number of 

consecutive track bits. One technique of converting burst errors 

into isolated errors is to interleave codewords before recording. 

Assume. a block of m,n - tuple codewords each with burst error -

correcting capability b:-

v, = dll + d,z. + d,') + ......... d,ll 

v1 = dz, + d2Z.. + d11 + • • • • • • • • • d'Zn . . . ... { 3 • 2) . 

v.,.= d .. ,+ d..,2..+ d..., 3+ ••••••••• d.., ... 

Record the codewords interleaved to a degree n1:-

V = {3.3). dz" ... +d 
"'" 

A burst error of length mb will only affect b bits of a cocieword 

therefore the error - correction ability of the interleaved code 

is increased by m,the degree of interleaving. 

It should be noted that a degree of interleaving is inherent in 

the process of recording data broadside across the tape~ ihe 

depth of interleaving being equal to the number of tracks. 

3.2.3. Block Codes. 
bEnA~Y ~ 

For an n, m A code there are 2 data words of length m . These are 

encoded into a block of 2" codewords of length n. Any decoder 

must assign the appropriate data word to any of the 2" codewords. 

Since for large m this would require an extensive decoder the 

virtues of linearity and periodicity are used to simplify 

decoder design. A linear code is one where the sum of any two 
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codewords is a codeword.If a logical shift of a codeword results 

in another codeword the code is cyclic. 

In the treatment of linear,cyclic codes, codewords may be 

represented by a polynomial in X the order of which represents 

the weight of the codebit.The coefficients of the polynomial are 

either zero or one.e.g. 

'2. :;1 5" 
M (X) = 1 + X + X + X 101101 

Codes are classified in terms of their generating polynomial 

G(X).Let M (X) represent the data to be encoded,then 

1'-l (X ) 

G (X) 

= Q (X) + R (X) 

G (X) 

where Q (X) = quotient, 

(3.4). 

R (X) = remainder,therefore, 

M (X) = Q (X) G (X) + R (X) and 

tl (X) + R (X) = Q (X) G (X) module 2 ...•... (3.5). 

The data plus the remainder are completely divisible by G (X). 

R (X) is the polynomial cyclic redundancy check character (CRCC), 

the ''parity '' bits. At the decoder M (X) + R (X) is further 

divided by G (X) to give a zero remainder. If errors have been 

incurred during transmission the remainder will be non zero. 

In order to identify data bits on inspection equation (3.5) may 

be put in systematic form. This involves shifting the data n -m 

places before the remainder is appended,i.e. 

11-"" M (X) X + R (X) = Q (X) G (X) ••••••• (3.6~. 

The error correction ability of a linear block code can be 

demonstrated as follows, 

let r (X) be a received codeword, 
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dividing r (X) by G (X) 

r (X) = Q (X) G (X) + S (X) ••••••••• (3.7) 

where the syndrome,S (X) is the remainder. 

Let v(X) be a transmitted codeword and let e(X) be an error 

pattern.The received vector:-

r(X) = v (X)+ e (X) •••••••••• (3.8) 

from ( 3 • 6 l and ( 3 • 7 ) , 

e(X) = Q(X) G(X) + S(X) + v(X) 

v(X) is a multiple of G(X),i.e.v(X) = b(X) G(X) 

therefore, e(X) = Q(X) G(X) + S(X) + b(X) G(X) 

e(X) = [ Q(X) + b(X)] G(X) + S(X) ...•. (3.9). 

Equation (3.9) shows that the syndrome is equal to the 

remainder resulting from dividing the error pattern by G(X) 

thus the syndrome may be used to identify the error pattern. 

The generating polynomial for an n,m code is a factor of x" + 1 

" . [23 - 24] and any factor of X + 1 w~th degree n -m generates an 

n,m cyclic code.These codes have minimum distance d.,~ n -m and 

are thus able to correct t errors where, 

t~n-m-1 

2 

The encoding/decoding circuitry required for cyclic codes 

comprises a number of shift - register stages and exclusive OR 

gates.Consider the generating polynomial G (X) 
3 . = 1 + X + X .Th~s 

gener~tes a 7,4 code wltich requires an encoder with 7 - 4 stages, 

figure 3.16. The effect of clocking M(X) through the encoder is 

to divide it by G(X). Whilst this is in progress M(X) is being 
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G!xl =1+X+ ;/ 

B 
M (X) ;;r----------J 

Fig.3.16. 7. 4 code encoder. 

recorded . When this is complete the switch is thrown to B and 

the R(X ) thus generated is clocked out of the encoder into the 

record channel.The decoder follows the same form as figure 3.16. 

After decoding ,the syndrome in the shift register is unique and 

i d entifies one of the seven bit positions in error which can 

t hen be corrected. This may be accomplished using a look - up 

tab le containing the corrections corresponding to each syndrome . 

Although fast ,this decoding method is cumbersome and for long 

codes the memory requiremen t i s extens ive . An alternative is to 

use a Meggitt decoder [251 : this utilises the cyclic nature of 

the code . A non-zero syndrome , when shifted in the decoding shift 

register,sequences through the n - 1 syndromes of the code each 0f 

which relates to the bit positions of the codeword . The number o[ 

shifts required to give the syndrome of the most significant bi t 

of the codeword identifjes the bit position in error . Because of 

10 4 



tl1e cyclic shift process involved tl1is metl1od is slower than the 

look - up table decoding method. 

3.2.4. BC H Codes. 

The Bose, Chaudhuri and Hocquenghen: {BC~!) codes are a class of 

random error correcting cyclic codes [25]. The generating 

polynomial of a t error correcting BCH code of length 2~- 1 is 

given by the lowest degree polynomial over Galois Field 2 

{ F { 2 ) ) l . h h I _/ 4 -/ 'Z t d ' , G WllC as eX. , v.. ••••• "" an tnelr conjugates as its 

roots, where eX is a primitive element in the exter:sion field 

GF { 2M ). The generating polynomial G {X) 1
. c 

uo 

G {X)= LC~\ {~~{X), ~2. {X) •••••• _rjlt:{X)) ..•..• {3.10), 

where LC!·\ 

Now o<' = 

renresents the 
-. 2R 

{o<:J ) , where j 

lowest con®on multiple. 

is an odd number, i is an even integer 

ana£:;:::.1. Therefore, o<j is the conjugate ofo<'ancl rji {X) = ~j {X). 

Thus, the minimal polynomials with even powers may be eliminated 

fron1 the generaUng polynoD:ial and equation 3.10 beco"1es, 

G {X) = LCM [ ~ {X), ~3 {X) ••••••• ~ {X) ] 
U-1 

•...•.• {3.11). 

The generating polynomial of a BCH code may be determined as 

follows, 

{a) Choose the length of the code,i.e.15. Therefore 15 = 2~ - 1 

and nt = 4 . 

{~) Cl1oose error-correcting ability,i.e.t = 2. 

{c) R.efer to litera.ture for the appro;:-ciate 0_;riE'itive pclynon~ial, 

i. e .1 
y.. 

+ X + X 

{ci) List roots of G{X) 
. 3 s 

up to the rec;uired nUirJ:Jer.l.·2.o<' ,o( ,o( etc. 
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(e) Find the rr.inimal polynomial for each of the above roots. 

e.g.for o<. : 
0 

'2 
conjugate roots of o< = (ol) 

~ 
2 '2. 

(o() ,(o<) 
2.? 

( o<..) 

l. '+- 6' I(, 
=o(,o(,o(,o(,CJ(, 

/{, 

:2.1<

( 0() 

out oZ = o<.. therefore the minimal polynomial fo= the above four 

roots is, ~~ = (X +CX.) 
'1. 

X +<X) 
4- 8 

(X+cX.) (X+O() 

q. '3 g 't- 1. '2... ,z.. ID r. 9 5" 3 
=X+ X (eX. +0C::+ot+OC:) +X (cx+ol;-cX+cX+OC+cK) + 

11<- 13 11 7 IS' 
X (ol+o<.+o<+o<.) + o<. 

~ 3 :2. 
~I= X + X (0) + X (0) + X (1) + 1 

~ 1 =x""+ x + 1. 

3 
The same procedure for rX. and its conjugates yields, 

~'J 
~ 3 :2.. 

= X + X + X + X + 1. 

The generat:ng polynomial is, therefore, 

G(X) = ~1 (X) ~3 (X) 

= ( 1 + X + X <r) 
2. '3 4-

( 1 + X + X + X + X ) 

3.2.5. Decoding Process. 
I Z 

Each codeword is a factor of G(X) and therefore also has rX. , ~, 
2t 

••••• o( as roots. The decoding process involves suustituting 

these roots into each codeword,v and verifying that v 
L 

( o( ) = 0. 

( 0( () For v f 0 the syndromes are used t;:o deten:li ne the' error 

positions.This process generates 2t (2t/2 for odd powers of G(X) 

roots ) syndromes. Since the syndror.1es are evaluateci by 

substitution of the roots oc:' of G(X) they take the forn, 
it <z. i.3 ,..,. 

e. cx + e. o<. + e. 3 ()(. ••••• + e· o<. ••••• (3 .12) 
t/ (L L LV 

Si = 

where 
17th 

ei_R is the magnitude of the£ error. For binary codes e = 1 

and re -writing (3.12) the syndromes are, 
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s, = XI + xt. + ...... Xv 

s'Z. = xt + z. + x,_ 
I Xt ...... 

<T 

SJ = x' + x' + ...... x'J 
I t. V 

= 
zt zt 

XI + x., + 
z.t: 

. . . . . . x.v (3.13). 

Attempts at achieving a viable BCH decoding algorithm have 

centred on the solution of the set of equations (3.13).This is 

done by defining an error - location polynomial the coefficients 

of which relate to the syndrome components. The error - location 
-1 _, -1 

polynomial, cr- (X) has roots at x, ,x 1 ,xJ etc.Once the roots of 

o- (X) have been determined the bit position of the error is 

found and this may be corrected. 

The error - location polynomial is defined as, 

er (xl = (1 + x 1 X) (1 + xtX) ••••• (1 + x.,..Xl 

er (xl 
'- v-

= O'Q+O'j"X +G;X + ••••• a:;x ..... (3.14) 

where the roots of (3.14) are the inverses of the error location 

numbers and, 

ao = 1 

a-; = XI + Xt. + x 3 ••••• xu-

CJ-i = x,x~+ xz x 3 + • • • • • X xc..r 
(J -I 

~ = XI xt.. • ••• x Lr 

Fror:1 equations ( 3.13 l and (3.14) the syndror:1e components are 

related to the coefficients of the error - location polynomial 

as follows, 

s, = CY/ 

Sz =0,5 1 + 20L. (3.15) 
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s + tJ.1 s + ••••• ~ s 2 + a; S1 = 0 , and 
u-+1 er v-1 

(3.16) 

<:17 s..r+CTi s..,._, + •••• a;; s, = - s~(+f ••••• (3.17) 

Solution of equations (3.15) give the coefficients of the error-

location polynomial from which the roots may be found. 

In the Peterson [27) and Gorenstein and Zierler [28) decoding 

algorithm equation 3.17. is placed in matrix form: 

s, s, S1 ...... scr-' Sr.r <T.i-
Sz. S3 S~oo • • • ••• Sc..r Sv+l a;;_, 
S3 s~ s, •••••• sc.rr/ s,+.,_ ~-2 = 

s..,. s.,+, sc.r~2..· ••••• slc.r-2 s2v-f <YJ 
(3.18) 

M) [o-) = [ s l 

It can be shown [29) that for some value u > v det [M) = 0, if 

u = v det [M) I O. 

In the decoding process v is set equal to t and det [Mtl is 

evaluated. If det [M) = 0 v is set equal to t-1 and det [Mt.-rJ is 

evaluated. This process continues until det [1'-'.e.) f. 0 at which 

point the error location polynomial is evaluated from equation 

(3.18). 

The error - location polynomial may also be deduced using 

Berlekamp's iterative algorithm [30). The process involves 
2.-f: 

finding a minimum degree polynomial o (X) w·hose coefficients 

satisfy the equations of (3.15). A minimum degree polynomial 
I 

satisfying the first equation of (3.15) is formed, o-(X). If the 
I 

coefficients of a-(X) satisfy the second equation in 3.15. then 
~ I I 

let o- (X) =a- (X), if not, a correction term is added to er (X) to 
2 ~ 

form er- (X) such that er (X) has minin,ui.l degree and satisfies the 
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first two of equations (3.15). 

zt 
The above process continues until cs- (X) is arrived at. For 

binary codes it is only necessary to complete t iterations to 

arrive at the error - location polynomial. 

Once the error - location polynomial has been found its roots 

are determined.This is usually undertaken by instituting a Chien 
< 

search [31].This involves substituting (d.l into a- (X) .Since 
n ~ £=0~11-1 

-..c; 11-..o:. R -n-.R 11. 
a( = 1, <X. =eX. , therefore, if o( is a root of a- (X), o<. is an 

error-location number and the received digit ~-£is in error.The 

high order bits of the received codevector are treatec first. To 
71-.R .e' 

decode r 11 _)2 the inverse of<X. (eX. ) is substituted into er (X) .If 
.,_..12 "11-~ /J 

(J" (ex l = o, o( is a root and bit position n-L is in error, if 
..,_£. 

o- (~ l f 0 there is no error at this bit position. 

3.2.6. Reed - Solomon Code. 

A subclass of the BCH codes is the Reed - Solomon (RS) code [32]. 

The RS code is a non-binary code with code s~~ols from GF (q) . 

A t error-correcting Rs code has the following pararneters, 

Block length: n = q - 1. 

Number of parity check bits: n - rn = 2t. 

Minimum distance: d~= 2t + 1. 
I 2 zt 

Generating polynomial: G (X) = (X + ci. l (X +ol:) •• (X +eX). (3.19). 

The RS code has a d,.. of one r.tore than the number of parity -

check digits and for this reason it is a maximum distance 

code. 
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1-Iith allowance for the handling of symbols rather than bits the 

encoding process for RS code is the same as for the binary BCH 

codes. Decoding is also the same with a fourth step necessary to 

determine the magnitude of the error. 

From equation 3.12, 

Sl = 

Sl = Yl Xl + Y2 X2 + Yv Xv 

where Yv = eiv = the error ;;1agni tude. 

Xv = o1 .. /·v- = the error i;:OSition. 

therefore, 

Sl = Yl Xl + Y2 X2 + ••••..• Yv Xv 

S2 = 
2 

Yl Xl + 
"2. 

Yv Xv 

"2.~ 
S2t = 

-zc 
Yl Xl + 

-zt 
Y2 X2 + Yv Xv ..• ( 3 • 2 0) • 

The error positions, Xv are determined from the error - location 

polynomial and a Chien search. Once the error positions l1ave 

been identified the error magnitude may be determined from 

equations 3.20. 

e.g.for two errors, Xl X2, denote tt,e error rositions witlJ 

corresponding error magnitudes Yl Y2, 

therefore, 

Sl = 

S2 = 

from whiclt, 

Yl = 

Yl Xl + Y2 X2 

Yl 
2 

(Xl) + Y2 
2 

(X2) 

S2 + Sl :<2 
Xl Xl + Xl X2 
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and, 

Y2 = 52 + Sl Xl (3.24). 
Xl X2 + X2 X2 

3.3. ANALYSIS OF MOVING - PARITY ERROR CORRECTION. 

The data channel of a digital magnetic recording system is 

subject to burst errors. The error - burst length may be reduced 

to manageable proportions by interleaving the recorded codewords. 

The use of interleaving permits simpler, random error 

correcting codes to be employed.The additional decoding overhead 

incurred in employing interleaving is minimal and, with micro -

computer techniques, is relatively sin1ple to implement. The 

effectiveness of interleaving can, however, be thwarted by the 

occurrence of random errors. In the de - interleaving process 

the components of the error burst could be positioned close to 

random errors thus creating a further error burst v.•hicb would be 

uncorrectable. This possibility is reduced if crossinterleaving 

methods are used [33), although this further complicates the 

error - correction procedure. An alternative approach is to 

employ a burst error - correcting code [34 - 39). This reduces, 

or may eliminate, the need for inter·leaving. However, system 

complexity may well outweigh any disadvantages attached to the 

application of both interleaving and random error - correcting 

codes. 

3.3.1. Efficiency of Moving Parity Code. 

The error burst length incurred with the com~act - cassette 

system depends on the recorded data rate, figure 5.31. The error 

logging system, section 4.4.17, interprets an error burst as the 
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num.i..ler of consecutive failures of the replayed data :Oet\-1een t•t1o 

successful readings. For the purpose of analysis the error burst 

length is redefined as the number of bits i:>, bet• .. 1een two error 

bits preceded and followed by a guard space of error - free bits, 

g. The error burst must not contain error - free bits with cons 

-ecutive length g, e.g. if 0 and 1 represent correct and in -

correct bits respectively and the guard space is 6 an error 

burst of length 13 would be, 

0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 -g- b -9--

Consider the area of the tape covered by the parity strips, fig 

- ure 3. 17. 

Assuming single - track errors, all errors wit!': burst length 

b < .f and guard space g > L w i 11 be co:::-rec ted. 

The efficiency of the error - correcting code may be determir1ed: 

From figure 3.17, L = ( .f- 2 } + 2N •••••..•. (3.25}. 

where N is the nurnber of tracks. 

This is equal to the number of parity bits, ( n - m } , required 

to cover the data bits L ( N - 1 } =m, therefore L = ( n - m } . 

NO\;', to satisfy the Reiger bound [40] for an optirr·.uJ:-; burst error 

- correcting code: 

( n IYI} = Correctable burst lengtt1. 
2 

•nte maximur., burst length which is correctable = ,{- 1. 

Therefore, ( n -m 
2 

= f- 1 

Substituting equation 3.25, 

for optimu1n coC.e ••.. 
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L £_ 2 + 21'! = 
f_ 1 --

2 2 

therefore i' = 2N for optimur'' code. 

Thus, if length -f' is equivc>.lent to twice the nw•·,ber of tracks 

the code is optimum and its efficiency [ 4 0 l ' 

= 2b = 2 (./' 1 = 1. 

n -m 2 (?- 1 

The ~oving - parity error correcting co~e can only be considereci 

optimum on a track failure basis. However, burst errors only 

occur along a track and not across theffi. 

Equation 3.26. satisfies the condition for a i'taxiriiUIP distance 

code. However, since any t errors in n cannot be correct.eC:, this 

code cannot be claiG,ed to have this property. 

3.3.2. Theoretical Deduction of Hoving Parity Error Correction. 

The theoretical error - correcting performance of the code vlill 

now be deduced. To produce a realistic estin;ate of performance 

the worst case (highest probability of error) will be consiJered. 

Let the probability of incurring a single error be p. 

The probability of incurring two single - bit errors is higher 

than incurring three. or mo:-e, single - bit errors. 

From the binomial probability distriiJution the proLability that 

r errors occur in a sample size of n - r is given by, 

·v1here C = .... ,.. n! 

r! ( r: - r 

c 
'?\ .. 

r- ( ..... -r) 
p q 
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0 probability of no errors ( 1- p ). 

Consider the area bounded by the tape edges and the two parity 

strips, figure 3.17. The number of bit - cells within this 

boundary, including the bit - cells crosc;ed by the two parity 

strips is, 

where Nt = track nuE1ber, 

N = total nurr.ber of tracks. 

The probability of two errors occurring within, or on, this 

boundary is, therefore, 

p ( 2) = B! 
8-1 

2 p ( 1 - p ) ••••.•••• ( 3 • 27) 
2! "' - 2 ) ! 

The measurec probability of a single error depends on the 

recorded data rate and the recording code used and varies from 

approx in1a te ly to -it- f. 3 10 , 1gure 5. 5. 

-7 ,'1.7 
Taking p = 10 ana~ = 8, 

p ( 2) = 44! 
2! 4 2 ) ! 

therefcre, 

P (2) = 44 X 43 
2 

p (2) = 

-14- -7 '+2 
10 ( 1 - 10 ) 

Now the total number of 2 - error corciliination:o 'vithin tl"le 

prescribed area, 

= n! = 44! = 94 6. 
r! ( n - r ) ! 2! ( 4 2 ) ! 
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Of the 2 - error combinations the nurcber occurring on a sing·le 

track, and therefore correctable, 

Nt = N.-1 

Nt = 0 

where D = ( L - 2Nt - 1 ) • 

Nt = track number. 

N = total number of tracks. 

This evaluates to 190 for L = 14 and N = 4. 

The total nw~er of incorrectable, double errors is, tl1erefore, 

946 - 190 = 756. 

Total probability of incorrectable double errors. 

= 7 56 x 1 o- 11 = 
946 

o. a x 1 o- 11 

i.e.better than one in 10 11 
• 

3. 4. SOFT\\'Aim HlPLEHENTA'riON OF REED - SOLQI.jQ!J CODE. 

The Reed - Solomon code is an efficient, burst-error correcting 

code.Its implenentation, however, is complex and for operation 

in real time, at realistic data throughput, dedicated hardware 

is usually employed. Software implementation is possible but 

forms an additional overhead for the microcor,,puter on top of tlle 

decoding, synchronising and sampling functions already 

undertaken.To incorporate the RS code i~to tl1e recording systen:s 

descriDed in this thesis would require efficient cC>C.:ir;0/decoding 

software a l0ori thms. The essence of sucl1 algori tlir11s ;·1ould be the 

Elanipulation of finite field eleuents vcitl: a .-:'icrocor,;puter 

designed to process nurnbers in an infinite field. To date PS 

code has not been applied but the ;;_;regress· rnc:de towards 

tbis aim •.-1ill DO'.V be . . . 
O.lSCUS:3eG. 
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Subtraction in a finite field is the same as addition and this 

is easily implernentecl as the exclusive OR of the two finite -

field elements to be sur;1rned. The result is auto!71a.tically reduced 

by the field - generating polynomial and thus falls within the 

field. 

Multiplication and division by a primitive ele!Tient,o<, in the 

finite field may be accomplished by the software simulation of a 

linear feedback shift register [41]. for instance, for a field 

generat~d L•y the polynomial, 

'2. 
p {X) = 1 + X + 

3 
X + + 

the linear feedback shift register takes the form st1own in 

fig·ure 3.18. The ele!71ent to oe multiplied is loaded into the 

register and for each clock pulse the content_~, ''rE' n,ultiplied by 

o(.. • Division is accornplisheci by forl71ing the inver·se of the 

civisor and !71ultiplying. In tbe software si1nulation the 

multiplication operation requires the execution of four logical 

operations: 

Shift to right. 

b1. = Exclusive OR of b 0 ar1d b1. 

bl = Exclusive OR of b 0 and b 3 

b.,_ = Exclusive OR of b0 and b~ 

\·ihilst tbe above method is suitable for rt~ultiplyir:g by o1.. , the 

multiplication of two arbitrary elements from the finite field 

is more complex and may be achieved either through the 

appropriate har-dware configuration or its software sir;1ulation 

[ 4 2] • software algoritho for multiplication and 

division of finite fielci ele171ents has been cevelopccl. By >vay of 
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example cons id er the finite field generated by the polynon,ia 1, 

p (X) = 1 + X + 

power 
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Oc:,, 
Oc:12 

0:13 

o:14 

Fig.3.19. 
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1 

1 

1 

1 

1 

1 

1 

~ 
X, 

+ 

+ 

+ 

+ 

figure 3.19. 

polynomial 

Oc 
ec2 

0: 

0: + ec2 

ec2+ 

0: + 

+ 0:2 

0: + 

Oc + 0:2 

0: + 0::2 + 

Oc + Oc2 + 

+ Oc2 + 

+ 

4-tuple 
1000 

01 00 

0010 
Oc3 0001 

11 00 

011 0 
0:3 0011 
0:3 1 1 01 

1 010 
0:3 0 1 01 

1 11 0 
0:3 0 1 11 
ac3 1 1 11 
Oc3 1 0 11 
cx3 1 001 

Finite field generated by 
p(x):1+X+X~ 

Inspection of figure 3.19 shows that the weighting values of the 
0 I 2.. 3 

4 - tuple representation are o< , o<. , o< and o< , reading from 

left to right. Also, for the first four elements in the field, 

starting at l,shifting the 4 - tuple representaljc•n one position 

to the right is equivalent to multiplying by 0( • from the fifth 

element onwards the field wraps around but a postulated overflow 
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wouJ.d have a weighting value 
fr. 

of o< ·• !·lul tifol ication by o< is 

effected as follows, 

Shift 4 - tuple representation one ~losition to the right. 

If " overflow 11 = 0, end of process. 

'+
If " overflow " = l. XOR 1100 ( i.e. 0( ) • 

e.g. (o() 

1.. "3 
4 - tuple representa.t:.on of (eX. + o( ) 

Shift right: 

3 ~ J 
1101. = ci. + 0( = 1 + o( + o(. • 

= 0011 
0001-- 1 

e> 1100 
1101 

(overflow) 

The above algorithm may be employed in multiplying two arbitrary 

finite - field elements. 

e.g. 
"1.. 3 

(1 +eX +o() 
"L 

l +eX.). 

t 
o<.J) 4 - tuple represen ta U.un of 1 + o(_ + = 1011 •.•••. (a) 

4 - tuple represen ta tior: of 1 
1.. 

+ol..) = 1010 •.•••• (b) 

0 

hultip1y (a) by o<. : 101.1, bit 3 of (b) = 1. carry forward 1011 

~-iul tiply (a) by 
, 

01.01 - 1 c<.: 
e> 1100 

1001. bit 2 of (b) = 0, no carry forward. 

1-iul tiply (a) 
2. 

0100 by o( : ~ 1 

<±> 1.100 
1.000, bit 1 of (b) = 1, carry forward 1000 

!~ul tiply (a) by 
3 

01.00 c<. -- 0 
9 0000 

0100, bit 0 of (b) = 0, no carry forward. 

XOR of partial results = 1011 + 1000 = 0011. 
"1.. 'J "Z... "1.. "2.. 'r ""3 ,. 

1 +cl. +0() ( 1 +<X)= 1 +eX +eX +o< +o< +o(. 

= o<"l.. + o<. 3 
--0011 • (!.E.D. 
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A similar algorithm may be used in the division of two finite -

field elernents.In this case successive division by~ is possible 

by shifting left and module - 2 adding (1001) for each 

"underflow". 

The above algorithms require 3n computer instructions to 

multiply, or divide, two arbitrary n - tuple field elements.This 

compares favourably with Sn instructions quoted by Lin [42). The 

speed of execution of progranwed finite - field arithmetic is 

much slower than for a hardware configured unit. However, for 

long codewords it may be the only viable solution. 

3.4.1. Reed Solomon Encoder. 

The encoding process is less complex than decoding and so can be 

executed in a shorter time. It involves the software simulation 

of the appropriate encoding circuitry.Consider the couble, error 

-correcting ~s (15, 11) code over GF (2~ l generated by, 

lf. 
p (X) = 1 + X + X • 

The code generatir"] polynomial, g (X) is, 

therefore, 

g (X) = 

~ J ~ 
g (X)= (x+o() (x+O() (x+o<.) (x+o<:) 

4-x + 
::1 1. J 1.. 1.. J 

X (/+o(+oc) +X (oc+O.C) +X 
] 

( o() 

The encoding circuitry,suitab1e for a 4 track system, is shown 

in figure 3.20 .The data are divided by g (X) as they are being 

recorded.Following this the four parity words are clocked out of 

the latches onto the tape. The encoding process requires 

approximately 3n x 4 computer instructions (n = ~), wl1ich must 

be added to the channel - encocing execution time. 
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N 
N 

reduce 
modulo (x) 

4-bit 
latch 

mult' by 
o(3 

reduce 
modulo (x) 

4-bit 
latch 

mutt' by 
o(t +o( :J 

reduce 
modulo ~ 

4- bit 
latch 

mul t' by 
1 1.. 3 

+eX +o< 

reduce 
modulop~) 

latch 

Fig. 3.20. (15,11) Reed Solomon encoder: 

---data ,.--.,____,. 
---parity 

==I ~out
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3.4.2. Reed Solomon Decoder. 

There are four steps in the decoding of a RS code: 

(a) Compute the syndromes. 

(b) Generate the error - location polynomial. 

(c) Identify the error positions by finding the roots 

of the error location polynomial. 

(d) Calculation of error magnitude. 

It is possible to deterr~ine the elements of the syndron1es whilst 

the data are being read back frorn the tape. The syndromes are 

generated by substituting the roots of the generating polynon1ial 

in the received codevector. In the general case, for an error 

free, all ones codevector, 

Sl = 

S2 = 

S2t = 

eX.' + 

'2.. 
()(.') + 

"?l- , 

o< 
"'- , 7... ( ex l 

zt zc zc '11.-t 2t 
( cXo ) + ( oL I ) + ( o( t ) • • • • • • • ( o( ) 

where ~ = code length. 

t error - correcting ability of the coae. 

e.g. for a double, error - correcting code with n = 15, 

Recucing, 

o( 
2 o(J+ Sl = 1 + + 0( + 

S2 = 1 
2. ,. (, 

+ eX + o( ;- o<. + 

S3 = 1 + o(J+ eX'+ o( 9+ 

S4 = 1 + tX. "'-+ o<.. !?+ oc/\ 

modulo p (X)' the above 

s1'= 1 +~ 1 +0c:'t+CX: 3+ 

S2 1 = 1 +IX 1 +o<.""+o<.c+ 

!2 13 o<:.'"' . . . . . . . 0( +o<. + 

l'f- zc. 
••••••• o( +o( + 

o( 'l..g 

)b 
••••••• o( + 0( J9 + o( ¥.2 

'-8 n 
••••••• o( +o<' + o(s-r. 

eleDents gives, 

9 -/'/+ _,13 ••••••• o( + '-"- 0<. 
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I 

83 = 1 

84
1 

= 1 
~ g /7.. 

+oC+o<'+cX'+ 

Assuming the Sl syndrome has been 

the 14th element of syndror:1e 82 
I 

= 

I 

the 14th element of syndrome S3 = 

I 

the 14th element of syndror:1e S4 = 

(, 9 /7.. 
o(+o( +IX: 

1 . _/ 7 + eX I/ ••••••• o< + 0<. 

generated then, 

I I 

8 2 tv. = 8,' /Y-
' o(. 

I I I 

s3 t<r = 
' 

s t ,/If- = s1 Jv-
o(cX'.. o<. 

I I I 

s 4- 14- = 8,,/V. = s 1 /t,. 
J I 

o<.ot.oi. 0(. 

In general, for the jth element of the itl1 syndrome, Si,j. 

S£·j = 5(l-r)•j 

o{ ( .... -J) 

Also, if the syndrome S4 

= 

for i = 2, 3 and 4 ••••• ( 3. 2 8) • 

is computec 
(.,..-;j) 

o(. for i = 

first, 

1, 2 and 3 .•.•• (3. 29) • 

the codevector is being received one element from each of the 

2t syndromes may be compute~ using the relationships of 3.28 or 

3.29. Thus, a running sum of the syndromes n1ay be kept resultlng 

in the full computat~on of each syndrome eler:1ent after ti1e final 

codeword of the codevector has been received. 

The second step in the decoding process involves 2t iteratic1ns 

of Berlekamp 1 s algoritliD [43], wl1ere t is the nu~ber of errors 

tl1e code can correct. This process results in the error -

2t: 
location polynon;ial, o- (x). Each iteration involves tbe 

computation of two equations: 
c ... .,..,) c .. J 

a- (X) = 0 · (X) + 

ancl, 

c (~ + 1) 

d,
dp 

(..--r) [P) 
X (J (X) 

(,t.<rl) 

••••••• 3 • 3 0 

5 (? + 2 ) +er; s..,+-1 + •••••• 3 • 3 1 
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·wile ne ,.« = i te rat ion num!:Jer. 

p = previous value of_# such that dp i 0. 

After the appropriate number of iterations equation 3.30 is 

the error- location polynomial. 

The execution tinte for this second stage depends on the errors 

incurred but the number of arithmetic instructions required has 

been estimated at 2t
2 

additions and 2t
2 

r.mltiplicaticns [42]. 

The roots of the error - location polynor:tial. er (x), identify 

tl1e error positions in the received codeword. These are found 

using a Chien search 
.,._, 

[ 4 4] • 
0 I 

This involves substituting o<. , ot.. , 

o< in turn, into the error - location polynon:ial and 

checking for a zero solution. The recifrocals of the roots give 

the error p·ositions. 

A means of impler,Jenting a Chien search is to r.1aintain a number 

of n - tuple vectors relating to the coefficients of the erro~ -

location polynornial.The variables are then r·eplaceci, ir. turn, by 

the above values and the error - location :t:JOlynon:icd evaluated. 

The procedure involves n calculations for a.n n,m code. If the rth 

calculation is associated with the (n- r)th root tl1e need to 

explicitly find the reciprocal of each root is removed. 

The final RS decoding step is to detern•.in<c t.he error r:•agnituc:tes. 

These are calculated using the arj:Jrol'riate equation,; <2eciuced in 

section 3. 2. 6. Once the error n1agni tudes have oeen Cieten<:i.neci 

they are rr.odulo 2 addec to the received code\·Jon; at the error 

positions to effect correcticn. 
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CHAPTER 4 .• 

EXPERHIENTAL APPARl\'L'U0 M:O TECH!·ii()UC:S. 

4.1. INTRODUCTION. 

In this chapter details of the hardware/software techniques 

used ir. the investigation are presented. 

Three direct - digital tape recording systews have been 

designed and implemented. 

System 1 comprises a solenoid - controJJ.ed compact- cassette 

tape transport with 8 - track head interfaced to a Gicro -

cornputer through read/write circuitry. This system was used to 

measure tape transport properties. 

System 2 is similar to system 1 but a 4 - track reaC::./write !lead 

is employed and the interface circuitry is simplified by 

utilising the I/O ports of the rd c rocompu te r. System 2 

represents a low cost in,plementation of a medium densil:y 

recording system. 

System 3 is system 1 with additional deskew electronic circuitry 

employed in the replay process. The additional circuitry 

permits recording and detection at high data r·ates. 

Conbined hardware/software methods have been devised to measure 

tape - transport properties, such as, velocity, skew and tape 

deformation. Also presenteJ is the softvvare iD,:•leEHont.stic,r; of 

channel codes and error - correction techniques. 
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4.2. APPARATUS. 

The basic items of equipment used in the investigation consist 

of a compact - cassette tape transport interfaced to a micro -

computer to form the first direct digital recording system. 

The interface elements comprise read/write amplifiers plus tape-

transport circuitry. Descriptions of tl1ese are given in this 

section. In support of this apparatus a number of computer 

programs were written.These are referred to in section 4.2.8.but 

are explained fully in later sections in the context of their 

application. 

4.2.1. Compact Cassette Recording System 1. 

A block diagram of the system is given in figure 4.1. with a 

photograph in figure 4.2. The interface circuitry comprises 

tape -deck control. write amplifier and read ar.:plifier. The 

additional functions norr.1ally associated with a direct ciigital 

tape recorder, such as, encoder/decoder, clock regeneration etc., 

are implemented in software. 

~ cont'l ( 

Micro-
computer \write 

/amp·~ 

<=~dl amp· 

ea ssette 
eck d 

~ ;. 

oJ] 
Fig. 4.1. Compact cassette recording system 1. 
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Solenoid 
control. 

Microcomputer. 

Write 
amplifier. 

Read 
amplifier. 

Deskew 
circuitry. 

Cassette transport. 

Fig. 4.2. Complete recording system. 
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4.2.2. Tape Transport. 

The tape transport, figure 4.2, is a medium -quality, solenoid-

controlled mechanism which accommodates proprietary compact -

cassette tapes. A single motor with integral speed control 

drives the tape via a single pinch roller. Two solenoids 

control fast fon•ard and rewind. A third solenoid may be 

optionally engaged in a search mode of operation. The play mode 

is entered by operating both the fast forward and the re\vind 

solenoids. These engage a mechanism which utilises the stored 

energy of a flywheel to wind the head plate into position. 

Because of this, a software delay is used to make certain that 

the motor and flywheel are up to operating speed before the 

recording process begins. Tape head accessability is 

facilitated by the open construction of the tape transport. 

4.2.3. Solenoid Control. 

The solenoids are controlled from a time delay switch designed 

for this purpose [1], figure 4.3. The ''pull in'' current of the 

r-~-----------------.---+12v 

02 

-12v 

Fi g.4.3. Solenoid cant rol switch. 
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solenoids is twice the holding current. This requires a 

current switch with a time delay sufficient for the solenoid 

to operate. Two V~lOS power field - effect - transistors (FET) 

form the switch and the delay is provided by the time 

constant of the CR network. The delay is such that V2 will 

gradually turn off thus giving a ''soft'' switch between 

currents. This reduces the back emf across the solenoid and 

thus the problem of interfering switch transients is reduced. 

4.2.4. Write Amplifier. 

The design of the read/write amplifiers has been conditioned by 

the requirement to provide a multi - track capability at a low 

cost. Consideration has also been given to the need to interface 

these items to a microcomputer. 

Two write amplifier designs have been developed,fig. 4.4 and fig. 

4.5. A third design was also used and this will be dealt with in 

section 4.4. 

Figure 4.4 shows the basic design. Open - collector logic gates 

drive current cifferentially through the record coil of the 

head. The value of the collector load resistors is chosen to 

give the required record current.This design is suitable for low 

to medium data rates.The bandwidth of the write amplifier is 

limited by the time constant of the head inductance and its 

series resistance, which includes the collector load resistor

this limits the upper recording frequency. The bandwidth may be 

improved by replacing the passive collector load resistors with 

active loads, fig.4.5. The transistors act as constant current 

sources and the rise time of the record current ls reduced 
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read/write 
head , 

~I 
I 

+5v 

+5v ----'-----

Fig.4.4.Write amplifier with passive loads. 

read/write 
head 

~: 

t--+- _ speed-up 
_j~capacitor 

+5v 
---~-~~--

Fig.4.5.Write amplifier with active loads. 
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compared to the circuit of figure 4.4. A further refinement of 

the active - load circuit is to connect "s!)eec-up" capacitors as 

shown.This reduces the turn on time of the transistors giving a 

further decrease in record-current rise time. 

4.2.5. Read Amplifier·. 

The replay signals from the tape head are sliced to logic 

levels before application to the micrococputer. 

The ~ain read amplifier design is illustrated in figure 4.6. The 

reproduced signal is sliced to convert the peaks into pulses. 

These are gated with a coincident pulse derived from the 

differential of the si~nal (2]. 

The signals at each stage of the a~plifier· are showr: graphically 

in 4.7. A pre - amplifier converts the high output irr1pedance of 

the read head to a low in1pedance to drive tl:e line connecLing 

tl1e tape transport to the main read amplifier·. Following an 

initial stage of amplification the signal passes throuc;;h a lmv

pass filter.A further stage of awplification follm-;s after \vl1ich 

the signal path civicJes. Along the first pati·J ti1e signal is 

sliced at a positive and negative level ancJ the two outputs ere 

applied to two NAND gates. Along the second path tl1e signal is 

shiftec by 90 degrees to convert the peaks of tl1e signal to zero 

crossing points. These points are detected by a comparator v1bich 

converts tl1em to signal transitions. The signal - to - noise 

ratlo at the comparator input is degraded by 6clB due tc the 
··I· 

cifferentiator. To prevent the noise signal generat:.ins a false 

output, threshold hysteresis is employed.The edges are converted 
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Fig.4.6. Read amplifier. 
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time - -+-

Fig. 4.7. Read ampl ifier waveforms. 
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to pulses which are applied to the second input of the NAND 

gates. The output of the NA~~ gates are used to control a set/ 

reset flip - flop which delivers a pulse train corresponding 

to the direction of the recorded magnetic flux. 

The double - detection action of the circuit reduces the 

possibility of false triggering of the flip - flop due to points 

of inflection of the differentiated signal. The slice levels are 

adjusted to allow for the variation in signal amplitude with 

recording frequency. Although other, more complex, detection 

techniques have been proposed [3] the circuit adopted offers 

a reasonable co~promise between performance and complexity. 

4.2.6. Microcomputer. 

In a commercial product the microcomputer would be mounted on a 

single board along with the necessary support circuits. For the 

purposes of the investigation a microprocessor development 

system was used.This unit is a Research Machines 380Z - D system 

which supports development of software for the Zilog ZBO 

microprocessor, figure 4.2. The 380Z - D system includes 512 K. 

bytes of RAM and two, SOOK.byte floppy - disc drives plus the 

usual software development tools. It also supports the high -

level languages Basic and Pascal. An ireportant feature is the 

facility to patch assembly language iEto a program written in 

high - level language. This permits the speed advantage of 

assembly language to be complemented by high - level functions. 

4.2.7. Test Equipment. 

Many of the measuring techniques used 
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investigation were software ba.sed and the 380Z - D •11as fully 

utilised as an item of test equipment. In addition,more powerful 

computing facilities were availaole and these were also used. 

For the measuren•ent of tape velocity, skew and tape deformation, 

specialised circuitry was designed and used in conjunction ~Vith 

the 380Z - D. Consideration of these methods is deferred until 

section 4.3. The computer was also used to simulate tl1e 

operation of a multitrack tape recorder and to examine the 

performance of a spatial parity system and it is these 

applications that will briefly be consiclered under this heading. 

To develop the software for the decoding and synchronisation of 

a channel cede in a multitrack format a signal source is 

required. All the uncertainties associated witl1 ar1 actual 

multitrack tape system rnay be removed if it is replaced by a 

con,puter <JeneratirHJ the code in tbe required manner. Not only 

does this give repeatability but measured amounts of error -

varial.,le r;1ay be added in order to asses~; the perforwance of the 

software under development. In this context a second 3802 - D 

development systerrt was used.This provided ''n track'' outputs of 

encoded data v;hose make up and tinling could conveniently be 

~edified as required. 

Darwood has propos<"d the use of a "moving pdrity" error 

detection systerr1 for a multitrack tape systent [4-5]. An error

correction technique oasec.i on a similar princi,t::·le h<·.s also been 

investigated by Prusinkie\'licz and l3udkowski [6]. These syster~•s 

rely on the inter - track spatial distribution of ~ata for their 

ope1·ation. A parity 9attern is chosen anC. the pa:cit·.y of 6ata 
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covered by this pattern is recorded on a parity track. On replay 

the parity check is re - applied and a syndrome is generated 

which is used to detect and/or correct errors. A program was 

written to simulate the application of this technique. This 

permits any parity pattern to be selected for which the computer 

generates syndromes for all possible error distributions. These 

syndromes are analysed by the program for error - pattern 

matching and for repeatability. Details of this technique are 

given in section 4.6. 

4.2.8. Software. 

As previously explained programmable electronics has been used 

extensively during the course of the investigation, consequently 

software forms a large proportion of the " experimental 

apparatus ". It also forDs an important element of the recording 

system of figure 4.1. Software is also employed to fulfill a 

number of measurement,display and diagnostic requirements.Rather 

than explain these software techniques under the heading of 

''apparatus" details of each program will be given later in this 

chapter when each application is considered. 

4.3. MEASUREMENTS. 

Three record heads were used during the investigation, a four -

track inductive head, an eight - track inductive head and an 

eighteen-track, magneto-resistive (MR) head.The four- track head 

is a propri~tary item of the type often found in auto - reverse 

audio cassette players.The second inductive head is a prototype 

device and was constructed as a ''one off'' by a local company.The 

MR head is an experirnental,thin film,head and was fabricated 
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by a separate research group within the department of Electrical 

and Electronic Engineering, Plymouth Polytechnic.Prior to using 

these devices a number of measurements were made to assess their 

suitability for direct digital recording. 

The tape transport properties of the record deck and tapes were 

characterised by measuring three parameters : tape velocity 

variation; tape skew and tape deformation. This required the 

formulation of appropriate measuring algorithms and the oesign 

and construction of specialised circuitry. Details are given of 

the measurement techniques adopted together with the associated 

circuitry. 

4.3.1. Record Head Characteristics. 

A photograph of the three tape heads used in the investigation 

is shown in figure 4.8. 

L,-Track. 8-Track. 18-Track. 

Fig.4.8. Compact-cassette tape heads. 

143 



4.3.2. 4 - Track Inductive Head. 

The characteristics of the four -track head are listed in figure 

4.9. These are manufacturers' figures and were taken at face 

value - no additional data was sought.The value of recording 

current used for this head was half the value obtained 

experimentally for the eight - track head. 

4 - Track head specification. 

Impedance. 1 kHz.,100pA 1ooo n ±25% 

P.B.sensitivity. 315 Hz. -68 dB m + 2dB 

P.B.freq' resp' • 10 kHz./315 Ez. + 14.5dB +3dB 
14 kHz ./315 Hz. + 12.0dB +4dB 

Rec' current. 1 kHz.-1CdB below 36 pA .±20% 
saturation level. 

Crosstalk 1 2ch.,3 4ch. 40dB min. 
( 1k Hz. -3 OdBm) • 2 3ch. 55 dB min. 

1 3 eh. , 2 4ch 50dB min. 

Difference in 10 kHz. 1dB max. 
channel azimuth. 

Fig. 4.9. Characterstics of 4 - track head. 

4.3.3. 8 -Track Inductive Head. 

A diagram of the eight - track inductive head is shown in figure 

4.10. Although the head was designed to record on compact 

cassette tape, its physical dimensions are much larger than 

proprietary designs.Because of the limitation of space in such a 

design the use of internal, inter - gap shielding had been 

dispensed with.To ascertain the correct value of record current 

a series of recordings were made at different currents. T~is 

was achieved by returning the collector loads of the write 

amplifier (fig.4.4) to a variable voltage source and recording 

144 



C> 
lJ"l 
N 

t 

s;l 

12·02 

Q . 
=-- --

21-22 

T1 

6-22 

Track width : 0·25. All dimensions in m.m 

Track pitch : 0·46. 

de resistance: 25..n... 

1kHz inductance: 8-5mH. 
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the value FF hex.at 10k.bits/sec./track in Miller code with the 

collector voltage as a parameter. A number of tapes were encoded 

and the amplitude of the playback signal was plotted against 

write current,figures 5.4 and 5.5. 

To quantify the extent of inter - gap crosstalk in the eight -

track head, implied by the absence of internal shielding, 

recordings were made on seven of the eight tracl~s using an 

erased tape.The replayed outputs of the recorded tracks were 

then compared against the signals picked up by the unrecorded 

tracks,figure 5.6. 

The above measurements were used to determine a value of 

recording current of 1.5mA. 

4.3.4. 18 - Track,Thi~ - Film Head. 

The experimental 18 - track,thin- film,head has a single - turn 

write winding and an MR read sensing element for each track. 

Track width : 150 pm. 

Intertrack distance : 50 ~m. 

Sensing element : 81/19 Ni/Fi. 

Sensing element thickness : 400 ~ + 20 ~. 

Sensing element resistance : 120~. 

Write winding : single turn,thin film. 

Write gap : 0.3 pm. 

The use of f.lux guides permits the sensing &lement to be located 

50 pm below the tape surface of the head. This protects the 

element from oxidisation and also damage due to tape contact 

wear. 
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4.3.5. Tape -Velocity Variation. 

The tape velocity characteristic of a tape recorder depends on 

both tl1e tape - transport and the tape. This is particularly so 

in low tape - velocity systen1s where n•echanical stiction is a 

factor. In a digital recording system, signals are encoded in 

botl1 space and time. These are subject to variation on playback. 

The time variation depends on how accurately the tape velocity 

at recording can be reproduced on playback. It is the relative 

value of tape velocity between record and replay which is 

importallt and to v1hich the coherent cJetection of di~;itally -

encoded tapes is susceptible. 

4.3.6. Theory of Tape Velocity Measurement. 

The tape velocity variation was evaluated by recording a 

sequence of pulses whose time· interval is deter~ined by the 

crystal - controlled system clock of the n'icroprocessor. On 

playback this time interval is compared to the recorded value to 

give a measure of the difference in tape velocity between record 

and playback. The theory of the measuren•ent technique is as 

follows; 

Let 1 = the length of tape between pulses recorded with interval 

T secs. 

Record tape velocity v = 1/T metres/sec. ( 4 • 1) 

Let t = the time between pulses as detected on playbaclt. 

Pla;'back tape velocity v' = 1/t metre,;/ sec. 

fron• equations (4.1) and (4.2), 

vT = v't 

v v't/'T 
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v - V 1 = v 1 t/T - V 1 

v 1
- v = V 1 

- V 1 t/T 

V I - V = !::.. V = V I ( T - t ) /T ••••••• ( 4. 3) 

Equation (4.3) expresses the difference between the replay tape 

velocity and the record tape velocity in terms of the replay 

tape velocity. This equation was implemented with the aid of the 

circuit in figure 4 .11. 

enable pulse from 
soft-ware timing loop. 

clock 

enable pulse from 
tape recorder 

up. reg ister one 

r----<load pulse from 
.------:..£._---l...-___, tape record er. 

DAC latch 

OAC 

to 
microcomputer 

'-----<load pulse from 
tape recorder. 

to analogue indicator. 

Fig.4.11. Tape-velocity measuring apparatus. 

148 



4.3.7. Tape Velocity Measuring Apparatus. 

The system of figure 4.1, fitted with the four - track head, was 

used to record a sequence of pulses on a single track. The 

frequency of these pulses was determined by a programmed timing 

loop which was part of the recording software.The tin1ing loop of 

the record programme also formed part of the replay software. 

This controls the accun,ulation of clock pulses into register one 

of figure 4.11. At the end of this process register one contains 

a value which is proportional to the tin1e interval between the 

pulses on the tape as they were recorded. 

The number of clock pulses accumulated by register one = fT. 

Where f is the frequency of the clock. 

Let this value be Nl, therefore T = t-!1/f. ••••••• (4 .4) 

This value is transferred to register two wl1ich is counted down 

by tl1e same clock source for a period deterffiined by the recorded 

pulses as they are played baclc. Shoulci tl1e velocity of the tape 

on playback be identical to the velocity when the recording took 

place the contents of register two after countdown will be zero. 

A negative value v1ould indicate a slowing dovm. of tbe tar-e 

wherea1; a positive value indicates a higher velccity on playback 

com1;ared to recording. The actual value in register t,,,o after 

countdown is a measure of the magnitude of tape velocity 

difference between record and playbaclc. 

The number of clock pulses rer.•aining in register t',.·o after 

countcJO\~n = f (T - t). 

Let this value be N2, therefore (T- t) = N2/f ........ (4.5) 

Su0stituting ec"uations (4.4) and (4.5) in equation (4.3): 
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A v = v'N2/Nl metres/sec ..•...•. (4.6). 

This equation is independent of the clock frequency f and also 

the system clock which generates the software timing loop 

(assuming the latter remains constant f:or both the record and 

replay process). 

Choice of the length of the registers one and two deterD.ine the 

resolution of the measuring technique: 

Capacity of register one = 2~ - 1 counts. 

Resolution of register two = 1 count. 

Resolution of technique = 
n 

v' 1/( 2 - 1) metres/sec. 

An eight-bit register was chosen and this gives a resolution of, 

v' 1/255 i.e. < 0.5% of replay velocity. 

For the measurement system to give as near an instantaneous 

indication as possible the interval between recorded pulses, 

T, must be short. Also, register one "'ust not overflow. The 

relationship between these variables is, 

A value for T of 0.5 mS; gives a tape length of 24pm (at 

standard cassette speed ) over which velocity measuren:ents are 

repeated. This value of T gives a maximum value for f of 510 kHz. 

A frequency f of 500 kHz. was used with a recor~ed pulse time -

interval T of 0.4 mS. This gives an approximate weighting value 

of 0.5% to each count in register two. 

Register control pulses are provided from data recorded on the 

tracks that are not used for timing purposes. As register two is 

counting down register one is accumulating another value,thus 

the process is continuous. 
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The accuracy of the measuring technique depends on the stability 

of the system clcck of the microprocessor.It is also subject 

to the usual error of ~ one count in registers one and two.The 

estimated level cf accuracy,therefore,is 

0.5% < accuracy < 1.0% 

4.3.8. Tape Skew. 

Although the tape - skew behavior of high cost computer tape 

systems has been studied [7],to the authors knowledge,no similar 

study has been made with compact cassette systems as the subject. 

Consequently,the solutions to tape skew which have been proposed, 

such as single edge guidance [8) and phase comparison apply to 

open reel tape systems and not to closed reel systems sucri as 

the compact cassette. Skew angle variation imposes one of the 

frequency at which digital data limits on the upper 

may successfully be 

recording 

read 

to assess the potential 

back from a multitrack tape. Therefore, 

of a digital multitrack format for 

compact cassette it was necessary to examine its skew behavior. 

A precise technique of measuring the skew performance of a 

closed reel, stationary - head tape system was devised. This 

involved tl1e development of a measuring algorithm and its 

implementation using hardware and software. Details are given in 

this section. 

4.3.9. Skew Angle. 

Skew angle is the angle between the normal to the longitudinal 

axis of the tape and the axis of the sensing head gaps 

(fig.4.12 ). It comprises two component::;- static skew and 
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dynamic skew . As with tape velocity it is not the absolute value 

of skew angle which is important but the variation which occurs 

between recorc and playback . Skew angle variation results in t he 

data a c ross the ta pe not being presented to the sensing head 

gaps in an identical manner to that laid down when the data were 

initially rec orded . Consequently , the outer head gaps could be 

simultaneously sensing data displaced by several bit cells 

compared to when they were recorded . The exten t of t he 

displacement depends o n the frequency of the r ecor c ed signal 

since as this i ncreases the distance on tape occupied by one bit 

decreases . 

data 
tracks. 

head stack. 

worst case 
bit-cell displacement. 

I 
I 

lt
Lp 

Fig.4.12.Tape passing read head with 
skew angle o< . 

4 . 3 . 10 . Theory of Skew Measurement . 

Consider a tape with marker pulses recorded on the oute r tracks 

at a constan t interval k (fig . 4 . 13 . ) . Let Ta and Tt represent the 

time ir.tervals between the h.arker pulses on opposite track s 

appearing under their read heads on playbac k . Frorn the diagram of 

fi~ure 4 . 13 . the displacement x may be determined : 
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track a 

I I 

: t ime intervals: : 1 
,-T6- I 

I Tc:t I 
Fig.4.13Marker pulses on outer tracks of tape 

from which bit-cell displacement may 
be calculated. 

cos o<. = ( Ta- Tb ) /2x •.•.•..•.••.•...•. (4 . 7) , 

also , 

c os o< = [ T t + (Ta- Tb) /2 ) /k ...•.... . (4 . 8 ) , 

where o< = ske w angle . 

x = displace~en t . 

k = separa tio n of marker pulses . 

Thus , 

(Ta - Tb ) /2x = (Ta + Tb ) /2k 

and , 

x = k (Ta - Tb ) I (Ta + Tb) . .. . .......• ( 4 . 9) . 

The units of k determine t he units of x and may be distance or 

time . 

The above technique Geasures the effects of skew-angl~ variation , 

however , from the knowledge of the distance between the tracks 

the skew angle may be de t ermined if required . 
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4 .3.11. Skew -Angle Measuring Apparatus . 

The microcomputer development system was utilised to calculate, 

and d isplay , bit - cell displacement x,equation {4 . 9) . Two timers 

were constructed and interfaced to t he microconputer , fi g . 4.14 . 

clock. 

init' J1..___.Jl_ __ 
en'a~

en' b.~-

t imer a 

timer b 

in it: 
t imer 

j..._;:__---lenable a. control 

'-----lenable b. logic. 

to 
microcomputer 

from 
read 
amplif ier. 

Fig.4.14.Skew measuring apparatus: 

Each timer accunulates a value proportional to the time interval 

Ta and Tb as defined in figure 4 . 13. The timer - control logic 

generates enable pulses which correspond to the correct sequence 

of pulses on the outside tracks of the pre - recor~ed tape , fig . 

4 .13. The timers are reset to zero by initialise pu lses recorded 

on an insidt track and posit ioned t o appear before each set of 

timer control pulses . The output of the timers is connected to 

the input ports of the mic roconputer . 
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l\ software polling technique is used to read in the timer 

outputs. Each timer value is read twice and a cor,1parison made, 

only when each comparison is valid does the software accept the 

two values. These are then used to compute a value for x which 

is subsequently c'isplayed in graphical form on the VDU screen 

after which the process repeats. The spacing of the marker 

pulses, k, was chosen such that the hit - cell displacement x 

was measured in terms of the percentage of one bit cell at 10 k. 

bits/sec. 

4.3.12. Analysis of Measuring Technique. 

On the assumption that k in equation (4.9) remains constant the 

theoretical worst - case fractional error in the cteasurernent of 

skew is, 

a/Ta + b/Tt + slicing error in read amplifier + computational 

error .... (4 .10). 

Nur~ers are handled by tl1e microcomputer v1ith a precision better 

than six significant decimal places. 

The marker pulses from each of the cutsi~e tracks are passed 

through a pair of read amplifiers. If the slice levels of these 

amplifiers differ then the time length of their output pulses 

will differ even though the time interval between each set of 

input tr·ansitions i~; the sar.te.However, timers A and 13 are ~;t&.rted 

and stopped by read - amplifier output pulses which have been 

derived fror.t opposite tr·acks, thus any error clue to this 

differeroce will CJ.crue to both timers ti1us recucjnc;; the poteDt:.ial 

error from this source.Also, any tape - velocity variation will 
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affRct both timers with the same result on the error 

contribution. 

Eight-bit registers are used for timers A and B giving a maximum 

count of 28 -1. On the basis that the ti~ers are susceptible to 

an error of z1 count the error contribution from this source is, 

1/255 + 1/255. 

To prevent overflow, limit the maxintum value to 200 counts, the 

estimated error becomes, 

1/200 + 1/200 = 1/100. 

This is the dominant error source of equation (4.10).In practice 

it is likely to be less than this 1% since the calculation 

involves the ratio of two variables. 

The program which calculates the tape skew asswnes a constant 

value of k.However,although the marker pulses have been recorded 

at a constant interval k, this value is a functiori of tape 

velocity on playback. !£.necessary this value may be measured 

dynamically and used in the calculation. 

To verify the measurement technique, skew angles in the range 

+ o.f > ~ > - 0.3° were introduced using a rotary micrometer, 

fig.4.15. This represents a bit - cell displacement of four 

units at 10 k.bits/sec. The micrometer consists cf a circular 

scale of radius 21 cm. graduated in degrees. The tape transport 

is placed inside the circular scale with the head azintuth 

adjust screw at its centre. CGnnected to the screwdrive~ used to 

adjust the head azimuth,is a pointer wl1ich aligns with the 

circular scale. From a knowledge of the thread pitch of the 
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Fig. 4.15. Rotary micrometer: 

azirrauth adjust screw and the distance between the mountir:g 

points of the head,together with readings from the circular 

scale,a precise value of skew angle may be deduced . 

A computer program was written which measured and indicated 

static skew by measuring and averaging skew angle variat:on . From 

this the skew angle for a number of 

were calculated. The relationship 

introduced values and the computed 

settings of the micrometer 

between the mechanically 

values is shown in figure 

4 . 16 which shows a high degree of correlation between the 

ideal and the actual results . 
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4 . 3.13 . Tape Deformation . 

4 8 12 16 20 
skew angle introduced 

(minutes of a.rc) 

skew angle vs 
skew angle. 

The skew measurement technique described above measures the tape 

skew with reference to marker pulses positioned on the outer 

tracks of the multitrack tape . The azimuth error between data on 

tbe outer tracks is not necessarily tbe r.1aximum . It has been 

shown that with the multitrack,open- reel tapes used in computer 

data recording the skew angle does not remain constant across 

the width of the tape [7] . In ord er to deten~ ine the skew angle 

distribution for the compact cassette system a series of 

measurements were taken using an item of equipment designed to 

measu re the phase difference between pulses recorded on eight 
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tracks. This revealed that the skew was not always linearly 

distributed across tlle width of the tape.In these cases the tape 

exhibited a deformation along its centre tracks. Details of the 

measuring technique and the equipment used are given in this 

section. 

4.3.14. Theory of Tape - Deformation Measurement. 

An "in-phase" square waveform was recorceC: on each track of a 

multi track tape. On replay, the [lhase difference bet,·1een detected 

signals front adjacent tracks was measured.The relative values of 

these measurements gives an indication of the skew - angle 

distribution across the width of the tape. 

4.3.15. Tape - Deforn~tion Measuring Apparatus. 

The recording system of figure 4.1 was used to record a 

10 kbits/sec, in - phase square waveform on eight tracks. 

Associated with each track is a seven -bit counter Lin,er each of 

which is clocked from a common source (fig. 4.17). The phase 

difference between the detecteC: signals of two adjacent tracks 

is used to control the timing signal to each counter. The 

polarity of the phase difference is recorded as an eighth 

counter bit. \"lhen all eight counter· t:.r.,ers have accu.nulated 

their values a flag is set and the outputs of the timers 

are multiplexed into the microcomputer under software control. 

The computer progra~t controlling the above process displays the 

data ~nd computes a numerical value for the tape deformat~on.The 

display forr<1at i.s illustratecJ in figure 4.18.The horizontal axis 

is calibrated in tin;e and the vertical axis represcr•ts Ll1e width 
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head gaps~ 

Direction of tape 
movement ---~ 

computed values 
-- of tape deformation 

I 

\ 'line' of 
recording 

'li ne' of readback 

0 10 20 30 40 50 60 70 80 
time (microseconds) 

Fig.4.1 8. Tape deformation display format. 

of the tape . A centre - zero format is used to allow for " leading 

and lagging" values of skew . Track one is taken as the reference 

track and the time of occurrence of a pulse transition on this 

track is positioned at the top centre of the screen . T~e time 

d ifference between pulse transi tions on other trac ks and 

transitions on track one are displayed at their appropriate 

vertical posi tion, these points are joined to give a visual 

indication of the prof ile of the skew across the tape . 

The deformation of the tape is defined as the worst - case 

d ifference,in time or space , between the point at which a track 

transition occurs and the point at which it would have occurred 

had the tape skew been linearly distributed across the tape , 
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figure 4.18 . This value was measured by the computer and 

successive readings were averaged and displayed. 

4.3.16. Analysis of Measuring Technique. 

A frequency of 10kHz w~s chosen for the squarewave signal which 

was encoded onto the tape.This gives a sample interval of 1/2xl~~ 

secs. However, this is effectively increased by tl1e time taken 

for the computer to read each value and display the results. The 

clock source is a lMHz.crystal-controlled oscillator which gives 

a resolution of 1 pS. Discounting computational error the only 

sources of error are the tolerance on the crystal oscillator 

frequency,the errors introduced by the difference in the slicing 

levels of the eight read amplifiers and the usual error of ~ one 

count. The error due to the oscillator tolerance is small 

compared to the others and may, therefore, be neglected. 

To assess the effect of differences in the slicing levels of the 

read amplifien; t.be input to the amplifiers wer·e disconnect:ecJ 

and replaced by a lOk.Hz sinusoidal signal from a generator. 

This was simultaneously applied to all tl1e input~ of the read 

amplifiers to simul~te an ''in - phase condition''. The dispersion 

of the displayed readings about the vertical line of the read 

gaps gave an indication of the difference between tl1e slice 

level of the track-one read amplifier.tbe reference track, and 

the other tracks.This value did not exceed 5!1_, of the full scale 

value. This full scale value is deten1ined by the length of tbe 

counter timers wl1ich is seven bits, i.e.l28.0ne bit in 128 is 

less than 1% and so the accuracy of the measu:ing technique is 

conservatively stated as + 6%. 
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4.4. COMPACT - CASSETTR RECORDING SYSTEM 2. 

The use of a microcomputer to implement system functions reduces 

the need for conventional hardware at the expense of more 

complex software. However, software development is a ''one off'' 

cost and although a 

commonplace and widely 

microcomputer is required these are 

used in many applications in the form 

of the personal computer (PC). Also, virtually all the 

requirements for digital - data storage include an associated 

computer. The utilisation of the computing power of a PC would, 

therefore, offer a cost effective means of configuring a data 

recording system. 

This section is concerned with the desi~n and development of a 

simple tape backup recording system for a personal computer 

(PC). Software techniques have been developed which reduce the 

conventional hardware requirement to a minimum. Particular 

attention has been paid to realising a practical system.A patent 

application for this low -cost system has been applied for and a 

paper based on the techniques used has been presented to the 

Euromicro '87 conference at Portsmouth,U.K. [9]. 

4. 4 • 1. Hardware. 

Figure 4.19 illustrates the system. The tape transport is 

fitted with a proprietary four - track head and may be the 

solenoid-controlled tape deck described in se~tion 4.2.1. or 

a manually controlled deck. The essential difference between 

this system and the system 1, described earlier, is the write 

amplifier. 
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Fig.4.19. Compact-cassette recording system 2. 

4 . 4 . 2 . Write Amplifier . 

The write amplifier is formed from the parallel input/output 

(PIO) integra t ed circ uit within the PC , figure 4 . 20 . Data to be 

PIOa 
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Current select 
res is tors\ R 

4-Track head 
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06 -
07 -
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recorded are outputted by the PC to t he PIO wl:ich is programmed 

in t h e output mode . The d irection of the recorded flux is 

determined by t he complementary values of t he logic levels 

sent to t he bit pos i tion s of the PIO to which each end of a 

recording- head winding is connected . The value of the resistor Rr 

de t ermines the magni tude of the recording curren t . If the PIO has 

been fat ricated using tri - state l ogic it may be prog r ar:uned to 

the third state thus isola ting the r e cord/ r eplay head . This 

permits the u sual mechanical switching of the co~non head 

between ~he record and read c ircu i try to b e d i spensnd with . 

4 . 4 . 3 . Read Az.plifi e r . 

Data from the read amplifier are read into the PC via the second 

port of the d ual PIO . For convenience the read ~mplifier used 

in t his system is the one il lus trated in fig ure 4 . 6 . However- , 

to ma i n tai n the low - cost principle a simpler des i g n may be 

a d optee , figu r e 

read 
head 

4 . 21. 

I 
low pass 

f ilter 

For t he four - tracl ::;ys t er.. under 

+Ve 

ampli f ier comparator 

differentiator 

Fig.4.21. Simplifi ed read a mplif ier. 
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consideration tl1is design may be implemented using two quad 

integrated circuits and a nun1ber of passive com~)Onents. This 

simple circuit may be powered from the auxilliary power supply 

of the PC. 

4.4.4. Software. 

There are several functions the software must fulfill: 

(a) Encode data and time its recording. 

(b) Synchronise to the data on replay. 

(c) Sample the data and decode on replay. 

The above must be accomplished under conditions of tape azimuth 

and velocity variatl.ons.An additional,diagnostic function,is to 

measure the performance of the system. 

Numerous codes have been devised for the recording of data on 

magnetic r.1edia [ 10-14 ] .The effectivenes~; of the system and the 

complexity of the software hinges on the choice of a suitable 

recording code.The replay process is the most demanding and in 

effect dictates the choice. 

Three codes have been used, Biphase - L, Miller and a 2/3 rate 

0,2 code developed for this application. Each will be considered 

in this section along with a description of the diagnostic 

technique used. 

4.4.5. Biphase - L Code. 

Biphase - L, or Frequency H.odulation ( Ff.l) code, belongs to the 

t·ianchester group of codes and 1·;as one of the first sel f-clockir:u 

codes to be developed for direct digital reco~ding [15] .The 
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coding rule is illustrated in figure 4.22. The code has a d , k 

value of 0 , 1 and a code rate of 1/2 . Whilst t he low k value 

facilitate s data recovery, the low value of d implies a 

potent ia l for the code t o generate intersymbol interference 

should the rec ording frequency be placed too high . The code i s 

run length l imi ted and the detection window is one half of one 

bit cell. 

1 1 0 1 0 0 1 
,....._ ,...-- ~ 

- r~ -
I I 

I I 

I I 

1:2r0t10 s1gnol 2.1 rat 1o 
transition 

Fig. 4.22. Biphase-L code cod ing ru les. 

As implied above the spectral response of the code shows a 

broad ma'lCimLlm at the bit rate , (fig.4 . 23) . Also, t he d.c. 

component j~ zero giving a digital sum variation (DSV ) which 

converges to zero independently of the data contenl. Biphase - L 

code has largely been superseded by more channel - efficient 

recording codes . However , it has a number o f features wh icb ma ke 

it suitable for software implementation in this application . 

Reference to :igure 4 . 22 shows that t he signal level always 

changes at bit - cell centre . Also, the rat io of ti~e intervals 

be tween successiv e transitions can be used to identi fy the bit -
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Fig . 4. 23. Fr e 1 u en c y s pecirurf\ of Biphase -L encoded PR B S. 

cell centre or the bit - cell boundary . If the ratio of time 

intervals between three s uccessive signal transitions is 2 : 1 the 

third transition always occurs at the bit - ce ll boundary , 

similarly a 1 : 2 ratio signals the bit- cell centre . 

4 . 4 . 6 . Biphase - L Recording Software . 

The parallel bit structure of the PC permits each track of the 

tape to be recorded simultaneously , one bit of the processor word 

per track . The internal counter timer c ircu it (CTC) of the PC is 

used to time the recording of the compleme nt of each data bit 

for r.alf a cycle followed by the true values for the reoainder 

of the period. 
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4.4.7. Biphase - L Playback Software. 

The playback process is far more demanding of processor tin1e 

than the record operaticn.The playback software n1ust: 

(a) Identify each bit-cell centre or boundary. 

(b) Remain synchronised to the data throughout replay. 

(c) Simultaneously sample the four data tracks and decode the 

data. 

Bit - cell identification is achieved by timing the interval 

between successive transitions of the recovered signal and 

computing the ratio between successive intervals. As mentioned 

above,the third transition of a 1:2 ratio occurs at the bit-cell 

centre whilst that of a 2:1 ratio marks tl1e bit - cell boundary. 

1:1 ratios mark either the bit - cell boundary or centre and are 

ignored by the software. 

The software polls the output of the read amplifier and detects 

the point where one of the four outputs change.The counter ti.n1er 

circuit within the PC is then used to measure the transition 

intervals.To speed up the computation of ratios the shorter 

subtraction and addition instructions of the PC are used in 

preference to the division instruction. If the result of 

subtracting two successive intervals is positive the ratio is 

either 2:1 or 1:1. Similarly a negative value would i~dicate a 

ratio of either 1:2 or 1:1. The ambiguity is resolved by a 

further subtraction of one ha1f of the second interval in the 

first case or by adding one half of the first i~terval wl1en tl1e 

initial result is negative,e.g. 
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Ratio. Result of initial To resolve ambiguity. Final result. 
subtraction. 

2:1 + 1 subtract 1/2 + 1/2 
1:1 +IIQII - 1/2 

1:2 - 1 add 1/2 - 1/2 
1:1 _n 0 n + 1/2 

'l'hus,maximum discrimination between wanted and unwanted ratios 

is achieved.Once bit - cell identification has been achieved the 

playback software continuously monitors the ratios of successive 

intervals to maintain synchronism throughout replay.The use of 

ratios in this way gives a system which is independent of tape 

velocity. 

To decode the data, the outputs of the four tracks are 

simultaneously sampled at the three quarters point of each bit 

cell.The instant at which the software samples is determined 

from a knowledge of the duration of the current bit cell.This is 

stored and updated when either a 2:1 or a 1:2 ratio is measured. 

Before the sample point is updated the value of the measured bit 

interval is compared to that previously measured by the software. 

If it is within acceptable limits it overwrites the previously 

measured value. If not,it is ignored and the previously 1neasured 

value conti~ues to be used. The progran1 thus behaves as an 

intelligent phase - locked loop by only synchronising to the 

data deer.,ed to be acceptable. i'>..s in the case of synchronisation 

the deterr~ination of the sample point is independent of tape 

velocity. 

In the playback software described above the sample point is 

deten>~ined using the information fror.1 a single track.The outputs 

170 



of the four tracks will, however,be "out of phase'' due to tape 

skew. Typically, the bit cell displacement across the tape is of 

the order of ± 1/4 bit cell at a track data rate of 2.5k.b/sec. 

[16] .Thus, when a single, fixed track is used to determine the 

comr.1on sample point the tape skew variation gives a sample 

window of+ 1/4 bit cell at 2.5k.b/sec. (fig.4.24). This sample 

window was doubled by programming the software to respond to the 

skew dynamics of the tape. 

The software synchronises to the signal on the track whjch 

changes first - the leading track.Transitions of the signals on 

each track are detectec by polling the signals and performing an 

exclusive OR operation on successive samples until a change 

occurs.Since the signals on each track always change at the bit 

cell centre the leading track may be determined.Once the leading 

track has been deterDined the software samples all four tracks 

as late as possible after the detection of the leading track bit 

cell centre (fig.4.25). Provided the other tracks have changed 

within 1/2 bit cell the sample will be valid.Since the tape skew 

''oscillates'' between positive and negative values this sampling 

arrangement effectively doubles the tolerance to tape skew 

compared to when the software synchronises to a fixed track. 

The rate of tape skew variation is low compared to the recording 

frequency [17] and so the leading track remains so for several 

thousand periods of the recorded signal. Even so the software 

deterDines the leading track each time a 2:1 or a 1:2 ratio is 

detected. 
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4 . 4 . 8 . Miller Code . 

Hiller code also known as Nodified Frequency Modulation , MFH } , 

like FM, has a code rate of 1/2 . However with a d , k value of 1 , 3 

data may be recorded at twice the data rate of Biphase - L under 

the same c h a nnel conditions . The inc r eased value of k however , 

does make d a ta rec overy more difficul t. Like Biphase - L , Mi ller 

code is run length limited and the detection window is the same , 

however,Miller code is no t d . c . free . Figure 4 . 26 illustrates the 

1 1 0 1 0 0 1 

I I 
I ' 
I ' 
I 1:2 ratio 

I bit 
cell 

Fig. 4.26. Miller co de coding rules. 

coding rules - logic o nes are encoded as a transition , either 

positive going or negative going ; a transition is placed betwe~n 

pairs of zeros ; zeros which occur in isolation are ignored . The 

frequency spectrum of Miller code is shown in figure 4 . 27 . 
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4 . 4 . 9 . Miller Code Recording Software . 

The recording algorithm for this code is d ed uc ed fror,, a 

consiceratjon of the four possible record ing sequences . 

Transitions can occur at t he bit cell lin1it and bit cell centte , 

the next bi t is the data bit to be recor~ed . 

(a) Next bit = l , previously recorded bit = 0 : 

previous 
cell: limit, 
centre. 

0 1 

next cell: 
'- --r-- centre, 

-~r-----1---1 i m it. 
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Next cell limit = previous cell centre . 

t.Text cell centre= complenent of prev ious cell limit. 

(b) Kext bit = 1, previously recor~ed bit = 1: 

prev 
cell: 

IOUS 

limit, 
centr 

--
e.-

1 1 

..... 

-

Nex t cell limit = previous cell cent~e . 

n ext cell: 
ntre, ce 

li m it. 

tJex t cell centre = complemen t of p revious cell limit . 

(c) Next bit = 0 , previously recorded bit 0 : 

IOUS prev 
cell : 
limit, 
centr e.-

0 

I 
I 

-I 
I 

I 

0 

I . 
I 

I 

n ext cell: 
entre, c 

li m it. 

Nex t cel l limit = comp lement of previous cell centr~ . 

Next cell centre = p revious cell limit . 

(d ) eext bi t = 0 , p r ev iously recorded bit 1 : 

prev 
cell: 

IOUS 

limit, 
centr e. 

1 0 

:--
I 
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Next cell centre = previous cell limit. 

Kext cell limit = previous cell centre. 

The above coding rules may be expressed ir. terms of Boolean 

functions. 

Let, the previous cell - centre logic level = A, 

the previous cell limit: logic level = B, 

the previous recorded data bit = C, 

the data bit to be recorded = D. 

Next cell centre = ~ { C.D + ~.D I + B { ~.C I + B 

This reduc~s to, 

Next cell centre = B.D + B.D ••...••.•.•• {4 .11). 

Next cell limit = A { C.D + C.D ) + J._ { D.C ) +A 

This reduces to, 

Next cell limit= A { c.o) +A C.D •••• {4.12). 

c. 0 ) • 

c.'D 1. 

Froo equation {4.11) the centre of each bit cell is encoded by 

performing an exclusive OR function on the data bit to be 

recorded, 0 and the previous cell - limit logic .level 2. 

To encode the bit -cell li~it,the previous cell -centre logic 

level, A is e:<clusively ORed witb the ,\tiD function of the 

comple~ents of the previous and present data bits, equation 

{4.12). 

These encoding functions are easily i:-r1plerJentecJ in software.The 

recording prograr.1 maintains a_ "bit mask"of the previous recorded 

output,either cell lin;it or cell centre. The data to be encoded 

is processed in accordance witl1 equations { 4. 11) ancl ( 4. 12) 
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before being v1ritten to tape. This now becor.1es the mask for the 

data to be encoded. 

A counter tin1er circuit withi~ the computer tin1es the generation 

of data. The simplicity of the algorithm, coupled with the short 

execution times of the logic functions involved, permit a high 

data recording rate to be achieved >·li th a microcor.1pu ter of 

modest speed. The algoritl1m is fully parallel with one bit of 

the computer's word handling the data for a single track :- for 

a computer of word length n, n data tracks may ~e simultaneously 

recorded. 

4.4.10. Miller Code Playback Software. 

A similar technique to that described i~ section 4.4.7. was used 

ir1 the playback software. 

The bit - cell centre of the replayed data r:1a.y be uniquely 

identifie'l by detecting a bit sequence of lOl.This represents ar1 

interval between two successive transitions of two bit periods. 

The software detects a ratio of either 2:1 or 1:2 to establish 

bit cell centre. The bit cell discrimination is not as high as 

with Biphase - L cede since, with Miller code an interval of 1.5 

1
. ,. -· commonplace. Also,the sequence of bits which represent either 

a 2:1 or a 1:2 ratio cio ~ot repeat as frcquent2y as those 

producing the same ratio in Biphase - L code. 

Once :Oit cell identification is n1ade the c;oftware r·emains 

synchronised by contir:uously monit:o:::-inCJ the transit:ion interval 

ratios to register the bit - cell centre ~K>int \Jhen ::he 

appropriate ratio is measured. 
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To 6ecode, the recorded information samples are taken at the one 

quarter and three quarter points in the bit cell. The data 

originally encoded is the exclusive OR of these samples. Unlike 

Biphase - L code, signal transitions do not always occur at the 

same point within a bit cell, therefore, the replay software 

cannot adapt to the variable tape skew. 

4.4.11. 2/3 Rate 0,2 Code. 

The Biphase-L code offers certain attractions when used in this 

application: signal changes always ·occur at bit - cell centres;a 

ratio of transition intervals which can be used to identify bit

cell position frequently occur.The code rate is,however,only 1/2 

and in terms of channel capacity the efficiency of the code is 

72%. On the other hand Miller code has a higher efficiency, 91%, 

but its code rate is also 1/2. The lower bandwidth required by 

Miller code does permit a higher data rate to be achieved when 

considering a single channel. However, if the ~iller encoded 

tracks are sampled in parallel the detection window is halved if 

an attempt is made to utilise this greater signalling capability. 

Figure 4.28 shows the reduced detection window which occurs 

between adjacent tracks.The bit-cell spacing is in terms of that 

used in the Biphase - L example given previously. 

If the requirement for the code to be d.c. free is waived a code 

of rate greater than 1/2 and having characteristics su:table for 

systems 1 and 2 may be designed. 
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I 
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I 
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I 

I 

window 
- I -

1 1 1 0 0 1 

-Bit cell- ____...!!Bit ceu·.:....-

Fig.4.28. Comparison of parallel detection window between Biphase-L 
and Miller code. 

4 . 4 . 12 . Code Desc ription. 

A. f"ata. '1./3 coc:IQ.. \JQ~ cleviseJ.,fi9 4 . 29 . A change always occurs at 

the limit of t he first sub cell . The levels during the second two 

subcells represent the encoded data . The mandatory change in each 

cell group renders the code run - length limited and provides a 

means for the dec oding software to ident~fy the leading track . 

Data synchronisat i on is achieved by detecting transition ratio 

intervals of either 3 : 1 or 1: 3 . This code has a d ,m value of 0 , 2 

which gives a ~ode efficiency of 74% . 

A code of rate 3/4 may also be devised using the same coding 

algorithm . Now,there are four sub cells.The first is reserved for 
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change always occurs 
at 1/3 point. 

Fig.4.29. 2/3 rate code. 

a data change whilst the remaining three encode data , this 

increases the code efficiency to 79% . Transition interval ratios 

of 4 : 1 and 1:4 identify each group of data bits . In general , fo~ a 

d ,m code data may be identified by detecting transition interval 

ratios of (d+1) : (m+1) and ( nH·1): (d+l) . 

4 . 4 . 13 . 2/3 Ra t e 0 , 2 Code Rec ording Software . 

Before encoding each three - bit data sequence it i s necessary to 

look ahead to t he second sub cell level to determine t he 

required transition direction . Consequently , the first sub cell 

is encoded as the inverse of the second sub cel l . 

The counter timer circuit within the compu ter is used to 

determine the duration of each sub cell . 

4 . 4.14 . 2/3 Rate 0 , 2 Code Playback Software . 

The me thod of detecting and decoding the software is the same as 

that used for Biphase - L and Miller code. 
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4.4.15. Evaluation of Recording System 2. 

T~;o diagnostic software methods were used to evaluate the 

performance of the recording system. These measure the error 

distribution across the tracks and compile a record of the 

error burst lengths. Both involve a data - gathering, assembly 

language routine which is patched into a high level graphics 

program. 

4.4.16. Distribution of Track Errors 

Previous work on open-reel multitrack digital tape recorders has 

indicated that errors are largely confined to single tracks [18). 

To ascertain the position with the system under test a repeated 

data sequence was recorded in Biphase - L code using the eight 

track head. On playback the sequence was checked and any 

differences between the recorded and the detected sequence were 

logged by the playback software. At the end of the replay period 

the errors were displayed on the VDU of the microcomputer 

as single, double, triple or quadruple track errors. 

4.4.17. Error Burst Length. 

A number of tapes were recorded with a four - bit pseudo random 

binary sequence IPRBS). The sequence was generated by software 

simulation of a pseudo random binary generator{PRBG),figure 4.30. 

The sequence was recorded at various bit rates in Biphase-L code. 

The same PRBG was maintained tv the playback software.So too was 

a 256-wide section of memory addressed by a ~emory pointer. Each 

oyte of this memory field corresponded to burst errors of length 

1 to 255. The operation of the software algorithm which measures 
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Fig.4.30. Four- bit pseudo random sequence 
generator. 

and logs the burst errors is best described by a flow chart , 

figure 4 . 31 . As each four-bit PRBS value is read froo tape it is 

compared to the software generated PRBS . An unfavourable 

comparison leads to the read value being transferred to the 

software PRBG and the memory pointer being incremented . Af ter the 

burst length , plus one , a favourable cooparison is ma de, one is 

subtracted from the memory pointer and the memory location 

thus addressed is incremented . At the end of the replay period 

a histogram of error burst lengths is displayed . 

4 . 5 . COMPACT - CASSETT~ ~~CORDING SYSTEM 3 . 

To compensate for the effect of tape skew a hardware technique 

is applied which measures the extent of tbe prevailing skew and 

generates a s kew - correction signal . This signal is used to de-

skew the cia ta by introducing t ile right amount of skew into the 
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Fig.4.31. Software algorithm for measuring 
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clock signals which clock the data off the tar:e tracks. The 

measurement of tape skew involves the encoding of control pulses 

on the outside tracks of the tape using the eight - track head. 

The code used in this process is the !SS 2/3 code developed by 

Jacoby and Kost[19) for which a parallel encoding/decoding 

software ~lgorithm has been deviseci.This de - skew technique was 

presented to the Sixth International Conference on Video, Audio 

and Data Recording, University of Susse~. in March 1986 and has 

been published in the paper ''High density data storage on audio 

compact cassett(;' Lo[Je using a low - cost tape transport" [20). 

Details of the !SS 2/3 code are given in section 3.1.3.Presented 

here are details of the !SS 2/3 code parallel encoding/decoding 

software algorithm, the method of synchronising to the 

informatlcm on tape and the skew-correction hardware cJesign. 

4.5.1. !SS 2/3 Software Algorithm. 

Control pulses recorded on tbe outside tracks of the tape 

are used to estimate tl1e skew value and identify each three -

bit group of code bits. The encoding process involves convertiEg 

two, 6-bit ~ata words into three, 6-bit codewords and recording 

them, a roadside, onto tlte six inner tracks of tbe tape. 

The control pulses roust be iEserted st tlte correct ?Oints 

on the outside tracks v11lilst the data. are :Ceir.g ::-ecorc1ed. 

The decoding ~recess involves identifying each 3 - bit cocieword 

and converting it bacl; to 2 data bits. Th~s process must be 

applied in parallel to six, 3 - bit codeworcls. 
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4.5.2. Encoding Algorithm. 

The encoding algorithm used to convert the data bits into code 

bits is, 

1st code bit: Complement first data bit. 

2nd code bit: AND first and second data bits. 

3rd code bit: Complement second data bit. 

The above algorithm fails with certain illegal sequences of data 

bits.These are the sequences which give two adjacent code ones, 

figure 4.32. These illegal code sequences are replaced by a code 

sequence which always terminates with three zeroes. 

Illegal Replacement 
Sequence. Data. code. code. 

a 0000 101101 101000 

b 0001 101100 100000 
c 1000 001101 001000 

d 1001 001100 010000 

Fig.L..32. Illegal code bits and their replacement 

Trte encoder program looks forward over four data ,,:ords and forms 

a mask identifying the illegal sequences. These are readily 

identifiable by consecutive zeroes in positions twc and three of 

each illegal data word. The con,plement of the r:!ask is M!Ded >vith 

tl1e second group of three codewords before recording.This 

terminates the illegal sequences with tl1ree zeroes whilst tl1e 

ren:aining, legal sequences, are unaffected. 
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In the case of illegal sequences "a' and "c', the first three 

code bits will be generated correctly by the algorithm.Sequences 

"b' and "d' have to be modified as shown in figure 4.33 before 

the algorithm will generate the correct code. The illegal 

sequences which are to be modified are identified by a one in 

their fourth position. 

·sequence. Data. 
Data 
modification. 

b 
d 

0001 

1001 

01XX 

11XX 

Fig. 4.33. Data modification required 
( X= don't care.) 

The control pulses are encoded onto the outer tracks of the tape 

by exclusively ORing the composite 8 - bit word to be recorded 

with the mask 10000001 prior to encoding the third codebit. The 

outer - track control bits are initialized to zero before tl1e 

recording process thus ensuring a control-pulse frequency of one 

third the codebit rate. 

This masking technique allows legal and illegal sequences of 

data to be processed in a parallel operation. Furthermore,the 

encoding algorithm applies a nuober of sirr,ple logical cperations 

on the data. These logical operations can be found on most small 

microprocessors and since they are non - memory reference 

instr·uctions they are implemented in the minimum cf computer 

tin,e.Generating the code imrnediate2.y from the data ulso obviates 
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the need for storing look - up tables of data. This software 

enccding algorithm permits recording rates in excess of 20 kb/s 

per track to be achieved using the basic Z80 - based 

microcomputer described in section 4.2.1. 

4.5.3. Decoding Algorithm. 

The decoding rules for the ISS 2/3 code are shown in figure 4.34. 

To decode each three - bit group of codewords it is necessary to 

look ahead over two codewords and look back over one codeword 

bit.Thus,seven codewords have to be examined for every two data 

words that are decoded. 

Previous code- Present Succeeding Decoded 
word last bit. codeword. codeword. dataword. 

X 101 NNN 00 
X 100 NNN 01 
X 001 NNN 10 
X 010 NNN 11 
X 101 000 00 
X 100 000 00 
X 001 000 10 
X 010 000 10 
0 000 XXX 01 
1 000 XXX 00 

Fig. 1...31... Decoding table (X= don't care. N =not 
all zeros). 
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The decoding process involves identifying present and succeeding 

3 - bit code groups which are non - zero.This is accomplished by 

logically ORing each 3-bit code group. With the exception of the 

case when the present codeword is zero, the first ~ecoded data 

bit is the complement of the first code bit. If the succeeding 

codeword is not zero the second data bit is the complement of 

the third code bit: if it is zero the second data bit is also 

zero.When the present codeword is zero the first decoded data 

bit is zero and the second decoded data bit is the complement of 

the last bit of the previous codeword. 

The decoding process is sur.unarised in figure 4.35. The decoder 

Succeeding Succeeding 
codeword not codeword 
all zeros- all zeros-

First decoded Second decoded Second 
data bit data bit decoded 

Present complement of complement of data bit 
codeword. first code bit. third code bit. always zero. 

101 0 0 0 

100 0 1 0 

001 1 0 0 

010 1 1 0 

Second decoded 
data bit 
complement of 

Present Previous First decoded previOUS 
codeword codeword data bit codeword 
all zeros. last bit. alway zero. last bit. 

000 0 0 1 

000 1 0 0 

Fig.4.35. Summary of decoding rules. 
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program maintains 'non-zeros' masks for each 3-bit code sequence 

ana uses these to generate the appropriate data bits.As with the 

encoder the application of masking and logical operator 

techniques permits full parallel decoding of data whatever the 

mixture of legal and illegal sequences. 

4.5.4. Codebit Synchronisation and Detection. 

The signals on the six inner tracks, representing the codewords, 

plus the two outer - track control pulse signals,are sensed and 

sliced to logical-signal levels by the read amplifier of figure 

4.6.The output of each of the six "codeword'' read amplifiers is 

used to synchronise a locally- generated clock, figure 4.36 [21). 

Fig. 4. 36. Locally generated clock. 

+Sv 

type555 

timer 
clock 

The above clock signals control the flow of information from 

each codebit track to the microcomputer via a clock switch.One 

clock switch is associated with each of the six codebit tracks 

and is necessary to allow for tape skew. 
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4 . 5 . 5 . Clock Regeneration . 

Each track clock is formed fron a type 555 timer in the astable 

mode triggered from each transition of t he input . The timing 

components are selected to give the correct clock frequency with 

a waveform which is slightly asymmetric . During the aosence 

of input transition s the timer " free - wheels ". 

The transitions of the ISS 2/3 code occur at mid - bit cell only . 

This permits the read data clock to run at bit rate and not 

twice bit ra te as with MFM code. 

4 . 5 . 6 . Clock Switch. 

One of the six clock switches is shown in figure 4 . 37 . The 

toggle 

Skew 
correction pulse 

Clock 

Code bits 

c Data A1 

0 

c Data A 2 

0 

Fig.L..37. Clock switch. 
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regenerated clock is switched between two data latches the data 

inputs of which is the output of the read amplifier.The clock is 

also switched between two ''flag'' latches each of which is set 

when its correspondi~g data latch has received a codebit. The 

outputs of the data latches are passed to the microcomputer, 

along with the five other data latch outputs, via a 6 - bit 

multiplexer under the control of two 6 - input AND gates which 

detect when six bits of a codeword have been loaded into their 

respective data latches. 

The clock switching is controlled by a toggle which operates at 

codebit rate but 180 degrees i~ advance of the regenerat~d clock. 

Each of the six toggles may be reset independently of each other. 

On the assumption that tape skew is zero the six toggles will 

operate in phase and six codebits will be.simultaneously clccked 

off each codebit track into their respective data latch.The 

associated flag will be set and,whilst the 6 - bit codeword is 

input and processed by the microcomputer, the cloclt switch will 

load the next 6 - bit codeword into tbe second data latch and so 

on.In the event of tape skew the above process will continue but 

the clock - switch control toggles will move out of phase to an 

extent depending on the tape skew. 

The toggles must be initially synchronised to their respective 

codebits when ta~e replay begins. Furthermore, each toggle must 

remain synchronised and maintain its relationship with the five 

other units as tape skew varies under conditions of possible 

signal dropouts and spurious pulses. The clock - switch control 

toggle must therefore,receive periodic skew correction pulses to 

''update'' their phase in accordance with the prevailing skew. 
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4.5.7. Clockswitch Synchronisation. 

Six skew correction pulses are generated which are phase 

displaced over a period of tiwe equal to the tin:e difference 

betw~en the codebits across the tracks 'due to tape skew. This 

requires a measurement of tape skew to be made. 

Reference to equation (4.9) gives, 

bit-cell displacement :c = k !To. - Tb) I (Ta + Tb) •••••. (4. 9). 

Also, 

cos o( = [ Tb + (Ta,-TIJ.) 12 ] lk •••••••.• (4 .8). 

In compact cassette La~e systems the skew angle,~, is in the 

range -0.1° < o< < +0.1" [17].Therefore,taking cos~ a.s 1, 

k~Ta- (T.:t-Tbll2 •••..•.. (4.13), 

k -::::=:::: ( Ta + Tb ) I 2 • • • • • • • • • • • • ( 4 • 14 ) • 

Substituting equation (4.13) in equation (4.9) gives a 

measu::-en:ent of bit cell displacement i.n ter;;;s of tlr;:e: 

X = ( T eo. -T b) I 2 •••••••••••••• ( 4 • 15) • 

The time (T~-T~) may be obtained by exclusively ORinu the 

controJ r.1ulses on the outer tracks (fig.4.13). 

The skew correction pulses are generated by tl1e circuit of 

figure 4.38. During the time interva.l 1d1iCi'1 is proportional to 

bit - cell displacer.1ent. (TQ.-Tbl, the 'oir:ary counter· acCUif1Ulate~' 

a value of f(T 4 -Tbli2N cour1ts,wl1ere a clock frequency off Hz.is 

counted for a period of (T<a:-TIJ) seconds via a divider of 2N.N is 

tile num'oer of rmlses required. 

Tl:e accurrrulate<.l count .i.~: loaded into o ,,rogra;;;Jna'ole fr~e(:uency 
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Skew correction pulses 

t t t t t t 
Bi-directional 

shift register 

up/down 

f1 
Programmable 

frequency 

divider 

Binary 

counter 

-

f 
Clock 

-a- Divide 
by 2N - N: number 

of tracks 

- Pulses from control 
Phase lead detector tracks 

Fig.4.38.Skew-correction pulse generator. 

divider which is then successively counted down until each of 

the shift regi ster ou tputs has been asserted . The frequency of 

the pulses fed to the shift register is given by the input 

frequency of the progra mmable frequency divider divided by its 

conten tr; , i .e. 

Shift register input frequency= f/f(T4-T b l/2N 

= N/x Hz . 

The input pulses to t he shift register, and consequently the 

shift reg ister output pulse s~1uence ,are thus spaced precisely 

over the time period represented by the bit - cell displacement , 

whatever value this may take. ( fig . 4 .3 9l . 
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J 

Shift/ 
register 
output 

pulses 

~ 

I _ , 
I 

Time 

Bit-cell disp l acement 

Control 
t rack 

6 data 

tracks 

Contro l 
track 

, _ 
I 

Fig.4.39. Skew correction pulses. 

The leading contro l track deterxnines the direction of the shift 

register , thus allowing for both positive and negative tape skew . 

The flux transitions on this track also ident ify the centr e of 

the bit cells , therefore each shift register output pulse 

coincides with the centre of its corre sponding bit cell~all six 

pulses identifying the appropriate bit of the 6 - bit codeword 

that was recorded . Essentially the skew correction c~rcuitry 
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san1ples the value of the tape skew and initializes each clock 

switch accordingly. Thi~ is repeated at intervals deterDined by 

the spacing of the control pulses on the outer tracks. 

The control pulses on the outer tracks are also used to set a 

codebit-group flag every three codebits.This is polled by the 

decoding software and used in the decoding process. 

4.6. ERROR CORRECTION. 

Since increasing the data density in a recording system will 

result in a corresponding increase in error rate a neccessary 

requirement for a viable system is the application of error 

correction.Numerous error correction techniques for tape systems 

have been proposed [22-23] .The effectiveness of these methods is 

limited only by the complexity of their implementation and the 

reduction in information throughput that r.tay be tolerated as the 

increasing number of redundant data uits displace the 

informat~on bits. The optimum error correction scheme must be 

judged in the light of the application. 

A general treatn•ent of error correction is given in chapter 3. 

Under this heading a simple, moving - parity error correction 

method will be considered. This has been implemented on the 

systen1 described in section 4.2. The essence of the scheme is 

simplicity of implementation. It employs low redundancy to 

correct single - track errors. 

4.6.1. Moving Parity Error Correction. 

The error correction technique adopted follows the''moving parity'' 

method of error detection proposed by Darwood [4-5]. Patel and 
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Blauw have also reported on a similar technique [24-25] which 

they have adapted to error correction. 

The method used is illustrated in figure 4.40. A single track of 

the tape is dedicated to recording the parity value of data 

covered by two ''parity strips'', A and B, located a distance L 
apart.The data covered by the parity strips lie at an angle 

across the tape. For the m th ''A" parity check the parity value 

is given by the equation, 

~: ... =-Nn (~':) = 0 

LN = 0 

where N = track number and E signifies rnodulo two surnr.,ation. 

Similarly the ''B" parity check is given by, 

t
N = n 

B.,.,+R+N 

N = 0 

( t\ ) = 0 

The parity value covered by strips A and B is,therefore, 

L
N = n 

A,...,_N 

N = 0 

(N) ~t: = n 
~±~ ""+-R + N 

N = 0 

(N) = 0 ••••• (4.16). 

Consider a single error on track N (X in figure 4.40). This will 

cause equation (4.16) to fail twice as it crosses the parity 

strips • and B.These failures occur P bits apart where, 

P= (m+f+N)- (m-N) = .£ + 2N 

The replay software counts tbe number of bits between parity 

failures and is able to determir1e,and correct,the track which is 
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parity 
str1p error 

f parity 
A\ \ • ~ -tr =45° 1 strip 8 

No \ \ ~ t ~ ) 
N1 V ~'x- ~ 

I '/ ~ t 

I / 1', 
I :,' ' ~ 

l N" V ~ 
0 1 2 - --m ..,...._ ______ L --------

Fig.4.40. Moving parity error correction. 

mth A cross parity= 

m th 8 cross parity = 

N=n 

total parity = ~-N (N)G) 

N=O 

Fig.4.41. Moving parity error correction. 
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N = P -f 
2 

In the case of a burst error of lengtb b < f'. equation (4.16) 

will fail b times as the burst crosses strip A and a further b 

times as it crosses strip B. The length of burst n1ay, therefore, 

be determined and corrected. 

Single track errors of any burst - length cornbination r.,ay be 

correcteci proviC::ed the overall error length is <£. The value of 

L may be chosen to accor.unodate the worst - case length of error 

combination. 

19 a 



4.7. REFERENCES FOR CHAPTER 4. 

[1] Donnell~.T.," Time delay solenoid switch using VMOS FETs'', 

New Electronics,Vol.19,No.4,February 1986. 

[2] Whatton.M.E.,et al," An economical data store " !ERE Conf. 

Proc.,No.26, Video and Data Recording,Birmingham, pp 149 -

156, July 1973. 

[3] Ouchi.I.,Aoi.H.,'' A new detection method with two slice 

levels",IEEE Trans.on ~lagnetics,Vol. tvlAG-23,No.5,pp 3675 -

3677,September 1987. 

(4] Darwood.N.,'' Improved parity checker ''. Wireless World, Vol. 

87, No.l540, pp 81 - 82, January 1981. 

[5] Darwood.N.,'' A moving parity check method'', Electronic 

Engineering, April 1979. 

[6] Prusinkiewicz.P., Budkowski.S.," A double track error

correction code for magnetic tape '',IEEE 1'rans.on Computers, 

pp 642-645,June 1976. 

[7] Hughes.H.D.," The limitations of practical magnetic masters 

for digital recording systems '', Conf. on Video and Data 

Recording, Birmingham, July 1973, ( !ERE Conf. Publication 

No.26),pp 173-174. 

[8] Dudson.M.F.,Davies.A.V.,'' Magnetic recording for computers", 

Proc.IEE,IEE Reviews,ll9,No.8R,pp 956-984,August 1972. 

[9] Donnelly.T.,Mapps.D.J.,'Nilson.R.," An intelligent wicro

processor i.nterface for a low - cost digital magnetic tape 

recorder",Microprocessing and Bicroprogramming 23,pp333-338, 

1988. 

[10] Siegel.P.H.,'' Recording codes for digital magnet~c storage'', 

199 



IEEE Trans. on Hagnetics, Vol. HAG-21, No.5, pp 1344 - 1349, 

September 1985. 

(11] Mallinson.J.C.,Miller.J.W.,'' On optimal codes for digital 

magnetic recording", Conf. on Video , and Data Recording, 

Birmingham,July 1976. 

(12] Bixby.J.A.,Ketcham.R.A.,'' Q.P. An improved code for high 

density digital recording ", IEEE Trans. on Hagnetics, Vol. 

~~G - 15, No.6, November 1979. 

(13] Jacoby.G.V.,'' A new look- ahead code for increased data 

density ", IEEE Trans. on Hagnetics, Vol. HAG - 13, No.5, 

September 1977. 

(14] Kiwimagi.R.G.,et al,'' Channel coding for digital recording", 

IEEE 'l'rans. on Magnetics.~~G - 10, No.3,pp515-518,September 

197 4. 

(15] Kelly.J.,'' Hiller squared coding'', NASA Publication 1111, 

pp 127 - 142,September 1985. 

(16) Donnelly.T.,Happs.D.J.,Wilson.R.," A microprocessor based 

codec for a low - cost digital tape recorder '', Institute 

of Acoustics Conf. Proc. Reproduced Sound 3, Windermere, 

pp 55 - 61, November 1987. 

(17] Donnelly.T,Mapps.D.J.,Wilson.R.,"Real- time ~icroprocessor 

monitoring of skew angle in a CO!"ilpact cassette r~:ul ti track 

magnetic tape system '', J.IERE, Vol.56 , No.2, pp 49 - 62, 

February 1986. 

(18] Devereux.M.A.,''error protectioi• techniques for longitudinal 

digital recording of audio and video signals '',BBC Research 

Report, BBC/RD 1979/30, December 1979. 

(19] Jacoby.G.V.,Kost.R.,'' Binary two- thirds rate code witl1 

200 



full word look ahead ", IEEE 'l'rans.on ~1agnetics, Vol.l'lAG-20, 

No.5, pp709-714,Septen~er 1984. 

[20] Donnell.y.T.,Mapps.D.J.,Wilson.R.,''High density data storage 

on audio compact cassette tape using a low - cost tape 

transport'',J.IERE,Vol.157, No.5, pp235-238,Sept/Oct 1987. 

[21] Donnelly.T.,'' Synchronised data clock '', New Electronics, 

Vol.19,No.3,February 1986. 

[22] Bellis.F.A.,'' A multichannel digital sound recorder '',IERE 

Conf. Proc.No.35, pp123 - 126, Birmingham 1976. 

[23] ~ottley.G.," 3- Position modulation (3 P~1) a technical 

appraisal '',Conf.Proc. IERE Fourth Int. Conf. on Video and 

data recording,April 1982. 

[24] Patel,A.M.,"Adaptive cross parity (AXP) code for the IBM 

3480 tape storage sub systen1'', Presented at Intermag '85 

St.Paul Minnesota,USA. 

[25] Blaum,l-1, "A family of error correcting codes for magnetic 

tapes'',IBM Research report,1985. 

201 



CHAPTER 5. 

RESULTS. 

5.1. INTRODUCTION 

Included in this chapter are results pertaining to the 

mechanical transport characteristics of the compact - cassette 

tape - deck and tapes. These were r;;easur·ed using the recorC:.ing 

system of figure 4.1. enhanced by circuitry and/or software 

to enable the specific r.~easurernent to be r.~ade. 

The system performance of a number of recording configurations 

was also assessed. These assessments invariably utilised the 

computing power of the rnicrocor.1puter in figure 4.2. operateC:: in 

the dual role of syster.1 controller and data logger. Error dist -

ributions in the X - Y axis of the tape were measured and a 

nurilier of recording codes were compared. Also incJ.uded in this 

chapter are results of the r.~oving parity error - correction 

scheme used in botl1 the 4 - track and 8 - track ntodes. 

A nunoiJer of proprietary compact-cassette tapes \•iere used in the 

investigation. They are; 

Tape 

1 

2 

3 

4 

5 

6 

7 

Type 

Sony metallic, C60. 

Memorex HB II, C60. 

Scotch AVX 90, C90. 

Hemorex dB series, C60. 

!-lemorex dB series, C90. 

I·lemorex dB serie.c.-;, Cl20. 

Phi lips ultra fern:>, C60. 
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8 Sony HFS60, C60 . 

9 Sony HFS90, C90 . 

10 Verbatim data cassette, C60. 

11 BASF chromdioxid super II, C60. 

12 BASF L H extra I, C60. 

13 TDK ~~ - R metallic , C90 . 

In the results which follow tapes are referred to either by name 

or number . 

The chapter opens with the presentation of results on the 

response of the 4 and 8 - track inductive heads used in the 

investigation. 

5.2. TAPE - HEAD RESPONSE . 

The frequency response of both inductive heads was measured 

using the arrangement shown in figure 5 . 1. The input to the 

4/8 track 
head 

Signal R h 1\ 

generator~ 8 ~~~~ fib 
1 

0 

Voltmeter 

amp 

F10.S.l Frequency response measunng circu it. 

write amplifiers was commoned and n tracks wer·e simu l taneousJ y 

recorded with squarewave signals across a wide frequency range . 
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Following tape rewind , the track signals were monitored at t he 

outputs of the read - head amplifiers . The results for three 

tape coatir..gs; Y-F"1.o 3 , Cro2 and metallic particles , is show in 

figures 5 . 2 . and 5. 3. for the 4 - track head and the 8 - track 

head respectively . The write current used in the above 

recordings was set at 1.06 mA . for the 4 - track head and 2 . 6 

mA . for the 8 - track head. These were determined to be the 

optimum values of recording current for each head and for all 

coercivities of tape used. Whilst the recording current wust be 

> 
E 
QJ 
0' 
0 ._ 
0 
> 
QJ 
u 
::I 
~ 
0 
'-a. 
QJ 
'-
~ 
0 
QJ 

:I: 

10 

8 

6 

4 

2 

or---.--.-,,n~.,---.--.-.. -n~.---~~~~~~---.,-.-~ 
10 100 1000 

Frequency ( Hz J. 
10000 50000 

Fig. 5.2 . Reproduce voltage against frequency for three tape 
coatings, (4-track head).Recording current:1·06ma. 
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Fig. 5.3. Reproduce voltage against frequency for three tape coatings. 
( 8 -track head ). Recording current : 2·6 m a. 

hi~h enough to exceed the coercivity of each tape coati~g a low 

value is desirable to minimise peak shift on replay [1] . 

A nurrber of recordings were made using the 8 - track head . A 

fixed pattern o f FF . Hex . ~as encoded onto each track in Miller 

code at l Ok bits/sec per track . During recording the write 

current was varied , figures 5 . 4 a nd 5 . 5 . In each case the level 

of crosstalk was measured by recording on all but one track . 
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Fig.5.L.. Amplified output of read head against write current. 
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Fig. 5.5. SN R of read-head output against write current. 
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To complement the above measurements on crosstalk a blank tape 

was recorded on one of eight tracks for several minutes , all 

tracks receiving a period of recording relative to t h e remaining 

blank tracks. The effect of the c rosstalk is illustrated i~ 

figure 5 . 6 . The worst - c ase crosstalk occur s between tracks 1 

and 2 where the pick up from track 2 is 14 dB . down on the track 

1 signal amplitude and only 6 dB . below the level r e cord ed on 

Track. 
1 2 3 4 5 6 7 8 
r--

1 -
2 - 0 

3 - n 
.Y. n g4 --L - ,....-

"'0 
(l) 5 - -"'0 
L 
0 -
u 
(l) 

6 0:: - -
7 - n -
8 - n 

Fig. 5.6. Illustrating the extent of crosstalk 
in the 8-track head. 
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track 2 itself. Track 1 pick up is increased further by the 

crosstalk between tracks 1 and 3. The inner tracks are subject 

to pick up from adjacent trac~s lying on either side. The total 

pick up on track 5 is only ?dB. below the level recorded on this 

track. 

The effect of track crosstalk is to shift the peak of the signal 

on the affected track thus impairing detection. The extent of 

tl1e impairment depends on the relative code patterns on the 

tracks concerned. 

5.3. TAPE VELOCITY VARIATION 

The specified velocity of the tape of a compact - cassette 

r·ecorder is 4.75cm/sec t up to 2%. This, however, is average 

velocity. Of importance in the recording of digital ~ata is the 

velocity characteristic over a distance occupied by one data bit 

- typically 5 ~m. The velocity measuring apparatus described in 

section 4.3.6. measures relative record I playback tape velocity 

over tape distances of some 25 ~m. 

A velocity profile over these short distances was measured and 

the worst-case var·iation determined. Figure 5.7. shows the 

typical velocity variation experienced. A variation of !10% is 

common, with occasional variations up to !40%. These variat:ior's 

ir1evitably add to the jitter and reduce the timing window during 

which the data are sampled. 

5.4. TAPE: - AZIMU7H VARIATION 

'J·o capitalise on the high areal packing densit:y offer·ed by tape 

a multitrack fomat r;:ust be adopted. This in troduc,, s an 
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Fig.5.7. Typical tape-speed variation. 

additional dimension of detection orthogonal to the tape 

direction. The choice of detection process now depends not only 

or1 the linear velocity of the tape but also on the azimuth angle 

formed as the tape skews across the tape head. 

5.4.1. Measurement of Tape Azimuth. 

A series of readings were taken of tape - azimuth variation 

against time, using the technique and apparatus detailed in 

section 4.3.10. In L~e measurement procedure a nurrwer of tapes 

were bulk erased and recorded successively with the appropriate 

control pulses. After recording, each tape was rewound using the 
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fast rewind facility of the tape transport. During readback the 

real-time azimuth variation of the tape was displayed on the 

microcomputer's V D U against an internally ~renerated timebase. 

On aemand the displayed data could be stored as a disk - based 

file for subsequent hard - copy reproduction. 

The results of tape azimuth variation are shown in figures 5.8. 

to 5.15.No adjustment of head azimuth was made between recording 

and replay. The diagrams illustrate various characteristics of 

tape azimuth behaviour over long and short tin1e periods, the 

timebase being a function of the software. The large offset 

from the zero axis, observed in some of tl1e results, is static 

skew.This is caused by non - ideal tape spooling during the fast 

re1vinding of the tape and is tape dependent. Also, the magnitude 

of the dynamic - skew variation is a function of the tape type. 

Whilst visual analysis of these results give an indication of 

static and dynamic tape - skew variation, further analysis is 

required to reveal the periodicity of the signal. 

5.4.2. Spectral Analysis of Tape Azimuth. 

The spectral content of the dynamic azimuth signal was measured 

by outputting the digitised azimuth value from the micro

processor to a spectrum analyser via a D A C. These results are 

shown in figures 5.16. to 5.21. for a number of tapes. 

5.5. TAPE DEFOR~~TION 

The tape - azimuth results were measured using information 

encoded on the outer tracks of the tape. This assuwes that the 

azin•uth is constant across the tape 1vidth. This 1vas found not 

always to be the case. 
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_;:,.. series of <:1easurements were r<1ade whici1 effectively moni tared 

and displayed the ~hase difference between track signals wl1ich 

were recordeci''in - phase''. The microcomputer used in the above 

process· also calculated and loggeC:. the C.efon1ation of the tape 

as defined in section 4.3.13. A running value of the average of 

successive tape deformation readings was taken and displayed by 

the Dicrocoraputer. Tapes of tl1ree different lenutl1s (and, 

the~efore,thickness) were used: C60, C90 and Cl20. 

The measurements revealed (for the particular tape transport I 

head combination used ) predominant ske··:J pattern 

characteristics, figures 5.22. and 5.23. In figure 5.22. ti1e 

skew angle is evenly distributed across tile ... ,ir.::t:J of tile tape 

this for about 5!S error in sys ter.1 due to 

differences between the eight read amplifiers. In ti1e second 

ske1·1 characteristic (figure 5.23.) the centre cr2cks of ti·1e tar;e 

reach t!1eir corresponding read gaps before the cuter tracks 

suggesting a deformation of the ta9e alons its centre. The 

deforr.1ation of t!1e tape r:iay vary in 111a~nitude c1s t;Jc 11 polari t:i 11 

of the skew anole changes. Figure 5. 2<1 sh01·1s tilE: ta,)e cefor;;-,a tion 

when this occurs. 

Sin:ilar results were o0tained with tapes of ciifferent len0ti1s, 

che ~:agnicucle of the tape deformation did, howeve~. vary with 

tape tilici~ness. 

The Dicrocor:~r;uter '•las useC:. to read and ct:!lculate c:::.vera0c ta~;e 

deformation D, for C60,C90 and Cl20 tapes. More t~1an 800 sa~!•les 

~~er- ta;:e \·Jere taken Curing· a total !:=';laying ti1:;e of seven hours. 
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This gave an average tape deformation of 0.67pn, 0.85pm and 1.08 

~m for C60,C90 and Cl20 tape respectively. These are plotted in 

figure 5.25. 
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5. ti. E?30R CHAH/>.CTERISTICS OF 2ECORDIUG SYS'l?ii 1. 

The compact - cassette recon~ing sys ter.; of ,. 
.1. 1crure <L 1. V!O.S 

ci1aracterised in terms of its error rate and ;~:oc1ec; of failure. 

The eight - track head was used to obtain· error ~urst len~)th 

infor~ation and details relatincr to the s9atial distri0ution 

of errors across the trac;.;.s. Also, ti1e effectiveness of tl1e 

moving - parity error correction sche1~e was a~sessed. 

5.6.1. Error Burst Length. 

UsinCJ the 8 - track head, taf:'eS were encoc.iec"i ':ii ;::iJ CJ_ [ ixeci, 

repetitive pattern of data in Bipl1ase - L co~e. On playback tl1e 

eig-ht tracKs v;ere sampled si::n.:ltaneously 0y the replay soft•.vare 

and Cecoded. Data synchronisation was acl1ieved 

utation of transition interval ratics.As cata were cietected each 

rea.din<;J was comparec:i to the knm-m value anc.i io:: eaci1 successive 

mis - watch the address of an error - loc:;qir:~_: ::ter::ory s9ace vias 

incren:ented.When the daca are read successfully the contents of 

tile r,\emory tllus addressed is 

memory contents c.re clisplayeci as a Olf.to'}::a~:: of e1·ror - burst 

length. 

P..esults typical of those r.•easured are ~riven in f:ic-ure 5.26. Tl18 

0eneral trend is for tt1e frequency c~ error - bursc 

decrease with error - burst length. 

5.6.2. Spc.tial DistriiJution of Errors. 

technique s i:'lli lar to that CescriOeC a.lJcve ~·,-cl s u sec: to 

tieterroine track failure node. As a !lre - coded ta L~·e ·.·.c.:..s reaC:. 
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Fig.5.26. Typical distribution of errors over 2·5 hours 

at 2·5 k.bits/sec/track. 

jJack the replay softv,are cate<JOrised tile cccu:-rin<J error·s ln 

terms of single, oouble, treble, etc., track failures. The 

tracks failing were also lo<;Qed and, as before, ~' histo9rali. of 

failure r:10des 1vas displayed at the terii·,ination o[ "' c,easurin9 

~eriod. Data were encoded at 1 kb/s per trac:: usinu Bipi1ase - L 

coC:e. i"igure 5.27 shov1s the results fror,, a ty9ical recor~~ir:<J 

of 20 minutes of a C60 tape with the average of lC x 20 minute 

passes illustrated in figure 5.28 . Other C60 and C90 ta~.Jes 

show a sin1ilar distribution of tracl~ errors. 
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5.6.3. Moving Parity Errot Correction Results. 

The moving parity error-correction scheme of section 3. 3. was 

implemented. The error - correcting software overhead precluded 

error correction in real time at high data rates. However, the 

software used to detect and log burst errors was modified to 

readback and store 208, 8 - bit samples. These were sandwiched 

between 2 x 24 memory bytes containing error - free data to form 

a data buffer. After a buffer is filled the software ''scans'' it 

with the two parity strips and corrects errors. Data verifi-

cation then takes place with errors being logged and categorised 

as in the error - burst program. 

A direct comparison was made between the error rate logged with 

and without the application of error correction. Due allowance 

was made for the difference in throughput between the on - line 

and ''off - line'' methods used. 

Results showing the errors for ar. average of 30 minutes 

playing time is shown in figure 5.29. Average results are shown 

as measured over a four hour period. The recording rate is 

1 k.bits/sec/track and the same, C60 tape, was used throughout. 

Results obtained over a single 30 minute playing tin'e,with the 

same C60 tape, are shown in figure 5.30. The simple, moving -

parity error - correction scheme clearly reduces the raw error 

rate. However, since it is a single - track error correction 

system, dual - track errors adversly affect its performance. 

This aspect is considered in chapter 6. 
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5. 7. ERROR CHARACTERISTICS OF RECORDING SYSTEt·i 2. 

The errror - burst measure~ent technique, described in section 

5.6.1., was used to assess the error performance of the second 

recording system (section 4.4.). In this case the 4 - track, 

record I playback head was used and a 4 - bit pseudo - random 

binary sequence (PRBS) was recorded in Biphase - L code as the 

test pattern. Two r.~ethods of data detection 111ere ~~rr:ployed: data 

were sampled using a fixed track as reference and also an 

adaptive detection technique was employed (section 4.4 .7.). In 

both cases the software synchronised to the data DY contir.uously 

measuring and computing the ratio between transition intervals. 

Recordings were made at data rates ranging from 500 bits/sec/ 

track to 2.5 k.bits/sec/track. To obtain error rates which 

represent system performance accurately, recordings we:·e rep -

eatedly played over a five hour period. Figure 5.31 shows the 

typical accu~1ulation of errors with data rate - as the latter 

increases the error burst length increases,as does the frequency 

of occur·rence. The repeatability of the error measurements was 

assessed by employing tape 1, the tape with excellent skew 

characteristics (figure 5.11), encoded at 2.5 k.bits/sec/track. 

The results are shown in figure 5.32. With errors due to tape 

skew virtually eliminated, those errors which do occur are 

almost certainly due to tape dropouts. 

The effect of employing two tape guides on the same head was 

measured,figure 5.33. An additional guide was fixed on the 

opposite side of the head to the standard guide and with this 

configuration error readings were taken over a four l1our period. 
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\vhen cor.tpared \·Jith a similar period of measurement with only one 

tape guide , the errors incurred were greater . 

The difference between using a fixed track as a synchronising 

reference and the adaptive rnethoc of synchron isi~g was measured . 

A number of C60 tapes were encoded at data rates 500 bits I sec 

per track to 2 . 5 k . bits I sec per track . The replay procedure 

was as follows . The same tape was replayed a number of times , 

typically 20 , for odd - numbered passes,error - burst length \''as 

measured with the software using a fixed track as reference· For 

even - nur.'lbered passes the adaptive software was used . 

The results are show in figure 5 . 34 . Overall error rate is given 

(1) -0 
1... 

1... 

e 

-5 
10 

1... -6 
w 10 

software synchronised 
to f ixed track ~ 

f. 

software synchronised 
to lead ing track 

107 ~-----r----~r-----.------.------.-----~ 
0 0·5 1 1·5 2 2·5 3 

Data rate per track (k.bi ts/sec.l 

Fig.5.34.Error rate performance for fixed and 
variable synchronisat ion. 
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against data rate for both detection methods,the burst errors 

are treated as n - single bit errors. At the lcwer data rates 

isolated errors are due to blemishes in the tape coating and are 

reproducible at the same point as the tape passes the read head. 

The performance of Miller code and the 2/3 rate 0,2 code, 

discussed in section 4.4.11, were compared with Biphase - L code. 

The results of all three are shown in figure 5.35. In each case 

ai -0 
'-

'-
0 
'-
'-

UJ 

105 ~3 rate,Q2 code. 

106 

106~--~----~--~----~----~--~--~ 
0 0·5 1 1·5 2 2·5 3 3·5 

Data rate. ( k.bits/sec/trackl. 

Fig5.35.Data rate against error rate for Miller code 
and 213 rate. 0,2 code and Biphase-L code. 
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the successive interval ratio method of synchronisation was used. 

In order to effect a straight comparison the fixed - track 

detection method was used. The 213 rate 0,2 code was decoded 

by sampling once every data - bit cell. To decode Miller code 

two samples were taken every bit cell with the decoded data 

being taken as the exclusive OR function of the two samples. 

5.8. SKEW CORREC~ION RESUL1'S. 

The data recording rate may be increased further than that 

achieved above if, in the time consuc•ing detection process, the 

burden on the software is eased. This is possible through the 

use of hardware to assume part of the detection process. 

The recording system 1 (section 4.2.1.) was enhanced by the 

addition of a hardware clock for each track and skew correction 

circuitry. Software was developed to encode and decode data ut 

10 k.bits I sec per track in ISS 213 code. Details of the 

software and the operation of the skew - correction 

are given in section 4.5. 

circuitry 

The two outside tracks of the ta~e were encoded with skew -

correction control pulses. These comprise a periodic square 

waveform simultaneou~ly recorded on the tracks at a frequency 

of 10 I 4 kHz. These signals were used to identify each 3 - bit 

code group of the ISS 213 code and control the operation of 

the skew - correction circuitry. The encoding software 

simultaneously recorded the 6 inner tracks with data. These data 

were tte digital values of a "sawtooth'' waveform. On replay the 

decoded data were outputted to a digital - to - analogue 
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converter (DAC) the output of which was used to assess the error 

rate. 

In developi~g the ISS 2/3 decoding software a seconQ micro-

cor:oputer was utilised. This simulated the eight t'racks of an 

encoded tape by generating a ''sawtooth'' waveform in ISS 2/3 code 

at the required frequency. The results of using the skew -

correction circuitry and the decoding software to decode tl1e 

computer - generated signals is shown in figure 5.36. The 

decoded data are outputted by the microcomputer to a DAC. The 

64 steps of the sawtooth are clearly seen with no tape dropout 

or skew - generated errors to mar the reproduction. 

6·4ms. 

Fig.5.35. Decoded "saw tooth" waveform. Data encoded and generated 
by a second microprocessor: !SS 2/3 code, 10k.bits/se~/"tracl<' 
( 5-data"tracks" +2 deskew" tracks''). 
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Tne results with data read from an encoded tape arG shown in 

figure 5.37.These results are discussed in chapter 6. 

The skew - correction pulse generator periodically synchronises 

the clock switch to ensure that the sequence of the 6 track 

clocks is in accord with the prevailing tape skew. If these 

skew - correction pulses are removed synchronisation is lost 

within a few seconds as a glitch I dropout disrupts the correct 

clock sequence. 

errors~ 

j\ 
errors 

Fig.5.37."Sawtooth"waveform showing natural errors.10k.bits/ 
sec/track(8-track head). 

5.9. 18 - TRACK MR HEAD. 

The softwar·e developed during this investigation has been for 

application to a multitrack format. Both in the encoding and 

decoding process the oicroco~puter programs operate with each 

tape track being processed simultaneously one bit of the 

microprocessor word to each track. When the software of the 8 -

bit processor is applied to a 4 - track system the processor is 

under utilised, also, the r;-,asking out of the unused 4 bits 

23 4 



increases the software overhead. 

All the software may be transcribed to a 16 - bit format with -

out difficulty and it was for use witiJ a 16 - bit processor that 

the 18 - track MR head was developed. The two outside tracks 

would be encoded with skew - correction pulses with the 16 inner 

tracks carrying the data.Difficulties have been encountered in 

the development of a practical 18 - track, inductive write, M R 

read head and to date no results involving this device have 

been generated. 
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CHAPTER 6 

DISCUSSIO~I OF RESUL~S & CO~CLUSIONS. 

6.1. INTRODUCTION. 

The results detailed in chapter 5 are reviewed and discussed 

in this section.These results were taken using both the fou~ and 

eight track heads. The lO>v -

coercivi ty tape 

tape employed ranged 

250 - 350 oersted to the high 

coercivity metallic tape (BOO- 1500 Oe.). 

A bandwidth of 10 kHz. is possible with a coG~inatic>n of 4-track 

head and metallic tape. This gives a theoreti.cal Nyquist 

signalling rate of 20k.bits/sec/traclc with about half tl1is value 

for the other tape coatillgS. The value of recorc:!in<J current 

<:le: opted was 1. 06ii1A. and 2. 6mA for the four aml eight - track 

heads respectively. 

6.2. Head Crosstal.k. 

As evidenced by figures 5.4 and 5.5 the performance of the 

eight - track head is far from ideal. This head suffers from a 

high degree of crosstalk, figure 5.6. The worst - case crosstalk 

is 18dB with 15di3 being typical 1 corr>pared to a v;o:·:o;t - case cross 

- talk value of 40dB for the four - track head. Crosstalk has a 

si0nificant effect en the peak detection ~recess as the zero -

c=oss over point of the reproduced signal is s~tifted. Van Gestel, 

et al [1) have identified two co~ronents ,,f crosstal.k cross-

talk durin<J playback and cros~;t<,lk during •::ritinc;. Play0ack 

crosstaJ.k can be reduced by increasirg the suardband betweeD 

tr.sCJ,s. Also, since it is a linea::- process, tile ;:;lc;.yi.Jack sit:;nal 
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from each track may be compensated by subtracting a proportion 

of the signal from adjacent tracks amounting to the crosstalk 

incurred by the read head. Crosstalk during wtiting is a non -

linear process and arises as the record current from one write 

coil acts as a bias field for the crosstalk from adjacent 

tracks. This may be reduced by cycling the write currents in 

each write coil of the headstack so that adjacent write coils 

never carry current at the same time, figure 6.1. The penalty 

incurred by high levels of crosstalk is an increase in bit 

error rate. One method of reducing the effect of crossta.lk is 

to adopt a slant azimuth recording format. Adjacent tracks are 

recorded with different azimuth angles. The effect of this on 

replay is for each read gap in the headstack to filter out 

signals from adjacent tracks. An azimuth angle of 15 degrees has 

been proposed at which crosstalk is reduced to an acceptaDle 

level [2). 

D.-- track 1write curren!._.. D 
D_:!.rock2 write current--.o 

D _:sock 3 write currm~ D 

Fig.6.1. 

\ \ 

\ \ 
\ \ 

\ \ 

\ 

Track crosstalk is reduced by ensuring 
that no two adjacent write coils carry 
current at the same time. 
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6.3. TAPE TRANSPORT CHARACTERISTICS. 

A low-cost tape transport arrangement such as the compact 

cassette system is not suited to recording digital data at 

high densities in a multitrack format.The ~echanical vagaries of 

the transportation system,such as tape velocity and azi~uth 

variation,impose a limitation on the recording rate if not 

cornpensa ted for. 

6.3.1. Tape Velocity. 

As stated in section 5.3. the tape-velocity variations over 

distances comparable to those occupied by one data bit are 

important. The velocity variation shown in figure 5.7. has been 

transcribed from a recording made on a UV chart recorder with 

the apparatus of figure 4.11. Although points are plotted at 

0.25 sec. intervals the time resolution of the measuring system 

is 25 pm. This is considered adequate to ~etect velocity 

variations over 5 ~m. ie one bit cell at 10 kbits/sec. 

As seen from the sample graph (figure 5.7.) variations of ±5% 

of one 10 kbits/sec bit cell are typical. Occasionaly transient 

changes of up to :!: 40% also occur. Variations as large as 

this must be accor:unodated by the replay process. 1'. common 

technique is to use a phase-locked loop (PLL) synchronised by a 

self-clocking code to regenerate a clock for each track [3). The 

tin1e constant of a PLL is, however, long and transient changes 

ir1 tape velocity are missed. A further shortcoming of adopting 

this approach is the expense of providing one PLL circuit for 

each tape tracl~. 
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The software clock regeneration devised for the con:pact-cassette 

transport is tape - velocity independent. The method also 

synchronises to the replayed data to discr-in,irJate between bit -

cell centres and bit - cell boundaries. This latter function is 

continuous throughout the replay time of the tape and depends on 

the frequency of occurrence of certain data sequences. With 

Biphase - L code these data sequences are 001, 100, 110 or 011 

which occur frequently in random data. The method is applicable 

to any run - length limited code provided a code sequence yields 

a unique pair of transition intervals. 

To eli~inate mis - synchronisation due to extraneous signal 

transitions the sampling software compares each measured bit -

cell interval with that used by the microcomputer to calculate 

the sample point. If there is a large discrepency the new 

interval is rejected and the store~ bit - cell interval is not 

updated. The software thus mi~ics the action of a phase : locked 

loop (FLL) with the software limits of comparison equivalent to 

the PLL time constant.This action ensures that tl:e data continue 

to be sampled at regular intervals in spite o: possible dropouts 

and additional signal transitions. This latter error· mechanism 

forces additional bit - cells into the data stream which would 

inhibit potential error correction. 

6.3.2. Tape Azimuth. 

The effects of tape azimuth variation are to reduce the 

amplitude of the reproduced signal and to impair the coherent 

detection of bits recorded sin1ultaneously across tl1e tape. It is 

convenient to measure tape azirnuth variation in terms of bit 
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cell displace~ent across the tape. A lOOps bit cell was chosen. 

This is the time duration of one bit at 10 kbits/sec and 

corresponds to a distance on tape of 4.75 pm • In terms of 

azimuth angle this amounts to 4.4 minutes of arc.Computer - tape 

systen1s experience skew - angle variation of magnitude 2 to 3 

minutes of arc [4] .In such systems tape - head azimuth alignment 

to an accuracy of 12 seconds of arc is normal [5]. 

The accuracy of the tape - azimuth measure~ents was verified by 

the results obtained in manually introducing a known value of 

skew and comparing this with the measured value, {section 4.4.12). 

Both dynamic skew and static skew was observed in each of the 

tapes tested. Dynamic skew variation varied between tapes from 

an excellent :!: 20% of one bit cell to values in excess of 100% 

of a bit cell length. 

Typical results are shown in figure 5.8. Here the skew - angle 

variations of three C60 tapes freE! different r;,.;mufacturers 

is compared. Each shov1s a total skew - angle var·iation within 

one bit cell at 10 kbits/sec. A cor.mon feature of the results 

is the cyclic variation of skew - angle as the tape is played. 

This is COillll!on to all the tapes tested. 

Static skew manifests itself in two distinct forms: 

{a) An offset of the skew characteristic at time t = 0 . 

{b) Static skew drift. 

Skew offset occurs after the tape has been rewound. The drift 

in static skew occurs over long playing tin:es of the tape. 

Consequently the static skew of a tape could vary substantially 

between successive playing periods with rewind iE betweer1. 
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Figure 5.9. illustrates the tape azin,uth variation of one tape 

which (at the time of measurement) spooled ideally. This 

contrasts with the results of a second tape which shows an off -

set froo zero, figure 5.10. The offset is due to the lateral 

movement of the tape hub as the tape is rewound (spooled) figl!re 

6.2. The extent of this movement depends on the cassette 

constr·uction. Some manufacturers insert plastic shims to 

restrain this movement whilst in some cassettes the casing full-

fils this role. To some extent this lateral n'over.tent is 

bufferred from the tape head by the two pulleys which separate 

the tape head from the two reels. In spite of this the lateral 

movement of the tape hubs manifests itself as static skew. The 

distance between the two pulleys is 88mm. \•li th a tape skew of 

one 10 kbits/sec. bit cell the skew-angle is; 

arctan 4.75 x 10-~ 3.7 x 10-3 = 0.0735 degrees. 

The lateral hub displacement due to this skew - angle 

88 x 10-3 /2 tan 0.0735 metres= 0.056 mm. 

ideally spooled 
tape. 

I 

tape 
---reel 

tape 
-hub 

tape offset due to 
non-ideal spooling. 

Fig.6.2. Lateral movement of tape during 
spooling causes static skew. 
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Within the above constrair1ts of lateral movement the static skew 

can change as the tape is played. This effect is seen in figure 

5.14 where the static skew gradually changes before stabilising 

at a steady value after 10 minutes. 

The skew characteristics of a tape are unrelated to its ''quality" 

as measured by cost. The excellent dynamic and reproducible 

static skew exhibited by tape 1 contrasts with that of tape 13. 

The first tape is housed in a plastic cassette with a cost of 

one quarter of tape 13- the cassette of this tape is formed from 

a heavy metal frame with plastic sides. Both are metallic tape. 

Apart from this expensive i ten1 the remaining tapes had plastic 

cassettes and were modestly priced. In view of the similarity in 

cassette construction and guidance systen, the skew behaviour of 

the cassettes is primarily due to the uneveness of the tape 

width. Apart from an occasional large transient change in 

skew the maximum variation was invariably within plus or 

minus one 10 k.bit/sec.bit cell. 

6.3.3. Spectra of Tape Azin•uth Variation. 

The graphical display of tape azimutl1 variation was down loaded 

f rol:l the microcor.;pu ter to a spectrum annalyser. Sample results 

from four tapes are shown in figures 5.16 to 5.21. The relative 

amplitude of each component v<:n·ie<: as the tape is running. Apart 

fr·on• the 2 Hz component, v1l":ich was cor.mon to all tapes, the 

frequency of the spectra varied from tape to tape. The 2 Hz 

component was attributed to the tape transpor·t - 1~ particular 

ti1e ;_:;inch roller. At compact-cassette tape speed 2 Hz translates 

into a length which approxin•ates the circumference of this 

243 



-cor~ponent. The other harmonic con1ponents a. re clue either to the 

tape or the cassette ta~e guides. 

The final frocess in the production of tape is the slitting of 

the magnetically coated rolls of base film into tape. This is 

done using either fixed or rotary cutters wl1ich invariably 

impart a curvature to the edges of the tape. This causes the 

ta~)e to weave through the tape guides as it is played tllus 

giving rise to tape skew. Jorgensen [4] quotes a figure of tape

edge curvature for computer tape of up to l/8 inch over 36 

inches. It is likely, therefore, that the low frequency 

components of the tape azi;auth spectra are ciue to tilis paran~eter 

\·:hilst the higher frequency cor,-,ponents are due to the cassette 

tape guides. Taking the 0.32 Hz spectral compor1ent, figure 5.20., 

the "period" of curvature on the ta;:;e 'dOulC: be, 

4. 7 5 I 0. 3 2 = 14 . 8 cr;1. 

6.3.4. Tape Deformatior1. 

In deterrc1ining the increr::ental skew characteristic across tl:e 

fu2.l \"id tll of the tape it 1·1as necessary to r,;ee:sure c.i·!e ~:K-2':1 

ar1gle distribution away fro~ the edges of the ta~1e. Tl1is ~:ad 

been assu::Je(: to be linear l.Jy interpolating oet'.·;een ti·,e ;,;ee:.st:;:eci 

values of tape azin1uth on the outer tracks. 

Detailed investigations of the skew an<]le on tLe inner tracks 

of ti·,e ta;;e revee:led t·.vo predor"inant n:oC:es of oper·e:tion. 1\s 

)::"eclicteci. by the dynar:";.ic te.ve-azi!tluth ~neasur21~·.ent::.::, the ~ape 

skew ~etween tile outer tracl:s of the ta9e cha!1~es polarity 

C~'clically. In the first iuocie oZ O!.)erc.ticn, 
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the skew angle is distributed across the full width of the tape 

in an orderly fashion. Some scattering of the track readings 

about the mean value does occur but, allowing for the inherect 

error in the measuring system, 

virtually linear. 

the skew angle distribution is 

In the second mode of operation, figure 5.23. the data on the 

centre tracks reach their respective read-head gaps before tl1ose 

of the outer tracks. This results in a deformation of the tape 

along its centre and the profile of the tape - skew angle across 

the tape resembles the bow wave of a ship. Tl:e likely cause of 

this ''bow - wave'' effect is the friction, offered by the tape 

guide, to the outside edges of the tape. This works contrary 

to the action of the pinch 

centre. The deformation 

roller operating along the 

characteristic of figure 

tape 

5.23 

illustrates tape operation with a low value of tape skew, the 

pinch roller and tape-edge - guide forces forming a balanced 

couple on the tape. In figures 5.22. and 5.24. the balance of 

the couple on the tape is tipped one way or the other depending 

on the prevailing tape skew. 

The tape deformation was quantified by modifying the display 

software to compute 0, as defined in figures 5.23 and 5.24, and 

average its value. This was done for C60, C90 and Cl20 tapes of 

the same type. The results are shown in figure 5.25 which 

clearly shows the thinner tapes Cl20 and C90 being sL~etched 

further than the C60 tape which has twice the thickness of the 

Cl20 tape. In terms of bit - cell time the effect of tape 

cieformation is shown in figure 6.3. It can be seen ~i1at the 
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Fig.6.3. Average deformation of C60.C90 and C120 tape in 
terms of one bit cell for various data rates. 

average time displacement of the tracks for C120 tape amounts to 

almost 25% of one bit cell at lOk bits/sec/track compared to 

18% and 14% for C90 and C60 tape respectively. These values 

amount to a corresponding reduction in detection window vihen 

data, recorded broadside across the width of these tapes, are 

sampled simultaneously. Also, the above figures represent 

average values only. Tape-deformation values in excess of one 

10k.bit/sec.bit - cell do occur, paticularly with the thinner 

tapes. In these cases data recorded at this rate would be rnis -

detected if simultaneous sa~pling of each track is used. 
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6. 4 • ER?.OR PERFORt·iAi'iCE OF RECORD Ii'JG SYSTF.I•lS. 

Results relating to three recording systems have been obtained. 

(a) System 1, figure 4.1, in which tl1e 8 -track 

head was employed. 

(b) System 2, with 4 - track head, section 4.4. 

(c) System 3, which is systen1 1 enhanced by additional 

circuitry. 

A simple, moving parity, error - correction scheme was also 

applied to system 1 and its effectiveness measure~. 

6.4.1. Compact - Cassette Recording System 1. 

Errors incurred in this systen. are predominantly single - track 

errors. This mode of failure is typical of multitrack tape 

systerns. Double and triple - track errors also occur but to a 

much lesser extent. Little can be concluJeci about the 

distribution of errors between traclcs altlJough it is noted that 

track 1 cf the 8 - track head suffers a high level of cro~stalk. 

The numl:;er of errors \vhich do occur c:uring cape replay is a 

function of recorded data rate. This also applies to tl1e i1urst -

error length distribution. A typical distribution of errors, 

measured over a long period, is show11 in figure 5.26. ~ere, the 

ourst length is defined as the nur:1ber of successive error 

readings between two good readings. Tite frequency of occurrence 

of error bursts is seen to fall off with error burst length. Ti1e 

relationship between error frequency and burst lengti1 can be 

seen in figure 6.4. In this graph che inverse of the normalised 

error frequer:cy is cor:.pared ·,·iith the inveL·se of the burst lenc:;tl·,, 

b, a.nd L1.e inverse exf;Onential of the ourst len<~th, ootr1 norn:al-
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Fig.6.4. Normalised occurence of burst error, b, compared 
with e~ and k b~1 

ised.For this example the fall off in burst -length frequency is 

a closer fit to the Ke-b curve than the kb-f curve. This is in 

agreement with Meek's results[&) .Error bursts are usually caused 

by loose tape - coating debris or dust particles between tl1e 

head and the tape, tape blemishe.· are also a cause. Because of 

the finite size of these error - causing nechanisms, error -

burst length is inversely proporticnal to bit - cell length and, 

therefore, for a given code, data rate. 
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Notwithstanding the problems of crosstalk associated with the 

8 - track head, the moving - parity error correction scheme was 

applied. The results, figures 5.29 and 5.30, are, predictably, 

poor with a reduction in errors to only 25% below the raw error 

rate, approximately. 

Although the overall error rate was reduced, certain error 

patterns show an increase.In figure 5.29 all single and double -

track errors are reduced but some double - track errors are 

caused. The same applies to figure 5.30 with the exception of a 

single- track error increase on track 3. As is common with any 

error - correction code, errors increase oecause of mis -

correction of error patterns the code was not designed to 

contend with·:· so called pathological error patterns. In this 

case the code was designed to handle single - track error bursts 

which occur at least L bits apart. Error patterns not falling 

within these restrictions may be mis - corrected. 

The diagrams 6.5. and 6.6. illustrate the mis-correction wl1ich 
I • 

takes place due to double-track errors and certair• single-track 

failure patterns to Hhich the system is insensitive. The error-

correcting software must detect the same sequence of parity 

failures due to errors as they pass both strip A and strip B. 

This condition is satisfied oy any double - track error,however, 

tl1e correction systen1 assumes two errors on one track and rnis-

corrects, figure 6.5. The existing double-track error is left 

uncorrected. The above software, error-correction criterion is 

also satisfied by the single-track failure pattern shown in 

figure 6.6. Here, the two errors wl1ich lie in - line with the 
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parity strips do not produce a parity failure. The one error 

which does cause parity failure in strips A and B is different. 

Consequently, the error-correcting software mis-computes the 

track and location in error and adds to the list of double-track 

errors. A similar error pattern of the form X x X will also 

produce a similar result. 

Notwithstanding its shortcomings the error-correction scheme is 

simple and for an 8- track system,the r~dundancy is only 12.5%. 

The error-correction performance could be improved by inter

leavi~g the data to remove the adverse effects of error 

clustering. 

6.4.2. Compact - Cassette Recording System 2. 

The results of recording data in Biphase-L, Miller and 2/3 rate 

0,2 code with the four- track head is summari:c:ed ir: figure 5.35. 

The finite instruction time of the decoding software,for Biphase 

- L and Miller code, limits the recording rate to 2.5k.bits/sec. 

/track.The 2/3 rate 0,2 code is a development of the 1/2 rate 

Biphase - L code and operates 1.33 times faster tl1us giving an 

encoding rate of 3.33k.bits/sec/track for the same computer 

execution time. 

At the low data rates the three codes yield the same error rate 

(10-7 ). The bit - cell time, at 500 bits/sec/track, is 2000pS. 

and well within the execution time of the program. At these long 

wavelengths the skew errors are minimal. The errors which do 

occur are due to tape - coating blemisttes and are reproducible 

at the same points on the tape each time it is played. 
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As data rate increases, additional errors, due to tape skew 

occur. Although Miller code operates at half tl1e frequency of 

Biphase - L, because the data tracks are parallel and sampled 

simultaneously, the effective detection wi~dow is the same, at 

T/2, where T is the duration of a bit cell. The detection window 

of the 2/3 rate 0,2 code is also T/2 but since three data bits 

are encoded for every two Biphase - L data bits the error - rate 

plot is virtually that of Biphase - L displaced to the right.The 

higher error rate of Miller code is due to the decoding process 

which requires that each data bit be sampled twice compared to 

once for the other two codes. 

The maximum data rate/error rate ratio is, 

2000 = 2 X 10
10 

10-7 

at 500 bits/sec./track.This is about five times lower than that 

achieved by Weiller {section 1.43) .However, at a total ~ata rate 

of 12k.bits/sec.the figure of merit is the same for both systems. 

Unlike \'leiller's system, pulse slinuning is not employed. The 

i~corporation of this process into the simple recording system 

would give a potentidl for increase in performancP of some 20%, 

albeit at an increase in co~plexity. 

The 2/3 rate 0,2 code gives an improved performance when 

compared to Miller and Biphase - L code. Further improvement is 

theoretically possible by increasi~g the code rate to 3;~. 4/5, 

5/6 and so on.As the code rate increases the maximum distance 

between transitions, k, also increases and although the code 

efficiency increases,the higher k/d ratio makes signal detection 
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wore difficult and code synchronisation woulo oe adverse&· 

affected.The digital sum variation (DSV) woulci also increase. 

The spectral content of the codes used in th~ investigation are 

compared in figure 6.7. The spectra are of a 255 long PRBS 

at lk.bits/sec. As expected the spectra for Biphase - L and 2/3 

rate 0,2 codes are similar with the latter !1aving a slight d.c. 

component.~iller and ISS 2/3 code also have a d.c. component but 

notably the frequency components of ISS code are lower than 

Miller.Because the energy of both spectrums is concentrated at 

lower frequencies the performance of 

enhanced by channel equalisation. 

6.4.3. Errors Due To Skew. 

these codes would be 

At the higher data rates the effects of tape skew make a 

significant contribution to the error rate.Also, at these higher 

rates, the execution time of the decoding software becomes 

significant. This delays the precise point at which data are 

sampled thus cutting down on the detection window. 

Errors due to tape skew are shown in figure 6.8, this diagram 

also shows the effect of adaptive track synchronisation. At the 

low data rates the effect of tape skew is negligible and the 

error rate for single and multitrack sampling is the same.At the 

hi£her data rates the two plots diverge as multitrack sampling 

is subject to ad~itional errors due to tape skew. The single -

track error rate ~lso increases as the fixed size of the tape -

coating blemishes cover more data bit wavelengths plus 

additional errors due to program - tin1e limitations. Tape - skew 
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induced errors increase the error rate by an order of magnitude 

at 2.5 k.bits/sec./track. 

The effect of synchronising to the leading track is to double 

the detection window. The result of this is seen in figure 6.8. 

where skew - related errors are halved. 
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6.5. ERROR CORRECTION. 

The graph of raw bit - error rate against the tlteoretical · 
( Se<..tio/.1."J./) · 

corrected bit error rate.(is shown in figure 6.9. Data rates are 

indicated at the corresponding raw bit error rates incurred. 

The corrected error rate at 500 bits/sec/track is 10-// or better 

than one error in one year of contir1uous operation.At this data 

rate the data rate/error rate ratio is, 

2000 = 2 x 1o'"' 

10_,, 

an increase of 10~ above the uncorrected value. The results show 
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Fig.6.9. Corrected error rate against raw error rate for 
moving-parity error correction. 

256 



the necessity of minin1ising the raw - bit error rate in order to 

achieve a reasonable value of corrected error rate.A Eundar.:ental 

advantage to this error - correction wethocc is ti1e incl·erflental 

nature of the codevlorci. No codewon! identification is necessary 

1·1hich makes it possible for the tape to start at any point 'Ni th 

error correction being operational after a delay of L bits. 

The error correction ar1alysis, in section 3.3, assu~-es single -

track errors only. 1·-iith multitrack sampliw.r. ho1vever, sin,ultane-

ous n:ultitrack errors occur as tape skew and tape deforwation 

become significant compared to bit - cell lenotll. Also, tape 

blen1ishes spannir1g two, or more, tracks is a cause. These errors 

are not only uncorrectable but, as previously discusseci, cause 

additional errors. F'or this reason lllOving par·i ty error correct-

ion would not be suitable at tl1e higher data rates unless form-

i ng part of a la ye red error - correct ion se her:te. 1\n in:provemen t 

would be to assign two sets of parity striE;S to alternate tracks. 

This would correct simultaneous, adjacent- track fallures plus 

outside track correction for a four - track syste;:,. 

At 10\·J C:.ata r-ates siir:ul taneous crack er~·ors are infrequent {•·Jitil 

tlle 4 - track head) and to date on er·ror rate of t;etter tj·,an 10- 8 

has been measured. 

6.5.1. Proposed Error Correction Scrategy. 

At 500 bits/sec/track, moving parity error - correction yiel~s 

an error rate of 1 in 10
11 

• vJhilst t::is i~ adec:uat.e for· s.orce 

data - storage 9ur~oses, the data rate is at the low end of the 

pe~fc::-;-nance S!)ecification of recor~in<;:r syster.1s 1 anc: 2. At trte 

hish end, 3.33 kbit.s/sec/track, che error rate is 1 in 
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data rate may be increased by the application of a faster micro

computer. However, the raw error rate deteriorates by approxi -

mately one order of magnitude per octave of track data rate. At 

a notional data rate of 10 kbits/sec/track, the raw error rate 

would be approximately 1 in 10~ with a corrected rate of 1 in 

10~ . Improvement at this, and higher data rates is possible 

through the addition of interleaving and Reed - SoloDon coding. 

6.5.2. Convolutional Interleaving. 

The moving parity error - correction code corrects single track 

errors but mis - corrects multitrack errors. However, these may 

be dispersed into single - track errors by convolutional inter -

leaving. Before recording, N successive tracks are delayed by 0, 

D, 20, N-1 )D. At replay the inverse is applied to de -

interleave. To accommodate track error bursts of lengti1 b, tl1e 

depth of interleaving D, should equal L + b, where L is the 

length of the moving parity error -correction zone, figure 3.17. 

Convolutional interleaving can be progran~ed with marginal 

software overhead. Furthermore, data - blcck identification is 

not required, thus the overall redundancy remains unchanged. A 

minor disadvantage is that data are not fully recovered until 

after the occurrencR of N ( L + b parallel - track sam~les 

each time the tape is started. The incorporatlcn of convolutio -

nal interleaving permits the moving parity code to acco~modate 

simultaneLllS m~ltitrack errors of up to burst length b. Isolated 

errors could, however, impair performance if they occur a 

distance ( L + b ) apart on different tracks. The problem of 

isolated track errors being de - interleaved into n.ultitrack 
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errors may be addressed by the application of a cross inter -

leaved error correction scheme. 

6.5.3. Cross Interleaved Moving Parity I RS code. 

Error bursts normally occur along tracks, on the x axis, and 

infrequently across tracks, on the y axis, as .a multitrack error. 

Gross errors, caused by missing or loose tape coati11g, may also 

cause a coriliination of x - y errors. This would be the case as 

the data rate is increased. The power of the interleaved moving 

parity code to correct errors along the x axis car: be combined 

with the y - axis - correcting pmver· of the Reed - Solornon code 

to reduce any impairment caused by isolate~ errors. 

Figure 6.10 illustrates a possible scheme. Before recording,data 
11n 

are encoded in moving parity code. Following interleavingA RS 

code is applied with the 4 - bit elements of the code recorded 

across the tape. Errors may occur during record or playback, or 

both. Immediately after playback, before de - interleaving, the 

RS code is applied to correct up to two, 4 - bit samples. After 

de - interleaving the data are passed to the oovir;g pari t:y error 

- correcting code for correction. The RS code could be the 15, 

11 code over GF ( 2~). Within each 15 x 4 - bit code vector the 

code can correct any two 4 - bit elements. 

The above error correction strategy would signific:ant]y enhance 

the correction ability of the moving parity co<ie. However tile 

inclusion, ''in line", of the RS code vectors generates the neeO. 

for data - block markers, so further decreasing data tbroughpu t. 

Tl1e RS decoding procedure is also de~anding of microcomputer 
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time and at the higher data rates a multi - processor system 

would be called for. 

6.6. SKEW - CORRECTION. 

Because of the limited response tirre of the microcomputer· at an 

encoding rate of 10 k.bits/sec./track, the discrete measurement 

of errors was not possible. The error performance of the skew -

correction circuitry was gauged, however, by observing the 

analogue equivalent of the digitised sawtooth waveform wl1ich was 

recorded. 

When the computer - generated data are replaced by signals off 

tape the errors in the decoded sawtoottt signal can be observed, 

figure 5.37. These are identified as large changes in the steps 

of the sawtooth signal. 

The skew-correction circuitry and the ISS 2/3 encoding/decoding 

software operate faultlessly on data generated by a second 

nicrocomputer (figure 5.36.). These data ar·e error free, and 

nore importantly, 

tracks. 

are generated with zero skew 0etween tl:e 

On the basis of this limited data san1ple the BER is e::trer.tely 

nigh, of the order of 1 in 50 , however, in view of the problems 

associated with this 8 - track head, this is not entirely 

unexpected.One successful aspect of the operation of the skew -

correction hardware is the ability of the systent to naintain 

synchronisation. Throughout the replay tin•e of tl;e encoded tapes 

tlle ske>v-correction. pulse generotor (figure 4.38.) iilaintained 

the clock switch (figure 4.37.) in sequence. Only 1vi1en ~be skew-
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correction pulses were inhibited was synchronisation lost. 

The additional t1ardware to deskew and multiplex the data into 

the microcorr:puter was necessary to achieve the high data rate 

of 10 k.bits/sec./track.With a microcomputer of increased power 

these functions of the hardware could be assumed by software. 

The increased conputing power could be used to synchronise to 

each data track independently. This approach is being pursued 

in a complementary investigation which uses an array of 

Transputers [7]. Each track of a 4 - track system is processed 

independently to eliminate the effects of skew. An atten6ent 

probler.l with this technique is to reform the cat a fror;1 the 

individual tracks into a deskewed data word after sampling. This 

requires the inclusion of data - block identification on each 

track if skew in excess of one bit cell is to be accommodated. 

The technique is also computing - time intensive, especially for 

high track numbers. 

The !SS 2/3 channel code is an efficient code with a larger 

detection window than Miller code. The spectral components of a 

PRBS encoded in ISS 2/3 are similar to Niller - code con,ponenU<, 

figures 6.7 , but the larger amplitude cor.~poner•ts occur at 

a lmv frequency and the high frequency corJponei: ~s d :.e away 

~uicker. A disadvantage is that each 3 - bit code group must be 

iC.entified and this would normally require a separate clock 

track. A possible solution to this shortcoming would be to 

program a code violation on one (or more) 

multiples of the code group rate. This is 

ronisation requirement since encoded signal 
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occur at the centre of each bit cell and thus cell - centre 

identification 

code doubles the 

is inherent. This latter ch~racteristic of the 

tolerance on sampling time, 1~i1en 

nuraber of parallel tracks, compared to Biphase - L 

Hill er code. 

6.7. CONCLUSIONS. 

sampling a 

code and 

The mechanical vagariAs of a low - cost tape transport cn1d tape, 

such as the compact - cassette format, may be offset by 

programmable techniques to produce a viable, multitrack, digital 

tape recorder. System functions, such as channel/error encoding/ 

decoding and data ~ynchronisation may also be implemented in 

software to maintain the low - cost philosophy. Parallel soft -

ware algorithms can be developed which permit each data track to 

be processed by each bit of an n - bit computer. 

The tape - transport J.imitations are velocity variat!on and 

tape azimuth (skew) variati.on aggravated by tape deformation. 

Tape wander may also prove a limitation at high track densities. 

Causes are attributed to both tape and tape 

l!IE=chanism. 

transport 

Over bit - cell distances of 25 ~m velocity variat:lons of ± 15% 

are typical with occasional variations of up to ± 40~. These 

variaticns car1 be ironed out by a velocity - independent det -

ecticn procedure which is based on the computation of successive 

flux - transition interval ratios. This technique not only 

nullifies the effect of tape - velocity changes but can also be 

used to identify, and thus synchronise to, bit - cell centres 
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and/or boundar-ies. Implicit ir- this technique is the ability to 

sample, off tape, data at an optimur.~ point withir. a bit cell 

under cor-ditions of velocity variation. The detecticn procedure 

can be applied to any channel code where a unique combination of 

successive transition intervals identifies a point within the 

bit cell. 

A dynamic change in tape azimuth occurs as the tape passes the 

record/ replay head. This may be superimposed on a static skew 

value which is due to the axial offset of sections of the tape 

reel caused by imperfect tape spooling. Dynamic azimuth varia -

tion is primarily caused by the curvature of the tape edges. In 

addition, the non - uniforrn profile of tbe pinch roller ir.•parts 

a regular azimuth component var-iation with period proportic•nal 

to its circumference. This latter component 1~ most likely due 

to the build up of tape oxide on the surface of the pir-ch roller. 

The combined effect of tape curvature and pinch - roller surface 

irregularity is to produce a cyclical tape - azintuth variat:ion 

\vith period of appro:<imately 0.5 sec. The rr:agnitude of this 

variation is tape dependent and, for the sample of tapes used in 

tlte investigation, varies from ~ 20% to ~ 120% of one 10 kbit/ 

sec. bit-cell. Tape azintuth characteristics appear to be un -

related to cost or cassette design. The tape azirotuth angle is 

not always linearly distributed across t!:e full '"idth of the 

tape. 

The tape - transport capstan should exert uniform pressure 

across tl1e full width of the tape as it is forced against the 

pir:ch roller. Due to roller wear and tape - o:<ide build up 
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however, this pressure is unevenly distributed and concentrated 

along the axial centre of the roller-surface. Counteracting this 

forward force on the tape is the friction of the tape guide 

which slows down the tape at its edges. The 

to deform the tape along its centre to 

combined result is 

create a "bow - wave" 

effect. The syr.unetry of the "bow wave" varies as the tape - edge 

curvature causes increased friction at one edge of the tape 

guide with respect to the other. The extent of the tape defor -

mation depends on tape thickness with the thinner C90 and C120 

tapes exhibiting deformation proportionately qreater· than C60 

tape. For this latter tape thickness, average deformaticn 

amounts to 14% of one, 10 kbits/sec. bit cell with approximately 

18% and 23% for C90 and C120 respectively. Tape deformation 

reduces the sample time window by the above an~unts when Jata 

are sampled in parallel across tracks. 

Tape - azimuth differences between record and playback, plus 

tape deformation reduce the rate at which data may be coherently 

sampled in one operation. Below a data rate of 500 bits/sec/ 

track the above effects are negligible. Errors below this data 

rate, for a 4 - track system, are due to tape dropouts and 

debris build up on the head. !>-hove this rate, tape skevJ/deform -

ation errors accrue in proportion to dai:a rate. l>"t approxin1ately 

3 kbits/sec/track the error rate due to tape azin:uth/c'.eformat!.on 

is one ord~r of magnitude higher than the "natural'' error rate. 

This figure f11ay be halved by the applicaticn of an adaptive de -

coding methoc which synchronises to the data or1 the leading 

track of the tape; this doubles the effective sar~ple time window. 

265 



Errors due to the above tape - transport deficiencies may be 

eliminated by treating each track independently. However, this 

approach is computing - time intensive, especially for high 

track densities. The prevailing tape skew can be monitored by 

interpolating between the outer - track skew difference and 

computing the sample point for each track accordingly. This 

reduces the speed demand on the software but, due to tape de -

formation, errors attributed to this source will not be 

eliminate~. Although tape skew is not evenly distribute~ across 

the full width of the tape, tape - deformation profiles show 

that it is likely to be linearly distributed fror11 tape edge to 

centre- Skew r.-,ay, therefore, be measured, and interpolated 

between, the outside and centre tracks and used to compute skew/ 

deformation - independent sample point~. 

The data/error rate ratio depends, in part, on the recording 

code adopted. Whilst the transition density of Miller code is 

half that of Biphase - L, its double - densit:y recorcing capab -

ility cannot be realised when track data are sampled in parallel 

since, in this mode of operation,the sa~:ple time window is the 

same for oath codes. Also, the decoding algoritbn' for- r,!iller 

code requires two par-allel data samples for eech decoded san1ple 

compared to one for Biphase - L code. For the foreuoing reasons 

the error rate with r,;iller code is higher than with Biphase - L 

code when sampling tracks in parallel. Biphase - L code may be 

adapted to give a higher code rate. This sacrifices the d c -

free qualities of Biphase - L but characteristics such as a 

unique transition ir1terval ratio and bit - cell transit:ion 

266 



regularity are preserved. Compared to aiphase - L code this 

modified code offers a higher efficiency and a higher data rate/ 

error rate for a given recordina system. 

The predominant error. pattern is track burst errors. The 

frequency of occurrence of these error bursts falls off 

exponer1tially with burst length. In addition, isolated, single -

bit errors occur and, more frequently, short bursts cf rnulti 

track errors due to gross tape skew I deformation conditions 

during the sampling periods. A single· error - correcting scheme 

used in isolation is inadequate at data rates above 500 bits/sec 

/track. Above this rate a multilayered error - correcting 

strategy is necessary. The effectiveness of any error -

correcting scber;;e depends on tr:e rav; er-ror rate ·.vhich should be 

as low as possible. Having Parity error - correction is sirr,ple 

to apply and will handle any single - track burst error length 

in real time, provided it is reasona0ly isolated. The ~ultitrack 

errors generated by parallel samrJl ing car. be C:'ispersed by 

convolutional inter·leaving. Tl:e software overhead for this 

combined correction schen;e is minirr,al, permi ttir:g real - time 

operation at reasonalJly high data rates. Increased performar1ce 

may oe achieved by applyir1g c·:oving Parity error· - co::-rec tion to 
but 

alternate tracks,Athis would require two parity tracks. In 

aG.dition to the real - time capability of the aoove sche,ue, a 

fundamental advantage is its convolutional structure wl1ich 

obviates the need to block tl1e ~ata ur1d thus format the tape. If 

this latter restriction is accepta'.:Jle the Reed - Solor,1on error -

correction code Day be ir.corporated in a cross - interleaved 
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correct ion scheme. Sof twar·e a lgori tllms for the processing of 

finite - fielc elements have been devised but their use in 

real - time applications requires computing power far in excess 

of that utilised in this investigation. 

A track density of 3.33 kbits/sec, with reasonable error rate, 

has been achieved with a microcomputer of modest processing 

power. This rate can be increased further with the application 

of a more powerful processor or a multiprocessor task - sharins 

approach. The application of low - transition densit:y codes, 

such as the !SS 2/3 code, and pulse slimr<ting technic,ues 111ill 

also contribute to increased data rate. To retain low - cost 

principles, however, the benefjts of write equalisation should 

be explored. A target track density of the order of 10 kbits/sec 

is not· over ambitious. This can be doubled if tape speed i.s 

similarly increased. The emerging MEV tape with thinner coating 

would permit a doubling of speed whilst still retaini"' a 

reasonable playing time, as would the current Cl20 tape. Skew 

and deformati.on characterist:ics· of MEV tape are yet to be 

determined but the higher ir.cidence of errors due to Cl20 tape 

may be acceptable in some applications. 

All the techniques develcped in this investigation are for 

parallel ope1·ation ancl may be applied to ar:y track density 

provided a microcomputer of comparable word length is used. If 

an adequate signal - to - noise ratio can be maintained, thin -

film, ~!R read/write recording heads can be applied with high 

track density. The ensuing increa~;e in data density r.1ay oe 

utilised to increase sample resolution or, alternatively, data 
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ral:e rr:ay be 

wil:h data 

further increased. This latter option, coniliined 

compression, would give a low - cost, digital 

recording system capa:Ole of encoding and L-eproducing high 

quality audio. 
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APPENDIX A. 

Derivation of channel code capacity. 

Consider the finite - state - transition diagram (FSTD) of a d,k 

code, figure Al. 

1 

Fig. A1. Finite state transition diagram (FST D) for 
d,k code. 

The FSTD has k+l states. The numbers associated with each branch 

of the FSTD represent, no change:O, or change:l. Passage between 

any of the states generates a coding sequence which is 

constrained in d,k. 

FrOQ the FSTD a state transition Qatrix, T, is forQed. The 

elements of Tare t-. = x for x branches from state i to state j, 
I J 

otherwisetij =0. 

For example consider a code with d,k = 1,3. The FSTD and state 

transition matrix are shown in figure A2. 

The channel capacity in user bits per channel bit, C, is, 

c = log2 A 
where ~ is the largest positive eigenvalue of the state 

transition matrix T. 
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0 1 0 0 

1 0 1 0 
T = 

1 1 1 1 0 0 1 

1 0 0 0 

Fig.A 2. Finite state transition diagram for 1, 3 code 
and associated state transition matrix, T. 

The largest positive eigenvalue of T is the largest positive 

root of the characteristic polynomial of T. The characteristic 

polynomial is found as follows. 

Consider the following square matrix, 

a 11 X 1 + •••••••••• • a,11 Xn 

a 2, x, + ••••••••••• a2, x, 
= 
= 

•••••• A 1 • 
. 

a,., x, + •••••••••• • a, 11 x, = ,A X" 

FroQ equation Al: 

(a 11 - ~ l x 1 + a 12 x 2 + ...... . a," x., 
.•••••. az.,x 11 a 21 x 1 + (a 22 - }. l + 

+ + • • • • ( ann - X ) x., 

Form the determinant of the coefficients nf A2: 

-A 
->. 

..•... a , ., 

• · · · · • a1n 

= 
= 

0 •••••• A3 

0 
0 

0 

•• A2 

Solve !;3 to form a polynowial of nth degree lr: A t:his is the 

characteristic polynomial of T. 
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Taking the state transition matrix of figure A2: 

->-.. 1 0 0 
)-. "'- )... 

2.. 
1 -},. 1 0 = -)\ - 1 = 0 ••••• A4 
1 0 -}.. 1 
1 0 0 ->. 

Equation A4 is the characteristic polynomial of T. 

The largest positive root of equation A4 = 1.465. 

Therefore, 

channel capacity of 1,3 code = log
2 

1.465 = 0.5515. 
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1 Introduction 
Direct digital recording using magnetic tape and 
stationary-head recorders is used extensively in the 
computing and instrumentation fields. Here. the reproduc
tion of recorded data must be as near 100% correct as 
possible. Consequently the tape mechanisms and 
associated hardware are usually quite sophisticated and 
the data rate is chosen to be commensurate with the above 
aim. A further application of direct digital recording and 
one tolerant to less than error-free reproduction is digital 
audio. 

The advantages of recording audio signals in digital 
form are well known. 1 Although digital audio tape 
recorders for professional use are available and others have 
been reported 2 the only mass-produced digital audio 
device currently available is the Compact Disc. 3 Magnetic 
tape however. has great potential for the recording of 
digital data at the very high densities digital audio 
demands! 1t also offers a read/write facility and a 
recording medium which. at present. is less costly than the 
Compact Disc. 

The application of thin-film heads 5 has increased the 
viability of multitrack formats at reduced tape widths and 
a data format for Digital Audio using Stationary Heads 
(DASH format) 2 has already been proposed. This is a 
multitrack format with twenty tracks spanning 0·25 inch 
tape-16 data tracks bounded by 2 auxiliary tracks each 
side. 

If data could be recorded at a sufficiently high density 
the compact cassette tape would make an ideal medium for 
storing digital audio data. Although primarily designed for 
recording analogue signals. digital data may be recorded 
directly on cassette tape in a multitrack format. As the 
data density increases however. many difficulties arise with 
data detection-skew angle variation is one such difficulty. 

Although the skew behaviour of high-cost computer 

SUMMARY 
Tape-skew variation imposes one of the limits on the upper 
recording frequency at which digital data may be read 
coherently from a multitrack tape. lt can be measured using 
timers controlled from marker transitions on the outer tracks 
of the tape. The timers are interfaced to a microprocessor 
which applies a ratio technique to indicate a bit-cell 
displacement which is insensitive to tape velocity and circuit 
variations. Spectral analysis of the skew of C60 compact 
cassette tapes reveals a cyclic variation of skew angle of 
about 2 Hz with a total displacement across the tape of 
within one bit-cell at 10 kb/s. 

The skew angle is not always uniformly distributed across 
the tape due to tape deformation. The computed values of 
average tape deformation are 0·67 ~m. 0·85 ~m and 1 ·08 ~m 
for C60, C90 and C120 tapes respectively. 

tape systems has been documented,6 few or no results 
are available for compact cassettes. Consequently. the 
solutions to tape skew which have been proposed. such as 
single-edge guidance 7 and phase comparison, apply to 
open reel tape systems and not to closed reel systems such 
as the compact cassette. To assess the suitability of this 
medium for high density storage requires more informa
tion on the skew behaviour of the various types of compact 
cassette available. 

2 Skew Angle 
Skew angle is the angle between the normal to the 
longitudinal axis of the tape and the axis of the sensing 
head gaps (fig. 1). Static skew presents few problems but 
since skew angle varies with tape motion it is dynamic 
skew which can limit the recording frequency in a simple 
practical system. i.e. a system without skew correction 

Fig. 1. Tape passing the read head with skew angle 1. 
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hardware. Skew-angle variation results in the data across 
the tape not being presented to the sensing head gaps in an 
identical manner to that laid down when recording. 
Consequently. the outer head gaps could be 
simultaneously sensing data displaced by several bit-cells 
compared to when they were recorded. The extent of the 
displacement depends on the frequency of the recorded 
signal since as this increases the distance on tape occupied 
by one bit decreases. 

Multitrack digital tape recorders employ de-skewing 
circuitry to overcome the problem of dynamic skew. One 
technique is to assign 10 each track a number of shift 
registers into which the track data may be switched. 8 The 
data enter the shift register in skewed form when on-line to 
each track. When the shift register is off-line the data are 
clocked out at regular intervals in de-skewed form. 

Dynamic skew correction by phase comparison of 
analogue signals recorded on outer tracks can be 
implemented by controlling an electrically variable delay 
line. 9 In this method the wavelength of the correction 
signals must be sufficiently long so as to preclude the 
possibility of phase differences in excess of 360°. However. 
for reliable phase measurement the phase difference should 
be a large fraction of the total wavelength, suggesting the 
use of short wavelengths. Further. the problems of 
measuring phase difference accurately increase as the tape 
width decreases. 

Before the skew correction circuits can be effectively 
designed a knowledge of the nature of skew is required. 
Also. knowledge of the maximum skew angle likely to be 
encountered would give a recording frequency below 
which de-skewing circuitry would be unnecessary. 

Although examined here in a digital application skew
angle variation also has adverse effects on analogue 
recording where losses of high frequency components and 
incorrect phasing result. 

3 Method of Skew Measurement 
The tape skew on playback may be measured relative to 
the tape skew on recording by encoding the outside tracks 
of the tape with marker transitions at regular intervals 
(Fig. 2). On read back the time intervals T, and T8 , 

between marker transitions on opposite tracks appearing 
under the read heads are measured. From this the 

0 

Fig. 2. Marker transitions on outer tracks of tape from which 
bit-cell displacement may be calculated. 
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Fig. 3. Introduced skew angle vs measured skew angle. 

displacement x may be determined: 

also 

where 

Thus 

cos :x = (TA- T8)/2x 

:x = skew angle 
x = bit-cell displacement 
k = separation of marker 

transitions. 

(TA - T8 )/2x = (TA + T8)/2k 
and 

x = k(TA- T8)/(TA + T8 ) 

The units of k determine the units of x and may be 
distance or time. Digital pulses may be positioned on the 
inner tracks to control timers A and B. Analogue signals 
may also occupy the inner tracks if required. 

The above technique measures the effects of skew-angle 
variation. In the development of a practical high density 
digital tape recorder this may be of greater interest than 
the skew angle itself. However. from the knowledge of the 
distance between the tracks the skew angle may be 
determined if required. 

As a means of verifying the measurement technique skew 
angles in the range +0·3° > .x > -0·3° were introduced 
using a rotary micrometer technique to mechanically 
adjust the head azimuth. This represents a bit-cell 
displacement of 4 units at 10 kb/s. The skew angle 
variation from the mi.:rocomputer (the dynamic skew) was 
averaged 10 give an indication of the static skew only. 
From this the skew angle was calculated. The relationship 
between the mechanically introduced values and the 
computed values is shown in Fig. 3 which shows a high 
degree of correlation between the ideal and actual results. 

4 Experiment 
A series of measurements were made using commercially 
available audio compact cassette tapes. A number of tapes 
were used which represented a spread of manufacturers as 
well as different tape coatings and casselle construction. 

The tape transport used in the tests was a Hart 
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Fig. 4. Readback data channel. (Timer A measures interval 
between pulse edges 3 and 2. Timer B measures interval 
between pulse edges 1 and 4.) 

Electronics 10 SF925F (cost £39). It features solenoid 
control. a single motor with integral speed control and a 
pinch roller tape drive. Two similar tape transports were 
used. one fitted with a standard 4-track head and one with 
a custom-built 8-track head. ·No erase head was fitted. the 
only tape guides being the ones integral to the read/write 
heads. Each tape was encoded using a software encoder 
run on a Research Machines 380Z microcomputer (Fig. 4). 
The same arrangement was used on readback with the 
addition of the hardware timers A and B. The spacing of 
the marker transitions is such that the displacement x is 
measured in terms of the percentage of one bit-cell at 
10 kb/s. 
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Fig. 5. Bit·cell displacement of three tapes vs time. 
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Typical results are shown in Fig. 5. Here the skew-angle 
variation 0f three C60 tapes from different manufacturers 
is compard. Each shows a total skew-angle variation 
within one bit-cell at 10 kb/s. tape I exhibiting a variation 
of approximately half that of tape 3. The d.c. offset in the 
mean of the skew variation is due to lateral movement 
within the tape cassette. The measured offset can be 
accounted for by variations in guide roller position 
brought about by tape spooling. 

A common feature of the results is the cyclic variation of 
skew angle as the tape is played. This was common to all 
tapes tested and was attributed to the pinch roller of the 
tape transport. A spectral analysis of the results reveals 
this as a strong 2 Hz component which. at a tape speed of 
4· 75 cm/s. gives a wavelength approximately equal to the 

circumference of the pinch roller. The other harmonic 
components in the spectrum (Fig. 6) varied between the 
tapes used. The low frequency components are due to the 
non-parallel edges of the tape imparted during the tape 
slitting process. and the high frequency components are 
due to the cassette tape guides. 

Amplitudl!' 
(log) 

Due to 
,/" pincn roll•r 

Due to casselte ~nd 
u.pe edge- etfec1s 

Fre-qu•ncy (Hz)--

Fig. 6. Spectral components of tape-skew variation. 

The ratio technique employed· in the measurement 
makes it insensitive to tape-velocity variations and to the 
frequency of the timer clock. It is also independent of the 
slice levels of the two read amplifiers. Since the timers A 
and B are started and stopped by pulses derived from 
opposite tracks. each will accumulate a number of pulses 
proportional to the slice,level difference. 

This measurement technique measures the skew with 
reference to transitions positioned on the outer tracks of a 
multitrack tape. The azimuth error between data on the 
outer tracks is not necessarily the maximum. It has been 
shown that with the multitrack tapes used in computer 
data recording the skew angle does not remain constant 
across the width of the tape. 6 It was necessary. therefore. 
to determine experimentally the skew angle characteristics 
for the cassette tape and tape transport employed. 

Using an 8-track head the time difference between the 
detection of simultaneously recorded transitions was 
measured. This measurement was made by recording a 
10 kb/s ·in-phase· square waveform on each track. On 
replay. an EXCLUSIVE.OR between tracks gave pulses whose 
lengths were proportional to the time differences. These 
pulses were then used to gate a common clock to a number 
of counters. 

The measurement revealed (for the particular tape 
transport/head combination used) two predominant skew 
pattern characteristics (Figs 7(a) and 7(b)). In Fig. 7(a) the 
skew angle is evenly distributed across the width of the 
tape-this allowing for about 5~~ error in the system due 
to differences between the eight read amplifiers. When the 
skew angle changes polarity (Fig. 7(b)). however. the 
centre tracks of the tape reach their corresponding read 
gaps before the outer tracks suggesting a deformation of 
the tape along its centre. 

The microcomputer was used to read and calculate the 
average deformation D (Fig. 7(b)) for C60. C90 and Cl20 
tapes. More than 800 samples per tape were taken during 
a total playing time of 7 hours. This gave an average tape 
deformation of 0·67J.im. 0·85 J.lm and 1·08 J.im for C60. C90 
and C120 tape respectively. 

The total skew indicated comprises a component due to 
the record process and one due· to the read operation: 
these may be additive or subtractive. This is true whether 
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(a) Linear distribution. 

Fig. 7. Distribution of skew angle across the tape. 

the tape has been encoded on the same system as that on 
which it is being read or otherwise. If the tape was encoded 
using a different system. however. a component of static 
skew would be evident and this could easily be 
compensated for. 

5 Conclusion 
A new method of accurately measuring dynamic skew
angle variations of compact cassette tapes has been given. 
It is capable of measuring a wide range of skew angles and 
has proved insensitive to tape-velocity variations and to 
circuit parameters. A total skew-angle variation giving a 
displacement across the tape of within one bit-cell at 
10 kb/s is achievable using C60 tape and a medium quality 
recorder. 

Due to tape deformation the skew angle is not always 
evenly distributed across the width of the tape. This 
deformation becomes more pronounced as the tape 
thickness decreases. 
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1 Introduction 
New data recording codes are constantly being developed 
in order to realize the full potential offered by magnetic 
media for high density storage. 1 Desirable characteristics 
of such codes include the matching of the code's frequency 
spectrum to that of the recording channe1 2 and the simple 
implementation of data encoding and recovery methods. 

Table 1. Encoding table 

Data 

00 
01 
10 
11 

Code 

101 
100 
001 
010 

A recent addition 10 the existing range of recording 
codes is the !SS 2/3 codeJ This 2/3 rate code looks ahead 
over 4 bits and encodes 3 code bits for each group of 2 
data bits (Table I). The !SS 2/3 code permits a greater 
recording density when compared with existing codes such 
as MFM and 3PMJ Also. the code may be encoded/ 
decoded using basic circuitryJ A 'look-up· method is 
employed with the data/code forming th~ input address to 
a ROM which contains the required code/data. Although 
viable for high frequency serial operation this technique 
would prove costly and cumbersome if expanded into 
parallel form. At the lower data rates found in fixed-head 
tape systems a microprocessor may be employed as an 
encoder/decoder. This software approach not only reduces 
the complexity of data encoding/decoding but also permits 
parallel implementation. thus increasing further the 
potential of the !SS 2/3 code to record at higher bit 
densities. 

Increasing the recording density in a parallel-format 
tape recorder. however. highlights a further problem. As 

SUMMARY 

A parallel encode/decode software algorithm has been 
designed for the recently developed I SS 2/3 code. In 
addition a low-cost solution has been applied to the problem 
of tape-head azimuth variation (tape skew). The above 
enables the recording and playback of direct digital data at 
60 kb/s on normal audio compact cassette tape using an 
8 ·track format. 

The combination of a-low-cost tape transport and a 
standard audio cassette tape produces a high degree of tape 
skew. This is overcome by encoding control pulses on the 
outer tracks which are used to introduce the same amount of 
data skew into the clock signals used to clock the data oH 
the tracks. The self-clocking ISS 2/3 code facilitates clock 
regeneration which. together with simple de-skew circuitry 
and software encoding/decoding permits the realization of a 
low-cost bulk storage system. An increase in the data rate to 
100 kb/s is possible through the use of equalization and by 
incorporating data onto the outer. de-skew tracks. 

the recording rate in a fixed-head multitrack tape recorder 
increases the problem of tape-head azimuth variation 
(tape skew) becomes more severe. This is especially so with 
inexpensive tapes and tape decks such as those used in 
compact cassette systems. Instrumentation and data 
recording tape systems use sophisticated tape-deck 
mechanisms and complex de-skew circuitry to combat the 
effects of tape skew! Such solutions would prove too 
costly to be applied to compact cassette tape recording, the 
philosophy of which is essentially low cost. The tape skew 
variation in compact cassette tapes is found to be of a low 
frequency, cyclic nature. 5 This permits its measurement to 
be used in a method of generating a skew-correction 
signal. This signal is used to de-skew the data by 
introducing the right amount of skew into the clock signals 
which clock the data off the tape tracks. The measurement 
or tape skew involves the encoding or control pulses.on the 
outside tracks of the tape. These pulses are also used in 
decoding the !SS 2/3 code by identifying each group of 3 
code bits. 

In this paper an !SS 2/3 parallel encoding/decoding 
software algorithm is described. A low-cost method of 
reducing the effects of tape skew in a compact cassette tape 
recorder is also given. Both have been applied to an 8-
track compact cassette tape recorder by recording digital 
data directly onto the inner 6 tracks and control signals 
onto the outside tracks. These control signals are also used 
to identify each 3-bit group of the !SS 2/3 code. 

2 Parallel Encoding of ISS 2/3 Code 
full details of the !SS 2/3 code are given in the paper by 
Jacoby and Kost. 3 The basic conversion of data bits into 
code bits is shown in the encoding table of Table I where 
the coded ·ones· represent a signal transition (either + ve 
or - ve). 

Information is to be recorded 'broadside' onto the tape 
in a 6-bit parallel format. The encoding process involves 
converting two. 6-bit data words into three. 6-bit 
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codewords. The software algorithm used to convert the 
data bits into code bit~ is 

1st .:ode bit: Complement first data bit 
2nd code bit: ~~D first and second data bits 
Jrd code bit: Complement second data bit. 

The above algorithm will fail under certain illegal 
sequences of data bits. These are the sequences which give 
two adjacent code ones (Table 2). The illegal code 
sequences are replaced by a code sequence which always 
terminates with three Leros. 

Table 2. Illegal code bits and their replacement 

Sequence Data Illegal code Replacement code 
------ -- -· --

a 0000 tOt tOt tOtOOO 
b OOOt tOt tOO tOOOOO 
c 1000 OOttOt OOtOOO 
d tOOt OOttOO OtOOOO 

Table 3. Data modification required (X= don't care) 

b 
d 

Data 

OOOt 
tOOt 

Oa[a modification 

OtXX 
tt XX 

The encoder program looks forward aver four data 
words and forms a mask identifying the illegal sequences. 
These are readily identifiable by consecutive zeros in 
positions two and three of each illegal data word. The 
complement of the mask is AI'Ded with the second group of 
three codewords before recording. This terminates the 
illegal sequences with three zeros whilst the remaining. 
legal sequences are unaffected. 

In the case of illegal sequences ·a· and ·c·. the first three 
code bits will be generated correctly by the algorithm. 
Sequences ·b· and ·d· have to be modified as shown in 
Table 3 before the algorithm will generate the correct code. 
The illegal sequences which are 10 be modified are 
identified by a one in their fourth position. 

This masking technique allows legal and illegal 
sequences of data to be processed in a parallel operation. 
Furthermore. the encoding algorithm applies a number of 
simple logical operations on the data. These logical 
operations can be found on most small microprocessors 
and since they are non-memory reference instructions they 
are implemented in the minimum of computer time. 
Generating the code immediately from the data also 
obviates the need for storing look-up tables of data. This 
method of encoding data permits recording mtes in excess 
of 20 kb s per track to be achieved using a Zilog Z80 
microprocessor with a 4 MHz system clock. 

To decode the data each group of three code bits must 
be identified. This is done by recording control pulses on 
the outer tracks of the tape for every three code bits. These 
control pulses will also be used to de-skew the data on the 
inner tracks. 

3 Parallel Decoding of ISS 2/3 Code 
The: ISS ~:3 decoding table is given in Table ~- It can be 
seen that seven codewords have to be examined for everv 
two data words that are decoded. · 

The decoding process involves identifying present and 
succeeding 3-bit code groups which are non-zero. This is 
accomplished by logically oRing each 3-bit code group. 
With the exception of the case when the present codeword 
is zero. the first decoded data bit is the complement of the 
first code bit. If the succeeding codeword is not zero the 
second data bit is the complem~nt of the third code bit: if it 

is zero the second data bit is also zero. When the present 
codeword is Lero the first decoded data bit is Lero and the 
second decoded data bit is the complement of the last bit 
of the previous codeword. The decoding process is 
summarized in Table 5. The decoder program generates 
·non-zeros' masks for each 3-bit code sequence and uses 
these 10 generate the appropriate data bits. 

The transitions of the ISS 1.'3 code occur at mid-bit cell 
only. This permits the read data clock to run at bit rate 
and not twice bit rate as with M FM code. The transitions. 
marking a logical one. are detected by the decoding 
software by exclusively oRing the code bits. as they are 
read'-by the microprocessor. with the previous reading. The 
decoding software also includes provision for flag status 
checking and resetting. These software overheads increase 
the decoding time slightly to give a maximum decoding 
rate of 13 kb/s per track. 

As with the encoder the application of masking and 
logical operator techniques permits full parallel decoding 
of data whatever the mixture of legal and illegal sequences. 

Table 4. Decoding table (X = don't care. N = not all zeros) 

Previous code- Present Succeeding 
word last bit codeword codeword 

X tOt NNN 
X tOO NNN 
X OOt NNN 
X OtO NNN 
X tOt 000 
X tOO 000 
X OOt 000 
X OtO 000 
0 000 XXX 
t 000 XXX 

Table 5. Summary of decoding rules 

Present 
codeword 

tOt 
100 
OOt 
OtO 

Present 
codeword 
all zeros 

000 
000 

First decoded 
data bit 
complement of 
first code bit 

0 
0 
t 
t 

Previous 
codeword 
last bit 

0 
t 

4 Tape Skew 

Succeeding 
codeword not 
all zeros
Second decoded 
data bit 
complement of 
third code bit 

0 
t 
0 
t 

First decoded 
data bit 
always zero 

0 
0 

Decoded 
dataword 

00 
Ot 
tO 
t 1 
00 
00 
tO 
tO 
Ot 
00 

Succeeding 
codeword 
all zeros
Second 
decoded 
data bit 
always zero 

0 
0 
0 
0 

Second decoded 
data bit 
complement of 
previous 
codeword 
last bit 

1 
0 

Because of tape skew the code bits appearing under each 
read gap of the multitrack read head may not all belong to 
the same group of six code bits as when they were 
recorded. For coherent detection of each codeword some 
means must be found of correcting for tape skew. The· 
technique adopted is to measure the effect of tape skew 
and use this result 10 generate a correcting signal. 

4.1 Tape Skew Measurement 
A method of measuring the effect of tape skew has been 
determined. 5 This involves the positioning of control 
pulses on the outer tracks of the wpe. On playback these 
pulses control timers from which either the skew angle or 
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Fig. 1. Bit-cell displacement. x. caused by skew angle x. 

the bit-cell displacement may be calculated. A 
simplification of this measurement method gives a pulse · 
whose length is proportional to the maximum extent by 
which a code bit is displaced from the read gap due to tape 
skew. 

Reference to Fig. I shows that. 

IT,- T") cos l = --'.:..,.._:.:.._ 
2x 

(I) 

where 1 is the tape skew angle. x the bit-cell displacement 
and T,. T8 are time intervals. Also 

T" + \(T,- T") 
cos l = k (2) 

where k is the distance between control pulses. From 
equations (I) and (2) 

. . (T,-T8 ) 
bn-cell dtsplacement x = T T. k I 3) 

( "+ sl 
In compact cassette tape systems the skew angle x is in the 
range -0·1' < x < +0·1 '.Therefore 

k ~ T - (T,- T") 
·' , 

(4) 

Substituting equation (4) into equation (3) gtves a 

•molitier 
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Fig. 3. Clock switch. 
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Fig. 2. Pulses derived from control tracks. 

measurement of bit cell displacement in terms of time: 

(T,-T.) 
X=-·---

2 
(5) 

The time (T,- T") may be obtained by exclusively 
oRing the control pulses on the outer tracks (Fig. 2). 

Using the exclusive-oR of the control pulses to generate 
the signal ( T,- T.) gives a result which is independent of 
read-amplifier slice-level variations and/or signal ampli
tude. If one read amplifier slices its control pulse input at a 
different level. one of the two pulses of the ( T,- T") signal 
will increase in length but the other will decrease 
proportionately. 

The above measurement technique does not account 
for the possibility of the bit-cell displacement being ma.xi
mum on one of the inner tracks. This is likelv to 
occur. especially with C90 and C 120 tapes' The follo-wing 
de-skewing technique. however. is robust enough to 
accommodate a bit-cell displacement error of ± I /2 bit cell 
at 10 kb/s. 

4.2 De-skewing of Code Bits 
The code bits of each track are detected by the circuit 
shown in Fig. 3. The clock. which is synchronized to the 
code bits on the tape. is switched between two data 
latches. The switching is controlled from a toggle 
operating at the bit rate of the code. As each code bit is 
latched an associated Rag is set. When the corresponding 

Flag A 1 

FliigS { 
s,c,o,E,F, 

Resrt 8 flags 

Select 

Oa:a A1 

Data 
s,c,o,E,F, --;,."' 
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nag from each track is set the associated 6-bit codcword is 
read by the microprocessor via a multiple.~cr. 

Assuming that all six dock switches are selectin~ their 
respective "code bits and that the maximum bit-cell 
displacement does not exceed ± 2 bit cells then. because 
each track is independently clocked. the li-bit codeword 
will be available at the output of the associated latches in 
de-skewed form. Should the envisaged bit-cell displace
ment exceed ± 2 bit cells then the number of data latches 
per track could be increased and the clock control tO!!!!Ie 
replaced by a counter. --

In a practical system. tape dropouts and glitches will 
cause loss of synchronism between the six tracks and the 
code output of the latches will be garbled. Also. it must be 
possible to stop and restart the tape at any point. The 
clock control switches of each track must. therefore. be 
continually synchronized in line with the current state of 
the tape skew. This is accomplished by generating skew 
correction pulses which align each clock switch to its 
respective code bit. The correct order in which the skew 
correction pulses are generated is determined by the tape 
skew measurement x =HT,- T.). During this time 
interval the circuit of Fig. 4 generates six initialize pulses. 

Fig. 4. Skew-correction pulse generator. 

During the time interval. which is proportional to bit
cell displacement ( T, - T8 ). the binary counter 
accumulates a value of j(T,- T")/2N counts. where a 
clock frequency of /Hz is counted for a period of ( T,- TR) 
seconds via a divider of 2N. N is the number of pulses 
required. 

The accumulated count is loaded into a programmable 
frequency divider which is then successively counted down 
until each of the shift register outputs has been asserted. 
The frequency of the pulses fed to the shift register is given 
by the input frequency of the programmable frequency 
divider divided by its contents: 

Shift register input frequency = 

I 2N N _ ___-__ __ = = - H z 
iT,-T.) (T,-T.J X 

2N 

The input clock pulses to the shift register are thus spaced 
precisely over the time period represented by the bit-cell 
displacement. whatever value this may take (Fig. 5). 

The leading control track determines the direction of the 
shift register."thus allowing for both positive and negative 
tape skew. The !lux transitions on this track also identify 
the centre of the bit cells: thus. each shift register output 
pulse coincides with the centre of its corresponding bit 
cell-all six pulses identifying the appropriate bit of the 6-
bit codeword that was recorded. Essentially the de-skew 
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Fig. 5. Skew correction pulses. 

circuitry samples the value of the tape skew and initializes 
each clock switch accordingly. This is repeated at intervals 
determined by the spacing of the control pulses on the 
outer tracks. 

5 Conclusion 
A software encoding/decoding method has been presented 
which permits parallel operation of the new ISS 2;3 code. 
This makes possible the recording and subsequent 
decoding of data in a multitrack format up to a frequency 
of 13 kb/s per track using a Zilog Z80 microprocessor with 
a 4 M Hz system clock. 

The above encoding/decoding method may be used to 
record digital data directly onto compact cassette tape run 
on an inexpensive tape deck. The tape skew which results 
when such a combination of tape and tape deck are 
employed is compensated for by using simple skew
correction circuitry. This compensates for a tape skew of 
up to ± 2 bit-cells at 10 kb/s between the outer tracks. 
Tape skew in excess of this value may be accommodated 
by increasing the number of stages in the de-skew 
hardware. 

Data at a rate of I 0 k b/s per track has been recorded on 
the six inner tracks of an 8-track compact cassette tape 
using the above code and skew correction method. At this 
level of recording density. data-channel equalization 
becomes necessary to enhance the data detection process: 
work is continuing in this direction. Also. channel 
crosstalk within the custom-built 8-track head impairs 
data detection. 

Improvements in head design and the introduction of 
channel equalization would increase the recording density. 
In addition. consideration may also be given to recording 
data on the outer tracks of the tape with the incorporation 
of skew-correction control pulses as code violations. 
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AN INTELLIGENT MICROPROCESSOR INTERFACE FOR A LOw-COST DIGIV.L ;IAGNETIC TAPE RECORDER 

T. Donnelly, D.J. Napps and R. Wilson• 

Department of Elect~ical and Electronic Engineering 
Plymouth Polytechnic 
Drake Circus, Plymouth, Devon, PLO 8AA, U.K. 

A direct-digital, compact-cassette, four-track tape recorder has been interfaced to a 
personal computer with the minimum of components. The functions of data encoding/ 
decoding and synchronisation are implemented in software. Software is also used to 
reduce the effects of tape velocity/azimuth variation. A recording density of 2.5 k 
bits/sec per track has been achieved with an error rate of 1 in 105. 

l. INTRODUCTION 

Developments in data storage technology have 
sought to keep pace with the increasing use of 
the microprocessor. Hard/soft magnetic discs 
and optical storage methods offer high density 
storage with short access time. 
also offer high-density storage 

Tape systems 
and although 

the access time is longer than disc the cost 
per bit is considerably low_er. Tape systems 
also offer an inherent timebase in those 
applications where the requirement is to store 
data sequentially. Music, data logging and 
the emerging technology of still-picture 
storage [1] are examples of areas where the 
longer access time of a tape system is 
acceptable. Other appli~ations include disc 
backup and home-computer use. 

Ma-inframe computers use expensive tape systems 
which incorporate a speed-controlled, high 
performance tape-transport mechanism. Also, 

.data encoding/decoding and synchronising 
electronics are required to handle the direct 
digital recording codes employed. A parallel
track format is often used to increase the data 
density. However, this requires that deskew 
circuitry be employed to eliminate the effects 
of tape-azimuth variation. Tape azimuth 
variation occurs because, in operation, the 
tape passes the headstack with a skewed motion 
in both the record and playback Modes 
(fig.l). The primary cause is the ''wavy" edge 
of the tape which is usually imparted during 
the tape slitting process. Poor tape 
transport also contributes to the problem. 
Unless corrected, tape azimuth variation leads 
to incoherent detection of the data which were 
recorded broadside across the tape. 

Compact-cassette tape recorders form an 
inexpensive and convenient system for recording 
digital data. However, the problems of tape 
speed/azimuth variation are more pronounced 
than in the mainframe systems referred to 

above. Consequently, recording is usually 
confined to a single track at fairly low data 
rates using analogue encoding. This paper 
shows how an improved-performance 
compact-cassette tape recorder with multi-track 
format can be implemented. Direct, digital 
recording techniques are applied with the 
functions of encoding, decoding and bit 
synchronisation being assumed by intelligent 
software. Software is also used to eliminate 
the effects of tape-speed variation and to 
reduce the effects due to tape-azimuth 
variation. 

Head stack 

Worst case '---+-...J 
bit-cell 
displacement -direction of 

tape movement 

Fig.l Tape passing heads tack with skewed 
motion. 

By utilising the computing power of 
computer (PC) a robust and practical 
be realised with the minimum of 
hardware. 

a personal 
system can 
additional 

• Fo~me~ly at Plymouth Polytechnic, now at Leeds Polytechnic, Calverley Street, Leeds, LSl ]HE; U.K. 
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2. RECORDING SYSTEMS HARDWARE 

Figure 2 shows a schematic diagram of a four
track compact-cassette tape recording system. 

The combined 
four-track head 

record/playback head is a 
of the type normally found in 

auto-reverse ~udio tape 
saturation recording is 
not required. 

recorders. Because 
used an erase head is 

Low-cost 
cassette 
transport 

\ 

comparator 

'--v--1 
Read 

amplifier 

Fig.2. Digital tape recorder system. 

The write amplifier is 
a dual parallel input 
circuit within the PC 

formed from one half of 
output (PIO) integrated 
(fig.3). The record 

current is fixed by suitable choice of resistor 
Rr and should be sufficient to saturate the 
tape coating, a value of 2 mA was used. 

PlO a 

I 

Current 
select 
res1stors 

\ la 
Do 

ll 
01 
Dz 
03 

04 

os 
06 

07 
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4·Track 
·head 

I 1-----. 
·~I ' ... ' 
I-""' ' .... 
I lA ! . ·~..--
o "" I . . ....,... 
·-----J -

-
1-

Io:Do=1, o4 = o0 
ll; 0 :1 0 :0 5 ' 1 5 

Fig.l Write amplifier. 

-I-

1-

For peak detection the read amplifier comprises 
a differentiator/amplifier and a comparator 
together with the necessary passive 
components. These may be configured using 
quadruple comparator and amplifier integrated 
circuits which are interfaced to the PC via the 
second port of the PlO. The need to switch 
the record/playback head is obviated by the use 
of tri-state devices. 

3. RECORDING CODE 

Numerous codes have been devised for the 
recording of data on magnetic media [2). The 
code adopted for the compact-cassette system is 
Bi~-L or Manchester code (fig.4). Although 
largely superceded by the so-called double 
-density codes Bi~-L has a number of features 
which make it suitable for software 
implementation in this application. With 
BiP-L code a change in signal level always 
occurs at the bit-cell centre. Also, the 
ratio of intervals between successive 
transitions of the signal can be used to 
identify either the bit-cell centre or the 
bit-cell boundary. 

1 1 
i-

--- -
; B1t 1 2 Rat10 

cell 

0 

I 

' 
' 
I 

Fig.4. Bi0-L code. 

4. RECORDING SOFTWARE 

1 0 0 1 
- -

~ ..._ ... 
' 
' 

Signal. 
trans1tlon 

'2:1 Ratio 

The recording of data can be timed by using 
either a software timer or the internal counter 
timer circuit (CTC) of the PC. The parallel 
bit structure of the PC permits each track of 
the tape to be simultaneously recorded, one bit 
of the processor word per track. Of the two 
processes, record/playback, the record process 
is the simplest: the compliment of the data 
are transmitted for half a cycle followed by 
the true value for the remainder of the period. 
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5. PLAYBACK SOFTWARE 

The playback process is far more demanding of 
processor time than the record operation. The 
playback software must: 

(a) Identify each bit-cell centre or boundary. 

(b) Remain synchronised to the data throughout 
replay. 

(c) Calculate the simultaneous 
for all tracks and decode 
Bi~-L back to binary code. 

sampling point 
the data from 

The above must 
under conditions 
variations. 

be accomplished in real time 
of tape azimuth and velocity 

Bit cell identification is achieved by timing 
the interval between transitions of the 
recovered signal and computing the ratio of 
successive intervals (fig.4). The third 
transition of a 1:2 ratio occurs at the 
bit-cell centre whilst that of a 2:1 ratio 
marks the bit-cell boundary. 1:1 ratios mark 
either the bit-cell centre or boundary and are 
therefore ignored. 

To speed up the computation of ratios the 
subtraction and addition instructions of the 
processor are used. If the result of 
subtracting two successive intervals is 
positive the ratio is either 2:1 or 1:1. 
Similarly a negative value would indicate a 
ratio of either 1:2 or 1:1. The ambiguity is 
resolved by a further subtraction of one half 
of the second interval in the first case or by 
adding one half of the first interval when the 
initial result is negative. The signal from a 
single track is used for identification 
purposes. Once identification is achieved the 
playback software continuously monitors the 
ratios of successive interrals to maintain 
synchronism throughout replay. The use of 
ratios in this way gives a system which is 
independent of tape velocity. 

To the four data tracks are 
simultaneously sampled at the centre of the 
second half of the bit cell. The sample point 

decode, 

is determined 
duration of 
updated when 

from a knowledge of the current 
a bit cell. This is stored and 
either a 2:1 or a 1:2 ratio is 

measured. 
obtained 
velocity. 

Thus, 
which is 

a precise sample point is 
also independent of tape 

The above sample point is determined using the 
information from a single, fixed track. The 
outputs of the four tracks will, however, be 
"out of phase" due to tape azimuth 
variations. Previous work in this area l 3 I 
has shown that tape-azimuth variations can 
typically produce a displacement across the 
tape of up to t l/4 bit cell at a track data 
rate of 2.5 kb/s. 

Thus, when a single, fixed track, is used to 
determine the common sample point of all four 
tracks the azimuth variation gives a sample 
window of t i/4 bit cell at this frequency 
(fig.Sa). Increasing the recording frequency 
above 2.5 kb/s per track will result in an 
increasing number of playback errors due to 
tape azimuth variation. 

Soft~ are 
synchronised 
to fixed track 

Sample timing 
window 
:!:1t4 bit cell 

1-

/ 
~ 

Sample 
point 

! 
I 

I 
I 

I 
I 

I 
I 
I 
I 

.....__ 

Fig.Sa. Sample timing window is :!:1/4 bit cell 
when software synchronised to a 
fixed track. 

The effective sample window may be doubled by 
synchronising to the signal on the track which 
changes first, the leading track (fig.5b). 
Transitions of the signals on all four tracks 
are detected by polling the track signals and 
performing an exclusive OR operation on 
successive samples until a change occurs. 
Since the signals on each track always change 
at the bit-cell centres the leading track may 
be determined. A simultaneous sample of all 
four tracks is taken as late as possible after 
the bit-cell centre of the leading track and 
therefore, provided the other track signals 
have changed within 1/2 bit cell of the leading 
track, the sample will be valid. The rate of 
tape-azimuth variation is relatively low 
compared to the recording frequency [3]. 
However, the software polls and checks for the 
leading track at every bit-cell centre. 
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Software 
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track 
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-
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Fig.Sb. Sample timing window is !1/2 bit cell 
when software synchronised to the 
leading track. 

6. RESULTS 

A ZSO-based personal computer with 4 MHz clock 
was used to encode a number of proprietary 
audio compact-cassette tapes. These C60 and 
C90 tapes were encoded with a 4-bit pseudo 
random binary sequence (PRBS). On playback 
the data were decoded and checked against a 
software-generated PRBS. The execution time 
of the assembly-code programme limited the 
recording frequency to approximately 3 kb/s per 
track, although this included error checking 
and logging overheads. The results are shown 
in figures 6 and 7. At low data rates the 
errors incurred are due to tape dropouts caused 
by tape surface irregularities and the 
occasional build up of debris on the tape 
head. As the data rate increases these error 
meChanisms become more effective as the 
recorded signal wavelength shortens. However, 
errors due to tape-azimuth variation 
predominate at the higher frequencies. There 
is a clear improvement in performance when the 
software continuously synchronises to the first 
track to change compared to when the software 
synchronises to a fixed track. This is 
indicative of the wider sampling window. 

105 
~ 
~ 
'-

~ 106 

Sottvlare synchronised 
to fixed track 

~ 
Softvlare 
synchronised 
to leading track 

107 ~--T---~--,---~--~ 
0 os 15 2 2 5 

Data rate per track ( k bits/sec) 

Fig.6. Error rate performance tor fixed and 
variable synchronisation. 

The errors which do occur are mainly single-bit 
errors. Figure 7 shows a typical distribution 
of error bursts taken over three hours at a 
data rate of 1.5 kb/s per track. Further work 
on the categorisation of errors in this system 
has shown that in general the errors are due to 
single track failures. 
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Fig.7. Typical distribution of errors over 3hours 
at 1 5 k.bits /sec./ track. 
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7. CONCLUSIONS 

By utilising the computing power of a PC an 
inexpensive, direct-digital, compact-cassette 
tape recording system has been configured. 

The use of intelligent software permits a 
parallel-track format with data rates in excess 
of those found in analogue compact-c·assette 
tape systems. The software has proved to be 
rogust with typical error rates of 1 in 2 x 
10

5 
at 1 k.bits/sec per track and 1 in 8 x 

10 at 1.5 k.bits/sec per track. The 
hardware required for the interface is minimal. 

Typical applications would be as a data store 
and/or disc backup In a PC and within portable 
data logging and medical recording equipment. 
A considerable increase in data rate would be 
necessary before it could be used to store 
digitised music. However, digitised speech 
could be stored with a modest increase in data 
rate. 

Future developments include the implementation 
of software error-correction and the applica
tion of a new code which would increase the 
data rate of the system described here by 

501. Improved performance will also result by 
increasing the number of tracks and through the 
use of a faster PC to reduce the effect of 
tape-azimuth variation by synchronising to each 
track. 
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A MICROPROCESSOR-BASED CODEC FOR A LOW-COST DIGITAL TAPE RECORDER 

T. Donnelly (1), D.J. Mapps (1) and R. Wilson (2) 
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l. INTRODUCTION 

The widespread application of digital techniques has generated a complimentary 
demand for cost-effective digital-data recording systems. 

Personal computers (PC) are capable of generating vast amounts of data at 
reasonable cost. These data are usually stored on hard or floppy disc backed 
up by tape storage systems. In the entertainment field the storage and 
handling of music in digital form is commonplace. Digital tape systems have 
been employed at the professional level for some time and in the consumer field 
the compact disc (CD) is now being followed by the rotary-head, digital-audio 
tape recorder (R-DAT). 

A further 
logging. 
in addition 

area where digital recording techniques are employed is that of data 
Here, convenience and equipment portability are seen as attractions 

to low cost. 

The virtues of convenience, low-cost and portability are exemplified in the 
compact-cassette tape system. Although originally designed for analogue 
recording it may be adapted to record digital data directly. The computing 
power of a PC may be utilised to perform the function of a CODEC thus removing 
the requirement for much of the coventional circuitry normally associated with 
a digital recording system. Through the use of a PC and the adoption of a 
multitrack format a moderately high-density tape storage system may be realised 
at a low cost. 

This paper reviews the techniques employed to realise a microprocessor-based 
CODEC by presenting two digital tape recorder systems: a basic recording 
system and an enhanced system. However, before detailing these techniques two 
major problems associated with the low-cost format of compact cassette will be 
considered: tape-velocity variation and tape skew. 

Since information to 
magnetic flux changes 
tape decks, such as 
velocity variation. 
employed. Even so, 
fully accounted for. 

be. recorded is encoded in terms of the distance between 
the velocity of the tape must be constant. Low-cost 

those used with compact-cassette tapes, suffer from 
To combat this, speed-control circuitry is often 
speed related errors can occur if this problem is not 

A more serious problem is tape-skew variation (fig. 1). As the tape moves 
across the headstack the skew angle varies about zero. Previous work on the 
measurement of skew [1] has shown that the rate of change of skew angle is of 
the order of 2 Hz and its magnitude is sufficient to give a displacement across 
the tape normally occupied by one bit at a recording rate of lOkb/s. The 
effect of tape skew on a single track is to reduce the effective read gap of 
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the replay head and so reduce the amplitude of the detected signal. The 
effect on multitrack recordings is that data recorded broadside across the tape 
may not be sensed in the order in which they were recorded thus causing errors. 

--. ------- ·-
W 

.._I _,_.___, 

orstcase- -direction of bit-cell 
d isplacemen I tape movement 

Fig.lTape passing headstackwith 
skewed motion. 

2. BASIC RECORDING SYSTEM 

A basic recording system may be configured as shown in fig.2. The 4-track 
record/playback head is of the type normally found in auto-reverse audio tape 
recorders, an erase head is not required. Data are recorded by applying 
complimentary signals to each of the four head coils from the 8-bit peripheral 
input/output (PIO) chip of the PC. 

56 
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Fig. 2 Basic recording system. 
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A resistor should be placed in series with each coil to. set the record current 
to approximately 2 mA. The read amplifier is the only conventional hardware 
required. It amplifies and slices the low level tape signal before 
application to a second PIO. 

Software is used to encode, detect and decode data. A recording code which 
has been used with some success is Bi~-L code (fig.3). To record, the 
compliment of the data are transmitted followed by the true value. The data 
may be timed by using a software timer or the internal counter/timer of the PC 
may be utilised. The parallel bit structure of the PC permits each track of 
the tape to be simultaneously recorded, one bit of the processor word per 
track. 

r-

---
bit 
cell 

0 0 0 
f-- -

'-- (- '--
• • 
• • 
I I 

1.2 ra t1o s1gnal 2.1 rat1o 
transition 

Fig. 3 Bi9l-l code. 

Bi~-L code has a number of features which make it suitable for software 
implementation in this application. With Bi~-L code a change in signal level 
always occurs at the centre of the space occupied by one bit - the bit cell. 
Also, the ratio of intervals between three successive transitions of the signal 
can be used to identify either the bit-cell boundary or the bit-cell centre. 
A 1:2 ratio of two successive intervals marks the bit-cell centre whereas 
following a 2:1 ratio the bit-cell boundary is reached. This characteristic 
is used in the decoding process. 

The decoding software polls the output of a single track and times the interval 
between transitions. The ratio of successive intervals is computed and the 
result indicates the current point within the bit cell. If a 1:1 ra~io is 
encountered it is ignored. Because ratios are involved this method of 
synchronising to the data is tape-velocity independent. 

The process 
2:1 or a 1:2 
the software 
second half 

of measuring and computing the ratios is continuous. Each time a 
ratio is measured the "1" value is stored in the PC and is used by 
to calculate an accurate sample point which is halfway through the 
of the bit cell. This method of determining the sample point is 

also independent of tape velocity. 
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Although the sample point is determined by synchronising to a single track all 
four tracks are simultaneously sampled at this point. The attraction of this 
technique is the simplicity of the software required. However, skew
generated errors will occur especially at the higher data rates. 

A software refinement of the technique is to make the track to which the 
software synchronises variable. The advantage of this is that the first track 
signal to change in time (the leading track) may be used for synchronisation 
and the sample point determined as late as possible within this bit cell. 
Since the three other track signals will change some time after the leading 
track signal (due to tape skew) the late sample point will coincide with the 
three track signals in the second half of their respective bit cells and, if 
the total skew is within ± 1/2 bit cell, the data will be sampled without 
error. This technique effectively doubles ~he tape- skew tolerance of the 
software compared to the simple arrangement described above. 

Results showing error rate against data rate are shown in fig.4. The 
advantage of synchronising to the leading track is clearly seen. The 
execution time of the software limited the data rate to 2.5 kb/s/track. 
However, the software included error-verification procedures and the clock rate 
of the microprocessor used was only 4 MHz. This data rate is capable of being 
significantly increased by the application of a faster processor and the 
elimination of the error-verification software overheads. 
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3. ENHANCED RECORDING SYSTEM 

With the .addition of specialised de-skew and clock hardware the performance of 
the basic system of fig.2 may be improved. In this enhanced recording system 
an 6-track head is used and the recently developed !SS 2/3 [2) recording code 
is employed to give a recording rate of 10 kb/s/track. With the !SS 2/3 code 
two data bits are recorded as three code bits (Table 1). The advantage of 
this code is that since no adjacent ones are allowed to occur a greater 
recording density can be achieved. A code sequence which would give two 
adjacent ones is deemed illegal and is replaced by a code sequence conforming 
to the rules of the code (Table 2). Although originally developed for 
recording data serially a parallel software algorithm for the !SS 2/3 code has 
been devised for this application [3). 

The two outside tracks of the tape are encoded with control pulses whilst the 
six inner tracks are occupied by data. The control pulses serve two 
functions. They are spaced every three code bits so that the decoding 
software can identify each code-bit group. The de-skew hardware also uses 
these control pulses to calculate the tape skew. 

Data Code Data Illegal code Re~lacement code 

00 101 0000 101101 101000 

01 100 0001 101100 100000 

10 001 1000 001101 001000 
l1 010 1001 001100 010000 

Tablet 155 2/3 Encoding Table 2. Illegal code sequences and 
table their replacement. 

In this system a hardware clock is used for each of the six inner tracks. On 
replay these clock the code bits off each track into one of two data flip-flops 
associated with each of the six data tracks (fig.S). The pulses on the two 
outer tracks are used to measure the magnitude and polarity of the prevailing 
tape skew. The output of the skew measurement circuit comprises six pulses 
each of which is used to control the clock input to the data flip-flops. The 
time over which the sequence of six pulses occurs is equal to the time 
displacement across the tape due to skew. Thus, the six data bits, which were 
recorded across the tape, are routed into their respective data flip-flop after 
which they are multiplexed into the microprocessor. Two sets of registers are 
used to give an acceptable tolerance to tape skew at this recording rate. 
This may be increased by employing more than two sets of registers on a 
proportional basis. 

The error rate of this system was assessed by recording a "sawtooth" waveform 
digitised to six bits resolution. On replay the waveform was decoded and 
outputted to a digital-to-analogue (DAC) convertor where it was viewed with an 
oscilloscope. Although performance was marred somewhat by an excessive amount 
of inter-gap crosstalk within the replay head the sawtooth remained in "synch" 
failing only when the skew measurement circuit was disabled. 
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Fig.S Enhanced recording system. 

4. CONCLUSIONS 

u· I ,.,,croprocessor 

A microprocessor-based CODEC has been implemented to produce a low-cost digital 
tape recorder. Two, direct digital compact cassette recording systems are 
presented. Data are recorded on proprietary audio compact-cassette tapes. 

With the basic system a data rate of 10 kb/s has been achieved with a 
reasonable error count. This could be significantly increased with the 
application of a faster processor. An 8-track head may also be used with the 
same software to double the data rate. The system may be applied as a low
cost data logger, it could also be used to store low-grade digitised audio 
signals where data compression techniques are employed. 

The second system gives· an improved performance but specialised hardware is 
required and the 8-track head used is not a standard item. Once again a 
faster processor could be applied either to increase the data rate and/or 
reduce the specialised hardware requirement. A further improvement would be 
to integrate data and control pulses on the outer tracks and thus improve the 
data rate by 30%. 

Currently under development is the application of an 18-track, thin-film 
magneto-resistive head which will be used with the software developed for the 
above systems run on a 16-bit microprocessor. 
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TIME DELAY SOLENOID 
SWITCH USING VMOS 
Fm 
This circuit was developed for a 
solenoid-operated cassette tape-deck 
which was to be interfaced to a 
microprocessor. The pull-in current of 
the solenoid was specified as twice the 
holding current. This required a cur
rent switch with a time delay suffi- · 
cient for the solenoid to operate. A 
simple solution was found which used 

a CR network for the delay and two 
N-channel enhancement mode 
VMOS FETs as the switch. 

With the output of the buffer at 
logic 0 the solenoid is ofT. A high at the 
output causes both V1 and V2 to 
conduct but the solenoid current is 
routed through V 2 as 0 1 is reverse 
biased. After a delay caused by the CR 
network, V 2 ceases to conduct and V 1 
takes the solenoid current which is 
one half of that taken by V2 . R1 and~ 
are "gate stoppers" to prevent parasi
tic oscillation and 01{)3 are protec-

r--r----------------------~---+12V 

solenoid 

32 

[ 
R, 
~Ok 

R, C 
1-,..-..,...._.,1-=--'+-« 

9100 
11 

t----< con(rol 
signal 

o,l 
'i' ~ R 

-12V 

OIC collec1or 
buffer 

fonn which is slightly asymmetric. 
The transitions of the data are detec

tion diodes. 
The level of current switched de

pends on the FET selected. The delay 
depends not only on the CR value but 
also on V 2 gate threshold voltage and 
the. collector supply voltage to the 
buffer V c. However, if Vc is about 
three times the threshold voltage 
then the delay is given directly by the 
product CR. In the application descri
bed, a current of 600/300mA is swit· 
ched with a delay of 75ms. 
T. Donnelly, Plymouth, Devon. 
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based component and systems distri
butor will award an additional prize 
of £100 for what it judges to be the 
best Design Focus contribution pu
blished each month. 

The winner of the competition for 
January is R. A. Worsley with his 
"Floating SMPS stabiliser". 
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data from magnetic tape. 
T. Donne/ly, Plymouth, Devon. SYNCHRONISED DATA 

CLOCK ted by the 74136 open-circuit collector 1-----------------1 
exclusive OR gate. The final stage of 
the OR gate causes the capacitor C to 
discharge to the correct threshold 
level, approximately V a/3. The out
put of the timer is thus forced high as 
it resets (Fig. 2). During the absence 
of data transitions the timer "free

In many applications a loeally gene
rated clock has to be synchronised to 
incoming digital data. One way of 
achieving this is to use a 555 timer in 
the astable mode and to trigger it 
from each transition of the data (Fig. 
1). 

R, R1 and C are selected to give the 
correct clock frequency with a wave-

wheels". 
The circuit has been successfully 

employed in the recovery of digital 

clock 

data 

t----Fig-. 
1 
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APPE:NDIX C. 

Program Listings. 

(1 



0037 = 
oooc = 
(>00(1 = 
0008 = 
oonA = 

0112 = 
0118 = 
0106 = 
0109 = 
010C = 
011A = 

0106 
0106 C3FC6A 

0118 
I) 118 016E 

011A 
f_l11A 0069 

(::.900 

(:.<,oOO 0000 
6902 05 
(::.';"(>3 535!::·4252 
6908 OA69 

690A 3E05 
690(: [1300 
b90E ::::EOA 
6910 2600 
(:.912 2EOO 

; MANTRCK 

;PROGRAM TO READ DATA 
; IN MANCHESTER CODE AND 

';CATALOGUE TRACK ERRORS 

; APROX / 1KHZ 

; CTC2 USED TO MEA:::URE RATIOS 

; 11/12/1986 

;WRITE PORl' P108A:040,06C 
;READ PORT P1088:050.07C 
;WRITE CONTROL P107A:000,02C 
;READ CONTROL P107B 010.03C 
;LED DISPLAY P109A:08D, 10C 

;ClC1:0C.CTC2:00 

CW=00110111B 
CTCl=OCH 
CTC2=0DH 
LEDS=08H 
DEL=OAH 

OUTMX=112H 
BBUFV=1J8H 
USR=106H 
USRVF=109H 
USRVT=10CH 
SUBPTR=11AH 

ORG USR 
.JP USRM 

ORG 8BUFV 
DEFW BASEND 

ORG SUBPTR 
OEFW CLINK 

ORG 6900H 

CL I t~K: DEFW 0 
DEFB 5 
DEF' M / SUBHU ··· 
DEFW SU8RT 

SIJBRT: LD A,05H 
OUT <OOHJ,A 

DELAY: LD A.DEL 
LD H,OOH 
LD L.OOH 

C2 

;SET DECK TO PLAY 

. -- -------------· ---·----------------



6914 24 LOOP: INC H 
6915 CA1B69 ,Jp Z,DELA 
6918 C31469 ,_lp LOOP 
691B 2C DELA: INC L 
691(: CA2269 ,.JP Z,DELB 
691F C31469 ,Jp LOOP 
6922 3D DELB: DEC A 
6923 CA2969 ._lP Z,ON 
6926 C31469 ._Jp LOOP 

6929 3E37 ON: LD A,cw ; !NIT' CTC 
6928 Ll30D OUT ( CTC2l, A 
6920 EDSE 1M2 
692F 210A6B LD HL,TABLE 
6932 7C LD A,H 
6933 Ell47 LO LA 
6935 FD21E66A LO IV, EXIT 
6939 Fll220C6B LD < TABLE+02Hl, IV 
6930 3E02 LD A,OZH 
693F 85 ADD A,L 
6940 0308 OUT <03HJ,A 
~.942 3E4F LD A,4FH 
6944 0303 OUT <03HJ,A 
6946 8E87 LD A,87H 
6948 D303 OUT < 03Hl, A 
694A FB El 

6948 09 EXX 
694C 1E80 LD E,80H 
694E 21006C Lll HL,BUFFl 
6951 3EOO LD A,OOH 
6953 T/ BACK!: LO < HU, A 
6954 2C INC L 
6955 C25:~69 ._Jp NZ, BACK! ; RESET BUFFER 
(-:-9~58 21006D Lll HL,8UFF2 
6958 77 8ACK2: LD < HU, A 
695C 2C INC L ; SET DISP BUFFER TO ZERO 
6950 C258~.9 ,_rp NZ,BACK2 
6960 21006C LD HL BUFF! 
6963 09 EXX 

6964 DB05 IN A, (05Hl ; READ IN 1 ~:T DATA BYTE 
6966 47 LD B,A ; SAVE 
1:.91:. -, 0805 POLl: IN A, <05Hl 
6S'69 A8 XOR 8 _,1ST DATA CHANGE'' 
69/:.A E608 AND 08H 
/:.96(: CA6769 ,.Jp Z, POLl ; NO DATA CHANGE 
69/:.F 3EFF LD A, OHH ' 1ST DATA CHANGE 
~.971 [130[1 OUT ( CTC2 l .• A ·':::TART RAl 10 TIMER 
t:.n::: DB05 IN A, <05Hl 
69i'~· 47 LD [~, A 
f:.'--/6 DB05 POL2: IN A, < O~·H l 
(:, 97::: A8 XOR B 'WAIT FOR 
/:.979 E608 AND 08H 
6971::: CA7669 ._1p Z, POL2 
697E DBOD IN A, <CTC2l ; GET PERIOD VALUE N-Cl 
f:.S'80 4F LO c.. A 'SAVE PERIOD VALUE N-Cl 

C3 



6981 ::~E37 

6983 0300 
6985 3EFF 
6987 D30D 
6989 91 
698A 4F 
6988 DB05 
698D 47 
698E DBOS 
6990 A8 
6991 E608 
6993 CA8E69 
6996 DBOD 
6998 5"/ 
6999 3E37 
6998 D30D 
699D 3EFF 
699F D30D 
69A1 92 
69A2 57 
69A3 79 
69A4 92 
69AS FABE69 
69A8 CB3A 
69AA 92 
69AB 1"28469 
6S'AE CB12 
6980 4A 
,C.,9Bl C38B69 
69[~4 6A 
~.9B5 65 
6S'B6 CB12 
6''188 4A 
6989 1EOO 
6988 C3CDf:.9 

69BE CB:~9 
t.9C0 81 
69C1 FAC869 
60:.'(:4 4A 
~.9(:5 C38B69 

oS9C:';: 69 
6S'C9 65 
f,.':,I(:A .1A 

fc-'?CP. 1 EO 1 

69CO DBO~· 
67'CF 47 
69[10 DBOD 
(:-,'7~[1'2 ED44 
(:8rJ4 C6FF 
(:.906 BD 

LD A,CW 
OUT <CTC2J,A 
LD A,OFFH 
OUT <CTC2J,A 
SUB C 
LD C,A 

AGAIN: IN A, <OSHJ 
LD B,A 

POL3: IN A, ( OSH) 
XOR B 
AND 08H 
.JP Z, POL3 
IN A, <CTC2J 
LD D,A 
LD A .• CW 
(!UT ( CTC2) , A 
LD A,OFFH 
OUT <CTC2J,A 
SUB D 
Lll D,A 
LD A,C 
SUB D 
,Jp M .. NEGPD 

POSPD: SRL D 
SUB ll 
,JP P, BNDARY 
RL D 
LD C,D 
.JP AGAIN 

BNDARY: LD L,ll 
LD H,L 
RL D 
LD C, [1 

LD E,OOH 
.JP SAMP 

NEGPD: SRL C 
ADD C 
.Jp M, CENT RE 
LD C,D 
.JP AGAIN 

CENTRE LD L, C 
LD H,L 
LD C,O 
LD E. 01H 

~:AMP: IN A, <05Hl 
LD B,A 

SAMPL: IN A. ( CTC:Ll 
NEG 
ADD OFFH 
CP L 

(4 

;STOP PERIOD COUNTER 

; START TIMING 
; 2ND PERIOD 
;TRUE VALUE OF 1ST PERIOD 
;SAVE TRUE VALUE OF 1ST PERIOD 

;WAIT FOR 3RD DATA 
; CHANGE 

;GET PERIOD VALUE N-C2 
;SAVE PERIOD VALUE N-C2 
;STOP PERIOD COUNTER 

; START TIMING 
; 1ST PERIOD AGAIN 
;TRUE VALUE OF 2ND PERIOD 
; SAVE IN 0 

; 1ST PERIOD-2ND PERIOD 
; EITHER 1 : 2 OR 1 : 1 
; EITHER 2: 1 OR 1: 1 
; 1ST PERIOD-2ND PERIOD-2ND PER 
; 2: 1 FOUND 
; 1 : 1 TRY AGAIN 
;AFTER MAKING 2ND PERIOD 
;THE 1ST PERIOD 
;SAVE 114 BIT PERIOD 

; SAMPLE 1 FLAG 

; EITHER 1 : 2 OR 1 : 1 
; 1ST PERIOD-2ND PERIOD+1ST PER 
; 1:2 RATIO, CENTRE FOUND 
; 1: 1 RATIO, TRY AGAIN 
;AFTER MAKING 2ND PERIOD THE 1 

;SAVE 1/4 BIT PERIOD 

; SAMPLE 1 FLAG 

·' GET PERIOD COUNTER 

.. TRUE VALUE 
; SAMPLE POINT? 

.... ···----- ------------------



f:·""D7 FAOA6A 
6"DA 7D. 
60:,.[1[:: 85 
69DC 85 
69DD 6f' 
f:.9DE CB43 
r,o;.·EO CA086A 
69E3 1EOO 
69E5 D9 
69E6 CB7B 
69f:':8 CA4E6A 
b9EB 09 
69EC DB05 
69EE FEOO 
6"FO CAOA6A 
69F:';: FEFF 
69F5 CAOA6A 
69F8 D9 
69F9 6F 
&,';o'FA D308 
69FC 34 
69FD CA046A 
6AOO [19 

6A01 C30A6A 
6A(l4 35 
6A05 C34E6A 

6A08 1E01 

6l10A D805 
6AOC A8 
M\OD E608 
6AOF' CAD069 
6A12 DBOD 
6A14 :,7 
~.Al. 5 :::E:::~7 

6A1 :1 D30D 
6A!.9 3Ef'F 
~.(-\ 1!.':: D30D 
f:.A 1 D 92 
6A1E 57 
6A1F "19 
6A20 92 
~.A21 f'A316A 
6A:~4 CB3A 
6A'26 92 
.~.c,z:1 F2446A 
6A~A 6C 
f:.A2B CB12 
6(42D 4A 
~.A?E C:';:C:[r69 

6A31 CB39 
~.A::::;: :0:1 
6{\C,:4 F A3C6A 

.Jp M, ONCMR 
LD A,L 
ADD,L 
ADD .. L 
LD LA 
BIT O,E 
.JP Z, FIRST 

SECND: LD E,OOH 
EXX 
BIT "/, E 
.JP z, CAT 
EXX 
IN A, (05Hl 
CP OOH 
.JP Z, ONCMR 
CP OFFH 
.JP Z .• ONCMR 

ERROR: EXX 
LD L,A 
OUT ( 08H l , A 
INC < HLl 
.Jp Z, OVER 
EXX 
.Jp ONCMR 

OVER: [IEC ( HLl 
.JP CAT 

FIRST: LD E, 01H 

ONCMR: IN A, (05Hl 
XOR B 
AND 08H 
.JP Z, SAMPL 
IN A, <CTC2l 
LD D,A 
LD A,CW 
OUT <CTC2J,A 
LD A,OFFH 
OUT <CTC2J,A 
SUB D 
LD [1, A 
LD A,C 
SUB D 
.JP M, M I NPD 

PLUSP[I: ~:RL [I 

:::UB D 
. .Jp P, EDGE 
LD L,H 
RL D 
LD C.D 
._lP SAMP 

MINPD SRL C 
A[l[l I~ 

._lP M, MIDL 

CS 

; NO 
; UPDATE NEXT 
;COMPARISON POINT 

; 1ST OR 2ND HALF OF BIT CELL 

; END OF RUN 
; YES 

•GET DATA 
' ALL ZEROS~' 

·' OK, CONT I NIJE 
; ALL ONEs·:> 
; OK, CON"f I NUE 

; ERROR T 0 LEDS 
;LOG THE ERROR 

; OVERFLO 

; OET INPUT 
; DATA CHANGE~·· 

; NO 
;GET PERIOD VALUE N-C2 
;SAVE PERIOD VALUE N-C2 
;STOP PERIOD COUNTER 
; COUNTER 

;START TIMING PERIOD AGAIN 
;TRUE VALUE OF 2ND PERIOD 
; SAVE IN D 

; 1ST PERIOD-2ND PERIOD 
; EITHER 1 · ·~, OR 1 : 1 
'EITHER 2: 1 OFi~ 1: 1 
, 1ST PERIOD-2ND PERIOD-2ND PEf 
; 2: 1 F'CIIJND 

; 1: !,TRY ONCE MORE 
;AFTER MAKING THE 2ND 
;AFTER MAKING 2ND 

; EITHER 2: 1 OR 1 : 1 
; 1ST PERIOD-2ND PERIOD+lST PEF 
; 1:2 RAliO FOUND 



6A37 6C LD L,H 
6A38 4A LD C.D ; 1: 1, TRY ONCE MORE 
6A39 c::~CD69 ,..Jp SAMP ; AF'TER MAKING 21110 

; PERIOD THE 1ST PERIOD 

6A3C ~.9 MIDL: LD L,C ; SAVE 1/4 BIT PERIOD 
6A3D 65 Lll H .. L 
6A3E 1E::01 LD E,01H ; SAMPLE .-, 

.<.. FLAG 
6A40 4A Lll C, D. 
6A41 C3CD69 ,..Jp SAMP 

6A44 6A EDGE: LD L,D ; SAVE 1/4 BIT PERIOD 
6A45 65 LD H,L 
6A46 lEOO LD E,OOH ; SAMPLE 1 FLAG 
6A48 CB12 RL ll ; MAKE THE:: 2ND PERIOD 
6A4A 4A LD C,D ; THE 1ST PERIOD 
6A4B C3CD69 ,..Jp SAMP 

6A4E 2EOO CAT: LD L,OOH 
6A50 2C STPOST: INC L 
6A51 CAF76A ,.JP z.DISP ; RETURN TO BASIC AND DISPLAY 
6A!:54 1609 LD o .. os-H ; BIT POSI""f ION COUNTER 
6A56 OEOO LD C .. OOH ; RESE"T COUN"TER 
6A~i8 15 REPEAT: DEC D 
6A59 CA656A .JP Z.FORW ; ALL BITS CHECKED 
6A5C C80'5 RLC L 
6A5E D2586A ,.JP NC.REPEA"T 
6A61 oc INC c ; 1S COUNTER 
6A62 C:3586A ,.Jp REPEAT ; REPEAT UNTIL ALL 

; BIT POSITIONS CHECKED 
6A6~; 7E FORW: LD A, <HU ; NO. OF 1 ·-.:;o TRACK ERRORS 
6A/:.~. ':oF LD E,A ; SAVE IN TEMP STORE 
/:.A6 -; 7D LD A .. L 
6A68 2F CPL 
6A69 /:.F LD L,A 
6A6A 7E LD A, (HU ; (;ET NO OF no:.· - ·-· TRACK ERRORS 
6A6B 57 LD D .. A ; SAVE Ifll TEMP S"T(IRE 
6A6C 70 LD A,L 
6A6D 2F CPL 
6A6E 6F LD L,A 
6A6F 78 LD A,E 
6A70 ~-· _.._ ADD D ; TOTAL ERRORS 
6A71 45 LD f:l,L ; SET ASIDE L 
6A-12 ~·7 LD [I, A ; SET ASIDE TOTAL EJ;:RORS 
6A73 79 TRCKNO: LD A,C ; NO. OF 1'0: IN DATA 
6A74 FE::Ot CP 01H 
6A76 CASU:. A . .JP z. OfllE~: 
6A79 FE02 CP 02H 
6A7B CA956A ,..Jp Z,TWOS 
6A7E FE03 CP 03H 
6A80 CA9E6A ,..JP Z,THREES 
6A83 FE04 CP 04H 
6A:::5 CAA76A ,_rp Z.FOURS 
6A88 ~·8 LD L,B ; TOO MANY ERRC.IRS T(l LOG 
6A89 C:3506A ,JP STPOST 

(6 

-----·- ··------- ------·-·--····-·. 



--- ----------------------------

6A8C 2EOO ONES: LD L,OOH ; SET BASE AD(rRESS 
6A8E CDB06A CALL TRKID 
6A91 68 LD L,B 
6A9:2 C3506A JP STPOST 

6A95 2E10 TWOS: LD L, 10H ; SET BASE ADDRESS 
6A9"1 CDG06A CALL TRKID 
6A9A 68 LD L,B 
6A98 C8506A ,jp Sl'POST 

6A9E 2E20 THREES: LD L,20H ; SET BASE ADDRESS 
6AAO CDB06A CALL TRKID 
6AA3 68 LD L, 8 
6AA4 C3506A ,jp STPOST 

6AA7 2E30 FOURS: LD L,30H ,; SET BASE ADDRESS 
6AA9 CDB06A CALL TRKID 
6AAC 68 LD L,B 
6AAD C3506A .jp STPOS"f 

6ABO 24 TRKID: INC H ; BUFF/ DISP/ ADDf'.:ESS 
6AB1 CB40 BIT O .. B 
6AB3 C4E26A CALL NZ,STOR 
6AB6 2C INC L 
6AB7 CB48 BIT LB 
6AE::9 C4E2:6A CALL NZ.STOR 
6ABC 2:(: INC L 
6ABD CB50 BIT 2)B 
6ABF C4E26A CALL NZ,STOR 
6AC2 2C INC L 
6AC8 CB 58 BIT 3,8 
6AC5 C4E2e.A CALL NZ .. STOR 
6AC8 LC INC L 
6AC9 CB60 BIT 4,B 
6ACB C4E2:6A CALL NZ, SlCrR 
6ACE 2:C INC L 
6ACF CB68 BIT 5·B 
6AD1 C4E2:6A CALL NZ, ST Or.: 
6AD4 2C INC L 
6AD5 CB'"IO BIT 6 .. 8 
6ADr C4E26A CALL NZ. ~:TOR 
6AOA 2C INC L 
6ADB C878 BIT 7.8 
6AOD C4E::2e.A CALL NZ .. ~:nerf': 
f., AEO 2~; DEC H 
6AE1 C9 RET 

(7 



6AE2 7A STOR: LD A,o ; GET UPDATE VALUE 
6AE3 86 ADD A, < HU ; ADD TO TALLY 
6AE4 77 LD < HU, A ; RE-STORE 
6AE!:• t:9 

... 
RET 

6AE6 CB7B EXIT: BIT 7,E . ' REGISTERS? ' 
6AE8 C2F26A ,.JP NZ,NOCHGE ; NO 
6AEB ll9 CHANGE: EXX 
6AEC 1E40 U.l E.· 40H 
6AEE 09 EXX 
6AEF FB El 
6AFO ED40 RETI 
6AF2 1E40 NOCHGE: LD E,40H 
6AF4 FB El 
6AF5 ED4[.t F(ET 1 

6AF7 3EOO DISP: LD A,OOH 
6AF9 D300 OUT < OOH), A ; STOP THE DECK 
6AFB C9 RET ; RETURN TO BASIC 

6AFC CD0901 USRM: CALL USRVF 
6AFF 21006D LD HL,8UFF2 
6802 19 ADD HL,llE 
6803 46 LD B, < HU 
6804 3EOO LD A,OOH 
6806 CDOC01 CALL USRVT 
6809 CS' RET 

TABLE: • 

6COO ORG 6COOH 

BUFF1: 
6[11)0 ORG 6DOOH 

BUFF2: 
6EOO ORG 6EOOH 

BUFEND: 

6EOO 00 DEFB 0 

BASEND: 

0000 END 

6988 AGAIN 6953 BACK1 6958 BACK2 61:.01 BA~:;END 0118 BBUFV 
6S'B4 BN[tARY 6EOO BUFEND 6COO BUFF 1 6000 BUFF2 6A4E CAT 
69C8 CENTRE 6AEB CHANGE 6900 CLINK oooc CTC1 0000 CTC2 
0037 cw OOOA DEL 6918 [tELA 690E DELAY 6922 DELB 
f:.AF7 DISP 6A44 EDGE 69F8 ERROR 6AE6 EXIT 6A08 FIRST 
6A6~ FORI-J 6AA7 FOURS 0008 LEDS 6914 LOOP 6A3C MIDL 
6A81 MINPD 69BE NEGPD 6AF2 NOCHGE 6929 ON 6AOA ONCMR 
6A8C ONES 0112 OUT MX 6A04 OVER 6A24 PLUSPD 6967 POLl 
6976 POL2 698E POL8 69A8 POSPD 6A58 REPEAT 69Cll SAMP 
69[10 SAMPL 69E3 SE OlD 6AE2 STOR 6A50 STPOST 011A SI.JBPTR 
690A ~;I_IBRT 6BOA TABLE 6A9E THREES 6A-/3 TRCKNO 6ABO TRKID 
6A95 HJOS 0106 USR 6AFC I.JSRM 0109 USF.:VF OlOC USRVT 

NO ERRORS 

CB 

. ----···---------------



0100 
0:2FO = 
OOOA = 
0300 = 

01 (J(I F3 
0101 CD8E01 

01 o4 21 ooo:3 
0107 3EOO 
0109 '17 
010A 2C 
(1108 3C 
010C C20901 

010F CD9701 

0112 CDE001 
0 115 ::-<E08 
(l 11 I D300 
0119 FB 

011A 00 
0118 C31A01 

011E CDE001 
0121 OD 
(l 122 CA270 1 
0125 F:3 
0126 76 

LIST: 

BACK: 

ORG 0100H 
TABLE=02FOH 
DEL=OAH 
POINT=0300H 
*L 

; ISSKSAW 

; ISS2/3 ENCODER 
; REWIND TAPE AND WRITE 
; ISS2/3 ENCODED DATA 
;AND DESKEW PULSES 
; FROM CHECKLIST WITHOUT CTC 
;FREOUENCY DETERMINED 
; BY DELAY: RECDEL 

; 20/6/1985 

;WRITE PORl' P108 04D,06C 
;READ POR·r· P108B 05D, 17C 
;WRITE CONTROL P107A OOD.02C 
;READ CONTROL P107B 01D.03C 

;REG B HOLDS NEXT MASK 
;REG C HOLDS CURRENT MASK 
; REG D IS TEMPORARY STORE 
;REG E HOLDS MODIFY MASK 
;REG B/ HOLDS OLD OUTPUT 
;DATA ADDRESS CHLl 

DI 
CALL RESET 

LD HL. POINT 
LD A.OOH 
LD < HU. A 
INC L 
INC A 
,.JP NZ, BACK 

CALL INITREO 

REWIND: CALL STOP 
LD A.08H 
OUT < OOHl, A 
El 

·' SET TRANSPCtRT 
, TO f;:EWIND 

WAIT: 

FIN: 

NOP 
,.JP WAIT 

CALL STOP 
DEC C 
._lP z. WRl TE 
DI 
HALT 

(9 

;WAIT FOR REWIND 

;STOP lHE TAPE 
' IF INI T REWIND 

' ~JR ITE ENDED 

·-·---·-------.. --------



0127 3E01 WRiiE: LD A,01H ; SET 
0129 03(1(1 OUT (OOH>,A ; TO PLAY 
(>12B CDE401 CALL DELAY 
01ZE 3E02 LD A.02H ; SET PASS CNTR 
0180 4F LD c. A ; T0)1 
0131 3E0"1 Lll A,07H ; SET [I ECK 
0133 D300 OUT ( OOH>, A .: TO WRITE 

0135 CODOOl REGINIT: CALL REC;IS 

0138 2C FORMASK: INC L 
0139 7E LD A, < HU ; GET 2ND WORD 
013A S7 LD D,A ; STORE 
0138 2C INC L 
013C "lE LD A, ( HU ; GET 3RD DATA WORD 
(113Ll B2 OR D 
013E 47 LD B, A .-'SAVE NEXTMASK. ILLEGAL 
013F "19 LD A,C ; GET CURNT ILLEG SEQ 
014(1 2F CPL 
0141 BO OR B ; TERMIN CURR ILLEG SEQ 
0142 47 LD B,A ; SAVE NEXT MASK ILLEG 

; ~:EOUENCES IDENTIFIED BY ZERO~ 

0143 2C INC L 
(1144 7E Lll A, < HU ; GET 4TH WORD 
0145 2F CPL ; LAST BIT I DENT BY :ZEROS 
0146 BO OR B ; AND ZEROS 
0147 2F CPL ; MODIFY MASK, ZEROS 
0148 5F LD E,A ; SAVE MODIFY MASK 
0149 2D DEC L 
014A 20 DEC L 
014B 20 DEC L 
014C 7E ENCODE: LD A, ( HU ; GET 1ST DATA WORD 
014D 2F CPL 
(>14E A1 AND c ; ~:ET 3RD WORD OF PREVIOS 

; ILLEGAL SEQUENCE TO ZERO 
014F 00 NOP 
0151) 00 NOP 
0151 CD8001 CALL REC 
0154 7E LD A, ( HU .-'GET 1ST DATA WORD 
0155 57 LD O,A ; STORE 1ST DATA WORD 
0156 2C INC L 
0157 7E LD A, ( HU .-'GET 2ND DATA WORD FOR USE 
0158 B3 OR E .-'MODIFY APPROPRIATE BITS 
0159 A2 AND D ; AND WITH 1ST DATA WORD 
015A A1 AND c 
015B 160'"/ LD D,07H 
01 ~:m 15 WAIT2: DEC D 
(.'1 ~·E C25D01 ,.Jp NZ, WAlTZ 
0161 ()(J NOP 
0162 00 NOP 
0163 (:[18001 CALL REC 
0166 "1E LD A, < HLl ; GET 2ND DATA WORD FOR OUTPUT 
016'"/ [::3 OR E ; MODIFY APPROPRIATE BITS 
01~.8 2F C:PL 
0169 Al AND c 

(10 
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016A 1608 
016(: 15 
0160 C26C01 
0170 00 
0171 00 
0172 CLl8001 
01'"15 48 
0176 2C 
01'"17 [19 
0178 "18 
0179 EE81 
0178 47 
017C 09 
01."1[1 C33801 

0180 E67E 
0182 IJ9 
01_8_3_ A~ 
0184 47 
0185 [19 
0186 D304 
0188 08 
(>189 00 
018A 00 
0188 00 
0188 08 
018D C9 

018E 219501 
(l191 E5 
0192 E5 
0193 E5 
0194 E5 
0195 ED4D 

0197 ED5E 
0199 21F002 
019(: 7C 
019[1 ED47 
019F FD211E01 
(>1 A8 FD22F202 
01A7 8E02 
01A9 85 
01AA [1303 
01AC 3E4f' 
r)1AE [1303 
') 1 80 3E87 
(J182 [1303 
0184 3EOO 
0186 D306 
0188 3EOF 
(!l BA D306 

WAIT3: 

REC: 

LD Ll,08H 
LlEC 0 
JP NZ, WAIT3 
NOP 
NOP 
CALL REC 
LO C,8 
INC L 
EXX 
LD A,B 
XOR 100000018 
LD 8,A 
EXX 
,_lp FORMASK 

AND 011111108 
EXX 

. _~OR_ B 
LD 8,A 
EXX 
OUT <04H),A 
EX AF,AF~ 

NOP 
NOP 
NOP 
EX Af',AF' 
RET 

RESET: LD HL,PRESET 
PUSH HL 
PUSH HL 
PUSH HL 
PUSH HL 

PRESET: RETI 

INITREG: 1M2 

; NEXl MASK 

; GET OLD OUT PUT 
; CHANGE OUTER 8 ITS 

; MASK OUT ER BITS 

_ ; XCIR WITH OLD_ OUTPUT 
;STORE-BECOMES OLD OUTPUT 

LD HL,TABLE ;BASE VECT ADDR 
LD A,H ;HIGH BYTE OF AD 
LD I.A ;SET 1Nl REG 
LD IV, FIN ; ADI:.rR OF HALT 
LD <TABLE+02Hl, IV ;SET VECT 
LD A.02H 
ADD A,L ;LOW BYTE OF l"AB 
OUT (03H),A 
LD A.4FH 
OUT <08H>,A 

ENPH.I: LD A, 87H 
OUT <03H>.A 

INJT6: LD A.OOH 
OUT < 06H>, A 
L[l A.· OFH 
OUT <06H>,A 

( 11 

_; 1Nl 0 PORT 03H 
; SET PORT 08 
; FOR I NP HA NOSH~: 
; ENABLE PIO 
; lNTS 
; I NT 
; VECTOR 
_; :=:ET PORT 06 FOR 
; OUTPUT HANDSHK 

·-··-----··---·-·-- -- .. -------------------------------------



OlBC 3E07 DISIN: LD A.07H ; DIS INT 
OlBE 0306 OUT ( 06H), A ; FROM PORT 06 
OlCO 3EOO INIT2: LO A,OOH ; INT 
01C2 0302 OUT < 02H>, A ; VECTOR 
01(:4 3EOF LD A,OFH ; SET PORT 02H 
01C6 0302 OUT ( 02Hl, A ; FOR OUTPUT 
01C8 3E07 DI SlNT: LD A,07H ; DI S lNT 
OlCA 0302 OUT <02Hl, A ; FROM PORT 02 
OlCC 3E01 PAS: LD A,OlH ; PASS REG INIT 
01CE 4F LD c. A 
OlCF C9 RET 

01DO 0600 REGIS: LD B,OOH 
0102 OEFF LD C .. OFFH 
01D4 1600 LD D,O(lH 
01D6 1EOO LD E,OOH 
0108 210003 LD HL POINT 
(ll DB 09 EXX 
OlDC 0600 LD B,OOH 
OlDE [19 EXX 
OlDF C9 RET 

OlEO 3EOO STOP: LD A,OOH ; SET DECK 
01E2 [r:_~oo OUT < OOHl, A ; TO STOP 
01E4 3EOA DELAY: L[r A, [IEL 
01E6 2600 LD H.OOH 
(ll E8 2EOO LO L,OOH 
OlEA 24 LOOP: INC H 
OlEB CAF101 . .JP "f.,DELA 
(•lEE C3EA01 . .JP LOOP 
01F1 2C DELA: INC L 
'-'1F2 CAF801 ,.Jp z, [rELB 
IJl F5 C3EA01 . .JP LOOP 
01F8 3D DELB: DEC A 
(ll F9 CAFF'Ol ,.JP z.oN 
01 Fr.: C3EA01 ._rp LOOP 
r) 1 Ff' ED4D ON: RETl 

1)~300 ORG 0300H 

(1~300 DEFS OOFFH 

1)4(l(l ORG 0400H 

1)4(l(l 210003 
' 

LD HL.. POINT 
1)4(!:;: ~;!EOO STfi:T: L[l A,O(lH 
0405 n LD <HU, A 
(1406 2C INC: L 
()407 :3E06 LD A .. 06H 
1)409 77 L[r ( Hll, A 
040A 2(: INC L 
0408 3EOC LD A,OCH 
04(1[_1 Tl L[r < HLJ, A 
040E 2C INC L 
()4(lf' 3E7E L[r A, "/EH 
.0411 77 LD < HU, A 
(1412 2(: lNC L 

(12 



0413 :~E60 LD A,60H 
0415 77 LD < HL>, A 
0416 2C INC L 
0417 3E06 LD A,06H 
0419 77 LD < HL>, A 
041A 2C INC L 
0418 3E6C LD A,6CH 
0410 77 LD < HL>, A 
041E 2C INC L 
041F 3E7E LD A,7EH 
0421 Tl LD < HL>, A 
0422 2C INC L 
0423 C20304 ,_lp NZ,SIRT 
0426 76 HALT 
()0()() END 

0109 BACK OOOA DEL 01F1 DELA 01E4 DELAY 01F8 DELB 
OlBC DISIN 01C8 DISINT 014(: ENCODE 0180 ENPIO 011E FIN 
0138 FORMAS 01CO INIT2 0184 IN116 019.7 INlTRE 0104 LIST 
OlEA LOOP 01FF ON 01CC PAS 0300 POINT 0195 PRESET 
0180 REC 0135 REGINl 01DO REGIS 018E RESET 0112 REWIND 
OlEO STOP 0403 STRT 02FO TABLE 011A WAll 015D WA1T2 
016(: WAIT3 0127 WRITE 

NO ERFKrRS 
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10 OUT 2.0:0UT 2. 15:0UT 2.7 
20 OUT 6.0:0UT 6. 15:0UT 6.7 
30 OUT 7.207:0UT 7,255:0UT 7.7 
40 OUT 10.0:0UT 10. 15:0UT 10.7 
50 CALL "SUBRU" 
60 FOR I=O TO 255 
70 PRINT USR<II 
80 NEXT I 
90 LET 0=1 
100 FOR 1=0 TO 70 
110 LET P=USR< 1) 
120 IF P>D THEN LET D=P 
130 NEXT I 
140 GRAPH 
150 PLOT 9,9, 1 
160 LINE 17 .. 9 .. 1 
170 PLOT 25.9, 1 
180 LINE 33. 9 .. 1 
1 90 PLOT 41. 9, 1 
200 L1 NE 48. 9. 1 
210 PLOT 57. 9 .. 1 
220 LINE 65, 9, 1 
230 PLOT 9.5, ''SINGLE" 
240 PLOT 25.5. "DOUBLE" 
250 PLOT 41.5, ''TRIPLE" 
260 PLOT 57,5, ''QUAD'' 
270 LET B$=STR$(0J 
280 PLOT 2, 58 .. B$ 
290 FOR S=O TO 48 STEP 16 
300 FOR Z=(O+SITO (7+S) 
:310 LET P=USR< Z) 
320 LET X=Z+9 
330 LET Y=P*(50/Dl+9 
340 PLOT X.9,0 
350 LINE X, Y. 1 
360 NEXT Z 
370 NEXl S 
380 END 

(14 
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10 01_11 z,o:our 2, 15: OUT 2,7 
20 OUT 6.· 0: OUT 6, 15:0UT 6 .. 7 
30 OUT 7,207:0UT 7,255:01_11 7,7 
40 CALL "SUBRU" 
50 FOR 1=0 TO 255 
60 PRINT USR<Il 
70 ~lEXT I 
8(1 LET [1=1 
90 FOR I=O TO "70 
1 (l(> LET P=USR< I) 
11 () IF-= p)[l THEN LET D=P 
120 NEXl I 
180 GRAPH 
140 PLOT 9, 9 .. 1 
150 LINE 79, 9, 1 
160 PLOT 76,5. "70" 
170 LET B$=STR$([1) 
180 PLO I :2 .. 58 .. 8$ 
190 FOR Z=O TO 70 
200 LET P=USR<Zl 
210 LET X=Z+9 
220 LET Y=P*(50/Dl+9 
230 PLOT X,9,0 
240 LINE x .. y, 1 
250 NEXl z 
26(1 END 
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01 (l(l 
OOOA = 
(l~;l(l(l = 

0100 F3 
0101 CD9701 
0104 CDD001 

1) 1 0"/ 3EOS 
(11 09 [130(1 
(11. OB CDD601 

010E 3EC5 
0110 lf.:l(l(l 

(ll12 ~:1EOS 

0114 Ll3(l(J 

(_) 116 DB01 
1)11.8 1F 
0 I 1 S' [121601 
0 I 1 C 11" 
0111:1 LIA7601 
() 120. C31601 

012:'i: DBOl 
012~ 1F 
0126 D22:::o1 
(>129 11" 
012A [IA"/601 
,.,12D UB05 
012F [1304 
(l131 ~.f" 

0132 3E8~· 
0134 [1300 
0136 ~.:.E05 

0138 [1300 
f.l13A ][I 

01:::-:8 AC 
(l! ::::c 6'::i 
013[1 2F 

READ: 

AGAIN: 

SYNC: 

MONI12: 

ORG (ll (l(lH 

DEL=OAH 
TABLE=0300H 
·' *L 

' ISSDAC 

;TO READ DATA 
; IN ISS FORM .DECODE AND 
·' OUTPUT TO DAC 

; 21/6/1985 
;OUTPUT PORT P108A 040,06(: 
;READ DATA P108B 05D.07C 
' WF< ITE CONTROL & FLAG RESET 
; CBIT 7J P107A OOU,03C 
;READ FLAGS P107B 01D.03C 
;DAC PORT P108A 08D,OAC 

DI 
CALL INIT3 
CALL STOP 

LD A. 1)5H ; SET TC.I 
OUT <OOHJ,A ; READ 
CALL DELAY 

LD A, OC'5H 
OUT <OOHJ,A ; CLEAR FLAGS 
LD A.05H 
OUT C OOH), A 

IN A. (01Hl ; LOOK AT FLAG! 
RRA 
.JP NC.SYNC ; FLAG NO"f SET 
RRA ·' LOOK AT FLAG ..., 

-:> 

.JP c.MONIT1+6 ; START OF 3-BIT 

.JP SYNC 

HJ A .. COlHJ ;LOOK Al f''LAG 
RRA 
._If-' NC, MC.INI T2 ; FLAG N(IT ~;ET 

RRA 
.JP C .. MONIT1+6 ; START OF 3-L-:IT 

GROUP 

GROUP 
IN A.· ( O':oH l .. I ~JPUT 2ND CODEWOR[I 
OUT < 04H J .. A 
LD L.A ; SAVE INPUT 
LD A,85H 
OUT <OOH), A ; RESET FLAGl 
LD A,05H 
OUT < OOH) , A 
LD A,L ; (;ET INPU1 
XOR H ; DECODE CODEWORD 
LD H .. L 
CPL 

(16 
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018E AO 
01 ::.~F 4F 
0140 DB01 MONI T3: 
0142 1F 
0143 [124001 ··- -· ... ··-·-- .... - - -- -- -------- - - --- ., . -
0146 1F 
0147 DA7601 
014A [1[:!05 
014C 03(14 
014E ED47 
(1150 3E85 
0152 0300 
0154 31::05 
0156 [1300 
0158 ED57 
015A AC 
0158 2F 
015C 57 
0150 Al 
(>15E 2F 
015F 4F 
0160 [19 

0161 A2 
(1162 Al 
0163 6F 
(1164 79 
0165 2F 
0166 [19 
0167 A3 
0168 SA 
0169 [1~.;> 

Ot~.A B5 
016B E67E 
0160 OF 
016E o:::~o8 
0170 DB01 MONIT1: 
(>172 1F 
o t-r3 D27001 
017~. ED57 
01~18 67 
(1179 DB05 
0178 [1304 
017D 6F 
(>17E 3E.C5 
0180 Ll3(>0 
0182 3E05 
0184 [1:3(10 
(1186 "/[J 
() 18-/ AC 
0188 65 
018S' :'LF-= 

018A 47 
01 ::::r:: [.19 

018(: r~ 
01::0:[1 AO 
018E [)9 
018F' E67E 
(J!S'l (ll'-" 

0192 [1308 
0194 C32301 

AND [:1 

LD C,A 
IN A, (01Hl 
RRA 
.JP NC, MONIT3 -. -.- .. -- --- ---
RRA 
,_rp (:, MONIT1+6 
IN A, ( 05Hl 
OUT <04Hl, A 
LD LA 
LD A~ 8~·H 
OUT <OOH),A 
LD A,05H 
OUT (00Hl,A 
LD A, I 
XOR H 
CPL 
LD O,A 
AND c 
CPL 
LD C,A 
EXX 
AND [I 

AND c 
LD L,A 
LD A,c 
C:PL 
EXX 
AND E 
LD E, [I 

EXX 
OR L 
AND 011111108 
RRCA 
OUT < 08Hl, A 
IN A.· ((l1Hl 
RRA 
,JP NC, M(rt-11 T1 
LD A, I 
LD H,A 
IN A, <05Hl 
OUT <04Hl,A 
LD L,A 
LD A,OC5H 
OUT ( O(JH), A 
LD A,05H 
OUT < OOHJ. A 
LD A .. L 
XOR H 
LD H .. L 
CPL 
LD B,A 
I:. XX 
LD A .. C 
AND B 
E.XX 
AND 01111110B 
RRCA 
OUT < 08H). A 
,JP MONIT2 
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;OR 1Sl & 2ND CODEWORD 

; LOOK AT FLAG 

;START OF 3-BIT GROUP 
; INPUT 3RD CODEWORD 

; SAVE INPUT 

; RESET FLAG! 

; GET INPUT 
; DECODE CODEWORD 

;OR 1ST,2ND&3RD CODEWORDS 
;SNZEROS MASK IN C 
;SWITCH TO PRESENT DATA 

; IGNORE 000 AS PRESENT SEQUENI 

;GET PNZEROS MASK 

;SWITCH TO SUCC~OATA 
;AND WITH COMP~OF PREV~CODEWOf 
;SAVE PREV~CODEWORD LAST BIT ( 
;SWITCH TO PRES~DATA 
;FORM 2ND DATA WORD 

; DAC OUT PUT 
;LOOK AT FLAGS 

; FLAG NOT SET 
; GET LAST INPUT 
' PUT LAST INPUT IN "PRES" H 
; INPUT 1ST CODEWORD 

; SAVE INPUT 

;RESET FLAGS 1&3 

; GET INPUT 
; DATA WORD IN A 

; PUT COMP~ IN 8 
;SWITCH 10 PRESE::.NT DATA 
;GEl" PNZEROS MASK 

;SWITCH TO SUCC~ DA"IA 

; DAC OUTPUT 



0197 3ECF INIT3: LO A,OCFH ; 8ITMODE 
0199 03(13 OUl ( 03Hl, A ; 8ITMOOE 
0198 3E03 LO A .. 03H 
0190 030~3 OUT <03Hl, A ; SPECIFYLINES (1, 1 AS INPUT 
019F 3E07 LO A .. 07H 
01A1 [13(13 OUT <03Hl, A 
01A3 3EOO INIT2: LD A,O()H 
01A5 1)302 OUT ( 02Hl .• A 
01A7 3EOF LD A,OFH 
01A9 [1302 OUT ( 02Hl .. A 
01A8 3E07 LD A,O?H 
01AD [13(12 OUT (02HJ,A 
OlAF 3EOF INIT6: LD A,OFH 
(> 1 B 1 [1306 OUT < 06Hl. A 
0183 3E07 LL• A,07H 
0185 [1306 OUT <06HJ,A 
0187 ~~ECF INIT7: LO A, 11001111B ; BITMOLIE 
0189 [13(17 OUT ((l7Hl, A 
0181:! 3EFF LD A,OFFH 
0180 [18(17 OUT <07Hl, A 
OlBF 3E07 LD A,00000111B 
01C1 0307 OUT (07Hl,A 
01C3 3EOO INIT9: LO A .. OOH 
01C5 [130A OU1 < OAH l, A 
01C7 3EOF LO A, OFH 
01C9 D30A OU1 <OAHl,A ; DAC PORT 
01CB 3E0"1 LD A, 0"/H 
01CD D30A OUT <OAHl, A 
01CF C9 RET 

01[10 3EOO STOP: LO A.· OOH 
0102 D30(l OUT ( OOHJ. A 
01D4 ED4D RETI 

0 1 [1~, 3EOA DELAY: LD A, DEL 
01D8 2600 LD H.· OOH 
01DA 2EOO L[l L· OOH 
(l1DC 24 LOOP: INC H 
(>1 DD CAE:;:o 1 ,_lp l.. [IELA 
OlEO C3DC01 ,_lp LOOP 
01E3 2C DELA: INC L 
01E4 CAEA01 ,_lp z .. DEU:: 
01 E"/ C3DC01 ,.JP LOOP 
OlEA 8D DELB: [IEC A 
(>1E8 CAF101 . .JP z .. O~l 
OlEE C8DC01 .JP LOOP 
01 F 1 C:? ON: RET 

()()0() 

0108 AGAIN O(>(>A DEL 01E3 DELA 01[16 DELAY OlEA DELB 
01W3 INJ12 019"/· INIT3 OlAF INIT6 0187 INIT7 o 1 c:;: INIT'-1 
01DC LOOP (l 1 7 (l MONIT1 0123 MONIT2 0140 MONIT3 0 1 F 1 ON 
0107 READ 0100 STOP 0116 SYNC 0800 TABLE 

NO ERRCIRS 
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0100 
U2FO = 
OOOA = 

1) 100 F~· .;::. 

1)101 CD6201 
1)1.04 CD6B01 

1)107 CDBB01 
OlOA ::::EO:::: 
010C: [l31)0 
010E FB 

Ill OF 00 
1)110 C30F01 

1)1 1 .,, -· CDBB01 
01 16 OD 
(ll 17 CA1C01 
01 lA F'-• ·-· 
1)1 18 76 

01 lC :~:EO 1 
01 lE D::::oo 
!)120 C[lf::F 01 
01:2~:{ 3E02 
012~ 4F 
0126 ::,:E07 
012::: D300 

(l12A (:[1810! 

I) l :2D :3E'?~:; 

ORG 0101)H 
TABLE=O~~FOH 
OEL=OAH 
*L 

; MILLER ENC:OUEH 
;REWIND lAPE AND WRilE 
;MILLER ENCODED DATA@ 10KHZ 
; FROM CHECKLIST 

; 14/2/1984 

;WRITE PORl P108 04D,06C 
" ; READ F'OFn P t O::::r:: o~;D .. 1 7C 

;WRITE CONlROL P107A OOD,02C 
;READ CONTROL Pt078 010,03C 

;MASK SlORAGE REG D 
; OUTPUT: REG C 
;lEMP STORE/CELL BOUNDARY IDENTIFIER:REG B 
;OAlA ADDRESS: CHLJ 

or 
CALL RE~;ET 

CALL 1 NI TREG o 

REWIND CALL STOP 
LD A .. O~:H 
OUl COOHJ.A 
EI 

WAITl: NOP 
,_rp WAIT 1 

FIN: CALL SlOP 
DEC C 
._rp Z . ~Jf'~ I H. 
DI 
HALl 

~JRITE: LD A .. 01 H 
OUl ( O(•H J • ,; 

CALL DE:J c.y 
LD A. O~:H 
LD C.. A 
LD A. •Y/H 
01.11 COOHl.A 

REGlNIT:CALL REGIS 

(19 

: :=::E"r T f':AN::O;PORl 
; TO h'EWIND 

;WAIT FOR REWIND 

:::;TOP THE TAPE 
: IF INlT f'.'EWlND 

: l.oJF;-J I E E:.r~DED 

; :=:;El 
: n:• f'·U;Y 

: ::;E:_ l I"'A'::~:: CNTR 
; 10)1 
: ::::ET DEU< 
; TCI ~JF''ll E 



(l 121" u::::oc 
(l1 :::::1 :3EOD 
I) 1 ::::::::: D:::::oc 
01:3~ f'B 

1)13(:. -/E 
I) 1 ::::-, ::w 
I) 1 :::::::: cz::::Do 1 
01:::::8 2E20 
013D 2F 
o1::::E "'-· ._., 
:) 13f' 2F 
0140 A9 
0141 4F 
014;~ 0601 
0144 CB40 
0146 C24401 
0149 c::::4C01 

014C 7E 
014[1 2f' 
U14E A2 
014F A9 
I) 1 ~51) 4f' 
I) 1 ~· 1 1),~.01 

u 1 !:.:-::: CT~40 

I) 1 ~·~· C25301 
I) 1 ~.::: c::,3601 

!) 1 ~.r:: D:::::o4 
(l)~[l 1)600 
C:l1':.F F'B 
0160 ED4D 

') t 62 211:.";>(; 1 
01(:.~~ !::~· 

(.) .1. (:..f:.. E~· 

U1(:..-l E~ 

0 16::: !::':::~ 

01 .~:::,· !::D4D 

016B ED5E 
01·~-D 21F002 
01-/(l 7C 
01 i' I ED4i' 
0 1 -; ::: FD21 1 ::::0 1 
Oli,"/ FD22F202 
1)1-/B 3E02 
U17D ::;~ 

OUT <OCHJ,A 
LD A,ODH 
OUT IOCHl.A 
El 

CELCEN LD A, IHLl 
DEC L 

CONT: 

._lP NZ, CONT 
LD L.· 32D 
CPL 
LD D,A 
CPL 
XCcR C 
LD (:, A 
LD B.01H 

DELAY!: BIT 0,8 
,_cp NZ, [cELAY1 
._lP CELLMT 

CELLMT: LD A, ~HL) 
CPL 
AND D 
XOR C 
LD C,A 
LD 8.01H 

[JELAY2: ro:IT 1). 8 
._lP NZ, DELAY2 
._lP CELCEN 

lNTRUPT:OUT C04HJ. A 
L[c B. OOH 
El 
RC::.Tl 

LD HL, PF.:E·::ET 
PU~:H HL 
PI_I~:H HL 
PUSH HL 
PU~:H HL 
F.:ET I 

I r~ 1 T F.:ECi: I M2 

;LOAD CONTROL WORD 

.: LOAD ·1 C 

: OET MA:::K 1 

: F>'ELOAO PO 1 NTER 

:PUT MASK1COMP lNREO D 

: F.:ECOh'D OUTPUT 

'C;ET NEXT MASK1 

;PARTMASK FORMED 

: PECORD OIJTPI_ll' 
:RECURD CELLMT 

:WRITE CODE TO TAPE 

LD HL,l-ABLE 'BASE VEC:l ADDR 
LD A-H :HIGH BYlE Of' AD 
LD I. A : :::E: 1 1 NT REO 
LD JY,FIN :ADDR OF-' HALl 
LD (TABLE+02H J . 1 Y : ::::Er VEC:T 
L[c A, 02H 
ADD A,L 

C20 



Ol7E [1303 
I) 1 :::o :C::E4F 
1)1 :3."2 u::::o:::: 
!) t::::4 FD21 ~5801 
(l' :::::: F ['122F~:302 
U18C :::EOS 
U \ :::E :::~ 

I) 1 :::r-: D3UC 
0191 3E87 
01'?3 u::::o:::: 
019~·~ :~:EOO 

01'?'7 [1306 
U19"' ::::EOF 
0 1S't:: 1.r:::o6 
019(1 :3E07 
01 ·:;>F [1306 
01A1 3EOO 
01A3 0302 
U1 A~· :3EOF 
Ut,:.:,·; [1:31)2 
01A9 3EOi' 
01AB u::::oz 
01AD ::::EOl 
U1AF 4F 
0 1 [::I) C9 

(_:. .1. r,: 1 0601 
Ol. BC:: 01::00 
01 8'::0 1600 
0.1 [::/' 2121)0:::: 
u~ .BA C9 

) t [;:[:: :3EOO 
u ) [::[: [I:~:: I) I) 

u 1 [:: f' ::::EOA 
(> 1 I 1 :::C(:.(H) 

u 1 ('.: :::: 2EUU 
() l c~·. ;~4 

u 1 I ·• CACCO 1 - ··-=· 
I) .'. r:·;· c~::cso 1 
f) 1 cc ::::c 
0 1 CfJ (::.:.:.o::::o 1 
u 1 [11) c::::c~.:.o 1 
I) 1 D::': ::::D 
0 1 (14 CADAO 1 
I ) 1 [17 C:~:C~iO 1 
1)1 [lA E[14D 

o::::o 1 

OUI < o::.;H J , A : 1 NTf.l F-'(IRI 03H 
LD A,4FH :SET PORI 03 
OUT <03H1,A :FOR INP HANDSHK 
LD 1 Y. 1 ~n RUF'1 ' ADDfi: Of' OUl PUT IN:=: 
LD <TABLE+08HJ, JY:SE1 VEC1 
LD A:08H 
ADD A,L 
OUT (I)CHJ, A 

ENP I 0: LD A .. r::7 H 
OUI ( 0:3H) , A 

HJIT6: LD A .. OOH 
OUT ( 06H l . A 
LD A,Of'H 
OUT (06HJ.A 

DlSlN: LD A,07H 
OUI < 06Hl, A 

1Nl T2: L[l A, OOH 
OU1 ( 02H J , A 
UJ A .. OFH 
01n ( 02Hl, A 

DI:::INT: LD A, Oi'H 
OUT ( 02H1 .. A 

f''AS: LD A .. 01H 
LD C.A 
RET 

FEGJS· LD [::, OlH 
LD C .. OOH 
LD D,OOH 
LLI HL, POINT+:C::1Ll 
RET 

::>TOP: LD A, OOH 
Ol_l"f < OOH 1 . A 

[IELAY · LD A. DEL 
LD H .. OOH 

LOOP: 

DELA: 

DEL8: 

ON: 

I.D L. OOH 
It·JC H 
.Jp {.DEl_ A 
._lP LnOP 
lNC L 
.JP ? . [IELB 
,_lp LOOP 
DEC A 
._lp :Z, ON 
._lP LO(IF' 
f''E 1 1 

ORG cnoJ.H 

c 21 

:LOW 8YlE 0~ TABLE 

'E::~JABLE 1-'10 
' 1 Nr:: 
'nn 
' VEC1 OH 
' :::~:T PORT 06 FOR 
·' 1~11_11 Pl_l"l HANDSH~~ 
, D 1::: 1 NT 
.: f' F.: OM f-•Ofi'-1 06 
' 1 r.n 
'VECTCIR 
; :::ET F'(IRT 02H 
; F OH CIIJTPUT 
' [11 ::: l N"f 
' !" Fi'(IM r'Cifi'1 (l2 
: PA:O.:::: Fo:EG 1 N 1 T 

·' :::E -~ liE (:f{ 
·' -~ 1~1 :::·r CIP 



Ot7E [1303 
OU?.O 3E4F 
0 18'::0 DC::08 
I) 1 :::4 FD21 ~580 1 
0 1 :::::;: F l'I22F802 
I) 1 ::,:(: ::-:E 08 
01 :::E ;;;:~ 

01 ::::F D30C 
01'?'1 :~:E.87 

"'t ·:;-3 D::::o:5 
0 1·.;.o~, :~~EOO 

!) 1'?7 [1306 
0 19'-' ::::EOF 
0 1 ·:;·~::: 0306 
U 1 '?'D :::E07 
01'?F 1.)306 
01A1 3EOO 
0 1 A:::: 0302 
01 A~. :3EOF 
01 A-; [1302 
01A9 3E07 
01AB [1:302 
0 1 AD ::::E01 
!)lAF 4F 
01 r::o c·;;· 

(:·l r::1 0601 
0 l !:::::: OEOO 
U 1 B:. 1600 
0 1 B7 :L 1200::: 
01.BA C9 

c. t r;:r:: ::::t:oo 
I) 1 [::[I [1:300 
OH::F ::-;EOA 
I) 1 c 1 2(:.00 
U! r_::::: 2EUO 
I'll(:~. 24 
'.' 1 c.::. CACCO 1 
c'1. ~-.s· c:-.::c~.:;o 1 
01CC 2C 
() 1 cr:.r (::AD::::o 1 
!) 1 Do c:::c:~.o 1 
fl 1 Lr3 ·:::D 
01DA CADA01 
u 1 D"/ r:.:::::c~;o 1 
01 LrA E[r4[1 

OUT C03Hl.A 'lNTO PORT 03H 
LO A.4FH ;SET PORT 03 
OUT C03Hl,A ;f-OR INP HANDSHK 
LD lY· lNTRUPT ;AUOR OF OUTPUT INS 
LD C T ABLE+Of::H l . 1 Y' :::El' 'Jf:::CI 
LD A.Of::H 
ADD A,L 
CII_IT C OCH l • A 

ENF-'10: LLl A, 87H 
OUT C o:;:H l , A 

IN!Tf:.: LO A .. OOH 
OUT C06HJ. A 
LD A.OFH 
OUT C06HJ,A 

DISIN: LD A,07H 
OUT C06HJ.A 

IN1T2: L[r A, OOH 
OUT C 02H l . A 
UJ A, OFH 
OUT C 02H J , A 

DISINl' LD A,O"/H 
OUT CO:LHJ,A 

PAS: LD A, 01H 
LD C .. A 
RET 

~~E.CilS: LD [::. 01H 
L[r c. OOH 
LO [I,OOH 
L[l HL, POINT+C::1D 
RET 

::>TOP: LD A, OOH 
01_1"1 C OOHJ. A 

[rELAY: LD A. DEL 
LD H .. OOH 
LD L .. OOH 

LOOP: 

UELA: 

DE.L8: 

ON: 

I t·JC H 
.JP 'L. DELA 
._lP L!".ICrF-' 
INC L 
.JP i'. [rELB 
._lP LOOP 
Df'J_: A 
._lP Z. ON 
._lP LOCrP 
f''E 1 1 
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;LOW 8Yl~ 0~ TABLE 

; ENAI::Lfo. 1'-'ICr 
, 1 NT::: 
' I Nl 
;\.IEC:lOP 
' :=::t:T ~·CrRT ()~. FOR 
' r_rl_ll PIJ"I HANDSH~~ 

' I.:rl ~: I NT 
' F F<:CrM F-'OFi'-1 06 
' It·n 
; 'v'EC:TCIR 
; :';:ET PCrRT 02H 
·' FOR OUTPUT 
·' [rl ':: 1 N"f 
, Fh~CJM PORl r)2 
' PA·::s f'~E:::G It~ I 1 

·' :::t:-1 UEU':· 
' .. 1 u :=::·r CrP 



0301 ORG 0~::(' .1. H 

1):~:1) 1 I) I) PO INI 00[1 
1):~:02 () l 1)1[1 
(J:?,I):j 1)2 02[1 
1):~:1)4 Ct::=: 03[1 
0:305 04 04[1 
o:~:or,. 05 o~<D 

1):30i' 06 1)6[1 
o::::o::.: 1)7 07[1 
0:309 08 080 
0:3UA o·;.· O'>"D 
I):~:OB OA tOD 
o::::oc OB 11 [I 
o:~:oo oc 12[1 
0:30E OD 13[1 
0:30F OE 14D 
0:310 OF 15[1 
0311 10 16[1 
o:~: 12 1 1 17D 
0:~:1.3 12 1 ::~D 
o:::: 14 .13 19[1 
1):~:1 :. 14 200 
o:?-16 1 "' ·-' 21[1 
u:::: 1 -; 16 ·nD 
0:318 11 2:;:D 
1):?.19 18 240 
U:~: 1 A 19 :L:;[I 

o:;: 18 lA 'Lr;,[l 

u:::: 1 c 18 ~0[1 

o~: 1 D !C 2~::u 

er:: 1 E:: ID 2~·[1 

u:::: 11" lE ::::0[1 
0321) 1F 31[1 
uuoo END 

I) 1 ::::.~. CE'LCEN 014C CELL M!. ot::-:D cor.rr 1)0014 DEL O!CC DEL_ A 
OH::F' DELAY 0144 DELAY! 01 ~.:~: DELAV2 01 D:::: DEL!:': 019D DI·::IN 
0 114'.'1 D 1 ::C; 1 NI 0191 ENPIO 011 :~: FIN 01A1 IN1T2 I) 1'.:.0~. IN116 
U16B I t·l 11 I':E 0158 INIRUP o1c:. LUOP 01 [lA ON O!A[I PA~; 

o::::nt F'OlNl 0169 F'RESEI 012A /'.'EGlNl 01!:':1 FEGI::::: 0162 F-:ESI:o! 
01 IY/ h'EW I ND O!BB SlOP 02FO T P.f=:LE:: 012[1 T 1 ME!': OlOF WA111 
I) 11 c WRll E 

Nfl E::Fi'h:ORS 
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1 REM CALCULATE AND PLOT SKEW INDICATION 
2 I r·JPUT" ENTER PULSE SPAC I NO" ' ::,: 
10 ou·1 2,0:0UT 2, 15:0UT 2.7 
20 OUT 3,0:0UT 3,79:0UT 3,7 
30 OUl 6,0:0UT 6, 15:0UT 6,7 
40 OUT 1,0 OUT 7,79:0UT 7,7 
se> ou·r 1o.o:OUT 10.79:0UT 10.1 
6(> OUl 11.0 OUT 11.79:0UT 11,7 
70 FOR Z=1000 TO 1 STEP-1 
80 ou·r 0,5:REM SET TO READ 
90 NEXT Z REM DELAY 
·;..5 LET P=O 
96 LET N=O 
9::: GRAPH 
99 PLOT o. 40 .. 1 
1(>1) LINE 2:,40 
101 PLOT O, 50 
102 Ll NE 2. 50 
103 PLOT 0.· 59 
104 LINE 2, 59 
105 PLOT 3,40. ''33'' 
106 PLOT 3 .. 50, "66" 
1(>/ PLOT :3, 5'?, "100" 
1 (>::;: PLOT S, 5~·· "i.OF 1 OOUS t:: IT CELL" 
~- 1 r> 1-'LCn 0 .. 1), 1 
120 LINE 1).59 
130 PLOT 0.30 
140 LINE 1~o9. 30 
1~.:; LET X=O 
160 LET 1-\=INP< :::.1 
1 ~:I) LET E:=INP< 9) 
1:::0 LET C= I NP ( :=:: l 
1 ·;•o I_ ET D= I NP ( 9 l 
200 IF A<)C THEN 160 
210 IF £:::()0 lHEN 160 
215 IF A+8=0 THEN 160 
220 LET Y=<A-B.l/(A+E:l*S 
22~ IF Y)P THEN LET P=Y 
226 IF V<N THEN LET N=Y 
227 LEl V=Y*30/100 
230 LET Y=Y+30 
2:;0 PLOT X, Y, 2 
270 LET X=X+1 
280 IF X<79 l'HEN 160 
·2:;::~. f-•f,' 1 rH P 
2:::6 f-·F.: I NT N 
::::::::1· 1-R 1 t·n P-N 
::.::·~0 OOTU 9~i 

:;:(H) C;OTO 9~, 

310 EN[I 

(24 



1 j;:EM CALCULATE 1-\ND PLOT SKEW lNDICC.IION 
2 I tJPU"T "ENTEH PULSE ~;PAC I NO"; :; 
4 INPUT ''OUTPUT FILE NAME'';F$ 
10 OUT 2,0:0UT 2, 15:0UT 2.7 
20 OUT 3,0:CJUT 3,79:0UT 8,7 
30 OUT 6,0 OUT 6. 15:0UT 6,7 
40 OUl' 7.0:0U1 7,79:0UT 7,7 
50 OUT 10,0:0U1 10.79:0UT 10.7 
60 OU"T 11,0:0UT 11.79:0UT 11,7 
70 FOR Z=1000 10 1 STEP-1 
80 OUT o.s:REM SET TO READ 
90 NEXT Z:REM DELAY 
92 CREATE £10.F$ 
1. !';:.~; LE/ X =0 
160 LEl A=lNP<8l 
170 LEl L~=INP('?) 

180 LET C=INP(81 
190 LEl D=INPC':;.>l 
200 1~ A<>C "THEN 160 
210 IF B<>D "THEN 160 
215 lF A+B=O THEN 160 
220 LET Y=IA-BJ/(A+Gl*S 
230 IF Y)150 "THEN 160 
240 IF Y(-150 "THEN 160 
250 F'FdNT f10, X 
260 PFdlolT :f10. Y 
262 ~OR Z=2500 10 1 STEP-I 
264 (11_11 (l' !';:. 

2C:.6 NEX -, Z 
270 LE1 :x=X+10 
280 IF x;tOOO THEN 160 
2 ::;: !'::· CL (I :0 :E:: :f 1 0 
31.0 Et·JU 
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10 01_11 7 .. 207: OUT 7 .. 255: (11_11 7, 7 
2fJ OUT 3.207:0UT 3,255:0UT 3,7 
30 OUT 6,0:01JT 6, 15:01_11 6.7 
40 OUT 2.0:0UT 2, 15:0UT z,? 
50 OUT 4.255 
60 LET NUI'18=0 
70 Ll:::'l :31JM=O 
80 CALL "SUBRU" 
·;-o GRAPH 
11)1) u: 1 1;::=40 
110 LET M=40 
120 FUR N=7 TO 1 STEP -1 
130 PLOT 41), C20+5*Nl.2 
140 NEXT N 
1 ~;o PLOT 40. 5'?, 2 
160 FOR N=7 TO 1 STEP -1 
170 LET A='USRCNI 
180 IF A AND 1 THEN GOTO 210 
190 LET B=B+A 
200 (;OTO 220 
21 f.J LF:O T 8=8-A 
22(l LINE CB I .. ( 20+5*N I, 2 
230 IF 8>140 GOTO 270 
24U IF M<B GOTO 260 
2~0 GCITO Y/0 
260 I . .E'l M=B: LET T= ( 8-N I 
2'/0 NEXT N 
280 PLOT 140+251,59,2 
290 LINE 18+25), C20+5*N),2 
300 PLOl 18+251. <201. ''+25US'',2 
310 PLO.I 140-251.59,2 
320 L 1 NE I 8-2~· l, C 20+5*N l, 2 
::::~30 PLOT C 8-25 I , ( 20 J , "-25U:::", 2 
340 IF M=40 GOTO 80 
350 1~ b<-40 GOTO 80 
36[J IF CB-401(0 GOTO 400 
370 LEl 1=<8-401*1*5/35 
380 L~T OF=CM-40-Zl 

400 LEl Z=C40-BI*1*5/35 
410 LEl UF=<M-40+Zl 
420 L~l NUMB=NUMB+1 
430 LET SUM=SUM+OF 
440 PRINT" NU~1B "NUMB" DEF "DF" AV "::;IJM/ r·lUI'18 
4~oi'J PRH.J'f" " 
460 GOTO 80 
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...:......;.--·-

1 REM C~LCULATE LOSS DUE TO SKEW 
2 INPUT" ENTER PULSE SPAC 1 NO"; ~: 
~: INPUT "TRAO:: WI [ITH"; W 
4 INPUT "SIGNAL FREQUENCY"·' F 
10 OUT 2,0:0UT 2, 15:0UT 2,7 
20 OUT 3.0:0UT 3,79:0UT 3.7 
30 OUT 6,0 OUT 6. 15:0UT 6,7 
40 OUT J,O:OUT 7,79:0UT 7,7 
50 OUT 10,0:0UT 10,79:0UT 10,7 
60 OUT 11,0:0UT 11.79:0UT 11,7 
70 FOR Z=1000 TO 1 STEP-1 
80 OUT 0,5:REM SET TO READ 
90 NEXl Z:REM DELAY 
95 lNPUT''ZERO DB REF'';Q 
98 LET E=O 
100 LET Z=O 
102 LET M=INPC5l 
104 LET Z=Z+M 
106 LET E=E+1 
108 IF E<>8 THEN 102 
110 LET Z=Z/8 
112 LET E=O 
114 LEl N=O 
16(l LET A=INPC8) 
11'0 LET I:::= I NP C 9) 
172 LET M=INPC5) 
174 LET N=N+M 
1 ""/1:.. LET E=E + 1 
178 IF E<>8 THEN 172 
179 LET N=N/8 
180 LET C=INPC8) 
190 LET D=INPC9) 
200 IF ~<>C THEN 112 
210 IF GC·D THEN 112 
215 1~ A+B=O lHEN 112 
220 LET Y=<A-BI/CA+Bl•S 
250 U:.T G=Y /"C:.:. 06 
260 LET H=G•3. 142•W•F/O 0475 
265 IF H=O THEN 160 
270 LE"I J=SINCHI 
:z:;;:o LI:'::T f<=._I/H 
2'?0 LET L=LOG C ~~) 

300 LEl G=L•O. 43·13•20 
310 LE"T P=20*0. 4343•LOGCZ/N) 
:::20 f-'H I NT G "DB"; F"' 01::" 
:330 GOTO 112 
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C.•l !)0 
OOOA 
ooo-; 
oo:::o 
OOOA 
011"0 

01 00 
01 0 1 
1) 1 04 

()1 (l"/ 
01 OA 
I i lOC 
f) 1 OE 

1)1 or.:· 
01 1 0 

(l 1 t -. 
I) 1 1 {~. 
r) 1 1 "/ 
1)1 1 A 
u 1 1 r:: 

c) 1 1 c 
() 1 1 ~-
I ) 1 20 
() 1 .-, ·-=· ...:.._ .. _. 

u 1 :L~j 

' ' .'1. 26 
I , 1 :~:::: 
I ) 1 2A 

I ·, l 2[:-.: 

u 1 2[1 

! i 1 2F 
01 ;~::: 
I ) 1 ::::4 
I , 1 :~~.: r;. 
I ) 1 :·~:·;· -
(i 1 :::: [:': 
I , 1 :;:[I 

= 

= 
= 
= 

F:3 
CDi' (:.0 1 
CDi'F'O 1 

Cl!E:F::O 1 
::C:E(l::: 
[)::O:(ll) 

!"[': 

i)(l 

C3(il'- 01 

C["I[':E (} 1 
OU 
Cl-\ 1 (:(' 1 
I":;: 
"/(-. 

::::r.o 1 
[l::::(}(l 

f::LIC:~O 1 
::,:EO) 
41" 
:~:E(;~: 

u:::or:, 
I" r:: 

:::Eo·~~ 

u::-:o4 
c:u~~.:::u 1 
·:::r::oo 
f(:!("•4 

f.:U':·i"·(' 1 
:~-:1'-:1)1_1 

u·:::(l-'1 
CD:::;:::.:, \ 1 

nr;·r~ o 1 ()()H 

i·It·1E=i1)[•: ·::L>,Mf"'L.E f''Ef-.:JCID: 4':,1)t·1IC:f-.:CI:ot:C 
PA:::,::;::c-,?1"): ~1: .11_ T 1 1'-'1 . .11:-.h: 1 
PA::::o:-:::-= 1 ·::~:o:r.l: ~11.11 _"I 11'-"1_ l Ef-.:2 
DEL=OAH 
"IAJ::':LE"''="' l F(lH 
*L 

: ·::f::Ei.-Jf-·p, -~ 
:HEW1NU 1a~~ AND WRITE 
.: ::,:f:"E~J/Vt::/.(ICl"IY f":HE.CY: 1-·A-fTE.h'N 

:WRJTE PORl P108 04[1.(i6C 
:REAr) POf-.:"1 P108B 05L:. 17C 
: f..IFi: I TE C(l~-n r-;·O!_ F· .1 0-/ A OOD .. (l2C 
: h'EAD ~~:(:t.l"ff;'l~li __ '-'10~1[:: 01 u. o:;:c 

DI 
CAJ_I_ r-;·E:c;E::_l 
CALL J N J T f..• f.! r; 

REWIND (:ALL ~lnP 
L[l A. (_".;c:H ' ::;;E·J ·1 f-i•Ar·J:"::IC·(If-;:T 

: ., Cl h:E W l t·l[l OUl •: OC•H l . A 
El 

WA 1 l 1 : t-J(IF' 

F J.t.J 

WF.:ITE: 

.. 11"' ~.1~ 1 y 1 

CAU.. :c;T 0"' 
DEC C 
._lP ;: . t.Jt,·]·, f:: 
[I] 

HAL·,-

u:1 A. o J H 
CIUl •: (if.··~·~~ . ~ 

CALL Ui:'.L.•~,·.' 

L[l a. •:>":"::'-1 
L[l C-A 
LLI A. ;,·._,H 
01_1"1- .: I)(• 1-j ., . ,,, 

El 

L.D a. (<'H 
otn· ( f.:·.!:! H ·: . :.\ 
Ct.;L.L. C!. :·.11 ·f.:·1 
ll) ;.:,. (;i,H 

c,u·r ·: .. : .. ..:: ~.-; ·1 • :.:. 

CALL Cl.l~lr" :f:··: 
L.D A. '·r::H 
Ol_ll ( C:,.'.:H) .' L.~. 

(:.:\LL ~-:u·.~~~·f·· ', 

(28 

'•C;"I (IF" "JHE Tf',!-'E 
: l f-' T r.J l T f-.:10:. L,J ] r.p_, 

' ::::: "( 
:"!Cl f-''Li4Y 

. ::C:t:T P,:.:.:;c:::; C.i·fl h: 
: ·1 (_C·1 
. :::E·I Uf:J::f:: 

.. , C.r t·H~· J l E:' 



0140 :?:EO Cl 
0142 u:;:o4 
1)144 Cli".:of' 01 
Ot4i' :::F.: OD 
014S' D::::o4 
() 14[:: CD~i:7:0 1 
(l14E ::::E(>n 
01 ~.(l u:;a)4 
(> 1 ~·2 CD6C01 
f) 1 ~i~. c::::~r::ot 

0 1 ~.::: ::::EOA 
01 ~5A :;:n 
Ol'.:OB C2~iAO l 
01 ~·E c·:,o 

() 1 ':i!= 0607 
0161 8Ec(>A 
016:::: 8[1 

0164 C26:::0t 
I) 16i' (>~-, 

01 ~.::: C26101 
01613 C9 

01/:..C OE:':~O 

Ot~.E CD~A''O l 
01 -;1 (lfJ 

0172 C26E01 
f) 1 7~j C'?' 

017~. 21 :/[l(l1 

017'~' E'-· ·-' 
01-/A E~ 
I) 1 71:': E"' ·-' 
0 1"/C E"'. ·--' 
0 1"/[1 EU4D 

0 1 7 F ED':iE 
o 1 :::: 1 ;~ 1. r cu) 1 
I) 1:'::4 :·'C 
o t::·:~. t::D4 ;· 
01 ::::? F [1~~ 11. :::o 1 
o 1 :;::r:: FD2',~r ::c:n 1. 

o 1 :o:f' ::::Eo::: 
I) 1 ·::.·1 :::-:; 
(i 1 ·:...· -~~ u :::.: () :·~: 
(~ 1 ·;· 4 ·:::~:: 4 i-
0 1. ·~· ·c· u :::: n :::: 
1) 1 .,.. ::: ::,:!:. :c: -,. 
o 1 ·c,·p. u:::n:::: 
01 ·::.·c :::1::. rH.> 
o 1 ·:,·'=- u:::r· .. ~. 
:") .1 AU :~:;:_ c':d
f) 1 L:,·~- u:·::o,.:. 

LD A .. OOH 
OUT ( 04Hl, ::. 
C:AU.. CLU(:V} 
LD A.O[IH 
Cil_ll < (l.!lf-D . C'< 

CALL. CLCICV 1 
LD A. 0(<1-1 

OUl (04Hl.A 
CALL CL (ICY·:;: 
·-' f-• f" A lr·1 

CLOCK!: LD A,lJME 
BACK1: DEC A 

.JP N:t . T::P,C:V 1 
RET 

CLOCK2 LD B.f"ASS 
LOOPS: LD A,TJME 
BAC:f<2: DEC A 

.JP N2 . r,:Ar:r<:::: 
DEC 1;: 
._IF' N:: .. LCI(If-':C: 
HET 

CLOCK3: LD C,PASSZ 
LOOPY: CALL Cl..CICf:"·:: 

DEC C 
,Jp Ni:. l.CICII"'V 
h:F.''f 

RESEl: LD HL .. P~ESfl 
PUSH HL 
F'IX;:H HL 
PU:O::H HI_ 
PI .r:::H HL 

F'RE:::E T: RET 1 

INITREG: 1M2 
LD HI ..... Tr,r::LE 
LD A.H 
UJ 1 ·A 
UJ 1 Y, F ~ t·1 

·' CLOCk: f-·Fo:E 1 CID 

' MUL ., 1 PL I Ef-.: 
' CUKl: PEF-i' I UU 

't1UL llPLIER 

' {.':?<:~:E: 1/f::C"I ADL1S: 
, H l CiH L-:';'TE l"_lf" HI..! 
; :c; E: -, lr.fl f'.' '= Ci 
, r;tJr:'~: f)L HN_ ·1 

LD ( 'TAL-:I _ _r.: +C<:·H '1 • 1 '"' ; :~;~_-, 1./E(:l 
LU A. rXY 
ADD A.l_ ;l.OW 8V.IE 0~ IAI~ 
i",ll_l"] .: 1":0::·: f-1 "I ' i-' 
L[l A.~FH 
OUl •: (l·:::H·,. c. 

ENPJCI: LD A,87H 
Ul.l""f I I):";:H ·: . :, 

lN]"I 6: I .. U A.(" • .-·.~; 
CJIJ.,. _. c·,r '-! ·, .. ~. 

UJ .::.. :··'-H 
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' l t·1"1 Cl I"'Cif;:"f CO::::H 
·' :::E·f f:..·(_i~C.·"J rY:: 
; 1- :'_lh: ''·Jr' H':,t.llf::'-{f:· 

' L.~rJ{:,(::l._ J7 ~H' :::'I 
; :: !',/"; ~:; 

, - r......,... L•, ;!_·', r'· ,- 1 •• • 



; :· 1 ~f. ::.~:r.. f)~ 

(· i .:··:~ u:·.--~·:-·::. 

u 1 [:>:·· :'::'=. (_-.~ .. 
i) '1_1:-:-: . .:: f'j''~:()'~ 

(_',,,,;.::j :,;:,.;''oj 

() 1 1.:': ,.,, .::q:. 
u 1 [:';'/ !'_:-.;' 

'·' 1 [;:::: C•li 
U 1 J::·::,· c,::, 1 CO 1 
01 r,:c: ""::,: 
0 1 [::[I '/ 6 

01 [:; 1::. :~;E:_I)I) 

01CO L1:::;:oo 
01C2 ::::E:.OA 
01(:4 ~~600 

01C6 2:EOO 
01 c:::: 24 
01C:9 CAC~"Ot 

OlCC c:::::c:=::ot 
01CF :LC 
01DO CA[.i60 1 
I) 1 D:::: c::::: c::: 0 1 
I) 1 [1/:. ::::D 
1)1(17 CADD01 
I) 1 DA c:::::c::::o 1 

01 LID f::::D4D 
0000 

1.'1~A r::ACf< 1 
OOOA DEl_ 
!) 11.:':1) Dr:::::rr-n 
0 1'./"' I t-11 Tf;:E 
()1 B4 p,:.:.::: 

(i 1 / ''· 
h:E::.:::::E:.-1 

I) 1 ('~ wqn 

r-JCI t-:hf;'Uh:::::: 

ot.:-3 [::Aet<:L 
C•1Cf' UELA 
01 ·:;·::::: ENP10 
,..., 1 c::: LOOP 
0007 F·A:::::,: 

01 0~' f"E~J 1 Nli 
01 1C ~Jf;· IT E 

l N l 12: 

(:!!Jf ·~ (',/-,:-1'1 . .', 

I .. LI ,::,, ( .. -)c.; 
(JilT ·: ("<t!--! 1 . ~.:.. 

u 1 :=n r-n : L 1.1 .~ • r:cn., 
1:11_1"1' .: (/~'L;) . ;·, 

P{\:::: U.' f.\, C•1H 
LD c. A 
f;:ET 

DELAY: 

LOCIP: 

DELA: 

DEU::: 

Ot-J: 

01 ~.::: 
01(:2: 
I} 1 1 ·:· ·-' 

ot.:-1 
oo:::o 
01t::::E 

DEC: C 
._If" L.· ~Jhl l I': 
[.il 
HAU 

LD A,OUH 
OUT (OI)H).A 
Lf) A. DEL 
LD H- 0('H 
LD L.. OOH 
INC H 
.JP Z. [lE:' LA 
._If" LOOP 

INC L 
,_lP 2 .. DEL J::: 
,_lP LOCI!"' 
DEC A 
-JP Z, ON 
-JP LOCif'' 
h:ET 1 
END 

CLOC:f<1 ,., .l ~·F' 

DELAY (:; t [_If:. 

FHI 01 ,., .-. 
H•:• 

LOOP::: (i 1·~·E 

PA:::::::::L 01 :'),; 
:::TOF-' 01 f-() 
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; :~ :: il ... • l~_!!,)"j 1-·!_r[ 

• ~:: .1 ::: -~ N .. i 
; ~ M'i~lt·1 ~--Cih··r c.::~-
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::.;q rr 

,:;:1__ rr 
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._11:· .!. .· 1"'1 1.1 

!__ [I ::_ _. ~~ -, 1 r:1 ~~~ '-~~ ~~~ ("• r:1 r:=: 
I :··, __ r:·,C"~H 

._ti:· '.:·~~~!-!'.~:!. 

~:I--, 7. ~-

rr..:· r~·~c.r.tr:.;2 

!.)~r:· L. 
!~·!':· .:~~~ 

._lP .. ,. !" ! 1.1 

[_[r 1=:. ~~-, .! r:·•clf:)!:·.t)(l~: 
!_[I 1__. r:·;(·~ 

. 110· r:·J-.lp,l.lr:<2 
!_[I A.- r)(l~ 

r~ri_IT ( r~H)!-!) . t.:. 

~:f::-f 

ICY A~". C,!C .. · 

E:r·c /-.. t: 

·-'~' ~.,-;:: ~-!1:···::!,._1! ·=-~ 
l_~r ~ .. 1 ! ! ! ("tr:ll:ll:l!:! 
I="Y ·~ 

~·P:r·:;:~)! cu: 1'.:'1 
r;,: 1 ·r· -=:. ~-

__ ,r.:.· z: ·::~_,! c~~t,!r~t 

!__[r !::'__. 1! r:1 1 r:lr:·,r:l(lE: 

ICY V 

E~~ A!=-._. .:!:F 

"' 1 
h:r:-:·1 

·::~···' l c~r·!'~': r_c• r:: .. ! ! r~·c, ~- ("l;>()(:if:.; 

EY 1::,1=',.:.01"' 
r:· "I 

I_U ,_,, ___ ~:1__1~-~ 

~~-•!:: 1....11 nt:.: 

1 rr !;: . !' ~..:1 ·• 

~--~:· .:!. . ,~,,=··~ 

C~I-L I f•::J:,;•!_.'l 

~·~--( 
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MAVE T~E 2~!D ~ER!Q[I 

~HE:: ! ·::"f ~·!::::::~:!'~,~~ 

~,!(_1_. L'~n:..; !:_~_·h:!~t~: 

H~X'ERRQRS LQ0G~~ 

~~:~~·:·~: L0 1:••:;r::_['? 
·::1_1!:::-r,:;:ACT 1 ~=-·~=;:r:r~1 •::r:;:r:.:r:r,:;· r:-r:ri_Jr.JT 
!'!(1: Lr:u:; !::Fo:P,:•~: 

MAX' ERRQRS 1__0GGED 

A!_ T ··· r:.:E•~•! ·;:: .. ,. EJ:.:·:: ~· 
~.J(l 

[:: l "T r.=, EX X ·::! ... :! ,:·~ .. [:: l r a ~X!-!· 

P:L ·r 
~-!(t 



/-.l"t()(", 

.~.[t("tl:·, r::ll~:-;::1',!!:1 

,---,,-·,(·,(· ,:-·1 c 1 
/-. •::,•!" ·, t.: [_I=-:!__ A~-

·~-·~·!:::_::;;: !:.'--·'Er·P:_. 

(:-P..l ~:: F':''-'~:.q. 
.~.,~~!:.. r: M! n; -~, 

·~·A·~:Lt ':'D~· 

~~--~·::;:[! ~·1~1!..._:~ 

6A!n F-·(:'!_L.1 
':':· ·~,· c_:.::: ·~: -!, C; ~: -! 

·~· :;·-.· ·:..· ·r~~.:~.--~::· 

i,. ·~'4~ J:::ACf< 
f __ ,-.,-,,-, BUFF 
0 1:-·0D Cl C:L 
.; .. :/:.::::.::: DELB 
·~·A'~";' E \JENP":: 
.~.p,::;:~:· ~·! p•:: T 

.; . .:.1"!:_1 FU1HA1 
t;L::!:)A M!t·J2 
.~ .. ~·:.:::.;:.. ON 

•c·A• >E •:•NE 1 
.~ .. ~·A.:l r'OL3 

E~·!U 

(:.[u:> 1 J:::A·::ENL• 
~~-A':;[: CH~~·I':~! 

0('1: C~J 

t:-AEF' ELnc•l;':2 
6A3F E'./t·IF 
!::?',:~::.::: ~-I h:·::T 1 
'~·!:'(•E:: >' J_nH:"~:: 

1"•1 !:- ~:[::1_1~~ ... 

-~:-q·_f.:::2 CHAt·!':•1 
(• 1.~l(tA DEL 
.'A'::·::: E:::r:;:POF 1 
--~-E-:2.:1 E): 1 -c 
/-. ·:;·::::c. ~-,:, ~: ~·./ 

I~) (t •:l ::: !.__ E D ·:: 
t.C:2D r·!•:t·::! •. l! I~ ,•: .. •::·~ r I (l[t[t~· 

f:,'::.OE:::A •:•~·!':·~"· ., I';· /-. .::.~:,_· •:•NC~1':·: 1 
r:1112 ':nJT~x -~-~cc' PI u·.:::::: 
6A1A POLE! f::A7a POLE:.::: 

~~:::.·Cl:. [:~·IL•A~::v 

~;:::,•1)(> •:·L I t.JI·< 
.~:;·1 r.:: DEL~ 

6AAA EF:~:Oh::.::: 

6t::1F FlN 
f:.'~' ''=' ::: ,o- ,..,,_, >.: 
f::.'~' 1 4 L •:• C• 10· 

f:.A'~'i' C•l•Uf-'":: 
~~-AI:::·~: r:•NC~1h:2 

f:::~·":·F F'OL 1 
I:-'7'CE: POLIO"l ~: 

AC77 POLL2 6""BD PQSPD 
011A SUGPTF 690A SUBRT 
6A0Q 1HREE3 6""83 l~Q 

.. -::-~4~ ·::E':·! ~~.?~A 1 ~::r::,:·~·l[t 

~B?A S~lCHN f:.S4E TABLE 
60!~ TWQ2 n106 I_ISR 

, , 1 , ,.:.· u·:::~:vr 

C40 



c)(l::.:7 = 
(>OOC = 
(H)(l[l = 
uuo::: = 
OOOA = 
(H)I)8 = 

01 1 ;~ = 
01 1 ·:· ·-· = 
011)6 = 
0109 = 
010C = 
01 lA = 

0106 
0 l 06 c::::.~.I)(:.C 

ntt::: 
011:~: 01 "/1) 

0\lA 
U11A (H)(:.'i• 

/:.'?'00 

(:. ·::.·oo oouo 
(:. ·:;· 0 ~-:: 0 ~:; 

(.·:;·o::: OA(:.·:;· 

;ERRMANTRCY 

;PROGRAM TO READ DATA 
; IN MANCHESTER CODE, 
;CORRECT ERRORS AND 
;CATALOGUE TRACK ERRORS 
; CMANTRCK WITH ERROR CORRECl"IONl 

' A PRO X ' 1KHZ 

;CTC2 USED TO MEASURE RATIOS 

; 8/1/1987 

;WRITE PORT P108A:04D,06C 
;READ PORT P108B 05D,07C 
;WRITE CONTROL P107A. OOD,02C 
;READ CONTROL P1078:01D,03C 
'LED DI:3PLAY PlO'?A: Ot:[l, lOC 

;CTCl:OC,CTC2:0D 

CW=OO 11 0 111 B 
C"Y"C1=0CH 
CTC:2=0[1H 
LED:::=08H 
DEL=OAH 
LENOTH=0:3H 

OUTMX=112H 
r::r::r_w './= 1 t8H 
U::R= 1 06H 
1_1 :::I" :V F '" 1 0 ·::,· H 
r_r:::f':VT = 1 OCH 

:;::r_IBF'TH= 11 AH 

ot=.:o u:::r;: 
._rp u:::t=.:M 

OI"'C; E:[3UF'./ 
[1Ef-"W E:A:::Er-JD 

ORC; :;::r_IBPTR 
DEFW CLINK 

CLlNK: [IEFW n 
DEFB ':; 
[IEF M ··· ::;1_18Hr_r··· 
[IEF~J :::U8RT 

(41 



690A 8EO~· 
c.-.;·oc [1300 
690E ::;EOA 
60:::'10 :Ll:..OO 
6'?'12 2EOO 
6914 Z4 
6':>'15 CAlBcS' 
691E: C3146";-' 
t:-91 B 2C 
691C CA2269 
6'7'1F C:.::1469 
(:.922 ::::ll 
(:.92:~: CA2969 
f:,•;.•:L6 c::: 146";-' 

6·n·:;· E.D5E 
&,·~·::!£:: 21 :::o,sc 
692E 7C 
6S'2F E.[14/ 
69:~: 1 FD214A6C 
t:.·;.·:j~i FD22826C 
6'?·::::·~ ::::E.02 
.:.·;.·::::8 :::~. 

6"<3C D:~:o::: 

r:.·::,.:;:E 3E4F 
.~:;.· 4 I) [I:::: 0 :~: 
(::7'42 :~:E:::7 

·'=.'7'44 u::::o:;: 
t:S46 FE: 

.~. ·~,.4 ·; u·::.· 
t. ·::.- 4::: 1 e:::::::o 
.~::;'4A 210('6[1 
.~.-.;·4[1 ::::EOO 

,::.·~·51 C24F 6'?' 
!;::;·~·4 21 006E 

::~.·;·~,·:;· C2~;-; t:.·::.· 
f~.·~.·~..:·C 2' l006F 
~:. ·_;·~:.F- 3600 

(.'?62 :~:{:.FF 

~:.·~·.~.A :~~c: 

.·::;.·.:::.f:'. ;~ 11 :::.~.F 

.~.-;· 71 u·;.· 

SUBRl: LD A,05H 
OUT <OOHJ,A 

DELAY: L[i A. DEL 
LD H .. OOH 
LD L,OOH 

LOOP: 

DELA: 

DELB: 

CIN: 

INC H 
.JP 2, DELA 
._If-' LOOP 
INC L 
.JP Z, DELE: 
,_If-' LOOP 
DEC A 
._lP Z. ON 
.JP LOOP 

1M2 
L[l HL, l AE:LE 
L[l A .. H 
LD LA 
LD 1 y, E.X IT 

;SET DECK TO FLAY 

LD (TABLE +02H l , I Y 
LD A,02H 
ADD A,L 
OUT ( o::::H) , A 
LD A .. 4FH 
OUT <03Hl,A 
LD .A. 87H 
OUT (03Hl,A 
EI 

EXY 
LD E .. :::OH 
L[l HL.· BUFF 1 
LO A.OOH 

BACY I : LD ( HL I . A 
INC L 
._IF' NZ, BACf< 1 
LD HL.. BUFF2 

BACK2 L[i !HLI,A 
INC L 
._lP N2 . r::ACK2 

:::c:-r E:I_IF: Lli HL.· E:I_IFF' ::: 
BEGIN: LD (HLJ,OOH 

JNC L 
L.D ( HL l . OFFH 
INC I_ 

LD ( HL l. Of'f'H 
INC L 
LD ( HL) . OFF'-H 
INC L 
._IF' r.Jz .. f':f::C; IN 

AHEAD: L_[l HL E:1_1Ff'3+1:::H 

C42 

;SET DISP BUFFER TCI ZERO 

:PRESET BUF'F3 Wil'H 
: ERF-:Of;: F RFE: DA 1 A 



6·;··"/2 ::::E:37 
{:.9i~'4 [130[1 
6 ·:;? 6 [l[;a) <:;; 

·~87::::: 4"/ 
/.:.979 [1[::1)~; 

r:::n r:: A::::: 
f::.·::.--;c Er.:.o::::: 
f.:.S>"!E CA?·:;-(:.9 
6 ~,-:::: 1 ::::E:: H--
1:. ·:;,· :::,: :3 [1::0: 0 [I 
69:::~:; Df::O~i 

(:::;- ::: 7' 4 -, 
f_-:.·;.-::::3 D80~i 

.~.98A A8 
6 s--::::r:: E: 60::: 
/:.9:3[) CA::::::6~.;.· 

.~ .. :; .. :;·o [I BO D 
:::i~'2 4r 
f:.'? ·:;- ::;: :;,: E :::: 7 
r.:.9·:;·s u:::oD 
(,s·:;·; ::::EFF 
e::::. .. ::.·9 D::::oD 
{.'7"'1[:: ·:;- 1 
cs·-;.·c 4F 
6 9 ·::.· D [1!;: 0 ~.5 
6'7'iF-" 4 7 
t::?AO DE:05 
r:::;-!42 A::: 
69A3 E:.608 
f:.'?A~; CAA0/.:.9 
f:S'A::: D80[1 
,::;::;·p,A ~i/ 

.~::;·AB 3E::::i' 
t;:::,·AD [1::;:1)[1 

.:.·:;·AF- ::::E:.FF 

.~sr:: 1 rc:::ou 
69f::3 ·:;·:.::: 
6'7'£:::4 :·,/ 
f:.. ·:;· [:: ~; ~/ ·:;· 

tcSE7 fC '\DO(:.·:;· 
{:. '? [;:A C [::::,:A 
,., .. ,.. [:: c: ·:;":( 
f:::~·t;:[l F:2Cf::.r,::;· 
C::7CC:• Cf': L' 

t:.·:;·c7 f:.~:; 

(~, ·:;.· c ::: c: [:: 1 2 
,;.·,;·eH 4A 
r:. ·~:C[: 1 f::l)l) 

f.:.'C'C[I c:::Df-' .~:::,· 

f::.'i' DO c: r:: ::: ·::;· 
t,:::,·u:::: :=: 1 
r:::;·[i :: I" ADAf:S' 
I:Sf:it_::. 4P, 
(:.9[17 (:3·:;·[1,~.9 

,:;:, ·~· D (-1 r;. ·:;· 
t;:~DE: 65 
(::c,·[IC 4A 
f::SDD ; EO l 

INITCTC: LO A .. CW 

POL 1: 

POLL: 

OUT <CTC2J,A 
IN A, ( 05H) 
LO f3.. A 
IN A, ( 05H) 
XOR 8 
AN[I I):::H 
._lP Z .. POL 1 
LD A .. OFI"H 
OUT (CTC2J,A 
IN A.· W':5Hl 
LD B .. A 
IN A, <05H) 
XOR B 
AND 08H 
.JP z, POL2 
IN A .. ( CTC2) 
LD C.A 
LD A .. CW 
OUT (CTC2l .. A 
LD A .. OFFH 
OUT <CTC2J,A 
SUB C 
LO C.A 

AGAIN: IN A .. <OSHJ 
L[l 8, A 

POL::~: IN A.· ( 05H) 

AND 08H 
.JP. :Z. POL~: 
IN A. ( CiC2J 
LD [I.A 
LO A .. C~J 
OUT (CTC2J.A 
LD A.· OFFH 
OUT <CTC:2),A 
~::::ur:: [.1 

L[l [1. A 
LD A.C 
~::::ur:: r1 
._lP M. NEI~iF'D 

PCI:::::PD: ~::RL [1 
~::U£3 D 

[:':N[IA!'.'Y: 

,_lP F'. BN[IARY 
Fi'L D 
LD c. D 
._IF' ACiAHJ 
L[l L. Ll 
LD H. L 
I':L [I 

LD c .. [I 
LD E. OOH 
._lP ~:AMP 

NECiP[I: ~::h'L C 
ADD C: 
.JP M. 1::E~n F.:E 
L[l c, D 
._lP AI"> A IN 

CENTRE: ,LD L.C 
LD H.L 
L[l c. [r 
LD E,01H 

C43 

; 1Nl TIALI~:E CTC 

;READ IN 1ST DATA BYTE 
; SAVE 

; 1ST DATA CHANGE? 

;NO DATA CHANGE 
; 1ST DATA CHANGE 
;START RAl-IO TIMER 

; WAIT FOR 

;GET PERIOD VALUE N-C:1 
' ~::::AVE PER I OD 1./AL I .IF.. N-C: 1 
·' SH.IF' PERJ (1[1 CCIIJ~rfEH 

_, ~::TART T I M HJC; 
_, 2ND PER I OD 
;TRUE VALUE OF 1ST PERIOD 
;SAVE TRUE VALUE OF 1ST PER 

;WAIT FOR 3RD DAl'A 
'CHANGE 

' GET PER 1 OD 'v'ALUE N-e::: 
;SAVE PERIOD VALUE N-C2 
;STOP PERIOD COUNlER 

; ~::::TART Tl M HJG 
; 1ST PERIOD AGAIN 
;TRUE VALUE OF 2ND PERIOD 
; ~::::AVE IN D 

'1s1· PERIOD-2ND PERIOD 
;EITHER 1:2 OR t· t 
' E I THEfi· :2: 1 OJ;: 1 : l 
'1:::::T PERIOD-2t·JLi PEh'IOD-2ND 

_, 2: 1 FC1Ut.JD 
; 1 : 1 TRY ACiA Jt.J 
' AFTER t1AV I t·Jr.~; ·;::r.J[I f.'·f::h' l Cl[r 
' THE 1 ~:: l PER!( 1["1 
;SAVE 114 811. PERIOD 

_,:::::AMPLE 1 I"LAO 

' E 1 THEJ;: 1 : :2 (lh' 1 . 1 
'1ST PERIOD-2ND PERlOD+lST 
; 1: 2 RATIO, CENTRE f.'OI.INl·r 
; 1: 1 HAT H.f. TRY f';Cii-\It-J 

·' AI" TER MAt:: 1 NG 2ND I"'Eh'l UD TH 

;SAVE. 1/4 BIT PERIOD 

; :::AMPLE 1 FLAG 



69[1F' [l[::o~. 

6'?'E1 47 
6'?'E::2 UBOD 
69E4 EU44 
69E6 C6FF 
69E::: B[l 
69E9 F'AiA6A 
69EC 7D 
69ED :::~; 

6''JEE 
,,.,. 
·=··-' 

69EF 6F 
69FO CI:::4:::: 
69F'2 CA1:::6A 
6'?'~~. 1E::OU 
(:."JF7 u;.· 
69F8 i' ['I 
69F- ·~· FE1:3 
(:8F'B CAOB6A 
f::."JFE FEES 
6AOO CA~;E6A 

6Ao:::: Dt:~o·:. 

6AO~· 77 
6A06 :L:C 
61-10/ [19 
l:..A0:3 c::::1.:',6A 
6AOE:: [1[::1)5 
61-10[1 F-EOO 
6140F' C20-/6A 
61-112 i'~J 

6A1:::: :2C 
6Al4 [!·;.· 
6A15 C::~:: 1 A6A 

6A18 1E.01 

6A1A [1[::!)~; 

6A1C A"'' ·--· 
61-11[1 E6o:=: 
6A1F CAE::::(,.·;· 
61-1:22 [1[;:1)[1 
6A:24 L--~ 

·-· t 
t~.A2~; ::::E::::7 
6?127 u::::;:;[l 
6!-\:L';.· ::::EFF 
(:.A:2B (131)[1 
I.':.A:2D ·:;.··~· 

6A::::E ,;.;···, 
-'I 

614'2F /''' 
6A30 s··:::: 
(::,,:.:,::::1 F-A4l6A 
(:.A::"::4 C[::::::A 
6A36 '7'2 
6A3'/ F2~;46A 

6A::"::A .~.I -
6A:::t:: CE:1:::: 
O:.A::::LI " .. 

.... ,.., 
I.':. A::::~::: C:~OF 6S' 

:';:AMP: 1 N A, ( 05H J 
LD [':, A 

SAMPL: 1 N A .. ( CTC2) 
NEG 
ADD OFFH 
CP L 
._rp M, ONCMR 
L[l A. L 
ADD .. L 
ADD .. I_ 
L[l L. .. A 
[::IT O, E 
,Jp Z. FIF.::=:T 

SE CND: L[l E .. OOH 
EXX 

GNl: 

YES: 

LD A .. L 
CP 1 :::H 
,Jp Z .. YE::S 
CP OEc:H 
.JP Z, !.':FULL 
IN A, < 05H) 
LD l HL l , A 
lNC L 
EXX 
,Jp Ot·JCMF<· 
IN A .. ( O~·H) 
CF' OOH 
,_rp NZ, ON I 
LD ( HU . A 
INC L 
E:XX 

FlR:::T: LD E .. OtH 

CINCMR: IN A, ( 05H J 
XOF.: [:: 
AN[I o::::H 
,Jp i: , :=::A~lPI_ 
IN A.!C:TC:2J 
LD D.· A 
LD A. C~J 
Cii_IT •: CTC2 l. A 
LD A,OFFH 
OUT iCTC2).A 
::;:uE: [I 

l.[l D, A 
LD A.~~. 

:::ur:: [1 

,_IF'' M , ~li t·J P t' 
PLUSPD: :::RL. Ll 

:::ur:: D 
,.Jp F'. EDC;E 
LD L.· H 
I':L [1 

L[i c .. T_l 

,_rp :::~.n::.· 

(44 

' C;E T PER 1 Cl[! CCIIJNlER 

,; TRUE VALUE:: 
' :::AMPLE PO 1 Nr·· 
; NO 
;UF'DA'TE NEXT 
;COMPARISON POINT 

; 1ST OR 2ND HALF OF Bl'T CELL 

; 1ST 'TIME THRC1····:· 

, r::UFFEf;: FULL'" 

·'CONTINUE 
, F'LACE DATA IN 
'BUFF :::: 

·'GET DATA 
'IS IT ALL ZEPU::~:· 
;NO,GET NEXT INPUT 
·' YE:::, :::TOPE DATA 
' At·JD (:l)t·H I NUE 

; (;ET INPUT 
' DA 1 A C:HANC;E·: .. 

; NO 
·' OE T F'EFU OD VC.L.UE ~·I-C2 
;SAVE PERIOD VC.LUE N-C2 
'STOP PERIOD (:(ii_IN'TER 
' COUt·HEf;: 

;START TIMING PERIC![I AGAIN 
;TRUE VALUE OF 2ND PERIOD 
·' :::AVE IN D 

' 1 ::::T F''E:R li)D-:LND F'ER I OD 
' Ell HER 1 : :::: Cif.; 1 1 
' EITHER :2: 1 OR 1 : 1 
' 1ST PERIOD-::::ND PE::RIOD-::::ND F 
' :2: 1 F' CIUt·JD 

·' 1 · 1 . TRY CINC:E MCIRE 
:AFTER MAKING 'THE 2ND 
;AF'lER MAKING 2ND 



6A41 CB::::·:;· MINPD: 
6A4:.:: ::: 1 
6A44 f'A4C6A 
6A47 6C 
6A48 4A 
6A4S' C3[1F(:.S' 

6A4C f::S' Mllll: 
6A4[1 6~5 

6A4t. 1t.01 
6A50 4A 
6A51 C :;: D F f:S· 

6A~•4 6A E[I(;E:_: 
6AS~; 6~i 

/:.A~·6 1t.OO 
6A~i8 CB12 
6A5A 4A 
6A~·B c:::DF··=·s· 

6A5t. 21006F BFULL: 
·~·A61 C::::6:36A 
6A64 :LC Rt.PA:::S: 
,:.A6~· CA7F6l:: 
·SA6:3 ::::Eo::: ALCING: 
6A6A E[1.'~4 

6A6C c..--, 
·-·: 

6A(:.[I CDFl::,~.A PAR1PCI~:: 

6A70 CB47 
·~·A72 C2-/C6A 
6AT:; 2C 
6A-/6 CA i'F f:.l:: 
(:.A-;·;· c:~:6D/:.r-. 

6A-/C t4 ER!': 1 PO~:: 
6Ai'CI 0601 
6?1 i'f' LC NDor·JE: 
6AE:O CA-; f' .~.re: 
6A:3~: COFI:::.~.A 

6A:'.::(:. Cl::20 
6A:3::: CB47 
6A:::~; CA:::f' ·~·I-< 
6ASD CBCO ERFO:Po:::: 
6A:::::f' CBI::: ERR:::PCI:::: 
·~·A'7'1 C2'7':::C.A 
6A'?4 14 
6A9~· c:::::i'F f:.A 
6A98 14 PAR 1 NEC; · 
(:.AS''?' 2C 
.::.A'?A c,:-, -lf' 61:: 
6A'?[I CDFl::6A 
6AAO C:J:::4/ 
6AA2 CAC,.·:::f:.A 
6AA~; 14 

-------

SRL c 
ADD c: 
._lP M .. MlOL 
L[l '-· H 
LD CJ [I 

._rp SAMP 

LD L .. c 
LD H. '-
LD t_, OtH 
LD c .. [I 
._rp SAMP 

L[l L. [I 
LD H .. I -
L[l E. .. OOH 
RL [I 

LD c .. [I 
,_rp SAMP 

LD HL.. [::1_11=" F:;: 
,_rp ALONG 
1NC L 
._IF' z. :::1 E.FO'FO: 
LD A .. U::.nGTH 
Nt.Ci 
L[l [1, A 
CALL PCHECk 
BlT o. A 
,_rp t•J:;:: ' t.RF l PO:::: 
INC L 
,_rp z .. ::n Ef'·r:.;· 
,_rp PAh'1 PCI:=: 
1NC [I 

L[l r:: . 01H 
lNC L 
,_rp L: ·' :31 E I': I'· 
CAL~ PC:HC:C:k 
:::LA r:: 
bll 1). A 
._lP .. , 

E I'' I''::: P U :::: 
:::ET 1), l:: 
l:: ll -.. le: 
._lP N:Z ·' PM•: 1 NE-:G 
INC: [I 
,_rp t·J[ICit·Jf' 
lNC [I 

I t·JC L 
._IF' -, ::::TEF:FO· (....,• 

CALL f-'CHECY 
t::lT o .. A 
._lP z r::·Ar:.;·1 NEC; 
INC [I 
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.: E I -r HER 2: 1 OR 1 : 1 

.: 1 :::T Pt.R 1 OD-2ND PEFU CID+ 1 :::· 
.: 1 · 2 RAT 1 Cl FCII_IND 

.: 1 : 1, TRY CINCE MCIF\E 
;AFTER MAKING 2ND 
:PERIOD THE 1ST PERIOD 

:SAVE 1/4 811 PERIOD 

;SAVE 1/4 811 PERIOD 

: :::AMPLE l FLAG 
:MAKE THE 2ND PERJCI[I 
.: THE 1 :=-::T PER 1 OD 

: Th'Af< C:OUt·JTER 
.: CHECK PAP 1 TY 
: 1 :::T ERRC1r:.;:·:, 
·' YF-::;::: 

:GO STORE lHE ERRORS 

: "f"FACk CCII_It·JTEh: 
: ::::H 1 f' 1 1 l NTCI Eh:h'CIF• COUt·fl ! 

;SHl~T +Eh:h:OR COUNTER 
'ERh'CJh:·:·· 
:NO 
:YE:::. :~:HJF-T lr.J 1 
:8 CONSECUTIVE SHIFlS? 
:YE:=:: 
: t·j(l 

' Er.:r;·;:,F-<' 
.: NO 
: f' HJAI._ Jr.JC .-



bAAC. OE01 
6AA::: :Le 
6AA9 CA71"6B 
6AAC CDFB6A 
f:..AAF CB21 
6AB1 CB4"/ 
6AB3 CAI::86A 
6A86 CBC1 
6A88 CB?'~ 

/:..AI:: A CAA:::.~.A 
6ABD 7 <.• ·-· 
6ABE B9 
6ABI" C264·~·A 

6AC2 D9 
6AC3 1 EO:::: 
t.AC5 09 
6AC6 OE01 
6AC::: C8:3A 
f:..ACA "!A 
6ACB D9 
6ACC 47 
f:..ACD 09 
/:..ACE 1"' ·-' 
~.A Cl" CAD7~.A 

6AD2 CB21 
6AD4 C:3CE6A 
6AD7 [19 
6AD::: -; ::: 
6AD9 [19 
6ADA 5"/ 

f:.ADB /'[1 
6A[1C C601 
·~·ADE ·;·2 
/:..AD I" 61" 
f:..AE.O CBOO 
6AE2 DCEI"f:..A 
6AE5 2C 
6AE6 [1''' 
/:..AD 1D 
(-.AE'::: D·;.· 
6AE9 CAI"'C::~.A 

6AEC c::::E06A 

6AEF' -; E 
6AI"'O A·:;· 
(o.AI" 1 ?7 
6AI"'2 c-::.-

~~.~~F- :;: -/[I 

6Af'4 [160::: 
/O.AFb ·:···-, ·-·...:... 
·':.AI"'"/ 6f' 
.:'.AF ::: c:;:,:.4t:.A 

ERR1NEG:L[I C.01H 
t~END: INC L 

.JP Z, :::TEF':f': 
CALL PCHECK 
SLA C 
Bn 0 .. A 
.JP Z. ERR8NEO 

ERRNEG: SET O,C 
ERR8NEO: BIT 7 •. C 

ECHK: 
,_lp ;;: , NEN[1 
LD A .. B 
CP C 
,_lp NZ, F':EPA:O::=:: 

EXX 
LD E. o:::H 
EXX 

CC1RCT: LD C .. OtH 

CONV: 

SRL [1 

L[1 A .. D 
EXX 
LD B,A 
EXX 
[IEC D 
.JP Z .. ENDC:Ot-J 
:::LA C 
,Jp COtN 

ENDCON: EXX 
LD A.[:': 
EXX 
L[1 D .. A 
L[1 A .. /_ 
ADD OlH 
:::ur:: D 
LD L . .-, 

BIT COl":: F':LC B 

ERA: 

CALL c. EF-:A 
INC L 
EXX 
DEC E 
EXX 
._If'· Z, E:'.NDCC!h' 
._If'' [:': 1 1 Cl~lh' 

LD A. ; HL I 
XOR C 
L[l ( HL.l. A 
RE"f 

E:.t·lDC(IF-' · LD A. l 
:::uL'= o:::H 
ADD D 
LD L.· A 
.JP f''E:YA:::::; 
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:YES,SHII"l 1 INTO -ERROR CO 

.:SHIFT -ERROR COUNTER 

:NO 
:YES, :::HIFT lN 1 
.: ::: CONSE::CUT I VE:: SH IF" T:::·:.o 
; NO 
; YE::: 
:+~-ERRORS lHE SAME? 
; NO. ABORT 

:SPAliAL FORMAT REG 
: D I V 1 DE BY Z 

:SAVE lRACK COUNTER 

: CONVEHT 1 F':ACK 
:1·0 SPATIAL I"'ORMAT 

.:GEl lRACK COUNTER 

: HL PO 1 NT ::: TO 
.: I :::T . l_i~ICA T l l)N l t·l EF-:RUh: 
:EMPlY ERROR COIJNlER 
:ERROR,GO CORRECl 

: CiE-1 ERRUh: [:':','"! E 
: r_:(IRFECT EF':RI~lh' 

:RE-Sl.ORE CORRECTED BYTE 

:REPOSil.ION HL POIN1ER 



6AFI:l D9 PCHECI<: EXX 
6AFC 0600 LD B .. OOH 
6AFE 09 EXX 
6AFF i'E L[l A .. < Hll ' -VE :::LOPE 
6BOO CB7F 1:::1 T -, 

I ' A 
~.802 C4/'B6B CALL NZ, PH/V 
681)5 2C INC L 
6806 7E LD A, ( Hll 
6BOi' CB7i' BIT 6, A 
6809 C4"{['::68 CALL NZ .. PRlY 
6BOC 2C INC L 
6BOD i'E LD A, < Hll 
6BOE CB6F BIT <: ·-· ·' A 
6B10 C47[~6B CALL NZ .. Pf.O:TY 
6B13 2(: INC L 
6814 i'E LD A, ( Hll 
6815 CB6i' BIT 4, A 
6817 C4786[~ CALL NZ .. PRTY 
681A 2C INC L 
~·B1B 7E LD A .. <HL1 
6B1C cr::~;F BIT .... .,:. .. A 
M:i1E C47B6B CALL m .. F'F;:TY 
6821 2C INC L 
6822 7E LD A .. < Hll 
~.B23 CB~·7 BIT :L .. A 
6825 C4i'B6B CALL NZ .. F'f;:1· y 
6828 2(: Ir.JC L 
6B2S' I'E LD A .. < Hll 
f:.r::zA CB4F BIT L P. 
6I::2C C4 -;r::~,B CALL m. F'f;:1 y 
6[::2F 2C lNC L 
6J::::::o i'E LD A, (HI_) 
f:.B:::: 1 CB4"/ BIT I)·' A 
(:.[::::;:::;: C47B6B CALL NZ .. F-·f;:TV 
6£.::~:6 7D LD A, L 
6B::::1· (:(:.!)•:;.. ADD LENCilH+; 
6[:::39 6F L[l L .. A 
6B::::A i'E LD A, (HL1 
6B::::r:: CB47 r::n 1), A 
6l::::::D C4-/B·~·B CALL NZ .. pp·1·y 
(:.[::40 2(: lNC L 
6E:41 n: LD A .. (HLl 
6842 Cl::4F r::n L A 
6B44 C47 B6l:: CALL th. PRTY 
6[::4 ., ::c l.NC L 
·~:-£::4::: "!E LLI A. <HLl 
• .:.1'::4 '? c [::~~ -/ [::J -, 2 .. A 
6[::4r:: C4"/E:6B CALL Ni:. F-'f;:1 y 
6L~·"E 2C lNC L 
6I::4F "!E LD A .. < HL l 
·=· t:: ::. () cr::~;F r::n ·":· A ·-··· 
6f::~.'L C4 7 B~.f:: CALL_ r~z. Pf';:TY 
.~.£:::~;~~ :LC lNC L 
,;, l: ~. ·~~· -;E LD A .. (HI_l 
6E:~.-/ cr::.-;.7 I:: I -,- 4. ,:.; 
(:.[;:~·;· C:47B6E: CI-\LL N;: . F·f;:·l V 
(:.t;:5C 2C lNC L 
6E:~·D i'E LD A .. ( HL. ., 
(:.r:::~~F:. CB6F l:ll C' A ··'·' 
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6860 C47B61":: 
68·!:·3 2C 
6864 7E 
6865 CB77 
6B6i' C47868 
686A zc 
6868 7E 
686C CB?F 
6861:. C47861":: 
6871 7[1 
~.8"/:2 D610 
6874 D607 
6876 6F 
6877 D9 
6878 78 
(:.879 D9 
687A CS' 

(:.[::78 [19 
6B7C 04 
6l~7D 09 
6871:. (:9 

6[::·; F 21 1f::6F 
6882 4~· 
688:;: "/E 
6B84 FEOO 
6Bf::6 CA966B 
6B89 FEFF' 
68f::8 CA9668 
68:3E 21006[1 
6B'7' 1 6F 
6B92 :;:4 
6[39:;: CAA16B 
,~.£::96 04 
(:.[::·;.•7 CAA':·6B 
f::.r::·::.·A 21006F 
(:.[::9[1 I ,~, 

'=··=· 
6H"::-'E c:::: ::: :~: (:. r:: 
(:.[::A 1 o'"ol.: . .: .. _, 
6l::A2 C:3B 161":: 

6l::A~; c:r::·; B 
(:. r::A ·; CAr:: l 6E: 
(:.[,:AA 21 1 :::.:.F 
(:.[:':AD [19 
(:.[:':AE c:::·; :26·; .. 

61':B1 2 1 (H)(:.[I 

.:.r::r::4 :LC 
6t::r:::i CA:iE:6C 
.-,.J::r:::::,: 1609 
r:.t::r::A OEOO 
('.[::[;:(: 1~ ·-· ,<,.[,:BD CAC9b[:: 
l,.l::CI) CBO~i 

(:.£::(:2 [12[::(:(:.[:: 
6BC5 oc 
~·~.r::c,;. c :;: [:: c ·=· [:: 

F'RTY: 

Sl ER F.:: 

ERST: 

CALL NZ,PHTY 
INC L 
LD A .. ( HL) 
BIT (: .. A 
CALL NZ .. F''FHY 
Ir.JC L 
Lli A .. (HU 
BIT i'. A 
CALL NZ .. PHTY 
LD A .. L 
SUB 10H 
:::UB LENGTH- 1 
LD L.. A 
EXX 
LD A,B 
EX>: 
RET 

EXX 
INC B 
EXX 
RET 

LD HL .. [:':UF F' 3+ 18H 
LD B,L 
LD A, ( HU 
CP OOH 
,JP Z, (if< 
CP OFF-"H 
.JP z. m:: 

ERROR: L[l HL.BUFF'l 
LD L .. A 
I r~c ( HL l 
.Jp Z .. O'•'ER 

CW:: Ir.JC B 
.w '- . r~o 

OVER: 

LD HL .. [::I_IFF'3 
LD L .. B 
.JP EH:::I 
DEC: \HL.l 
._lP CAT 

Bll Y.E 
.JF' "t.. CAT 

EXX 
.JP ItJll CYC 

CAT· LD HL .. BUFFI 
:::IPU'::l · It·JC L 

.JP Z . li I :::P 
L[i r_r. 09H 
LD (:.OOH 

F;:EPEI-'11 : DEC [1 

.JP i .. F' UF;·~J 
F;·t_c L 
.JP t·JC.. F;:E:F-'EP.-f 
I t·JC: C 
._:p REPEAl' 
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: Et.J[.1 OF PCHE.Ck 

:GEl PAHITY SlATUS 

.: :::AVE ADDRE:::::: 

.: OE 1· DA 1· A [::YT E 

.: ALL ZERU:<· 

: ALL Z ERU::: 

.N~.Xl LC:CAllON IN HL 
: cor.n 1 NUF.: 

: END CIF h'Ut·r' 
; '{f'_:~: 

: t·!O 
: cur.r, 1 t·ll_lf:. 

: F;·F-. ·: :. lf·>N 1'[1 L':A::: l C ~V·Jli D 1 :'::F'l 
: [,: 1 1 F-·U:::: l ·r 1 ON CUI.IN"I EF;: 
: h:F::=:E'l CCIUNTEh: 

:ALL BllS CHECKED 

.: 1 ::: COUt-JTEh' 
:REPEA1 I_INIIL ALL 



6BC9 i'E 
(:.I'::: CA ~iF-= 

6BC8 i' [I 
6BCC :~F' 
1,.[::(:[1 6F 
(:.[::CE 7E 
f:.BCF ~~~~ 

(:.BOO 7[1 

68[11 21" 
f:.BD:L 6F 
68[1:::: 7B 
6BD4 .:,.,-, 

'-'L 

(:.[::[15 4" ·-' 
6BD6 5i' 
.<;.E:[17 7''1 
68D8 FE01 
f:.BDA CAF06B 
6BDD FE02 
6BDF C:AF96B 
6BE2 FE03 
68E4 CA026C 
(:.[::E"/ FE04 
68E9 CAOB6C 
6BEC 6:=: 
61':::ED c:::B46B 

6BFO 2EOO 
6BF2 CD146C 
(:.BF~· 6C: 
(:.[::f",S C3B46B 

f:.[:::F'::;· 2E10 
{:.[::FE: CD146C 
6l:::F E ,~.::: 

f::.[::FF (:38468 

I:. C02 2E20 
,·:.co4 CD146C 
,_':.(:Owl 6:::: 
6C:o::: c:::r::4f:.B 

~~-:.(:OE: 2E:":o 
.'-.COD CD! 4/:.C 
f:.C 1 0 I ,~, 

'=··-=· 
~~.c 1 l C3B4f:.B 

1:.c 1 ·'I -~~4 

/-.1-.: 1 5 CB40 
(:.C l'i' C44,~.6C 

(:.Cl A 2C 
!:.Cl!': (:[::4::: 
,'-,(: 1 [I (:44.;./:.(: 
/-:.(:21) ~~c: 

r,.c·::l CB':·O 
/:.(::2:~: C4466C 
(:.(:2,~· 2(: 
~~·.(:~~~ er::~.::-: 

t..c::::s r_:44f:.6C 

F'OHW: 

TRCKNO: 

ONES: 

L[i A, ( Hll 
LD E,A 
LD A,L 
C:F-'L 
LD L,A 
LD A .. ( HLJ 
LD D. A 
LD A,L 
CPL 
L[i L .. A 
LD A .. E 
ADD D 
LD [:~, L 
L[i D .. A 
LD A,C 
CP OlH 
,_lP Z .. ONE~:: 
CP O:L:H 
,JP Z, TWO::: 
CP 0:3H 
.JP Z, "f HREEO:: 
CP 04H 
.JP Z,FOURS 
LD L .. B 
.JP STPO::n 

LD L .. OOH 
CALL TRf( ID 
LD L.· B 
._lP O::TPCr:::·r 

LD L, 10H 
CALL TF:f< ID 
LD L .. r:: 
._IF-' :O:TPU::·r 

T HREEO:> LD L 20H 
CALL TF·V.l [I 
LD L· E: 
._IF' :::-IF'CI~::T 

H.IUR:::: 1_[1 1_. 30H 
CALl_ ·r Rf·~ ID 
LD L .. T': 

TRf~ I [1· 

·-'"'' :;n:·(I:=:T 

lNC H 
[:: 1 T I) . r:: 
I~:AL.L NL:. ·:::TCif;: 
1 r·H:: L 
BP 1· r::: 
CALL NZ. ~::TOF' 
lNC L 
[::] T :'. [: 
CALL N'Z, O::TOR 
] NI"_: L 
[:: 1 T ::: . r:: 
CAI. .. L N:O, :31 f.IR 
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;BIT POSll'lONS CHECKED 
:NO. OF lS TRACK ERRORS 
:SAVE IN l'EMP STORE 

: (;ET r.JO (If" 0~:: TRACf< E:.RRCII 
;SAVE IN TEMP STORE 

: 1 OTAL EF\'ROR:; 
: ::::ET AO:: I [rE:. L 
;SET ASIDE TOTAL ERRQRS 
;NO OF' IS IN DATA 

;TOO MANY ERRORS 10 LCI(; 

;SET BASE ADDRESS 

;SET BASE ADDRESS 

:SET BASE:. ADDRESS 

:8LIFF' DISP' ADLrRESS 



c.c:tc :2(: 
(:.(:2[1 CB60 
6C2F C4466C 
(~C32 :LC 
hC33 er::.;.:;: 
t.c::..:s C4466C 
r:.c:::8 2(: 

e.c:::·~· Cl370 
r:.c::::~:: C4466C 
6C:::E. :LC 
f.C:3F CB"/8 
6C41 C4466C 
6C44 .-,.c.: .... _. 
6C45 r·"' __ , 

,;,(:46 7A 
6C47 :::6 
6(:48 77 
6C4<;· CS' 

f:.C4A CB7B 
6C4C C2':566C 
M:4F [19 

c.C~O 1E40 
6C52 [IS' 

t;.(:~.:::: F' [:: 
c.C54 E04D 
f:.C~56 1E40 
{:.(::.::-: F!"::: 
bC~·$· ED4D 

l:.CSB 3EOO 
(:.(:~;[1 D:::oo 
t:·C':'oF C9 

f:..c.;.o (:[11)901 
(-. (.:(:, ::: 21006E 
(:.(:.~ .... :;. 1'?' 
c. er:. 71 46 
(:.I ::r:.::: :~:EOO 

f:.C6A CDOC:Ot 
/:.C•=·D CS 

/-,1- 00 

EXIT: 

lr.JC: L 
BIT 4,E: 
CALL NZ .. ::::TCIF': 
JNC I_ 

[:: IT ':'• , r:: 
CALL t·JZ. '::TCIF': 
INC L 
I:: IT (:., [;: 
CALL NZ . :::TOF': 
INC L 
E:IT "/. B 
CALL NZ. ::noR 
[11:-:C H 
f':ET 

LD A, [1 

ADD A. (HLl 
LO ( HU. A 
F.: E.,. 

._rp NZ, NOCHC;E. 
CHANOE: E.XX 

LD E,40H 
EXX 
El 
RETI 

NCICHOE LD E.40H 
EI 

D I SP: 

t:~UF F 1 : 

BUFF2: 

h'ETI 

LD A .. OOH 
OUT (OI)H). A 
RET 

CALL 1_1:0:1'''./F' 
LD HL, I::l_lf'f-'2 
ADD HL.. DE 
LD [;:. <HLl 
L.['l .A .. C•OH 
CALL u·::r:;·1,r1 
f''ET 

cso 

;(;El LIPDATE VALLIE 
·' A[1[1 TO TALL'>' 
·' RE-:::1 Of':E 

' .· REG I :::·1 E::f'::::·~, 

'NO . 

.• ::::TOP THE LIECY: 
.: RETI_IRN TCI GP,::: 1 C 



C::UF' F' ::::. 
OF;·(; ~~ ')(:,f;.H 

BUFEND: 

BASE NU· 

/:. ·;··_;·[1 AG~·ir·N .~.'i6E AHEA[I 1:-A6:::: Al_m.Jc' ·~'":· •;· a. r: E:ACf·:·1 .:. ·~·~=· -.. FAO.::::::: 
''/!)!) 1 [::f.:,·:;:E::,N[I 01 1 •0• ·-· E:BUFV ~:-·;·~;;:: E:E:J; 1 N (-.A:,E E:FULL .~.AE: C, B 1 -, CCIFo: 
6'~·(:6 [;':t-l()1:>h:Y ~/000 BUFEND f:.DOO BUFF! ,:.E:OO r::u;:: F'::: .~.F-=00 E:Uf-;:: :~·.: 

1.'.1,:1:: 1 CAT ~:-·:;·oA CENTF:·E f:.C4F CHANC;E ,:.·;·oo CLir-w: ,;.ACE CC,r-J\/ 
{:.A(:,:. CCIPC T oooc CTCl 000[1 CTC"L oo::::7 0~ OOnA lll:-.1_ 
b~' l J.:; Df:.LA f:.·::.-oE DELAY (:.'?'2:£ LIEU·: :~.(:~.[:=: [1 T :::p f:,A[O,[I ECH<-:: 
(:.A~.:.~4 EDGE bA[I7 ENDCON f:.AF:::: Et.JDCOF· ,;.AEF- EHA .:.AA.S Ef'.'F 1 NE 
t:.t~~~c F-~ F:h·l f''O f:.Af:':<:: ERF:::O:NE f:.A<::F EF!I';:;O:F'O t':.C1[:6 EPF·t·lE.C; 6[:::::::!:: E:.r.:FOh' 
f:.A:~:D EF'n:f'·o::: .:.c::::~: ER:::r 6C4A I". X TT 6A 1::,: F TR::::l ,~.r::c:·:;.· f' OF:~.J 

~~-c:or:: FCII_Ih:::: f:.A07 C;NI I:S72 JNTTCT ooo::: LED::: ooo:=: LEt·l(;TH 
6914 LCII)P ,;.A4C MIDL f::.A41 MINPD ·~·BA~· ND f:.A71" NLII:INE 
,;,•;•[i() t·JEOPD bAA:::: NEND ~.c~~c. t·JOCI--JC;E ~~.!39'=· 01::: ,:.·~·:L·:;;· Ot·l 
t:-A 1 A ur-JCNF;· r'::-BFO ONE::: 01 1L OU! t·1X <':.E:A 1 OVEFo: ·SA-.;-:::: P(~F.'l ~.JJ:;, 
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010(1 
OOOA = 
0~30(1 = 

0100 F:::~ 

0101 CD/401 
()104 COA101 

010'7 3E05 
0109 D800 
() 1 (>8 CDA/01 

(11 OE C3!:•301 

(l 11. 1 [1801 
0113 1F 
0114 [1211 01 
011/ 1F 
0118 DA5901 
011B 0805 
011 D 6F 
(>!. 1 E AC 
011 F 65 
012(1 2F 
0121 AO 
0122 4F 
012~3 ~3E85 

0125 [l:j(1(l 
(112'1 ~:E05 

(>129 [13(l(l 

0!28 [1801 
f>t2D 1F 
012E [122B01 
0131 1F 
0132 [IA5901 
013~· [180'5 
( 1 13'1 ED47 
(l 13'"' AC 
013A 2F 

ORG 0100H 
DEL=OAH 
TABLE=0300H 
; *L 

_, ISS[IEC 

; TO READ DATA 
; IN !SS FORM .DECODE AND 
; OUTPUT 

; 20/6/1985 
;OUTPUT PORT P108A 04D,06C 
;READ DA'I'A P108B 050,07C 
;WRil'E CONTROL & FLAG RESET 
; (BIT "!) P 1 07A OOD, 03C 
;READ FLAGS P1078 01D,03C 

or 
CALL IN1T3 
CALL STOP 

READ: LD A .. 05H 
OUT < O(>H J , A 

AGAIN: CALL DELAY 

,_lp M(IN I 'J 1 

MONIT2: IN A.· <01H) 
RRA 
.JP NC, MON IT 2 
RRA 
,_lp c. MCI~ll T 1 +6 
IN A .. <05H1 
LD L,A 
XOR H 
LD H .. L 
CPL 
AND 8 
LD C .. A 
LD A .• 85H 
OUT <OOHJ,A 
LD A,05H 
OUT <OOHJ.A 

MONIT3: IN A.· <01H) 
RRA 
,_lp NC, MON I r;: 
RI': A 

·'~:::ET TO 
_,READ 

_,LOOK AT FLAG 

; FLAG NOT SET 

·'START OF 3-BIT. GROUP 
; INPUT 2ND COOEWORD 
'SAVE INPUT 
;DECODE CODEWORU 

;OR 1s1· ~2ND CODEWORD 

; PESET FLAGS 

; LOOK AT FLAG 

JP C,MON1'11+6 ;START OF 3-BIT GROUP 
IN A, <05Hl ; INPUT 3RD CODEWORD 
LD I,A ;SAVE !~PUT 

XOR H .;DECODE CODEWORD 
CPL 
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01 ::~8 57 
013C Al 
0130 2F 
013E 4F 
01 ::~F [19 
0140 A2 
0141 6F 
0142 '79 
0143 2F 
0144 Ll9 
0145 A3 

.. 6f46-5A ... 
0147 [19 
0148 85 
0149 [1~304 

0148 3E8~:'> 

0140 D800 
014F ~3E05 

0151 [1~.:'100 

01'53 08(>1 
0155 1F 
0156 [125::::01 
0159 ED57 
0158 67 
015(: DB05 
(>15E 6F 
015F AC 
0160 65 
0161 2F 
0162 47 
0163 [19 

0164 79 
('16!'::· A(> 
016~. [19 

01,S7 [1::~04 

0169 ~3E85 

0168 cr::~r.>r.> 

016[1 3E05 
0161" [13(1(1 
0171 (:31101 

0174 3ECF 
0176 [1';:03 
0178 :::~E03 

() 1 ~I A [r:;:(13 
(ll 7 c ::::E(li' 
017E [130~.?. 

0180 3E00 
0182 [18(12 
0184 ::::EOF 
(1186 [1::0:(12 
0188 3E07 
018A [1::0:02 

L[l [1, A 
AND C 
CPL 
LD C .. A 
EXX 
AND [I 

LD L,A 
L[l A, C: 
CPL 
EXX 
AND E .. , - ... 
L[l E,D 
EXX 
OR L 
OUT < 04HJ. A 
LD A,85H 
OUT (OOHJ,A 
LD A,05H 
OUT < OOH J • A 

MON IT 1 : I N A.. < 0 1 H J 
RRA 
._rp NC .. MON IT 1 
LD A .. I 
LD H,A 
IN A, <05HJ 
LD L,A 
XOR H 
LD H,L 
CPL 
LD B,A 
EXX 
LD A,C 
AND 8 
EXX 
OUT < 04HJ, A 
LD A .. 8'5H 
OUT <OOHJ,A 
LD A .. OSH 
OUT <OOHJ,A 
. .JP MON 1 ·r 2 

INIT3: LD A .. OCFH 
OUT < O::O:H .l , A 
L[l A, O::O:H 
OUT ( (1~3H J , A 
LLI A, 0"/H 
I)UT ( (l::O:H l . A 

INl T2 L[l A, OOH 
OUT <02HJ,A 
LD A,OFH 
OUT < o:~H J , A 
LD A.· 07H 
OUT <02HJ,A 
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; OR 1ST, 2ND!!<3RD CODE WORDS 
;SNZEROS MASK IN C 
;SWil'CH TO PRESENT DATA 

;GET PNZEROS MASK 

;SWITCH TO SUCC'DATA 
;AND WITH COMP'OF PREV'CODEWORD 
; SA.VE PRE.'V;CODEWciRb LAST- Bl T COt 
;SWITCH TO PRES'DATA 
; FORM 2ND [lATA WORD 

; f;:ESET FLAGS 

;LOOK AT FLAGS 

'FLAG NOT SET 
·' GEl LAST INPUT 
; PUT LAST INPUT IN "PRES" H 
; INPUT 1ST CODEWORD 
·' SAVE INPUT 
; [lATA WORU IN A 

; PUT COMP • IN l:l 
;SWITCH '1'0 PRESENT [IA·I·A 
;GET PNZEROS MASK 

;SWITCH TO SUCC' DATA 
;OUTPUT 1ST DA'I'A WORD 

' i''ESET FLAG~; 

' 8 I 1 MOLl!: 
'Bl TMODE 

;SPECl~YLINES (l, 1 AS INPUT 



018C 3EOF INIT6: Lll A,OFH 
018E 0306 OUT <06H) I A 
0190 8E07 LO A .. 07H 
0192 [1306 OUT <06HJ,A 
0194 3ECF IN 117: LO A .. 110011118 ' [::I TMCIDE 
0196 [180"7 OUl <Oi'HJ,A 
0198 ::~EFF LO A,OFFH 
(l19A [13(1"7 OUT <07Hl,A 
01.9C 3E0'1 LD A,00000111B 
(ll9E [.13(1"1 OUl <07HJ,A 
01AO C9 RET 

01A1 3EOO STOP: LO A,OOH 
01A3 [1300 OUl (00HJ,A 
01A5 E040 RETI 

01A7 :3EOA DELAY: LD A, DE!-
01A9 2600 LD H,OOH 
(J1 AB 2EOO LO L,OOH 
01AD 24 LOOP: INC H 
(J 1 AE CAB401 ,Jp z .. I:JELA 
0181 C~3A001 ,Jp LOOP 
0184 2C DELA: INC L 
0185 CABB01 ,Jp z .. [l!::u:: 
(J1 88 C8AD01 .JP LOOP 
('1 BB 30 DEL8: DEC A 
01BC CAC201 ,Jp Z,ON 
01BF c:.::Auot ,_rp LOOP 
01C2 cq ON: REl 

(lf_J(l0 ENU 

0108 AGAIN (H) (lA DEL 0184 DELA 01 A-/ liE LAY 01BB DELB 
Ot80 1NIT2 0174 !NIT::: 018C 1Nll6 0194 INIT7 01AD LOOP 
01~·3 MONI11 0111 MONIT2 0128 MC1Nll3 01C2 ON 0107 READ 
1)1 A1 STOP 0300 TABLE 

NO ERRORS 
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01 (H) 

02FO = 
(l(l(JA = 
O:j(l(l = 

0100 F3 
r"l101 C[rA301 

,., 1 (>_4 21 (l(l(f.:l LIST 
0107 3E3C 
(l109 "17 
010A 2C 
'.!108 :::1E24 
(11 0[1 "17 
('1 OE 2C 
I) 1. (lF' ~:1E18 

IJ111 77 
0112 2C 
011::.; :3EC3 
'1115 T1 
(' 1 16 2C 
(' 117 3EFF 
,., 119 77 
(' 11 A 2C 
I) 118 :~1E24 

''1. 1 D 77 
(11 u:: 2C 
( 1 11. F 3E[r8 
'.l121 77 
,.) 1 L:-~ 2C 
'~t2~~ :~EOO 
(>125 ·n 
'"'1 ~~~. 2C 
(l t 2"/ c:zo~;o 1 

Of<G 0100H 
TA8LE=02FOH 
UEL=OAH 
POINT =O~.:lOOH 
*L 

: ISS2/3 ENCO[rEF< 
;REWIND .I.APE AND WRITE 
.: I882/3 ENCODED [rATA @ 10KBS 
; FROM CHECKL I 8T 

; 26/2/1985 

:WRITE PORT P108 04[1,(l6C 
;READ POF<·r P108B 050, 17C 
;WRITE CONl"ROL P107A (l(I[I,02C 
:READ CONTROL P1(l78 01D,03C 

:REG 8 HOLDS NEXT. MASK 
:REG C HOLDS CURRENl. MASK 
:REG D IS TE~PORARY STORE 
; REG E HOL[rS M(l[r!FY MASK 
:REG 8' HOLDS OLD OUTPUT 
:DA"IA ADDRESS, CHLJ 

[I I 
CALL RESET 

LD HL,POINT ; PUT [lATA 
LD A, ~.:lCH ; RECORDED 
LD C HLJ, A 
INC L 
L[r A.· 24H 
L[r ( HLJ, A 
INC L 
L[l A, 18H 
Llr C HLJ, A 
INC L 
L[l A,OC3H 
L[l ( HLJ, A 
INC L 
LD A, (lFFH 
LD ( HLJ, A 
INC L 
LD A.· 24H 
LD ( HLJ. A 
INC L 
L[l A, oot::H 
L[r ( HU, A 
INC L 
LD A, (l(lH 
L[r ( HLJ, A 
INC L 
.JP N"i:, Ll::n+01H 

css 

TO 
IN 

8E 
LIST 



012A CDAC01 

012D CD0202 
~) 1 ~~(l :.:1E08 
('132 (.1300 
(>134 FB 

0185 (I (I 

0136 C33501 

0139 CD0202 
1)13C OD 
(113[1 CA4201 
(>140 F:.:1 
0141 76 

(1142 3E01 
0144 D:3oo 
0146 CD0602 
01.49 3E02 
0148 4F 
(' 1. 4(": 3E07 
1)14E [1300 

(J150 CDF201 

(>1 ~3 :.:1!:'.95 
0155 [130C 
Ot57 3E12 
Ot5~ !:noc 
(>158 FB 

01")(: 2C 
UJ'5D 7E 
I) 1 ~·!::. '57 
(~ 1 5F 1C 
fl.l 6(> "If: 
0161 B2 
1)162 47 

0163 79 
0164 2F 
111 (:.~ 8(1 

0166 47 

() 11':· ~I ':!C 
O!t;.r-:: ·.'I:: 
('169 ~F 
0!.6A 8(> 
0168 2F 
1)1 (:..(: 5F 
(>! ":·D 2[1 
(• 16E 2ll 
0161" 2D 
017(> '/E 
01"11 2F 
0172 Al 

01 r:. 1600 

CALL INITREG 

REWIND: CALL STOP 
LD A,08H 
OUT <OOHJ,A 
EI 

WAIT: NOP 
. .Jp WAIT 

FIN: CALL STOP 
DEC C 
,_lp Z, WRITE 
DI 
HALT 

WRITE: LD A,01H 
OUT <OOHJ,A 
CALL DELAY 
LD A,02H 
LD C .. A 
LD A .. 07H 
OUT <OOHJ,A 

REGINIT:CALL REGIS 

TIMER: LD A,95H 
OUT < OCH l , A 
L[l A, 12H 
OUT < OCHJ .. A 
EI 

FORMASK: Il\lC L 
LD A, <HU 
LD D,A 
INC L 
LD A .. < HL l 
OR [I 

Lll B.. A 
LD A,C 
CPL 
I)R 8 
L[1 B .. A 

INC L 
Lll A. ( HU 
CPL 
,JR B 
CF'L 
LU E,A 
UEC L 
DEC L 
[If:(: L 

ENCODE: LD A, <HLl 
CPL 
AND C: 

LD [1. OOH 
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; SET TRANSPORT 
; TO REWIND 

;WAIT FOR REWIND 

; STOP THE TAPE 
; IF INIT REWIND 

; WRITE ENDHI 

; SET 
; TO PLAY 

; SET PASS on R 
.: T0>1 
; SET DECK 
; TO WRITE 

;LOAD CONTROL WORD 

; LOAU TC 

; GET 2ND ~JOR[I 

; STORE 

;GET 3RD DATA WORD 

; SAVE NEXTMASK. ILLEGAL 
;GET CURNT ILLEG SEQ 

;TERMIN CURR ILLEO SEQ 
;SAVE NEXT MASK ILLEG 
;SEQUENCES IDENTIFIED BY ZERO 

; GET 4TH W:.1FW 
;LAST BIT IDEI\lT BY ZEROS 
; AND "LEROS 
;MODIFY MASK, ZEROS 
;SAVE MODIFY MASK 

;GET 181 DAlA WORD 

;SET 3RD WORD OF PREVIOS 
; ILLEGAL SEQUENCE 10 ZERO 



0175 CB42 
017"7 CA7501 
017A 7E 
1)178 57 
017(.: 2C 
017D 7E 
017E 8~3 

017F A2 
01.80 At 
0181 1600 
(1183 CB42 
0185 CA8301 
0188 7E 
0189 83 
018A 2:F 
0188 At 

- Ql_~ __ g:OO 
(l18E CB42 
0190 CA8E01 
(l1 9~=~ 48 
0194 2C 
0195 C35C01 

(1198 09 
I) 1 9~-'1 AB 
019A 47 
(l19B 09 
019C 0~304 
019E 1601 
01AO FB 
(' 1 A 1 ED4D 

01A3 21AA01 
01A6 E5 
01A7 E5 
01A8 E5 
01A9 E5 
01AA ED4U 

01AC ED5!:: 
OlAE ~~ 1 F002 
0181 7C 
0182 EU4? 
0184 FD213901 
0188 FD22F202 
01BC 3E02 
l.ll BE 85 
n1Bf' [13(>:;: 
(>1.(.:1 ::~E4F 

01(.:3 [1~~03 

01C~· FD219f301 
('1 C9 F [122Fr::oz 
OlCD 3E08 
01CF 8~5 
() 1 [1n D30C 
01[12 3E8i' 
01l14 [1303 
01[16 3E(l(l 
() 1 [18 [1306 
01DA 8FlF 
01l.lC ll3(l6 
(l1l1E 8E07 
OlEO [1:'306 

WAIT1: BIT (), 0 
.JP z .. WAI1 1 
LD A .. < HU 
LD O,A 
II\IC L 
Lll A, I HU 
OR E 
AND D 
AND C 
LD [1 .• OOH 

WAIT2: Bl T O, D 

. -
WAIT::~: 

._rp Z, WA IT2 
LD A .. < HL) 
OR E 
CPL 
AND C 

_ L~ D! OOH 
BIT O, 0 
.JP Z, WA1T3 
L[l C .. B 
INC L 
._lP FORMAr:¥ 

INTRUPT:EXX 
XOR B 
LD B,A 
EXX 
OUT (04HJ,A 
LD D,OtH 
El 
f':ETl 

RESET: LD HL,PRESET 
PU':>H HL 
PU~:H HL 
PUSH HL 
PUSH HL 

PRESET: RETI 

INlTREO: 1M2 

;GET 1ST DATA WORD 
; ST(IRE 1ST OAT A WORD 

;GET 2ND DATA WORD FOR USE 
; MODIFY APPROPRIATE BITS 
;AND WITH 1ST DATA WORD 

;GET 2ND DATA WORD FOR OUTPUT 
;MODIFY APPROPRIATE BITS 

; NEXT MASK 

;XOR WITH OLD OUTPUT 
;STORE-BECOMES OLD OUTPUT 

LD HL,TABLE ;BASE VECl ADDR 
LD A,H ;HIGH BYTE OF AD 
LD l,A ;SET INT REO 
LO lY,FIN ;ADDR OF HALl. 
LD 11A8LE+02HJ, IY ;SEl VECl 
UJ A, 02H 
A[l[l A, L ; L(I~J BYTE OF TAB 
OUT 103HJ,A ; INTO POR·1· 03H 
LD A,4FH ;SET PORT 03 
OUT 103HJ,A ;FOR INP HANDSHK 
L D 1 Y. I NTRUPT ; ADDR OF OUTPUT 1 NO::: 
L[' I TABl.E+08H), IY.; SET VEC:l 
LD A .. 08H 
ADO A,L ;LOW BYTE OF lABLE 
OUl IOC:Hl.A 

ENPIO: LD A,87H 
OU1 <08HJ.A 

INIT6: LD A.OOH 
(II_IT ( (l6H), A 
LD A .. (>FH 
OUT < 06H) , A 

DISIN: LD A,07H 
OUT I 06H), A 
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; ENABLE PlO 
; lNTS 
; IN1 
; VECTOR 
;SET PORT 06 FOH 
; (IUTPIJT HANDSHK 
; lliS 1Nl 
;FROM PORT 06 



01 E~! 3E00 1NIT2: LD A,OOf:l ; lNT 
01E4 [r'302 OUT ((l:2HJ,A _; VEC"TOR 
01E6 3E(>F LD A .. OFH _;SET PORT 02H 
01E8 [1302 OUT (02Hl .• A ; FOR OUTPUT 
OlEA 3E(ll [t IS 1 NT: LD A,07H ; DIS INT 
01EC [13(>2 OUT (02HJ,A ; FROM POR"T 02 
f.l1EE ~.:1E01 PAS: LO A,01H _;PASS REG 1NIT 
Olf'O 4F LD C:,A 
OlFl C9 RET 

01F2 0600 REGIS: LD B .. OC>H 
(llF4 OEFF Ut C .. OFFH 
01f'"6. 1600 LD D .. OOH 
01F8 lEOO LD E .. OOH 
01FA 21 (_)(>03 LD HL,POIN"T 
01FD [19 E::XX 
OlFE 0600 LD B .. OOH 
0200 D9 EXX 
0201 CS' RE"T 

0202 3EOO STOP: LD A,OOH ; SET DECK 
0204 [1300 OIJ"T ( OOH l , A _;TO S"TOP 
0206 3EOA DELAY: LD A, DEL 
0208 2600 LD H .. OOH 
020A 2£::.(1(1 LD L .. 00H 
020C 24 LOOP: INC H 
0200 CA13(12 ,Jp Z. [tELA 
0210 C30C02 .JP LOOP 
0~13 2C [tELA: INC L 
0214 CA1A02 ,Jp Z .. [tELB 
0217 C30C02 ,JP LOOF' 
021A 3[1 DELB: DEC A 
021B CA2102 .JP z .. oN 
021E:: C:':(>C02 ~lP LOOP 
0221 ED4D ON: RETl 

o:;:oo Of.~G 03(>(1H 

0300 ltEFS (>OFFH 

(l(l(l(l END 

()(l(>A ltEL 0213 DELA 0206 DELAY 021A DEL[:: OlDE DISlN 
OlEA D I~; I NT 0170 ENCOLtE 01[12 ENPIO 0139 FIN 015C FORMAS 
01E2 HHT2 01[16 HJI 16 01AC IN I Tf.~E (J198 INTRUP 0104 LIST 
020C LOOP 0221 ON OlEE PAS (1:~:1)('1 PCti Nl 01AA PRESEl 
0150 REGINI 01F2 REGIS 01A3 RESE"T 012[: RE~J I Nll 0202 STOF' 
02F0 TAI':':LE 0153 TIMER 0135 WAIT 0175 ;.JAIT1 0183 WAIT2 
01SE ~JA I 1 8 0142 WRil"E 

NO ~~Rf.:Ctf-,·~: 
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