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Abstract

This thesis is concerned with the application of Modulation and Error Correction 

codes to Digitally Recorded Magnetic Data.

The effects of these coding schemes were measured against bitshift errors which are 

induced by different Non Clockloss Error Mechanisms. These Error mechanisms are 

Noise and Inter Symbol Interference, ISI. The Thesis has an extensive literature 

survey which can be divided into four main areas: Error Control Coding, 

Modulation Codes, Recording Techniques and the Recording Process.

The theoretical and experimental results involving the Non Clockloss Error 

Mechanisms and their effect on the data, were derived by Monte Carlo computer 

simulation. Four channel models were used, for uncorrelated noise, correlated 

noise and the convolution of these with ISI. The model for ISI was developed 

assuming a symmetrical replay pulse for two separate types of modulation coding. 

Two different Error correcting codes were used, these are the linear BCH code and 

the Non-Linear Reed Solomon Code.

The results of this thesis conclude that the effects of Tape Noise and ISI are 

independent pulse to pulse. A strategy was developed for pulse reconstruction for 

Manchester Modulation code. The phenomenon of bitslip was found to be more 

prevalent in fixed pulse rather than fixed rate codes.

xn



Chapter 1

Introduction and Summary

All Recording media whether a disc or a tape can be regarded as a channel between 

the input and output heads. The characteristics of the recording channel vary 

according to the media used. There are three types of Recording Media in common 

use:

Thick Film Magnetic Recording. Which is cheap erasable and robust > though 

giving only a limited media life, low data densities and high error rates,

Thin Film Magnetic Recording. This is erasable with high data densities and low 

error rates. However it is not robust. A thin film drive system when in operation 

cannot be moved for fear of the heads crashing into the media, and is 

comparatively expensive to buy,

Optical Recording. This has high data rates and low error rates in addition to being 

robust and offering a permanent method of storing data. However an Optical 

recording cannot be erased and overwritten. In addition optical technology is still 

comparatively expensive.

Optical Receding is different to Magnetic Recording as it stores information by the 

length and the gaps between a series of pits etched into the surface of the media. In 

Magnetic r cording a transition in the current of a coil induces a reversal in the 

magnetic flux in the media. This flux reversal is translated into a voltage pulse at 

the recording head This work is primarily concerned with thick film magnetic

recording. This work proceeds by theoretical analysis and computer simulation.
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The simulation results confirm the theory and allow trends for lower error rates 

to be drawn.

The work can be divided into two sections; the first consists of a survey of the 

salient points in Magnetic recording:

(i) A model of the Recording Channel detailing how the recording is 

stored on the Media. In this section the actual physical process of 

recording is discussed.This is followed by a discussion of the inherent 

(t\ echanisms by which errors are propagated in the magnetic recording 

system. The effect of recording density on the Error Mechanisms and 

their propagation is discussed.

(ii) The different methodologies for recording and storing data are 

discussed. These are compared and contrasted for their differing 

advantages and disadvantages for high density recording. This includes 

a discussion of media, recording heads and the mechanics of the 

recording system.

(iii) Several different schemes for error correction and detection are 

examined and compared. These can be partitioned into two distinct 

groups, Linear and Non-linear codes. Linear codes treat the data as a 

series of single bits each bit being independent from the next. 

Non-Linear codes group the data into a block of bits and the 

algorithm then encodes over these blocks.

(iv) A comprehensive study of Modulation codes was conducted, both
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direct and block codes were considered. These were contrasted and 

compared for their runlength constraints, ability to reduce error 

propagation and their resistance to the common error mechanisms. 

Those codes which combine both the runlength properties of 

Modulation codes and Hamming distance properties of error correction 

codes are also discussed in the section on modulation codes.

The second section consists of the theoretical results which were derived and 

tested by computer simulation. The principle areas of interest to the investigator 

include:

(i) The correlation pulse to pulse of the two primary non-clockloss error 

mechanisms. The effect of this correlation was measured against both 

Linear error correcting codes, BCH, and Non-Linear block code Reed 

Solomon;

(ii) The phenomenon of code aliasing was examined. This occurs in error 

correction codes where the number of errors is greater than that which 

will be corrected by the Hamming distance. The code then "correct" the 

bits in error shown by the syndrome whether these are erroneous or not;

(iii) The ability of some modulation codes to allow the recovery of a 

transition lost from the centre of a data window. This is achieved by 

relying on the redundancy of the code caused by the extra transitions 

which may.be present at the end of the data window.

However there are a number of assumptions and simplifications used in this work
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these are:

(i) The assumption of a symmetrical replay pulse ensures that the model 

for ISI induced bitshift is not stringent enough, gs the symmetric replay 

pulse leads to cancellation in the ISI from pulses directly opposite the 

pulse in question;

(ii) Due to the constraints on computing time, most simulation results are 

not presented at operational error rates. However these results are 

published and may act as a comparison. Indeed the models for the 

higher error rates may be extrapolated from the theoretical results and 

those error rates achievable within the constrained computing time.



Chapter 2

The Digital Recording Process

2.1 Introduction to Chapter 2 

2.1:1 Introduction

This chapter offers an account of the recording process, and the mechanisms 

which may cause error in the recording system. A schematic diagram of the 

recording process is given in section 2.1.1. The blocks of this diagram are then 

described, giving the purpose of each one. However several areas of the recording 

system are dealt with in greater detail in sections. 2.2-2.5 These include:

(i) the method by which data is recorded onto magnetic media;

(ii) the perception of the recording media as a channel;

(iii) a description of errors in the readout of data;

(iv) a discussion of the importance of good clock recovery;

(v) a discussion of the mechanisms by which the errors are generated.

2.1:2 Schematic Diagram of the Recording Process

A block diagram of the recording process is shown in Figure 2.1
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Figure 2.1 Schematic Diagram of the Recording Process



In the above diagram the function of the individual boxes are given by: 

Input Data as a Fseudo Random Binary Sequence

All the statistics of the considered error mechanisms depend upon a stationary 

random distribution of magnetic pulses upon the tape. Hence a Pseudo Binary 

Sequence is used for the Raw Data.

Error Correction Code

Error Correction Coding adds redundancy to compensate for the effect of errors 

introduced into the recording process. This may be done using several algebraic 

methods which are described in Chapter . However in selecting the type of error 

correction code it is first necessary to derive a model of the tape errors.

Modulation Codes

The modulation codes match the raw encoded data to the channel. They add 

redundancy to the original data and hence create a facility for error detection and 

correction in addition to that given by the error correction code. The modulation 

code also allows the frequency response of the recorded data to be matched to that 

of the channel. The system clock is established at this juncture, to enable the 

recording to avoid bitslip errors.



Driver Circuits

The driver circuits convert the modulation code to a series of electric pulses in the 

recording head.

Recording Heads

In the recording head a step change in current induces a change in the magnetic 

flux in the tape. The recording is made at the trailing pole of the recording 

head[2.1], as the magnetic flux falls below the critical threshold required to alter the 

state of the particles.

Recording Media

The recording tape is assumed to be a thick film (greater than Sum in depth). 

Recording occurs in both the longitudinal and perpendicular planes. However in 

most models of the pulse only the longitudinal plane is modelled.The tape moves 

past the heads at a fixed speed. The tape is the dominant source of error in the 

recording system [2.1]. To give the best results the media should not be saturated 

with 4W as this will cause fringing fields around the head as well as crosstalk 

from the adjacent recording tracks [2.2].

A binary digital recording has only two possible states, represented by a one and a 

zero. In magnetic media these are represented by a magnetisation of the 

particles. This is shown below in Figure 2.2 [2.4]. The arrows represent direction of 

flux of the particles and TP represents a transition point



TP

Figure 2.2 Magnetisation of Particulate media 

Read Head

At the read head the change in magnetic flux induces a voltage pulse which is 

proportional to the rate of change of the current in the write head.

Equaliser and Amplifier

The signal from the read head is first amplified and then equalised. Equalisation 

reduces the channel errors, equalises the effect of the channel and is used in the 

pulse shaping which is necessary for differentiation.

Differentiator

Differentiation is used in modern recording systems instead of integration, as 

differentiation slims the replay pulse while integration broadens U:, Pulse 

slimming is necessary as the dominant error source is Inter Symbol Interference,



(ISI) which is reduced by slimmer pulses[2.2,2.3]. However the differentiator 

increases the level of noise which would have been reduced by integration. In 

addition the differentiator acts as part of the equaliser, as it is a high pass filter.

Detection

The detection of the differentiated pulse is through a zero crossing detector. 

Recording errors are manifested by the zero-crossing being translated out of the 

region of tolerance. The phenomenon of translation is called bitshift. The region 

of tolerance is called the Timing Window.

Clock Generation

It was stated above that the clock generation is achieved by the modulation code. 

For good clock generation the modulation code should have a relatively uniform 

length of gap between neighbouring pulses.

Demodulation and Decoding

Demodulation and Decoding are the inverse procedures from modulation and 

Error Control Coding.
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2.2 The Recording Media as a Channel 

2.2:1 Properties of a Channel

The theory of digital recording discussed in this thesis may be regarded as an 

analogue of communication theory because both are concerned with transmitting 

and processing of signals in channels. However there are several important 

differences between the two topics.

Firstly in communication theory the channel is normally regarded as being linear 

while it has been shown by that the channel for data recording is actually 

non-linear[2.5]. These non linearities in magnetic recording can be caused inter 

alia, by:

(i) tape surface asperities and substrate inconsistencies. These alter the head 

to tape gap, which in turn alters the response of the channel. This has a 

greater effect upon high frequencies than it does on low frequencies;

(ii) the positioning of the read/write head which effects the head to tape gap; 

(iii) tape saturation, this leads to non linear readback effects;
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(iv) the varying radius of the tape tracks in disc drives. This leads to a 

variation in linear density of up to 100% of the original value, in 

addition the thickness of the head to media air film can be altered by the 

changes in the disc head speed.

Such non-linearities necessarily lead to a more complex model of the recording 

process. This is described by Lin and Wood [2.6].

The second major difference between recording and communications channels is 

in the sources of error. In the latter this is electronic noise, while in the recording 

channel most errors are introduced on the recording media.

2.2:2 Timing Windows

In modulation codes the presence of a zero-crossing within a timing window is 

represented by a one, while a timing window without a zero-crossing is 

represented as a zero. A recording error will occur when either a zero-crossing is 

not present in a timing window where it should be or if a zero-crossing is 

translated from one timing window to the next. To prevent the translation of bits 

into adjacent timing windows, these may be separated by guard bands. The size of 

the timing window is thereby reduced.

12



2.2:3 Bitshift Induced By Non-Clockloss Mechanisms

The position of the peak of a transition will be shifted from the centre of the 

timing window by Noise and Inter Symbol Interference. The amount by which the 

peak is shifted can be found from the equation given by Schouhammer 

Immink[2.7]

r(t)=Zx 1 g(t-1T b )

where :

r(t) is the received signal; 

i is the number of interfering symbols; 

T b is the fundamental distance of a digital tape 

recording, which is defined to be half the reciprocal of 

the linear densityj

Xj   {-l,l}are two valued quantities which are

produced every T^ seconds;

g(t) is impulse response of the channel;

Nw(t) is additive white Gaussian noise.

The translation of the replay pulse peak is known as bitshift and can be caused by 

most error mechanisms. To generate an error a replay pulse peak is translated out 

of the timing window. The effect of bitshift can be illustrated below in Figure 2.3.

13
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Figure 2.3 Timing Window showing Bitshift

In the figure the bold line represents the correct position of the replay pulse in 

the timing window, while the hosV line represents the replay pulse after the bitshift 

due to noise and ISI.

2.3 The Recording Process 

2.3:1 Pulse Shape

The shape of the recorded pulse is very complex. It consists of a longitudinal path 

and a lateral spread across the recording media[2.8]. This can be seen in the 

diagram below where the longitudinal direction is marked as Mx and the 

perpendicular direction as My. However in this work only the longitudinal 

direction of recording will be discussed.

14
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Figure 2.4 Perpendicular and Longitudinal recording

In common with all mathematical modelling several assumptions have been 

made. The most significant are[2.9]:

i) uniform tn edia thickness;

ii) infinite head permeability;

iii) infinite track width;

iv) magnetisation is purely longitudinal and of constant magnitude across the

medium.

The implications of these assumptions may be assessed by comparison with 

practical measurements. There are several models for the isolated replay pulse

produced by the longitudinal recording component. These are listed below in
15



order of increasing accuracy;

Gaussian [2.10] 

Lorenzian [2.11] 

Eldrige[2.12] and Speliotis [2.13] 

Middleton and Wisely [2.14]

Gaussian:

Early work in this field assumed that the pulse has a Gaussian shape[2.10]

e(t)=exp (-(*/<,} 2 ) (2.2)

Where;

t is time, relative to the pulse peak;

d is the half pulse width, defined at the (1/e) point.

This expression for the replay pulse is purely longitudinal with no allowance for 

perpendicular recording. The lack of lateral spread assures symmetry, while the 

true replay pulse is asymmetric.

Lorenzian:

Mathematically this is represented by [2.11];
e(t)= V 0____ (2.3) 

(1 +(t/t50 )2)

Where;
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V 0 is the peak replay voltage; 

t is time relative to the pulse peak; 

is the half pulse width.

The Lorenzian expression assumes an arc-tangental recording current transition 

which is an improvement upon the transition assumed by the Gaussian 

expression given above in Equation 2.2.

Eldrige and Speliotis:

Eldrige[2.12] and Speliotis[2.13] derived a pulse shape:

e(x) =K Infix 2 + (d+D) 2)1 (2.4)\f(x 2 + (d+D) 2)1
I U 2 + d 2)J

Where ;

t is time, relative to the pulse peak; 

v is the head to media replay speed; 

x is vt;

K is a constant of proportionality; 

d is the head to media separation; 

D is the lesser of the medium thickness and depth of recording.

The expression in equation (2.4) above again gives a symmetrical replay due to the 

assumption that Mv=0. It is more accurate than the equations (2.2) and (2.3) as tape 

depth, head to tape separation and speed are all considered here.

Middleton and Wisely[2.14] modelled the pulse as:

17



e(x) = KMr 1nl{ ( ( a t+d) +D( 1 +a)) 2+x 2 (2.5)

(a t + d) 2 +x 2

Where:

t is time, relative to the pulse peak; 

v is the head to media replay speed; 

x is vt;

K is a constant of proportionality; 

d is the head to media separation;

D is the lesser of the medium thickness and depth of recording ; 

aj is the recorded transition width at the top surface of the media;

Mr is the remanance of the recording;

a the rate of change of transition width with depth into the media

The expression in equation (2.5) above again gives a symmetrical replay due to the 

assumption that Mv=0. It is however, a more accurate representation of the

recording pulse than those given by the equations (2.2), (2.3) and (2.4). This 

accuracy is due to the inclusion oj recorded transition width at the top surface of 

the media.The recording remanance and the rate of change of transition width are 

all incorporated.

By contrast for a detailed description of both the longitudinal and the 

perpendicular replay pulses it is necessary to use the expression given by 

Middleton, Miles and Noyau[2.15]. This model gives an accurate description of the 

pulse accounting for the possibilities of a lack of symmetry and variations in the

18



pulse across the media. To get to the level of accuracy of the Middleton, Miles and 

Noyau model several complex measurements were taken.

However, since the present work is theoretical a simplified version of the replay 

pulse is given by the Lorenzian pulse. This disregards any variation in the lateral 

spread of the pulse. Although this is less accurate than other models, it is used 

due to its lack of complexity, lack of dependence upon accurate measurements and 

the use of pulse symmetry in the calculation of the ISI probability distribution.

2.3:2 Channel Errors T2.161

As was stated in section 2.2:2 the majority of errors are generated within the 

recording channel.The form of error reflects the mode of operation of the channel. 

The theoretical models commonly fall into one of three main types either:

i) the Binary Symmetric Channel (BSC). In this model a "1" 

is changed to a "0" and "0" to a "1" with equal probability;

ii) the Asymmetric Channel (ASC). In this model a "1" 

represents a replay pulse and a "0" no replay pulse . Errors 

are caused by a "1" being changed into a "0" while a "0" is 

never changed into a "1";

iii) the Shift Channel (SC) In this model a recording "1" can 

be translated into adjacent timing windows in either 

direction. So a segment of data that reads as 010 will be

19



transformed by in a shift channel to either 100 or 001. This 

type of error is common in high density recording.

A realistic model of the channel would be a combination of these three idealised

modes. However an asymmetric channel (1-»0) is used in this work as all shift 

errors are assumed to be within the timing window guard band.

Howell[2.16] found that the distribution of errors for the IBM 3380 disk file were as 

follows:

(i) the majority of errors (85%-97% of total errors) were 

SC errors (though not necessarily evenly distributed 

left-shift or right-shift);

(ii) some (14%-3% of total)errors were (l^O)'s ; 

(ii) practically no errors were(0  >l)'s.

Guard bands are introduced to the edges of the timing window to compensate for a 

SC error. If a bit is moved into these guard bands then it is treated as an ASC, 

error by the output. This is illustrated in Figure 2.5 below;

20
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The size of the guard bands can be optimised relative to the timing windows to 

minimise the resultant error rate due to both ASC and SC errors. The lower the 

error rate then the smaller the guard bands need to be.

2.3.3 The System Clock

The system clock enables the detector to position each of the zero crossings on the 

recording track. Hence if the clocking is lost the data becomes unreliable and may 

produce bitslip. Bitslip leads to catastrophic errors as it is no longer possible to 

match the replay pulses to the input transitions. Errors occur because the position 

of the repktu pulses do not correspond to the original data.

The effect of bitslip in recording is therefore devastating, <xs the resultant disparity 

between the data-bit count and the bit stream of even just one bit will corrupt 

every word in the block. This as a read back error is as bad as a massive dropout 

covering the entire block fS^ovin^ 80% of the signal[2.17].
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Error Mechanisms are divided into two different groups; those that lead to a loss of 

clocking, clock loss errors and those which do not, non-clockloss errors. It is 

therefore important to distinguish between these two types of error mechanisms.

Non-clockloss errors are due to mechanisms such as noise, ISI, crosstalk and 

overwrite. All of these error mechanisms can be represented by independent 

Probability Density Functions (PDF) and hence these can be convolved. These 

errors will be occur in digital recording as Bitshift errors.

The most important errors causing a loss of clocking are Jitter and drop-outs. 

2.3:4 Clockloss and Non-Clockloss Errors

Clockloss as stated above is a primary cause of system error. It results in an 

inability to position the pulses from the replay head relative to the input signal to 

the tape recorder. Those error mechanisms which do not cause clockloss, have a 

probability density function which is broadly independent pulse to pulse. While 

the error mechanisms which cause clockloss tend to generate errors which are 

correlated over consecutive pulses. It is important to note here that clockloss error 

mechanisms are media dependent.

Clockloss is caused either by;

i) a loss of a large number of consecutive replay pulses from the replay 

head of the tape recorder. This is called a drop-out;

ii) the translation of a large number of consecutive replay pulses beyond 

the fundamental distance. This is called jitter.
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Clockloss is generally not caused by bitshift errors, as the effect of bitshift is 

assumed to be independent from pulse to pulse. As clockloss is a major source of 

readout errors, it is essential to be able to recover clocking after a burst error. Clock 

recovery is an important factor in the choice of the runlength constraints of the 

modulation code. For good clock recovery a modulation code must have both the 

maximum runlength and the ratio of maximum to minimum runlengths to be 

as small as possible. Furthermore the higher the probability of a transition the 

better the resistance to clockloss error mechanisms.

2.4 Non Clockloss Error Mechanisms

2.4.1 Noise In Particulate Thick Film Recording [2.1.2.171

Additive, non-white, Gaussian noise from the tape is dominant[2.1]; though 

additive, white, Gaussian electronic noise, which is associated with the 

preamplifier[2.8] is also present.

Noise is defined in terms the signal to noise ratio, (SNR). The signal for a thick 

film particulate media derives from the mean magnetisation of the particles. The 

noise arises due to deviations from the mean magnetisation. Tape noise is 

assumed to be stationary and additive, although it is dependent upon the signal. 

However, on good tape at low densities the noise increase with signal strength is 

slight[2.1].

Tape noise is defined [2.1] using the Power Density Spectra (PDS) for signal and
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noise. To derive these spectra it is first necessary to define the Auto Correlation 

Function, ACF, of the pole strengths of the particles of an erased particulate tape. 

The magnetic pole strengths can be regarded as a random variable. Particles are 

contained within a lamina. For an example of the pariticulate structure of the tape 

see Figure 2.2. The ACF of the magnetic pole strengths is defined by;

ACF(x' ) = n w Sy ^pCx) p(x-x' ) dx (2.6)

Where;

x-x' is the relative distance along the tape;

u is the width of lamina;

Sy is the thickness of the lamina;

n is the density of particles;

p(x) is the strength of the magnetic pole at point x.

The Noise Power Spectrum (NFS), Wt(f), of the lamina pole is then given by the 

Fourier cosine transform of the ACF. To obtain the output voltage Noise Power 

Spectrum, Wo (f) , the Noise Power Spectrum is multiplied by the reproduction 

head power transfer function and integrated over the tape thickness.

W0(f) = J 0Wt(f). I Hffll 2 dy (2.7)'0

Where;

Wo(f) is the output Noise Power Spectra

Wj(f) is the Noise Power Spectra of the Lamina Pole 

I H(() 1 2 is the head power transfer function, 

a is the tape thickness

This gives the result below first derived by Daniel and Stein [2.19],
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E n 2 (k) = 4ir \i2 n w V 2 Ikl (1 -e~ 2 lkl d ) e~ 2 H<l a (2.8)

Where:

E n 2 (k) is the Noise Power Spectrum;

w is the width of lamina; 

n is the density of particles;

U is the dipole moment of the particles;

V is the replay voltage;

d is the head to tape gap;

k is a constant of proportionality;

a is the recording width at the top of the media.

If this is then integrated it will yield an upper bound for the noise power[2.20]. To 

compute the output SNR it is first necessary to find the output signal power 

spectrum.This is given by the following integral:

E s (k)= 1 / 2 { [4T7|inu)fV(1-e" kd ') e" kn ] 2 dk (2.9)

Where:

uj, width of lamina; 

n, density of particles;

jj. is the dipole moment of the particles;

V is the replay voltage;

a is the recording width at the top of the media;

d is the head to tape gap.
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The output SNR can be obtained from the above with the following assumptions: 

i) the SPS and the NFS have the same dependence upon head to tape spacing; 

ii) the measured spectrum deviates from the expected spectra at high 

wavelengths; 

iii) the measured noise spectra has a lower slope than expected;

Thus far the SNR has been assumed to be independent of the linear density of the 

recording. However at high recording densities the channel error mechanisms 

change [2.21,2.22]. ISI becomes the dominant source of error and the dependence of 

the output SNR to density of recording cannot be ignored.

2.4.2 Inter Symbol Interference

Due to the finite channel bandwidth the replay pulse is broadened so that adjacent 

pulses overlap. This phenomenon is called Intersymbol Interference, ISI. The 

effect of this interference is a translation of the position of the replay pulse peak, 

bitshift. If the raw data is assumed to be random then the effect of ISI on bitshift 

can be modelled as an independent random variable.

Due to the higher pulse densities used in digital recording, ISI is a more 

significant source of error in data recording than it is in communication channels 

where its effects may be reduced by the use of a linear filter[2.24,2.7]. If either the 

fundamental distance or the system bandwidth are reduced, then the level of ISI 

will increase. It has been shown that ISI is the limiting factor in the reliability of 

optical recording [2.25].
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The effect of ISI as a bitshift error mechanism is due to its convolution with 

additive noise. This was modelled by Katz and Campbell[2.23] and Loze 

Middleton and Ryley[2.26]. ISI is a discrete random variable with a finite sample 

space. This sample space is due to the finite number of possible interfering discrete 

replay pulse patterns, 2n where n is the number of interfering replay pulses.

P(b) = fisi(b) *fnoise(b) (2.10) 

where;

P(b) is the convolved bitshift distribution for noise and ISI;

fisi(b) is the bitshift distribution due to ISI;

fn0ise(b) is the bitshift distribution due to noise.

The discrete ISI induced bitshift distribution is convolved with the noise induced 

bitshift distribution to give a distribution for the combined effect of ISI and noise 

induced bitshift. For low packing density and high SNR the bitshift P[)Fdue to ISI 

is given by:

B( E) = 6(E-T C ) (2.11) 

Where:

E is the bitshift;

8( ) the Dirac delta function;

T c is the centre of the timing window.

With low density and high SNR the probability of an ISI induced bitshift error is 

zero/ as the zero crossings occur at the centre of the timing windows.
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Figure 2.6 Dirac Deltas Representing Low Density ISI.

However when the packing density is increased, ISI is introduced. This leads to the 

following PDF for ISI induced bitshift:

P«=(n) = Z Pi 8(n-ni) (2.12)

Where;

Pj,the occurrence probability of the data bit at point j; 

n; is the ISI induced bitshift from pulse j;

8( ) the Dirac delta function.

Assuming a Gaussian Probability Density Function for the noise induced bitshift; 

 fche ISI induced bitshift is now convolved with the noise induced bitshift. This 

results in a series of replicated noise induced bitshift PDF's centred on the dirac 

delta pulses for the ISI induced bitshift.

Figure 2.7 ISI Broadened by noise

28



The convolution of the PDF's for the discrete ISI induced bitshift with the 

continuous noise induced bitshift gives the following expression[2.23] :

P k(t)= ] / 2 £Ai(exp[-(t-T,i) 2/2T 2 2i ]+ exp[-(t+T 1i ) 2 /2T2 2i ]) (2.13) 

Where:

P|<(t) is the convolved PDF for Noise and ISI induced bitshift; 

Aj is the fraction of pulse peaks in the itrt local data pattern ;

T,J is the bitshift induced by ISI;

T 2 ; is the rms value of noise induced bitshift;

t is time.

The model given above is limited as it only considers the effect of ISI from 

adjacent pulses. Convolving the PDF for ISI given above in (2.12) with the noise 

PDF, assuming that as the tape is of finite length only a finite number of symbols 

interfere, then the probability of error can be given as [2.26]:

P e = 1 Z erfc(T w +lnjl+T c ) +erfc( Tw + ln||-T c )

4M </2 Oj «/2 Oj
(2.14)

+ erfc(T w -|njl+T c )+erfc(T w -|nj|-T c )

Where;

CT ; is the rms value of the noise induced bitshift acting on that pulse;

nj is the ISI induced bitshift acting on that pulse; 

erfc is the complimentary error function; 

Tc centre of the timing wio4ow;

Tw width of K«^t tV*. birnlna winc
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2.4.3 Crosstalk and Overwriter2.27.2.28l

Crosstalk and overwrite are similar to ISI[2.29] as both are caused by the 

interference of other pulses. It is often difficult to distinguish between crosstalk 

and ISI induced bitshifts. Overwrite is caused by poor DC-erasure of the media. 

This leads to interference from the unerased signals. Crosstalk in magnetic 

recording occurs only in multi-head recording media. There are two main sources 

of crosstalk in the recording system.

(i) The recording head This is due to leakage of the magnetic flux between 

the cores in the recording head. This can be displayed by DC-erasure of the 

signal from the two adjacent tracks. This leaves the central track unaffected 

by the erasure process. Any remaining crosstalk on this middle track is due 

solely to the data on the track. Recording head crosstalk is reduced by 

reducing the flux leakage in the recording head.

(ii) Play back crosstalk. This occurs at the read head and is caused by two 

separate mechanisms. To display the playback crosstalk the opposite 

procedure is followed; only the centre track is erased and the crosstalk comes 

from the two adjacent tracks which are not erased. To compensate for 

crosstalk in the medium the opposite signal to that of the crosstalk is added. 

This results in cancellation of the crosstalk.

It is difficult to assess the number of playback errors which are due to the effects of 

crosstalk. This leads to several complex expressions to describe the effects of 

crosstalk induced bitshift on a recorded channel[2.28].
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2.5 Clockloss Error Mechanisms 

2.5.1 Drop-outs

Drop-outs are reductions in the signal amplitude which occur as a result of the 

variation in the local properties of the tape and during the recording or playback 

processes. Low amplitude drop-outs cause a bitshift error which does not cause 

any loss of clocking. However high amplitude drop-outs may cause a near total 

loss of signal, leading to a loss of clocking. Drop-outs occur either due to tape 

defects or errors in positioning the tape heads over the media.

2.5.1(1) Tape Defect Drop-outs [2.301

Tape defect drop-outs are a major factor in determining the reliability of 

magnetic-storage devices. Large drop-outs are usually flagged by the recording 

system. The areas of defective tape are then skipped for data recording. Those 

defective regions which escape the 'write skip' process are a major source of error 

especially for a channel with high SNR.

The percentage of drop-out depth is plotted against the log of its probability. 

However where the levels of drop-out are deeper than 80% their effects are hard to 

assess[2.30], because at this level the drop-outs will be masked by the amount of 

noise in the system. So Gene So Honu[2.30] extrapolated the levels of the lower 

drop-outs from the three higher received signals to give a better plot for the 

amount of residual signal in these lower cases.
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Figure 2.8 Log Error Rate against % of signal Loss [2.30]

For a single drop-out of diameter 0, on a single track of width h he drop-out will 

affect the measured playback level of the tape at that point by a factor of at most :

K= if 0<h (2.15)
(0-1 )

where:

0 drop-out diameter; 

h track width.

This can occur only if the drop-out lies directly on the track and is not larger than 

the track width. Once feidti&v(2.15) for the observed effect of the drop-out has been 

derived, there remains to find an expression for the drop-out frequency. The 

analysis of Maediger et al [2.37] gave the following integral:
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0max 

F = 2B( 0) -B( 0).h.(l-2.10D/ 0) d 0 (2.16)
0min

Where:

B( 0 ) is the specific drop-out load per unit area for the track;

h is the tape width;

D is the permissible drop in SNR;

0 is the diameter of the drop-out. 

2.5:l(ii)Drop-outs Caused by Head Errors F2.31.2.321

The Errors caused by the head to tape separation were first studied by Baker [2.32] 

using a random sequence to check for errors . The head to tape distance was given 

by:

y(x)=x 2/2r (2.17) 

Where;

y() is the head to tape spacing;

x is the distance from start of lift off to tangent point;

r is the head radius near the gap.

A Miller Modulation encoded channel which was subject to additive white 

Gaussian noise was assumed to have a bit error probability related to the 

Complimentary Error Function[2.32].
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P e = 1/2 erfc(SNRA/2) (2. 1 8)

An increase in the SNR was noted as the head to tape separation was increased. 

This increase can be expressed as a ratio of the two SNR's for differing head gaps.

SNR _ 1 A f(L) (2.19) 

SNRy=0. [yj S(k)dk] y(x)

where;

SNR is the output signal to noise ratio including the drop-out; 

SNRy=Q_ the signal to noise ratio when head to tape gap is zero; 

S(k) is the system response;

k is the wave number, (2-rr/A);

f(L) is the peak fraction of particles recorded upon;

L is the bit length;

y(x) is the head to tape gap;

a is the cut off point for the separation induced loss.

Then discounting the ISI this gave the following equation for the bit error

probability for y > l/km.

Pe = 1/2 erfc (SNR0f(L)/[./2 y(x)]) (2.20) 

where;

SNRo is the SNR when the head to tape gap is zero; 

y() is the head to tape gap; 

f() is defined above; 

L is the bit length. 

In addition a system of all ones was used [2.31] to give the initial theoretical output

voltage amplitude of the system with no head to tape separation as:
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V 0 = K 4M 0 [1-exp(-2K(a 1 +d)/X)] (2.21)
1-KX

where;

M0is the maximum level of magnetisation;

K is a constant of proportionality;

a^is the transition width parameter at the top of the tape;

d is the head to tape separation on replay;

A is the fundamental distance;

ex is the linear variance of transition width with depth.

In addition the error rate was also altered suggesting that the higher values of d 

produce larger error probabilities. In practice it is likely that burst errors will occur 

as a result of lower values of d than are strictly necessary, caused by the increase in 

the gap height as discussed in the section above. [2.32]

Many experiments have been undertaken to examine the effect of drop-outs on a 

recording channel.

In one case[2.34] the top layers of the recording media are burnished to give the 

effect of media deterioration with time. The signal is recorded on to the 

unburnished media, and is then replayed prior to burnishing. The media are then 

burnished, by stripping away their upper layers. The two replay signals may then 

be compared to estimate the drop-out effects.

35



Other work[2.35] has shown that the error rate depends upon the recording signal 

current.

2.5;l(iii)Drop-out Effects [2.361

Although two quite different methods by which drop-outs may occur have been 

discussed, their effects are the same. The ways in which the system performance of 

the tape is effected by a drop-out include:

i) drop-outs tend to be isolated and widely separated events;

ii) drop-outs are randomly distributed throughout the tape;

iii) drop-out lengths usually obey a logarithmic law of decaying frequency;

iv) drop-outs on edge tracks occur at a higher frequency ;

v) drop-outs are unlikely to occur simultaneously on two tracks;

vi) the maximum length and frequency of the drop-out are media dependent;

vii) the dominant error characteristic from a drop-out is a burst error.

It is possible to plot the read back errors for drop-outs either as a function of 

probability of error or as the probability of drop-out versus length of the drop-out. 

This then gives rise to a method of calculating the effect of drop-out induced errors 

in a statistical fashion. The results were tabulated for various lengths of 

drop-outs. [2.33]

Figure 2.9a, plots the measured signal amplitude against the number of times 

which it occurs.
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Figure 2.9b, plots the percentage of bits in error given the measured signal 

amplitude from above;

From the two diagrams[2.33] it is possible to gain an additional figure for the error 

probability due to drop-outs. This is achieved from the multiplication of the two 

sets of figures in the final column of each of the diagrams.
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Figure 2.9.a) and Figure 2.9 b) Amplitude and error distribution for drop-outs[2.33]
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2.5.2 Jitter

Considered as a clockloss error mechanism, jitter is strongly medium dependent. 

In magnetic data storage it is most prevalent in thin film media. As with 

drop-outs, jitter can result in either bitshift or clockloss errors[2.39]. Jitter in thin 

film media is concentrated in the region around the magnetic transitions[2.38]. 

This can be represented by assuming the transitions are all the same shape but are 

then subject to jitter uncertainty in their location. The additive noise in the system 

is assumed to be constant while the effect of jitter increases linearly with the 

average recording density. The amount of jitter in the system is defined by Madrid 

and Wood[2.40] to be:

N(f) = D IF(2-rrf)l 2 (2irf) 2 Tj 2 (2.22) 

Where;

D is the average transmission density;

F(2Ttf) is the transfer function of an isolated replay pulse; 

D average transition density;

Tj 2 variance of Gaussian jitter;

N(f) Power spectral density of noise from independent jitter.

Although primarily an error mechanism associated with thin film media, jitter is 

also present in thick film recording. To counteract its effect, the fundamental 

distance of recording must be greater than the jitter time uncertainty. Hence jitter 

is a limiting factor on the packing density of the recording.
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The effects of jitter and noise can be illustrated by an eye pattern. This is used to 

assess the effect of modulation coding upon a channel. If the eye pattern remains 

open then a binary decision maybe made about the signal. Noise closes the eye in a 

vertical direction and jitter in a horizontal direction[2.41]. Hence although noise 

and jitter are independent, the tolerance of a Modulation coding system to jitter is 

inversely related to its tolerance to noise.
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Chapter 3

Recording Media and Devices 

3.1 Recording Principles

3.1.1 Introduction

In this chapter the different types of data recording media are reviewed. These fall 

into three main categories:

(i) thick film magnetic recording; 

(ii) thin film magnetic recording; 

(iii) optical recording.

The two types of magnetic recording media can be erased and then overwritten 

with alternative data. However optical recording only possesses the ability to be 

written to once though it may be read many times (WORM). Optical discs cannot 

be erased. A recording on an optical disc is therefore permanent.

Modern developments in magnetic and optical recording technology have lead to 

high integrity media. These have high recording densities, fast accessing of data 

and low output error rate. To obtain such a recording performance, complex <2rror 

correction and modulation coding techniques are used.
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The work described in this thesis has principally been concerned with fixed head 

thick film recording. However the new high integrity media are either thin film, 

Winchester disc, rotary head, Rotary Digital Audio Tape, (R-DAT) or Optical, 

Compact Disc Read Only Memory, (CD-ROM). The last two have been developed 

for use as Consumer audio products so allowing the economies of scale of the 

domestic market.

3.1;2 Magnetic Recording Mediaf3.11

Historically the first magnetic recording systems to gain widespread use employed 

thick film magnetic storage media, using a fixed position recording and reading 

head.

The system uses a lamina containing a series of ferrous particles in which electric 

pulses induce a change in the magnetic field so allowing the data to be recorded. 

This was shown in Section 2.2:2, figure 2.1. The chemical constituents of the 

ferrous material may change from media to media. Different materials have 

different properties which are dependent upon use.

The most common type of ferrous material used is gamma iron wide,

y-Fe2O3[3.1]. This is diluted by an organic binder so that about 20-45 % of the tape 

by volume is ferrous material. This reduces the magnetic saturation from the 

original figure of 350 kA/m2 for undiluted ferrous material. In tape and most 

other recording media the magnetic particles are carried on a polymer substrate, 

where the substrate and the magnetic material can be optimised independently.
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The properties of various types of particulate tape used for different applications 

are shown in Table 3.1 [3.1]:

Application

Reel to Reel

Instrument Tape

Floppy disk

Computer tape

Material

y-Fep,

»-Fapa

y-FeO+Co
2-J

y-Fep,

y-Feg+Co

y-Fe03

Crz03

M(oo)

kA/m

00-120

90

105

56

60

87

120

H

kA/m

23-26

27

56

27

50

23

40

dh

.3-.3S

.35

.50

.34

.34

.35

.29

N

0.3

0.6

0.8

0.3

0.5

0.16

1.4

Table 3.1 Tape Properties for Different Mechanisms[3.1]

Metal film media were introduced to allow for faster accessing of stored 

information. Thin film media were originally stored on spinning drums, 

allowing the Read-Write head to be quickly positioned on any part of the drum. 

The thin film system presently allows a higher areal storage density than 

particulate tape media. However the recent advances in recording densities 

obtained by R-DAT suggest densities of the same order as bhin ^ilm will be 

possible.
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3.1:3 Fixed Head Tape Recording

The first of particulate recording media used for instrument recording was 

developed from analogue audio tape recorders. These had fixed heads and 

employed either the reel-to-reel system or the compact cassette.

RECORDING HEAD

^-Longtitudinal 
Tracks

Figure 3.1 Diagram of Fixed Head Recorder showing Tracks

Fixed head recorders have been shown to have a number of specific advantages 

and disadvantage compared to a rotary head system.

Disadvantages of Fixed Head Recorders

i) The storing of digital information without a clear format structure presents 

problems. These are in part due to the lack of a scheme for error correction. 

A system of format blocks coupled with redundancy was developed to 

reduce system errors [3.2];

ii) In fixed head recording fast retrieval of stored data cannot be achieved. As 

data can only be accessed from the tape in a serial fashion. All other types of 

recording media have a random o.ccess facility for file retrieval[3.2];
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iii) Fixed head recorders have lower areal storage densities than rotary head 

recorders so using more tape to store the same amount of data. For example 

a standard 24-track quarter inch tape recorder with a tape speed of 16 ips will 

require a data rate of only 24 Mbs'1 . This provides an aereal data density of 

less than 100 Mbpi2[3.3].

Advantages of Fixed Head Recorders [3.21

i) Fixed head recorders posses larger feitoioilitu than rotary head recorders 

such as Video and R-DAT;

ii) Fixed head recorders have a capstan controlled tape feed. This allows 

various recording and playback speeds, autolocation and the ability to 

synchronise several recording machines;

iii) Fixed head machines permit tape cut edits as the tracks run in the direction 

of the tape travel. In helical scan recorders these edits may cause severe 

errors;

iv) Fixed head tape is inherently simple compared with the other methods of 

digital recording. This simplicity is illustrated by the block diagram shown 

in Figure 3.2;
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v) Due to their simplicity fixed head recorders are generally more robust than 

those with rotary heads. However in recent years a robust rotary head 

machine has been produced [3.3].
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Figure 3.2 Schematic Diagram of the Fixed Head Recording Process
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3.2 ROTARY HEAD TAPE RECORDING 

3.2:1 Principle of Rotary Head Recording

There are two distinct categories of rotary head mechanisms:

(i) the helical $can recorder. Here the heads are positioned on a drum which 

rotates in a plane parallel to the tape travel and records diagonal fields. These 

are recorded as the tape is wrapped around the recording head. This is shown 

in Figure 3.3 A;

ii) the transverse Scan recorder. The heads are fixed on a disc which rotates in 

a plane perpendicular to that of the tape travel. These heads record short 

tracks across the tape surface. This is shown in Figure 3.3B.

These both record data across the media. This is in contrast to the stationary head 

recorder which records the tracks parallel to the direction of tape travel, along the 

length of the recording medium. The different tape tracks are shown in Figure 3.4 

below

Tape

Track

Figure 3.3A Helical Scan Recorder[3.2]
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Tape Direction

Tracks

Figure 3.3 B Transverse Scan Recorder[3.3]

Fixed Head Tracks Helical Scan Head Tracks Transverse Scan Head Scan

Figure 3.4 Track Layout is Dependent upon the choice Recording Head

Instrument helical scan recorders have been available for many years. However 

these are expensive to produce compared to a commercial rotary head recorder. 

Rotary head recorders are high integrity devices due to error correction and 

modulation coding techniques. Time compression is used to store increased 

amounts of data on the readable part of the tape track. This leads to a high capacity 

low cost recording system with excellent data rates. For example the cereal density 

forR-DAT is!14MBPI2.
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3.2:2 Digital Video Recorders

The advantages of video Cassettes are that they produce a low cost, high capacity 

backup data storage. Their storage capacity is 3.4 Gigabytes with a transfer rate of 

3.75 Mbs"1 . In addition to the high capacity and transfer rate the density of the 

recording is high at 4450 Gigabyte/M2[3.4].

Digital video recorders avoid errors by using a Read After Write (RAW) technique. 

This process does however lead to a reduction in the amount of recording heads 

on the helical drum. In addition there is a reduction in the data density since 

only every second track is now written on. Crosstalk which is reduced by recording 

on every second track is further reduced by the use of an azimuth angle on the 

recording heads of ± 6 degrees. This error avoidance reduces the error rate from 

10-3 to lO'9 [3.4].

Certain video cassette recorders offer a choice of recording speed, 33.35mm/sec, 

normal play, 16.67 mm/sec, long play and 1112 mm/sec, super long play. This 

gives a choice of Gsfeal density for the recording. For the faster speeds a method of 

data recovery is necessary. However at very high recording densities it is not 

possible to accurately recover the data due to the severe level of crosstalk. [3.5]

Further work by the Japanese[3.6] has led to increasingly successful methods of 

storing digital data on video cassette. The Pulse Code Modulation, (PCM) adaptor 

system uses standard video tape to record either digital or analogue signals.

51



The principle use of digital video machines is to master optical discs (CD) for audio 

use. Therefore a system using digital video recorders has applications in the 

mastering of optical discs for prerecorded data, (CD-ROMs). Although video 

recorders have been very successful applied to the digital audio and data storage 

fields. There are several drawbacks in using them as the primary recording 

medium [3.8]

3.2:3 R-DAT Rotary Digital Audio Tape

The rotary digital tape recorder was developed as a cheap magnetic alternative to 

the digital compact (laser/optical) disc. The replay quality of the two systems are 

comparable [3.8].

R-DAT was originally developed for audio use in the first half of the 1980's and 

interest in its wider application is quite recent. This delay is partially a result of the 

lack of a uniform standard for tape and players. This standard was only set in 

March 1988[ 3.7,3.9].
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Capstan

Cylinder

Heads set at
different
azimuths

CASSETTE

Figure 3.5 R-DAT Cassette and Replay Head[3.8]

The recent development of a format for data storage on R-DAT, Digital Data 

Storage, (DDS)[3.10] has encouraged a uniformity in approach to the resolution of 

errors within the system. The DDS system gives higher data integrity at the 

expense of a loss of data capacity and transfer rate. A comparison between the 

methods of audio and DDS is shown in Table 3.2. Standardisation has conferred 

considerable advantages upon R-DAT. By contrast neither the *adeo cassette and 

the analogue audio cassette had any uniformity at their inception.

The R-DAT tape player employs a belical scan tape head shown in Figure 3.3A 

which is angled [3.16] relative to the tape passing over its surface. The data is then 

arranged in small fields which run diagonally relative to the general movement of

53



the tape through the player. R-DAT gains part of its integrity by the use of a read 

after write (RAW). This is achieved by using of multiple heads on the drum and 

a wrap angle of 90° [3.12]. This wrap angle is small compared with that employed 

by videos (180° to 270°) [3.11] .This enables the R-DAT player to:

i) reduce tape damage and increase search speeds since only a small length of 

tape is in contact with the drum;

ii) extend the life of the heads, due to low tape tension.

iii) employ a four head system on the drum, in which the heads are separated 

by 90°. This will allow simultaneous monitoring.

Figure 3.3A showed how the head is inclined to give the fields running across the 

tape as shown in Figure 3.4. This diagram of the tape and head mechanism shows 

both the wrap angle of the tape around the drum and the positioning of the heads.

The tracks of data on the R-DAT recorder overlap each other. However overwrite 

and crosstalk errors are avoided by setting the heads at different azimuth angles. 

This angle is ±20° from the perpendicular to the direction of travel of the head. 

This enables the R-DAT cassette to possess high area! densities. The effects of the 

azimuths on the recording heads can be seen in Figure 3.6[3.12].
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positive azimuth track

Negative azimuth track

Positive Negative

Azimuths on read/write heads 

Figure 3.6 Tracks and Head Azimuth to Prevent Overwrite and Crosstalk[3.12]

The R-DAT cassette can store 1.3 Gigabytes of data on a completely sealed package 

measuring just 73mm by 54 mm by 10.5mm and weighing just 20g [2.9]. It is also a 

relatively cheap method of storage, costing about the same as a floppy disc but 

capable of storing 1000 times as much data. It also has the ability to find files using 

Random Access (RA).

Random Access enables the correct file to be found within 20 seconds compared 

with the minutes taken to locate a file on fixed head recorders[3.13]. The RA 

scheme of the R-DAT recorder does not trace the recorded tracks but it traverses 

across the recorded signals.
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This traverse of the recorded tracks then produces a recorded envelope which will 

pick up only the tracks recorded with one azimuth. Hence valid data is read from 

alternate tracks, as shown in Figure 3.7. For fast random accessing of R-DAT the 

tape runs at 200 times its normal speed. This can lead to an increase in the bias on 

the tape. The tape and cylinder are maintained at a Constant Relative Velocity, 

CRV, by reference to the detected bit rate of signal at the head [3.16,3.15].

Minus 
azimuth track

Plus Azimuth Tape 
Track Motion

O O

Head 
otion

Scanned Tracks Given by 

Figure 3.7 Scanning Technique used for Random Access R-DAT[3.13]

Furthermore the error rate for R-DAT is extremely low. With rates in the region 

of 10'15 it is comparable to the error rates of optical discs. Reel-to-Reel guarantees 

an error rate of only about 10'10 and cassette tape is only marginally improved at a 

rate of 10'11 [3.12].
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ERROR SOURCE

DROPOUTS
PARTICLES AND SCRATCHES
SURFACE DISCREPENCIES
TAPE WIDTH VARIATIONS
HELICAL DAMAGE
LONGTITUDINAL DAMAGE
TRANSVERSE DAMAGE
TAPE SURFACE DAMAGE
TRACKING ERRORS
MECH ANICL A JITTER
ISI
RF FLUCTATIONS
TAPE AGEING
HEAD CLOGGING

ERROR MANAGEMENT

C1,C2,RAW,MEDIA 
Cl ,C2,RA W,RETRY,MEDIA 
RAW,RETRY 
RAW,MEDIA 
C3,EMR,CHECKSUM 
C1,C2 
C1,C2
MEDIA ,RAW 
DRIVE DESIGN 
DRIVE DESIGN 
RANDOMIZED DATA 
MEDIA 
MEDIA 

RAW,RETRY,C3,CHECKSUM

In the above: 

C1,C2,C3 Error Correcting Codes;

RAW Read After Write;

MEDIA Media Specification;

RETRY Retry on Read; 

CHECKSUM Track Checksum[3.12,3.14]

Table 3.2 Error Management of the DDS System[3.14]

The instrumentation R-DAT recorder (DDS) is substantially the same as a 

domestic audio recorder with an additional third circuit board of error correction 

to give refined error correction. In addition to this extra level of error correction 

there are several methods of trapping errors which are dependent on the error 

mechanism concerned[3.14]. This is shown in Table 3.2:
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At the current rate of development in the near future R-DAT will be able to fulfil 

all the requirements of the computer industry in at least five distinct areas of 

digital storage[3.9]. These are:

i) to act as back-up storage for information stored on hard disc. This is due 

to R-DATs high integrity, robustness, compactness, high aereal density of 

recording and data accessibility;

ii) software distribution. The relative size and robustness of R-DAT make it 

suitable for the distribution of software by post. Fast duplication processes 

presently being developed for R-DAT[3.9] will make this medium more 

attractive for distribution. The standardised format will also aid 

distribution as all recordings on R-DAT will be interchangeable unlike the 

various different formats for Video Cassette;

iii) data interchange between computers. It's low cost, high data integrity 

and standard format make R-DAT a viable alternative to floppy discs and 

other kinds of tape for non-electronic mail;

iv) file retrieval; R-DAT has an average file access time of 20 seconds, 

although slower than semi-conductor memories or hard discs it is faster 

than the access time for other tape media;

v) hostile Environments. A more rugged form of R-DAT will provide a 

robust alternative to the fixed head tape recorders which are presently used

in hostile environments. Work has already been undertaken to create a
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rugged Helical Scan Recorder based on domestic Video[3.3].

The signal processing and error correction of R-DAT will be discussed in Chapter 5. 

It uses Cross Interleaved Reed Solomon error correction to compensate for burst 

and timing loss errors. R-DAT allows easier editing than do traditional rotary head 

recordings[3.10].

Possible ways to increase the amount of information which can be stored on a 

R-DAT tape include[3.11,3.16];

i) data compression, where data is stored at higher aereal density on the 

tape to that presently used in the audio R-DAT recorder;

ii) automatic tape changers to allow several tapes to run unattended for 

long periods;

iii) an increase in the amount of data overlap to 60% from 33%. This will 

allow for a real increase in areal density of about 40% compared to that 

currently in use;

iv) an increase in tape speed. This will lead to faster rates of data transfer, 

up to five times faster than at present.
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3.3 Floppy Discs

This is the most common method now employed of storing computer data on 

magnetic medium. There is no agreed standard format[3.17] for floppy discs; disc 

sizes range from 3 to 8 inches in diameter. However due to commercial pressure 

certain disc sizes are more common than others. These are:

i) the 3 l / 2 inch disc developed originally by Sony[3.20]. This has 135 tracks per 

inch and can store up to 360 Kilobytes of data for the single sided disc, at a 

packing density of 8000 bit/in. These discs suffer from the disadvantage that 

the drives are about 10% more expensive than those of the alternative 5 V4 

inch discs;

ii) the 5 1 /4 inch disc[3.20]. This is the most widely used floppy disc. However it 

suffers from problems of format incompatibility between the discs of different 

manufacturers. The 5 V4 inch disc has a capacity of 360 Kilobytes at a packing 

density of StOO^VvAs there are more manufactures of the 5 V4 inch disc it is 

cheaper than the 3 1 / 2 inch version. In addition to the low price of the 5 1 / 4 

inch disc, the discs are becoming more reliable, though in comparison with the 

3 l /2 inch discs they are a fragile media with a limited useful life.

The 3 */2 inch version is more reliable than the 5 */4 inch. In addition, the 

smaller format has the advantages of the toughened plastic shell covering the 

media. [3.20].
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The floppy disc is normally made from ferrous-oxide. However, this may be mixed 

with either cobalt or chromium dioxide to gain higher coercivity levels. It is 

anticipated that in the future, floppy discs will become a a truly metallic medium 

gaining the same improvements in playback SNR as tape gained from a similar 

switch from oxide to metallic recording media [3.17].

Data formatting of a floppy disc is similar to the case of tape. Early methods of data 

storage relied upon a simple division of the disc into segments for the fields. 

Modern methods now use a fixed-bit-cell method of storage to enable an increase 

in data density of up to 40% [3.18].

On floppy discs the error detection is contained within the field. A cyclic 

redundancy check, (CRC) is used to ensure that the data in all of the blocks is 

correct. The CRC is held at the end of every field. It establishes the integrity of the 

preceding data by recomputing the CRC and comparing the result to the value on 

the disc. The error correction algorithm varies with the corresponding different 

types of disc from a simple parity check to an algorithm as complex as the Reed 

Solomon code. [3.19]
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3.4 Thin Film Recording 

3.4:1 Thin Film Structurer3.211

It is important to distinguish between the two types of Magnetic recording Thick 

and Thin Film. The Recording Media described above have all been Thick Film. 

That is to say that the Magnetic coat of the recording media is greater or equal to

3|im. The depth of coat is an important factor in determining both, the recording 

density and the dominant sources of error in the media.

The structure of a thin film recording media is shown in Figure 3.8 below. It 

comprises of four different layers;

Substrate;

Undercoat;

Magnetic coating;

Overcoat;

l_l nctercoat N.VN

Figure 3.8 General Structure of a Thin film Media[3.2]
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The substrate can be either rigid, such as Aluminium-Magnesium alloy, or flexible 

such as Polyethylene Terephthalate. Rigid substrates require a hard undercoat as 

the Aluminium-Magnesium alloy is toosoft to provide adequate impact resistance 

for the magnetic coat. Flexible substrates require an undercoat of an adhesive layer 

to promote bonding of the organic substrate and the inorganic film. The magnetic 

film is normally a cobalt based metal alloy[3.21]. A hard, wear resistant, overcoat 

covers all thin film media to prevent the loss of the magnetic film by abrasion[3.2].

Types of hin ilm recording media may be distinguished by the process used to 

deposit the magnetic layer onto the media. Thin film media may be; plated, 

sputtered or evaporated, though recently multilayered media have been 

developed using two or more different methods of coating. [3.2]

3.4:2 The Winchester Disc System

The Winchester disc is approximately the same size as the standard 5 1/4 inch 

floppy disc but has a higher storage capacity; that of a floppy disc is only 360 

Kilobytes, while a Winchester disc has a maximum storage capacity of 1 Gigabyte. 

Although it may be considered as being similar to the floppy disc the Winchester 

disc differs from the simpler technology in several important respects [3.22]:

i) it is a thin iilm /nedia with a magnetic coating of less than 3 pm. Thin 

Vilm media <M&. then prone to totally different error mechanisms than thick 

film magnetic storage discussed previously;
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ii) the read write head flies very close to the magnetic recording surface of the 

disc compared to the flight height of a floppy disc. This requires a flow of 

filtered air to keep the disc drives free of dust to prevent the head from 

crashing and to keep the head flying at the correct height;

iii) Winchester discs allow a very high capacity for storing data compared 

with a floppy discs. This is due to the low flight of the read head, which also 

leads to the fast data retrieval rate of approximately 80 ms;

iv) unlike floppy discs, Winchester discs cannot be readily transported. This 

is due in part to the low flight height of the heads and to the complex structure 

of the mechanism;

v) until quite recently Winchester discs have been a prohibitively expensive 

method of storing data, o,s all data stored on a Winchester unit has to be 

backed up. This may be done using either tape or floppy discs which is in 

either case, time consuming and expensive when the Winchester disc is full;

vi) the susceptibility of Winchester drives to vibration means that they can 

not be fitted to a portable computer.

A cut away diagram of the Winchester disc drive is shown in the Figure 3.9 the 

figure demonstrates how the Winchester system manages to pack so much data on 

to a simple system.
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The use of the Winchester disc has been enhanced by the availability of R-DAT 

and Optical Discs for high performance, high density data back-up storage. The 

Winchester Disc continues to be primarily used as a data store for the computer.

The Winchester system can be improved in several ways, these include: 

i) a further reduction in the flying height; 

ii) the introduction of vertical bit recording ; 

iii) new formats, the micro Winchester disc and the Winchester cartridge disc.

Air filter Spindle with 
Integrated motor

Actuator arm

Actuator magnet 
housing asserpbly

Faceplate

Read-write 
head

Head flexure

Head arm Prlnted-clrcult board 
for drive electronlca

Preamplifier chips
Interface connector

Figure 3.9 Winchester Disc System[3.22]
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3.5 Optical Disc

Like R-DAT optical discs are a Jaigh integrity media. In both cases the integrity is 

due to the Olodulation and error 'Control coding. The storage of data in this 

medium is not magnetic; information is stored by a series of minute pits which are 

etched into the mirrored surface of the disc[3.27]. These pits are then read by a low 

powered solid state laser.

Laser light passes through a focusing mechanism consisting of mirrors, lenses and 

prisms. The light is then shone on to the disc where the pits diffract the beam. 

This diffraction is measured by an array of photo diodes[3.23]. The information is 

then extracted from the disc via these diodes which measure light intensity 

differences due to the diffraction caused by the pits.

In addition to the widespread use of optical discs for audio reproduction these 

discs can be used for a digital video recording system. The video disc system is 

based on a 12 inch disc[3.24,3.25].

._ rc - -—- - - -- - - -0, - r isc has been used mainly as a

method of permanent storage as a CD-ROM. Like R-DAT the system can reliably 

store 550 Megabytes of data. More recently ptical iscs have been used to store 

both sound and video data for ultimedia packages[3.26].

The qualities of optical discs outlined above imply that optical recording will 

become increasingly important in the field of data storage. These new fields will

be in addition to its present use as a store for permanent databases which require

66



the large storage capabilities and fast recall. The database applications include the 

transcribing of British Telecom telephone directories and the use of CD-ROMs as 

electronic manuals by Siemens[3.26].

Data is formatted on to the Optical Disc as a sequence of frames. Each frame 

consists of 1 control byte, 24 data bytes, and two groups of 4 error correction bytes. 

One of these groups of correction blocks in the middle of the frame the other at the 

end.

As with other methods of high density recording the CD-ROM requires encoding 

algorithms which will compensate for both single random errors and more 

complex burst errors. Just as in R-DAT the Cross Interleaved Reed Solomon code 

(CIRC) combined with a group modulation code provide solution[3.26]. The Error 

Correction for optical discs is discussed fully in Chapter 4 while the Modulation is 

considered in Chapter 5.
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Figure 3.10 The Stages of Optical Disc manufacture[2.28]
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Chapter4

Error Correcting Codes 

4.1 Introduction 

4.1:1 Introduction

This chapter will offer an account of the development of error correcting codes 

from both the communications perspective, where they were originally used by 

Hamming, through to their use in modern magnetic recording. It will discuss 

codes both for burst errors, where several adjacent bits are in error and the 

Gaussian noise channel, where the errors occur independently of each other. In 

addition to error correction, methods of enhancing the performance of error 

correcting codes, against burst errors will be shown.

Although this chapter will deal solely with binary codes defined over extended 

binary Galois fields which are prevalent in digital recording. It is also possible to 

encode the data for any number of possible states provided that there exists a 

Galois Held or an extended Galois Field for that state.

4.1;2 Correcting Errors by Adding Redundancy [4.11

Wherever data is transmitted noise may corrupt the correct signal. For example it 

is possible to send a message with symbols drawn from a four symbol alphabet 

containing just the four two bit codewords or code vectors; (00,01,10,11).
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However in this data set it cannot be ascertained if the signal received was that 

which was transmitted. The problem of data uncertainty is resolved by adding 

redundancy which is then used to detect signal errors. It is possible to add a single 

extra bit for each codeword and thereby enable the system to detect an error and 

then seek its retransmission. This gives two possible alphabets both with single 

error detection. Either the set of elements; (000,011,101,110) , which have even 

parity or the set; (001,010,100,111) /which have odd parity.

Both of the above cases are not error correction codes although they will detect 

errors. In both the two sets for error detection given above there are at least two 

bits which are different for any pair of words in that set.

4.1:3 Information Rate

The Information Rate, R, of a code is the percentage or fraction of the transmitted 

bits which contain information. So for the single error detecting code, used above 

the Information Rate is 66% or 2 /s-

The Information rate of a code is important in comparing the efficiency of 

different error correcting codes. It gives a measure of the amount of redundancy in 

the error correcting code which can be measured against the number of errors the 

code can correct.
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4.1:4 Hamming Weight

The number of ones in a codevector of binary data is called the Hamming weight 

of the codevector. The Hamming weight Hw of a codevector X is defined as:

HW(X) =( #i) {xj=l} Xj  X (4.1) 

Where:

# is the number of elemen ts in a set: 

{} for which.

This can be shown to be the sum of the individual binary elements in the 

codevector.

4.1;5 Hamming Distance[4.11

This definition of the separation of the elements into a code set was classified by 

R.W. Hamming[4.5] and bears his name. The Hamming distance, H, between two 

codewords X and Y is defined as being the number of places in which the 

codewords differ. This can be represented mathematically by;

Hd(X,Y)= (#i+#j){i:xj=0 and y^l I j: Xj=l and yj=0}. (xj   X and yi   Y(4.2) 

Where:

# represents the number of elements;

: represents such that;

I represents and;

{} represents for which.
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The Hamming distance can be used to find how much redundancy is necessary 

before the code set will detect/correct a given amount of errors.

For error detection a code will detect all errors in codewords which differ from the 

original codeword in less than '/zH places. In addition a code will correct all errors

in codewords which differ from the original codeword in less than '/2 (H-i). The 

number of differences between a received codeword and the original is said to be 

the length of an error. So for the example in section V.1:2 a possible single error 

correcting code would be; (00000,10011,01101,11110).

The Hamming distances of these codewords can be tabulated to show that this code 

is a single error correcting code. The first row also gives the Hamming weight of 

the code words. The minimum distance of three shows that this code is a single 

error correction code.

i

i i

Hi

i v

00000 

i

0

3

3

4

10011 

ii

3

0

3

4

01101

iii

3

3

0

3

11110 

iv

4

4

3

0

Table 4.1 Hamming Distance of a single Error Correcting code of Length 5
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4.1:6 Varashamov -Gilbert Bound T4.21

The use of bounds in Error Correcting Codes place limits upon the number of 

errors which may be corrected and the necessary amount of redundancy required 

so to do. These bounds are present in both asymmetric and symmetric error 

correcting codes.

The Varashamov bound gives an upper limit to the possible number of 

asymmetric code vectors which can be used in a single error correcting code of 

fixed codeword length. The BCH family of codes discussed in sections 4.2 and 4.3 

obey the Varashamov bound. These bounds act as an upper bound on the number 

of single error correcting codevectors of a given length. The closer a code is to the 

Varashamov bound gives a measure of it s efficiency.

The Varashamov-Gilbert bound is used to fix the efficiency of an Error correction 

code. Those codes whose code length coincide with the Varashamov-Gilbert bound 

are optimal single error correcting codes, giving the maximum number of 

codewords. This can be illustrated by Table 4.2 which shows the Hamming error 

correction codes and the Varashamov-Gilbert bound for different code lengths. 

Those Hamming codes which are in frequent use obey the bound.
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Code Length

2
3
4
5
6
7
8
9

10
11
12
13

14
15
16

Number of Code words

Hamming Code

1
2
2
4
8

16
16
32
64

128
256
512

1024
2048
2048

Varashamov Code

2
2
4
6

10
16
30
52
94

172
316
586

1096
2048
3856

Table 4.2 Varashamov and Hamming bounds for codewords

4.1:7 Perfect Codesr4.11

Perfect error correcting codes are those which allow the maximum amount of 

error detection from the minimum amount of redundancy. Error Correcting 

codes are said to be perfect if:
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the entire set of vectors in the vector space over which the error syndromes 

for the code is defined is partitioned into subsets each one of which contains 

one and only one element from the set of correctable errors;

in addition no member of another subset is as close in terms of Hamming 

distance to the subsets permitted element. This means that there are no 

elements in the vector field which do not lie within the specified Hamming 

distance of a member of the encoded data set.

Perfect binary symmetric codes are those which fulfil the Varashmov-Gilbert 

lower bound for their code length. The distinction between asymmetric and 

symmetric error correction codes will be shown in section 4.1:10. However the 

correction code will be dependent upon the type of errors present in the channel.

4.1:8 Parity Sum Check Error Detection in Computer Tape T4.31

In Magnetic Recording there exist several simple non-algebraic codes which rely 

upon parity check mechanisms for their ability to correct errors. These redundancy 

checks have been used in digital magnetic tapes for computers where information 

is stored in a series of tracks. These codes include Optimal Rectangular Code , ORC 

[4.4] and Axial Cross Parity, AXP Code[4.5].

The first code ORC has been designed to correct errors on any single track. 

However this can be modified and with use of erasure pointers it may correct any 

double track errors on the tape. Codewords in ORC have a rectangular format, 

with the check bits positioned on two orthogonal sides of the rectangle
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The AXP code was developed for high density recording tape. This tape has an 18 

track format, which in the coding scheme are divided into two sets of nine tracks, 

consisting as in ORC of 7 data tracks and 2 parity bit checks. This system employs 

adaptive checks which can correct up to 3 erased errors in either set of 9 tracks up 

to a total limit of 4 tracks in the two sets. However the coding structure avoids 

complex Galois Field Theory by use of vertical and cross-parity checks.

4.1:9 Error Syndromes

Algebraic error correcting codes detect the position of both bit and byte errors by 

the use of an rror yndrome. For any code there is a unique mapping between the 

set of correctable errors and the set of possible error syndromes. It is usual practice 

in error correcting codes to regard the zero vector as the error syndrome for zero 

errors.

4.1:10 Aliasing

With all methods of error correction aliasing will occur. It is most present in 

perfect codes as these do not allow any additional ability for error detection for 

errors of length greater than the code is able to correct. The effects of aliasing are 

dealt with in the section on Hamming codes Section 4.2.2, Including a parity 

method to help prevent aliasing from occurring in the Hamming code.
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4.1;11 Error Correction Codes for Asymmetric channelsr4.6.4.71

Although the main body of this chapter, sections 4.2 to 4.4 deal with Binary 

symmetric codes, there exist asymmetric correcting codes. These codes are of 

specific use with the ASC described in section 2.3:5. In this channel a 1 was 

transformed to a 0.

Varashamov and Tenegol'ts proposed a code for correcting a single asymmetric 

error. The code defined a weighted sum of a codeword to be:

n

W= z iat (mod (n+1)) (4.3) 
i=l

Where:

aj is the codeword bit at point i.

The codewords for the Varashamov code are defined as being those words for 

which W=0. For example the vector:

A=(10011001)

is of length eight and is a codevector in the the Varashamov code. This can be 

shown as its summation from (4.3) is given by:

W=l +4+5-1-8 =18 = 0(mod 9) 

Single Asymmetric Errors are detected by the summation given in (4.3). The

position of an error in the codeword is given by the summation. For a (1->0) 

asymmetric channel the modulus gives the position from the right hand side of 

the code vector.

A1 =(10010001)

W'=l +4+8=13=4 (mod 9)
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However these codes are not acceptable in the BSC as two different errors will then 

be able to generate the same error syndrome.

To illustrate this it is necessary to use a code vector which is not symmetrical. An 

example of this is the codevector;

a = 00010 10 1

W =4+6+8=0 (mod 9)

For a (1 >0) error which occurs in the fourth position of the codeword one gets the 

following codevector and error syndrome.

a0 = 00000101 

W0 = 6+8 = 5 (mod 9)

For a (0-»1) error which occurs in the fifth position in the codeword one gets the 

following codevector and error syndrome.

a0 = 0 0 0 111 0 1

W0 = 4+ 5+6+8 = 5 (mod 9) 

So clearly these codes are of little use in a binary symmetric channel.

Rao and Constantin [4.7] proposed group theoretic codes which are an 

improvement upon the Varashamov codes. These codes had a better information 

rate than the Varashamov codes in some cases exceeding the limit given by the 

Varashamov upper bound on Information rate.
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4.1:12 Galois Field TheoryKSl

All algebraic methods of error correction regard each codeword of data as a vector 

in a vector space. These vector spaces are governed by the rules of a Galois field. 

To be able to comprehend the working of an Error Correcting Code it is therefore 

necessary to first define a Galois field.

Mathematically a Galois Field (GF) has the properties that;

there exist two defined operations ; multiplication and addition, 

the field is closed under these operations,

there exist a zero element within the field such that a+Q=a. :V « GF, 

there exists a Unity element of multiplicative identity such that

a* 1=cc:Va€G,.

there exist an additive inverse for every element, VaeGF;3 -aeGF, such

thata+(-a)=0,

there exists a multiplicative inverse for every element, VoteGF; BcT^GF,

such that a*a" 1=1,

the elements of the field obey the associative, commutative and distributive

laws,

An example of a Galois field is given by the multiplication table in Table 4.3. 

Addition in this Galois field is standard modulo 2, an example of this type of 

addition is given by the two codewords: 101+111=010.
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0

a

2
a

3
a

4
a

5
a

6
a

7
a

000

01C

100

011

110

111

101

001

0

000

000

00.0

000

000

000

000

000

000

a

010

000

100

011

110

111

101

001

010

2
a

100

000

011

110

111

101

001

010

100

3
a

011

000

110

111

101

001

010

100

011

4
a

110

000

111

101

001

010

100

011

110

5
a

111

000

101

001

010

100

011

110

111

6
a

101

000

001

010

100

011

110

111

101

7
a

001

000

010

100

011

110

111

101

001

Table 4.3 The Multiplication table for GF(23) [4.9]

4.2 Single Error Correction

4.2:1 The Hamming Code. [4.8.4.10.4.11.4.121

Hamming codes were discovered by Golay (1949) and Hamming (1950)[4.12]. Code 

matrices are used to both encode and decode the transmitted or stored data. These 

are Linear block codes which are defined over a Vector Space V .

One of the shorter Hamming error correcting codes is defined over the Galois field 

GF(23). This is illustrated below:
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A Generator or encoding matrix is the set of basis vectors for the linear block code. 

The row space of G is the linear code V. A vector is a code vector if it is a linear 

combination of the rows of G. An example of such a matrix is given by:

G=

i o o o o i TJ

0100101

0010110

0001111

(4.4)

All generating matrices have a decoding matrix with which they are paired. This 

decoding matrix H of rank n-k maps elements from the Vector Space V on to the 

null space V . This null space is the vector set for the matrix H. The corresponding 

matrix for the above case this is given by:

H =

01111 OUT

1011010

1101001

(4.5)

A vector v is only in the original vector space V if it is orthogonal to every row of 

the matrix H. This implies that for all Generator and decoding matrices the 

product of the generator and the transpose of the decoding matrices is always zero, 

modulo 2,

GHT=0 (Mod2) (4.6)

To show how this works in practice, an example follows:
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3.2:2 Example of Hamming Code

The data segment of information bits given by 1010 is encoded by post-multipling 

modulo 2 by the matrix G. This operation gives the resulting codevector as being 

1010101.

Pre-multipling this vector by the matrix,H, we obtain the error syndrome Se . For

no additional errors, the syndrome is the zero vector, (000). This is because all 

possible codevectors are mapped into the null space V, this is illustrated in 

GH^=0 above. This zero vector signifies that there is no error in the codevector.

Adding an error in the fourth position of the bitstream will give the following 

bitstream 1011101. This is not an element of the set of codevectors V, so when 

pre-multiplied by the matrix H it will not map into the null space. This gives a 

non zero vector, (111), which is the fourth row of the matrix H signifying an error 

in that position.

The columns of H, of the binary Hamming code consist always of non-zero 

elements of the Galois Field GF(2l) where t is the matrix dimension. It is standard 

practice to order the matrix so that the first t columns of the generator matrix is an 

identity matrix. H is then so arranged to allow this generator matrix.
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4.2;3 Extended Hamming Cod

Pure Hamming codes are limited to the ability to correct single errors, but can be 

extended by the use of an additional parity check. This prevents double errors 

being corrected as single errors and hence causing aliasing. The matrix used to 

encode this extended version of the Hamming code is similar to that used for the 

normal Hamming with an additional row of all ones in the decoding matrix H'. 

The matrix given in 4.5 now becomes:

H' =

0111100

1011010

1101001

1111111

(4.7)

The decoding operation results in a double syndrome with two elements, (SQ,SI) 

in which:

SQ is the normal error correcting syndrome from the first three rows;

Si a parity check bit.

Returning to the example given in Section 4.2:2 of a code vector of 1010101 and 

impose a double error in bits 2 and 6. This will lead to an error syndrome of (111) 

from the single error correcting Hamming, this produces a false correction of bit 4 

which is not in error.

By using the extended Hamming system with the additional parity check, the 

double syndrome (111,0) is generated. The zero parity check bit shows that there 

has been a double error. This parity check prevents a worse error being propagated 

by the decoder, without the addition of any extra redundancy in the transmitted

signal.
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The decoding algorithm for the extended Hamming code is given below: 

So=(000) and Si=0 assume no error and accept the transmission; 

So*(000) and Si=l assume a single error, correct for the error indicated by the 

syndrome S0; 

So*(000) and 5^=0 assume a double error and seek retransmission.

Aliasing is common to all perfect codes as there is no allowance for the detection 

of additional errors within the codevector. The extended Hamming code while 

maintaining the high information rate of a perfect code, does prevent double 

errors leading to aliasing.

4.3 Multiple Error Correction 

4.3:1 Introduction

Codes which will correct more than one error within a codevector have been 

developed. However the facility to correct multiple errors reduces the information 

rate as the level of redundancy necessary to correct additional errors is 

increased[4,15].

It was shown in Chapter 2 that errors do not only occur as isolated single 

events[4.19]. Hamming 'error correction cannot control either multiple or bursty 

errors.
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Several methods for the correction of multiple randomly generated errors have 

been developed. In particular the Reed Muller code developed by Reed (1954)[4.16] 

and the BCH code which was developed independently by Hocquenghem(1959) 

and Bose & Ray-Chaudhuri(1960)[4.17] .

4.3:2 Reed Muller Codesr4.16.4.18l

Reed Muller codes are an important class of multiple error correcting binary codes 

which are simple to decode by using majority logic. The Parameters of the Reed 

Muller codes are given below[4.18]:

Length n=2m

(4.8)

Information Symbols k= Z_, \ I)

Minimum Distance d= 2m~r 

Error Control Capacity 2m-r-1-l

The Reed Muller code of length n=2m and degree r is written &(r,m). These 

consist of the binary code vectors of length n, which are represented as 

polynomial over GF[2], of degree at most r. The table below shows the truth table 

for length three.

X
0

Xi

X
2

01010101

00110011

00001111

Table 4.4 The truth table of the Boolean Functions (m=3)

For example the Reed Muller code $1(1,5) has the generator matrix.
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1*

XQ

x,

xz

"l 1111111

01010101

00110011

00001111

(4.9)

This code is the extended Hamming code of length 7. The other Reed Muller

codes commonly in use are the &(1,4) which is a (16,5) code and the H(l$) which 

is a (32,6) code. The second of these codes corrects up to 7 bits in error and was 

used by the Mariner space probe to transmit pictures of the moon.

To decode the Reed Muller code a simple procedure of majority logic is followed.

The binary points of the vector space 2 2 3 form a cube as there are eight points. 

Planes are made up of a combination of four of the points. Each plane has a 

characteristic equation in which those points which are in the plane are 

represented by a 1 and those points not in the plane by a zero.

The received codevector is multiplied by the characteristic equation of each plane. 

If the resultant value is zero, even parity, then there is no error at any of points 

which make up the plane in the code vector. If the resultant value is one, odd

parity, then there is an error in the code word. For the vector space Z 2 there are 

14 possible code planes, with each binary point lying in 7.. Hence a single error 

would be displayed as 7 planes with odd parity.
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The second stage is to compare the result for each of the lines in the planes against 

the received code vector. This is achieved by majority logic; since in the vector

space 2 2 3 each line lies in three planes. If the majority of these planes are of even 

parity then the line is said to posses even parity and vice versa.

4.3:3 BCH Codes

BCH codes are an algebraic multiple error correcting code and the Hamming codes 

discussed in Section 4.2 are a subset equivalent to the single error correction BCH 

code.

Once again the code makes use of the fact that the code vectors can be regarded as 

elements in a Galois field over a vector space. Two methods of encoding the BCH 

code will be described;

(i) in Section 4.3:4, a block encoding method using matrices similar to that 

discussed for the Hamming codes in Section 4.2:3,

(ii) in Section 4.3:7, a method of cyclic encoding using a set of polynomials 

which are irreducible over the Galois Field.

The cyclic method can be used as an alternative to generating the Hamming code 

by using matrices.

The length of these codes is always of the form 2n-l, where n is an integer. The 

cyclic generator polynomials for these codes guarantee the largest minimum 

distance by the BCH bound, which is given below.
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The BCH Lound states that the generator polynomial g(X) of a cyclic code of length 

n over GF(q) whose roots:

ae i, a en ' k , where a is an element of the field of order n. The 

minimum distance is then greater than the largest set of consecutive 

integer modulo n in the the set e={ei, e^k).

There exists a corollary to this statement which states that a cyclic code

with roots ae > , ae + J , . . . , ae J ( d i~ 2 ) , where a is an element of order n, 

has minimum distance dj or greater provided that j and n are coprime.

A list of the shorter length binary BCH error correcting codes appears in Table 4.5 

giving both the level of error correction and transmission rate for each code 

length:

t

1
1
1
2
2
2
3
3
3
3
4
4
4

n

15
31
63
15
31
63
15
31
63
127
31
63

127

k

11
26
57
7

21
51
5
16
45

106
11
39
99

R

0.73
0.84
0 .90
0.47
0.68
0.81
0.33
0.52
0.71
0.83
0.35
0.64
0.78

E

0.067
0.032
0.016
0.133
0.065
0.032
0.2
0.097
0.048
0.024
0.129
0.063
0.031

Table 4.5 BCH Code Analysis
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In this Table:

column 1 shows the number of errors correctable in each word;

column 2 the number of bits/word;

column 3 the number of data bits/word;

column 4 the transmission rate, R=k/n;

column 5 the correctional ability of the code E=t/n.

BCH codes maybe written as (n,k,t) codes where the symbols specify code length, 

data length and correctability.

4.3:4 Block encoding of BCH Code F4.221

The Hamming codes are a special type of a BCH codes, those BCH codes which 

posses only the ability to correct a single error. The property that Hamming codes 

are a subset of BCH codes illustrates that the BCH codes can be generated by using 

matrices. These matrices are constructed by using the same method as those used 

for the Hamming code. For multiple correcting BCH codes a greater Hamming 

distance is used. This method of encoding BCH codes is simplistic and inferior to 

the more direct and elegant method given in Section If. .3:5 of using irreducible 

polynomials defined over a Galois Field to develop a cyclic encoding and decoding 

system.

4.3:5 Irreducible Polynomials over a Galois Field

A polynomial is said to be irreducible over a Galois Field if it has no divisor 

polynomial from that field. For example; X2+l is not irreducible over GF(2) as it
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has divisor, X+l, though X3+l is an irreducible polynomial. A full list of these 

irreducible polynomials over GF(2) up to degree 34 is given in Peterson and 

Weldon{4.21]

4.3:6 Cyclic property of BCH codes

BCH and Hamming codes are said to be cyclic. Cyclic codes have the following 

properties:

if the code vector V=(ai.....an,ao) is an element of the cyclic code, then the 

vector V'=(aQ,a^....an ) obtained by shifting the units one space to the 

right is also in the code.[4.20]

4.3:7 Cyclic Encoding of BCH codes

The alternative method to develop BCH codes is to use a shift register to develop 

the codeword from the data block. In this method irreducible polynomials are 

used to generate the series of parity check bits. These parity check bits were 

developed in Block coding by using the non-unity columns of the matrix. This 

method shifts the data to the left, dependent upon the amount of redundancy 

required. The remainder from the division is added to the data block to create a 

multiple of the generator polynomial. To decode the received codevector the 

codevector is divided into the same polynomial which was used earlier to generate 

the parity check bits.

To generate and decode these codes using matrices would require matrices of 

dimension (n-k,n) and (n,t). Using the cyclic property of the BCH codes both
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generation and decoding can be undertaken using division by irreducible 

polynomials. The method for which is displayed in the flow chart in tl'gure 4.1

The (31,26,1) BCH is generated by the polynomial x5+x3+l. This use of generator 

polynomials gives a very fast and comparatively simple method of encoding BCH 

codes. Block encoding of these codes can involve matrices with dimension greater 

than a thousand. The single error correcting BCH code of length 1023 has 1013 data 

bits. It would be time consuming to develop such a matrix and any computation 

would involve complex matrix manipulation.

The (31,16,3) BCH code has a longer generator polynomial, because of the larger 

level of redundancy required X15+x12-fx11 +x10-fx9+x7+x5+x3+x+l. This is the code 

which is used in the algorithm given in Figure 4.1. The code bits are generated by 

division of the data stream by the polynomial. The degree of the polynomial is 

given by the amount of redundant bits required, as these are the remainder after 

the data block has been divided by the polynomial. The number of cycles through

the loop is determined by the number of bits in a given data block.
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ERROR 
CORRECTION

C STOP

Figure 4.1 Cyclic Encoding and Decoding of BCH Code

One of the most important error mechanisms is the dropout or fade[4.19]. In the 

case of a severe dropout there is a total loss of the signal in that section of recorded 

data. However designing a code specifically to deal with this type of error is not 

appropriate for a Gaussian noise dominant channel.
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In addition to being able to cope with multiple errors caused by bitshift there is a 

modified form of the BCH code which allows erasures to be handled as well. To 

decode codevectors which have suffered from erasures it must known that a 

symbol should occur at a certain position, though it is not necessary to know what 

that symbol should be. This is particularly useful when combined with a 

Modulation code such as the Manchester code.

One method of erasure decoding uses a maximum likelihood decoder to compare 

the received code sequence without the erasures with all possible sequences.

With E erasures, in a code vector there is still a minimum distance of dmin-E for 

the unerased positions. It is therefore possible to gain a decoding as long as the 

now reduced minimum distance still exceeds 2t. This method of erasure decoding 

is not the only one. An alternative is to duplicate the received signal.

For one of the two duplicate signals replace all the erased bits by ones and in the 

other by zeros. Decode each one separately using a standard BCH decoder. If the 

sequences differ then it is logical to chose the one which is closer to the received 

signal, hence accepting the one the least amount of induced errors indicated.

4.3:9 Bursty Errors and False Error Correction

BCH codes are linear codes which are able to decode multiple errors from a 

Gaussian noise source. Random errors may be corrected wherever they occur in 

the received codeword, provided that the total number of errors in the codeword

does not exceed the limit set by the Hamming distance.
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The probability of erroneous decoding of a data stream for a Gaussian noise source 

by a single error correcting linear code is given by [4.7];

(4-10)
\ 2 / \2) 

Where :

Pe (e) is the probability of erroneous decoding; 

ni is the Number of 1's in the data stream; 

ng is the Number of O's in the data stream; 

a is the probability of detecting a one as a zero; 

P is the probability of detecting a zero as a one; 

In this it has been assumed that 1 > oc > p > 0.

In this case the probability of a one being in error may not be equal to a zero being 

in error.

Equation 3.10 can be expanded for multiple correcting codes such as the BCH code. 

Given that the qode can correct r-1 errors then the probability of false detection can 

be given by: pE<e> trtf
However not all errors are caused by a Gaussian error source so it is often 

necessary to employ non-linear codes which are able to correct these burst errors. 

The BCH code is a linear code, were it used to correct burst errors the redundancy 

required would be excessive. This would lead to a very low transmission rate and 

in addition an impracticably large database containing the error syndromes, for
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example for the (31,16,3) BCH code there are 113491 possible error syndromes.

Furthermore were the burst error of greater length than the code can correct, 

aliasing would occur similar to that found in Hamming codes when multiple 

errors were introduced.

4.4 Burst Error Correcting Codes 

4.4:1 Introduction

To combat the problems of burst errors and dropouts, an extension to the BCH 

code was proposed by G. Solomon and I.S. Reed [4.23] in 1960. This code takes its 

coding elements from extended binary Galois Fields which have the number of 

field elements in code vectors. Thus for a code of length 7 the elements used are 

those of the extended Galois field GF(23), with the proviso that none of the data 

elements are zero . The multiplication table for this field is shown in Table 4.3.

4.4:2 Burst Error Correction

The Hamming distance is a useful measure of performance for codes in a Gaussian 

Noise channel but it is a less appropriate where the main error source is non- 

Gaussian and Bursty. Furthermore the use of modern Modulation codes (see 

Chapter 5) will lead to a high number of bit errors from a relatively low channel 

error rate.

This can be compensated for by using codes which treat the data as a series of 

discrete blocks rather than a continuous sequence. These code types include:
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B-adjacent [4.26] and Reed Solomon codes[4.23]. The later of these is used 

extensively in such modern high integrity recording media as Optical disks and 

R-DAT. A discussion of Reed Solomon codes will be given in Sections 3.4:5 to 

3.4:8. Here alternative strategies are reviewed.

Although codes do exist for both bit and byte error correction [4.22] in this section 

all the codes discussed here will be pure byte correcting codes. These correct a block 

or a byte of data rather than a single bit or symbol.

4.4:3 Fire coder4.26.4.271

This code was developed in 1959. In common with the BCH codes this uses a 

Generator polynomial of the form:

= (X2fJ- 1 +1)h(X) (4.12)

where:

C is the length of the burst to be corrected;

h(x) is an irreducible polynomial of degree n»B which does not divide

X2B-1+1;

These codes use a shift register to trap and locate the burst, needing a maximum of 

r shifts to do so where r is the position of the start of the burst. Although this code 

is designed to correct a single burst error determined by the degree of the 

polynomial, Fire codes regard the data as a continuous stream of bits rather than as 

a series of discrete blocks as the Reed-Solomon and B-adjacent codes do.
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4-4:4 B-adjacent codesJ4.26.4.27l

These were developed in 1970 by D.C. Bossen. This code allows the correction of

two bursts.

An example of this code follows:

Six data words A-F of length 8 bits are made into a code word by the addition 

of two redundancy words.

The first P is simply the exclusive OR of the data bits:

P= A « B E«F (4.13)

This second redundancy word is then given by:

(4.14)

where T is a transformation Matrix given by:
01000000 
00100000 
00010000 
10001000 

T= 10000100 
10000010 
00000001 
10000000

The words now form a code word and are recorded. If a double burst error is 

introduced in words A and C, then the P part of the syndrome would have the

exclusive OR of the two errors while Q part will contain T6A#T4C so giving two 

equations in two unknowns which can be solved directly.
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The B-adjacent code like the the Reed Solomon code can be regarded as a byte 

correcting code, correcting a group of data rather than a single bit. B-adjacent codes 

can be regarded as a subclass of Hamming codes with the following parity check 

matrix.

11111 ...... 1 0 t
(4.15) 

.1 P, P2 P 3 P, .....0 1J

Where p, P 2     Pk-i- 1 are a11 distinct elements of GF(2b).

These codes are referred to as 2-redundant codes as there are two parity check bits

at the end of the matrix.

4.4:5 Definition of Reed Solomon Codingf4.9l.

The Reed Solomon codes are again an extension of BCH coding in which the 

subwords come from the extended binary Galois field. The choice of Galois field is 

determined by the length of the code vector used. For example a code with 

thirty-one subwords will take these subwords from the Galois field, GF(25 ) 

generated by an irreducible polynomial. In the case of GF(25), this polynomial is 

given by X5+X2+1 and the subwords will all be of length five bits. The code then 

develops parity check subwords by using the multiplicative and additive 

properties of the Galois field discussed in Section 4.1:12.

This is illustrated by the use of an example in Section 4-4:6, however it is first 

necessary to define the Galois field GF(23) in terms of the generating element and 

the binary bit pattern which the words represent. This is shown in Table 4.3.
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4.4:6 Example of Reed Solomon Encodingf4.291

For a data stream of fifteen bits, a single byte error correction Reed Solomon code 

defined over GF( 2 3 ) can be used. The table for which was given in section 4.1:12.

The data stream is first separated into five bytes of length three, which are used to 

generate the parity from equations 1^.16 and ̂ . 17. This provides the addition of two 

extra subwords at the end of the set of data bytes. The code now has the ability to 

detect, quantify and locate errors in the codeword. 

Take the data stream:

101011110100001 

Divide it into five words of length three:

101 Oil 110 100 001

Convert these to the representation in terms of a from Table 4.3:

«6 a5 a4 a O a 2 

A B C D E

Find the first parity check word by summing the data words:

P=«6 A 0aB ©oc 2 C 0oc5 D 0oc 3 E (4.16)

p = cc= 111 

Using the Equation that

Q= a 2A 0 oc 3B 0 oc 6C ® «4D ® «E (4.17)

Q=cx4= 110

The data subwords and the parity check subwords will now form the two
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equations for the generation of the error syndromes:

S0=A©B©C©D©E©P© 0=0 (4.18)

S j = «7 A ® oc 6B © <x 5 C © a4D © oc 3 E © a2P © aQ=0 (4.19)

This can now be used to correct both errors and erasures from the recorded data, 

with the situation where there are no errors given by two Zero syndromes shown 

above.

As an example of error correction. First introduce an error into the third word, C, 

so that the corrupted word, C', now reads as 101.

To find the error take the binary summation of the elements over the Galois field. 

This gives the first syndrome representing the amount of error in the system. 

Where:

SQ = 101 © Oil © 101 © 100 © 001 © 111 © 110 =011 (4.20) 

S0 = Oil = a3.

Then use the second equation to generate S}.For this example this yields:

Si = 100 © 100 © 110 © 101 © Oil © 101 © 110 = 010 (4.21)

Si=010=a.

To locate the position of the error it is necessary to divide Si by SQ to give the 

position of the error:

a-2 = a5 (4.22)
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This gives the word which was multiplied by cc 5 as being in error. So to correct the 

code SQ is added to C to give the original value C.

One of the important advantages of Reed Solomon coding is that it allows the 

decoding of more than one burst error. For example there is a double error 

correcting (7,3) code over GF(23 ). The level of redundancy required however 

restricts the amount of data to only three subwords and will correct up to two 

subwords in error[4.30].

This code is not perfect so it possesses the additional ability to detect errors of 

greater length than it can correct. If there are three sub-words in error, it is 

often the case that this double error correcting code will be able to detect the error. 

This is due to the generated error syndrome not belonging to any of the vector 

subspace of possible syndromes associated with a particular double or single error. 

In this case the code will work as a triple error detecting code rather than 

attempting to correct two bits which are not in error.

3.4:7 Reed Solomon coding in High Integrity Recording Media f 4.31.4.32.4.331

The modulation code used in high integrity Media (such as the 8/10 modulation, 

used in R-DAT), causes error propagation. In this case a single bit error in the 

output could after demodulation become a bursty error of up to 8 bits in the replay 

signal. Reed Solomon over GF(2$) was therefore an obvious choice for the error 

correction coding to be used.
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The signal processing and error correction for the Digital Audio tape has been 

undertaken in relation to digital recording for consumer electronics as part of the 

application of R-DAT to digital audio . The method of error correction employed 

in R-DAT is a doubly-encoded Reed Solomon code over GF(28 ). A data frame 

consists of 128 blocks, which include all the sampled data during a half rotation of 

15m.sec[4.31].

Error correction is undertaken by two concatenated Reed Solomon codes referred 

to as the inner and the outer codes. These codes regard the data as a series of blocks 

of length 8 bits. The inner code, Cl, is a (32,28) R.S.C. having a minimum distance 

of 5 so enabling the correction of two erroneous blocks. The outer code, C2, with a 

four block interleaving in the horizontal direction is a (32,26) RS code with a 

minimum distance of 7 so enabling the correction of three erroneous blocks. The 

concatenation of these two codes is shown in figure 4.4. Due to the high packing of 

R-DAT there is a tendency for long burst errors, so a high ability for both error 

detection and correction is required in the digital audio systems.

ci

C2 4 1

Figure 4.4 Section of recorded tape from R-DAT showing the Code Concatenation

This method of encoding is similar to that used in the optical disk, being an 

extension of optical disc encoding. In addition there is a model of the error 

decision process in the flow charts for both the inner Cl code and outer C2 code, in

Figure 4.5 and 4.6 at the end of this chapter.
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4.5 Convolutional Codesf4.34.4.35.4.36l 

4.5:1 Introduction

These are an important but totally distinct group of Error correcting codes. The 

distinction of Convolutional codes is due to the fact that the algorithm for 

producing an encoded bitstream is totally different to either block or cyclic code 

construction which were discussed in the previous sections. The ability to correct 

errors in Convolutional coding does not come from additional redundancy at the 

end of each data word but in the dependence of the present output state to the 

previous output states.

Part of the importance of these codes is due to the large amount of work which is 

currently being undertaken to find a method of combining Error Correction Code 

with Modulation Codes. The aim of this research is to combine the redundancy 

which occurs in both Modulation and Error Correction to give a single approach to 

the problem Channel and Error Control encoding. This is dealt with in greater 

detail in Section 5.8.

In the simplest form a Convolutional code will take a single bit of input data and 

map it onto two bits of output data using a polynomials of order three to represent 

the shift registers in the coder. For this type of encoder it can be said that:

k is the number of input bits = 1

n is the number of output bits = 2

N-l is the number of dependent blocks = 2

k/n is the code rate
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There exist both random and burst error correcting convolutional codes, though 

in this section only random error correcting burst codes will be discussed.

4.5:2 Encoding of a Convolutional Code

Like all error correcting codes convolutional codes make use of generating 

polynomials over which they are defined. In convolutional codes these 

polynomials are a representation of the shift register which develops the code. 

This is shown in Figure 4.7 for a three stage shift register with three output bits 

and a single input.

o o

o

o
Figure 4.7 Convolutional encoder for code given by the polynomials, X 3 +X 2 +1 

X 3+l &X 3+X+1[4.32]

In this diagram the bits enter the shift register from the right, the elements in the 

boxes are then shifted one space to the left with the bit on the left being lost. The

encoded sequence then leaves by the three output lines on the left this gives a data
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to code rate of 33.3%. The polynomials define the feed back through the loops. 

These polynomials have to be coprime, as ones which are not will lead to 

catastrophic error propagation, (CEP). CEP is caused when two distinct input 

sequences merge to give the same output sequence. In this case, it is not possible to 

derive which of the two input sequences the received output sequence was 

derived.

An example of a data stream and its encoding by this method of error correction 

coding is given below:

Shift registers: P, = X 3+X 2+1

P 2 = X 3+X+1 

P 3 = X 3+1

Data sequence: 1\0\0\1\0\1\1(0\0\0)

Encoded Sequence: 111\010\100\000\010\011\010V 110\011\111)

The last n terms are always zero to clear the shift register

4.5.3 Catastrophic Error Propagation

A method of checking for CEP is the, Encoder State Diagram, this shows the values 

of the states and hence the output sequence to any given input sequence. This is

shown in Figure 4.8A. For the convolutional encoder given by X 2 + 1 and X+ 1 these 

equations are not coprime as (X+ 1 ) 2 is equal to X 2+ 1 . This can be compared to the 

encoder state diagram for X 2+X+ 1 and X 2+ 1 which is shown in Figure 4.8B.
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Figure 4.8A Encoder State Diagram for a code with CEP

Figure 4.8B Encoder state diagram for Convolutional code without CEP. [4.34]

The numbers at the nodes represent the states in the blocks, and the numbers on 

the loops represent input bits to the block diagram.
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4.5:4 Maximum likelihood and the Viterbi algorithm

As Convolutional code maps a data stream into a matrix, it is often necessary to 

denote the output bits by a series of vectors. The maximum likelihood estimator is 

a method of gaining as close a match to a generating data sequence as possible from

a received encoded signal. If a decoder is said to find u an estimation of the

original data sequence u and v an estimation of the sequence v sent down the 

channel from the received signal r. Then

P(Elr)=P(v^vlr) (4.21)

P(E)=2r P(Elr)P(r) (4.22) 

To minimise P(E) it is necessary to minimise P(E I r), hence minimisation of

P(v^v I r) which is equivalent of maximising the function P(v I r) using the 

standard log-likelihood function[4.37].

However it is necessary to have a fast and relatively simple decoder for these 

convolutional codes with the plain maximum likelihood decoder, for a data 

sequence of length L generated by a Nj stage feedback loop, there are then as many 

as 2^N possible paths through the set of received.

This leads to a method of being able to disregard non optimal paths as soon as they 

become non-optimal. This algorithm was discovered by A J Viterbi in 1967 it 

simply states that:

1) For each of the 2V stored paths compute the distance between the 

received frame and the 2N branches.

2)For each of the 2v nodes construct the 2N paths which terminate at that
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point. Select and store the best.

This can be represented by updating a table after each received message frame, 

containing;

the end state;

the start state;

output;

the distance between the output and the received frame;

the accumulated distance to the start state and the sum of the last two values. 

It is this final value which will determine whether a path should be kept. The 

lower the value then the better the path. In cases of a tie then the choice is made 

arbitrarily.

4.6 Coding Enhancements 

4.6:1 Interleavingr4.38l

The Reed Solomon code can now be enhanced by interleaving the individual code 

sub-words so that successive sub-words in the same track on the media are not 

from the same codeword. This is illustrated below with subwords from three 

separate codewords. These are interleaved to gain a more efficient structure for 

combating a burst error of the type shown below in Figure 4.9 [4.38].
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Sub-word from code word 1

Sub-word from codeword 2

Sub-word from codeword 3

Sub-word in error

Figure 4.9 Interleaving to combat long burst error

Interleaving can be applied to any type of code. As in the above example 

interleaving is most effective when it uses data which has already been separated 

into sub-words or bytes for the encoding, such as the Reed Solomon or B-adjacent 

codes.

4.6:2 Cross-interleaving [4.39.4.40.4.331

Cross-Interleaving is used in both of the high integrity Media of R-DAT and 

Optical disks. In this case two codes are interleaved across each other as shown in 

the Figure 4.11. Similar methods have been used in the transmission of signals 

such as the the Teledion System developed for the Canadian Broadcasting 

Company, which is shown below in Figure 4.10.
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Cross-interleaved data can be modelled as being stored in the form of an array. 

The codes enmesh perpendicular to each other, the Interleaving occurs with bits 

down the strip of recorded data. So given that the large bursty type errors occur 

during the read-write process the cross-interleaving will be far more effective than 

the more simple interleaving techniques. Furthermore, Cross Interleaving gives 

protection against random single errors.

Figure 4.10 TELIDON SYSTEM OF INTERLEAVING

C1 Encoding

f
C2 Encoding

Figure 4.11 CROSS INTERLEAVING OF REED SOLOMON CODES IN HIGH 
INTEGRITY MEDIAS
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4.6.3 Concatenated Codes

It has been shown that it is possible to combine two different types of Error 

Correcting code into one algorithm. In the use of two Reed Solomon codes in the 

High Integrity Recording Media(4.33]. However, it is possible to use two different 

types of Error Correction code and Concatenate these two codes together. For 

example a Convolutional code maybe used as an inner code together with an outer 

code with byte correcting properties [4.41].

In such a system the convolutional coding is applied to the data first. The coded 

sequence is then re-encoded by the outer Reed Solomon Coding. It has been 

shown that this coding method satisfies the Gilbert-UwAhamov lower bound 

[4.42].

An additional possibility is to encode the raw data using (7,4,1) Hamming code and 

then to further encode by the use of Reed Solomon code encoding the bits over 

CPU?). So using one Hamming codeword as a data byte for the Reed Solomon 

code.{4.43].
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I START 1

ERROR DETECTION

NO CORRECTION 

C1 FLAG=A

1S CORRECTION 

C1 FLAG=B

2S CORRECTION 

C1 FLAG=C

Figure 4.5 Flow Chart for C1 Decoding
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fSTART J

SYNDFiOME GENERATION

ERROR DETECTION 

N=NUMBER OF ERROS FOUNd

2 ERASURE CORRECTS 2 ERROR CORRECTION

1 ERROR CORRECTION

Figure 4.6 Flow Chart for C2 Decoding
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Chapters

Modulation Codes 

p.l Introduction 

5.1:1 Introduction

The purpose of this chapter is to describe and demonstrate the various types of 

Modulation code, used in data storage, and to illustrate their specifications.

A Modulation Code is the method by which a stream of binary data digits is 

converted into a digital waveform which is then recorded on to the medium. In 

the digital waveform a one represents the presence of a transition in a timing 

window and a zero that no transition is present. It has been shown in Chapter 2 

that Modulation conventionally occurs after the error correction bits have been 

added to the data.

One of the main assumptions in Chapter 2 was data is a stationary random 

variable so that the replay pulses would be independent along the tape. However 

this does not account for the block structures imposed in most recordings; these 

are added to the data to simplify the error correction and replay processes.

The first section of this chapter deals with the background of Modulation codes, 

the reasons why they are used in digital data recording and the parameters over 

which modulation codes are defined. The main groups of modulation codes are 

then discussed with examples of these types of code.
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The two modulation coding schemes, Manchester and Miller, whose use in digital 

data recording are examined in the latter parts of this thesis are then introduced. 

Further codes common in both fixed head, rotary head and thin film data 

recording are then discussed, including those block codes which are used in high 

integrity digital data recording of R-DAT and Optical Disc.

In the final Section of this chapter several codes which combine Modulation with 

error correction will be discussed. These use the redundancy inherent in 

Modulation coding to trap and correct errors.

5.2 Modulation Coding Principles

5.2:1 The Rationale of Modulation Codingf5.1.5.2l

The purposes of Modulation coding are:

1) the reduction of the amount of DC in the Recorded signal. This is done by the 

eradication of the repetition of the same Modulation bit for a whole Series of 

1's or O's. Codes which have a high amount of DC are prone to clockloss errors 

such as dropout and jitter;

2) the use of Modulation codes may also help in the error detection by signalling 

a code violation for certain errors. This is due to the fact that the run length 

limited codes (RLL) have limits on the permitted number of consecutive O's 

between each pair of 1's. This will then permit the detection of some errors in 

the recording process. It is important to note that in a RLL the normal use of
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1's and O's to represent data is suspended. A 1 represents a transition and a 0 an 

empty timing window;

3) certain types of Modulation coding also permit the system to reclock 

automatically. For example in the Manchester code there must be a transition 

in the middle of each data cell, where each data cell consists of two m odulation 

bits;

4) to allow the Power Spectral Density of the signal to be matched to the 

frequency response of the channel, as the maximum frequency of the signal 

can be increased to fill the channel bandwidth so not allowing any wideband 

noise to dominate the signal;

5) to combat pulse crowding. In high density recording the error mechanism 

ISI becomes a major problem. The choice of rrvodulation code can then be 

made to combat pulse crowding. Those codes which have a high code rate, 

approaching unity for certain group codes, avoid the close packing of 

transitions . Due to this reduction in the packing density the group codes will 

be far less prone to ISI.

5.2:2 Parameters for Modulation Codingf5.31

To be able to compare ftvodulation codes it is necessary to have a set of parameters 

over which these codes are defined. These parameters apply to all modulation 

codes from Manchester modulation to the Group codes used in modern high 

integrity media. These are given below:
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1) the Window Margin. The tolerance of the transition to bitshift is given by 

the window margin, Tw . The larger this value of Tw then the better the 

resistance to bitshift;

2) the Minimum Transition Distance. Tm in this relates to the fundamental

wavelength A mjn that is possible to record at a fixed tape speed. This is one of 

the major factors which determine the packing density. In addition spacing 

loss which is caused by dirt on the tape or poor tape quality is a function of

anc* nence Tmin *s related to the reliability of the system;

3) the maximum inter transition distance Tmax. To allow for self clocking, the 

phase should be correctable at the point of transition. In order to facilitate this 

Tmax should be finite and as small as possible;

4) clock recovery. After a long burst error or at the start of the tape the decoding 

circuit must be reset on to the correct clock pulse from the tape as quickly as 

possible. This is known as clock recovery and requires the following 

parameters:

i) the value of Tmax or the ratio of Tmax/ Tmin to be as small as possible;

ii) a high probability of a transition in a timing window is desirous;

5) DC or Low Frequency Content. DC free code is essential in rotary head 

recorders as these cannot pass the DC component. In addition DC free codes
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have other beneficial characteristics:

i) simpler decoding circuits;

ii) a high pass filter can now be introduced info the replay electronics to

reduce the sensitivity of the media to asperities;

iii) the low frequency portion of the channel band can be utilised for

different purposes, such as servo control;

6) The Constraint Length. The constrained length Lc/ is the length of prior 

Modulation bits which effect the present Modulation bit. The chance of error 

propagation is proportional to Lc. 

g.3 Types of Modulation Code

There are many different algorithms for Modulation coding* these fall into four 

main types:

Run Length Limited Codes;

Non Return To Zero Codes;

Group Codes;

These code types will now be considered together with an individual treatment of 

some of the simpler codes of each type.
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5.3:1 Run Length Limited Codesf5.4. 5.5. 5.6. 5.7. 5.8. 5.91

RLL codes have set limits for the amount of allowable DC between each consecutive 

pair of pulses. To find the length of these runs of zeros the modulated signal is 

divided into a series of sections with each section containing a single pulse. The 

shortest of these sections is of length d+1 and the longest of length k+l{5.8]. This is 

illustrated by the example below:

000101001001010100101; 

0001 01 001 01 01 01 001 01; 

where k+l=4 and the d+1 =2.

These codes are denoted by the set of variables which control the constraints of the 

code (d,k;m;n;r) these codes have;

d is the minimum number of pulse free modulation bits between each pair of

pulses, these are used to prevent pulse crowding;

k is the maximum number of pulse free modulation bits between each pair of

pulses, these provide a means of self-clocking;

m is the number of data bits;

n is the number of code bits, where n>m;

r=l implies a fixed length code;

r>l implies a variable length and fixed pulse code.

The manner and the degree whereby these constraints on the code effect the 

performance of the modulation code against errors can be shown by:
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Code Rate, R=m/n . The higher the Code Rate the better the resistance to 

timing jitter;

Minimum Transition Interval M= (m/n)(d+l). High Minimum Transition 

Intervals lead to a high read back SNR;

Pulse Gap Ratio P=(k+l)/(d+l). Codes with a high Pulse Gap Ratio have high 

shift, poor self clocking and a large DC component.

Therefore the ideal RLL code for high linear density and good data reliability will 

have high R, high M, and low P. A conflict of interests arises due to the fact that M 

and P are proportional to each other.

RLL codes have an error detecting ability. This is due to the selection of a codeword 

of length n, to represent a data set of length m. Thus 2m words will make up the 

constrained codewords from the original unconstrained set of 2n . This leads to a 

code rate greater than one. This code rate will give redundancy since if n>m there 

will be a considerably greater number of unconstrained codewords of length n 

than the original set of 2m constrained codewords. So therefore if an error breaks 

the runlength constraints of the code it will be detected as it is not a member of the 

set of allowable constrained codewords.

The Asymptotic Information Rate or Capacity of a channel, using fixed length codes 

is defined by Shannon [5.7] in terms of the entropy. For a set of symbols X with 

possible values {Xl x2 ,... ,xn} and associated probabilities {P]/ P2/ ... /Pn); the Entropy is 

defined as:

125



11

i,.~, pn) = -Z pj

This gives the capacity of a memoryless channel. However RLL codes can be 

modelled as a Markov process as they require information about the previous bits to 

obey the runlength constraints. This gives the following maximum capacities for 

the runlength constraints:

k d=0 d=l d=2 d=3 d=4 d=5 d=6
1 .6942
2 .8791 .4057
3 .9468 .5515 .2878
4 .9752 .6174 .4057 .2232
5 .9881 .6509 .4650 .3218 .1823
6 .9971 .6690 .4979 .3746 .2669 .1542
7 .9986 .6793 .5174 .4057 .3142 .2281 .1335
8 .9993 .6853 .5293 .4251 .3432 .2709 .1993
9 .9996 .6888 .5369 .4376 .3620 .2979 .2382

Table 5.1 Maximum capacity of Run Length Limited Sequences[5.9]

The Power Density Spectra of RLL codes have been investigated [5.10] and the 

results for several of the more common RLL codes used in digital recording are 

given, these include the Miller code and the (2,7) code used by IBM and Xerox.
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5.3:2 Non Return to Zero Codes (N.R.Z.)

The premise of all N.R.Z. codes is that the code will never stay at zero. The two 

most common types of N.R.Z. code are the standard N.R.Z. and the modified 

N.R.Z.l. [5.11] whose algorithms for construction are given below.

(a) NRZ: Change direction of saturation at mid bit time only if the present bit is 

not equivalent to the previous one;

(b) NRZ1: Change mid bit only if the bit is a 1.

These Modulation codes do very little to remove the inherent DC from the 

encoded message. Compared to other more complex forms of NRZ Modulation 

such as Miller and Manchester.

5.3:3 Group CodesfS.!!. 5.121

Group Modulation Codes have been in existence for many years. A method of 

generating these codes was first developed by in 1970[5.11]. All codes which do not 

use a single type of transition to represent a particular data bit throughout whole 

length of the code can be regarded as group codes. However within this thesis a 

tighter definition of the term 'Group Codes' is used:

a Group Code is a modulation code where the encoding 

algorithm regards the data not as an infinite stream of 

individual data bits but as being grouped into a series of data
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vectors. Each data vector is of equal finite length. These data 

vectors are then mapped onto other vectors of modulated 

transitions all, of which are also of equal finite /enabk

Group Codes are becoming increasingly important and are used in both 

R-DAT.and Optical Disk. The first of these mediums uses an 8/10 Modulation 

code, taking 8 data bits to 10 modulated bits. The second uses Eight to Fourteen 

Modulation (EFM) which takes 8 data bits to 14 modulation bits,[5.12]. Both 

mediums use Group Codes with Reed Solomon Error Correction over 

GF(2^)where the data is divided into sub-words, of length 8 before encoding.

Two examples of simple group coding algorithms are given below. These are the 

Rice Code and the Octal Coded Binary. These examples cover the encoding 

algorithms and the modulated waveforms of the two codes.

5.3:3 a)Rice Code[5.111

The first six bits of the binary data sequence are initially viewed:

if these first six bits are the sequence 010101. Then the system enodes these bits 

as shown in Figure 5.1. Otherwise the last two bits are returned to the data 

bitstream;

if the remaining bits commence with ll.Then all four are encoded as shown in 

Figure 5.1. Otherwise the last two bits are returned to the data bitstream;
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the remaining two bits are encoded as shown in Figure 5. 1.

This system is repeated with the next six bits in the data stream, including any bits 

which were returned earlier.

Figure 5.1 shows all the possible recording wave forms for this system;

Data

010101

1111

1101

1110

1100

01

00

1 0

Recorded Flux Intervals

Figure 5.1 Rice Encoding Diagramt5.ll]

This code is of considerable interest in computer data storage. It provides a 

performance comparable to NRZ1 code, while allowing some self clocking. 

However the encoding strategy is comparatively complex to the non-group codes 

such as the NRZ1.
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5.3:3b)Octal Coded Binary [5.111

In this code the data bits are coded in groups of three. The possible modulated 

waveform sets are shown in the Figure 5.2 .

data Recorded flux reversals
\

000

001

010

011

100

101

1 10

1 11

——

t

\ 
k

1

1 
k 1

Figure 5.2 Octal coded Binary Modulation.

130



5.4 Modulation Codes Considered in this Thesis 

5.4;1 Manchester Modulation or FM T5.ll. 5.11 

The Manchester code transmits:

a received 1 as positive pulse for the first half of the data bit cell and a negative 

pulse for the second half;

the 0 is conveyed as the same pulse sequence but with reverse polarity.

As there is at least one transition in each data bit cell the receiver clock timing can 

be extracted from the waveform in the presence of long strings of data O's and I's. 

The bandwidth required for Manchester Modulation is twice that of a standard 

bipolar signal{5.11]. The Manchester Modulation forms a (0,1) RLL code. A Section 

of binary data with m code bits will have a maximum of 2m modulated 

transitions.

The RLL properties of the Manchester code are therefore:

Code Rate; R=m/n = 1/2. This is a low code rate so this code will be perceptible

to timing jitter;

Minimum Transition Interval M=(m/n )(d+l)= 1/2. This low minimum

transition interval will lead to a low read back SNR;

Pulse Gap Ratio P=(k+l)/(d+l)=2. This is relatively low so will lead to a high
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self clocking ability and a small DC component. 

5.4:2 The Miller Code or MFM [5.11.5.131

The algorithm for this code is comparatively simple: 

a transition occurs at the mid data bit time of the 1;

a transition occurs at the end of a data bit time between consecutive O's .

The attractions of Miller coding for magnetic recording are that: 

it has a small power for frequencies near DC;

it needs approximately half the bandwidth used for Manchester coding; 

the code is simple to implement as shown above;

in addition it is less susceptible to the problems of ISI as an error mechanism; 

in data recording, this is due to the increase in the minimum distance between 

pulses.

Miller code can also be regarded as a (1,3) RLL code which maps a data bit onto two 

Modulation bits. This allows some method of comparison between the 

Manchester and Miller Modulation codes:

Code rate R=m/n=l/2:

Minimum Transfer interval M=(m/n)(d+l)=1.5;

P=(k+l)/(d+l) =5/3 ratio.
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Comparing the figures above for the Miller code to those of the Manchester code 

given in 5.4:1 the Miller code has the same rate as the Manchester code with an 

improved Minimum Transfer Interval and Pulse Gap Ratio.

5.5 Enhancements to the Miller code

5.5:1 Millet* code or M2FMF5.14l

This code was devised by J.W. Miller{5.14] as an alternative to the original Miller 

code. The Miller2 code was designed in such a way as to remove the DC content. 

DC leads to a low minimum signal rate which tends to manifest itself as a baseline 

shift in either the read back waveform or its derivative.

Coding rules for Milled coding

The data stream is broken into sequences of data of three possible types:

(a) any number of consecutive 1's;

(b) a pair of O's separated by either no ones or an odd number of 1's;

(c) a single 0 followed by an even number of 1's (terminated by a 0 

which is not counted as part of the sequence).

The sequence types (a) and (b) are encoded in the same way as the normal Miller 

code while those sequences of type (c) have the transition for the final 1 inhibited. 

This can be shown in Figure 5.3.
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data

MILLER

0 0 0

Figure 5.3 Miller 2 Encoding

The coding rules for Milled coding is given by:

a transition at the mid bit point of a 1;

a transition at the end bit between consecutive O's;

suppression of the transition for the last of any even number of 1's.

The runlength constraints of the Miller2 code are (2,5) giving the following set of 

results:

Code rate R=m/n=l/2;

Minimum Transfer Interval M=(m/n)(d+l)= 1.5;

Pulse Gap ratio P=(k+l)/(d+l)= 6/3.

The Miller^ code combines the Minimum Transfer Interval of the Miller code 

with the superior Pulse Gap Ratio of the Manchester code.
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5.5:2 Zero Modulationrs.lSI

The third member of the Miller family of codes is Zero Modulation. The Code 

Rate of Zero Modulation is 1/2. The code has a minimum runlength, d = 2 and a 

maximum runlength, k = 4. In addition to the runlength constraints Zero 

Modulation also considers the accumulated charge on any digit. This accrued

charge is bounded by ±c units. For the Zero Modulation code this limit is set at ±3 

units. The coding rules for the encoding and decoding algorithms for Zero 

Modulation are given below:

The Algorithm requires the following Notation

do is the data bit to be encoded;

a0b0 are the ZM digits to which the bit is recorded;

a_ib_i are the ZM digits to which the previous bit is recorded;

ajbj are the ZM digits to which the following bit is recorded;

d_i d+i are the adjacent data bits, both with respective ZM digits;

P(A) is the look-ahead one-sequence parity bit. This is the modulo-2 

count of ones in the binary sequence up to the next zero; 

P(B) is the look-back one sequence parity bit. This is the accumulated 

modulo-2 count of all zeros from the start of the data up to and

including do . 

To encode the data there are a set of conditions which must be followed:
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Encoding Algorithm

Data

do

0

0

1

1

1

Modulation

ao bo

10

00

10

00

01

Condition

d_i=0 or d_i = 1 and a.j b_i = 00

d_i =1 and a.j b_i * 00

d_!=0 and P(A) =0 or d.j =1 and a.jb.j = 00

d_i =1 and a.jb.j = 10

Otherwise

Decoding Algorithm

Modulation Data

ao bo

10

10

00

00

01

do

1

0

1
0

1

Condition

a^bj =00

a\bi* 00

a.jb.!* 01

a^b.! ^ 01

none

Due to the complexity of this Modulation code which uses both look-ahead and 

look-back algorithms and a parity check bit for codes with only a limited memory, 

Zero Modulation posses a powerful check capability for bit error detection, in 

addition to the ability to synchronise the code after drop-outs.
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g.5:3 Comparison of the Miller Codes

The power spectral densities of the three Miller type Modulation codes were 

plotted against frequency[5.16]. These plots are given below in figure 5.4 in which 

the different codes are represented by a different line.

Code Type

Manchester Modulation

Miller Modulation

Miller2* Modulation

Zero Modulation

d

0

2.

2

2.

k

1

4

5

4

R

0.5

0.5

0.5

0.5

M

1

1.5

1.5

1.5

P

2

5/3

2

5/3

Table 5.2 Comparison of the Runlength Constraints of the Miller Type Codes

As can be seen from Figure 5.4. The power spectral densities of the three different 

Miller type codes are remarkably similar. Indeed the Power Spectral Density of the 

three principal codes in the Miller family all have the same primary defect of 

non-zero energy at DC.
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10

0

A= Miller code (bold line)

B= Zero Modulation (dotted line)

C=Miller 2 code (plain line)

Figure 5.4 PSD of three Miller like codes (5.18)[5.16]

5.6 Modulation Code Used in Fixed Head Recording[5.171

5.6:1 Codes in Fixed Head Recording

There are several different Modulation codes used in fixed head recorders. The 

choice of code is dependent upon the desired data rate and the runlength 

coefficients required. Zero Modulation and Miller2 which were discussed in 

Section 5.5:2 are widely used. In addition to these codes another member of the 

Miller family is used, this is a modified form of Zero Modulation[5.18] which has 

runlength constraints (1,4) in place of (2,4) of unmodified ZM.
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5.6:2 The: coder5.19l

This code is used in the IBM high-performance floppy disc files. The runlength 

constraints of this code are (2,7), which allow a better minimum spacing of three 

times the fundamental distance compared with two for Miller code. The Code Rate 

is maintained at 1/2, hence the fundamental distance is half the length of a data bit 

cell. The recorded transition density is lower than the Miller code by a factor of 1.5. 

The code uses variable length blocks to encode the data. It is similar in that respect 

to the examples given for block coding in Section 5.3;3.

As can be seen from the table below, encoding is undertaken by partitioning the 

data into blocks of two, three or four bits. To decode, the process is reversed and 

the data is divided into blocks of 4, 6 or 8 bits. Alternatively, a decoding algorithm 

is also available in which the error propagation is limited by the use of a preamble 

and a postamble of a known number of bits.

Data

10

11

000

010

011

0010

0011

Code Word

0100

1000

000100

100100

001000

00100100

00001000

Table 5.3 Encoding Scheme for (2,7) Code
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5.6:3 Tacoby and Kost's (1.7) code F5.201

The Code Rate R=2/3 in this Modulation code, It has improved properties 

compared with the Miller and 3PM codes including:

an increase of 33% in the data rate, the Minimum Transition and the 

Fundamental Distance of recording compared with the Miller 

Modulation code;

compared with the 3PM code an increase in the Fundamental 

Distance of 33%. However Tmin is reduced by 11% and the ratio of 

in nas been increased by 50%.

The code can be represented either as a fixed length block code, which takes data 

words of length 2 bits, rmppincj these onbo Modulation codevectors of length 3, 

with at least a single transition but no consecutive transitions. However this 

method of encoding leads to conflict over the runlength constraints, as code 

words which end with a transition may be followed by codewords which begin 

with a transition. This can be shown in Table 5.4:
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Serial 

Numbe

0

1

2

3

Data 

Word

0 0

0 1

1 0

1 1

Code 

Word

1 0 1

1 0 0

0 0 1

0 1 0

Table 5.4 Basic Encoding Table for (2/3) Code

The Serial Number in Table 5.4 refers to the d.eciiwJ [representation of the code. 

Taking the data words in pairs derive an alphabet of 16 words of length 4 as 

shown in table 5.5.

Serial 
Number

0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3

0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3

DATA 
BITS

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

o
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

CODE 
BITS

1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1

1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0

1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0

0
0
0
1
0
0
0
r
0
0
0
1
0
0
0
1

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

Table 5.5 Encoding table for two data words

However it can be seen from this table that the codewords represented by the Serial 

Numbers 00,01,20 and 2,1, violate the runlength constraints and so must be 

modified to satisfy these bounds. The altered codewords then give the following

set of codewords.
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Serial 
Number

0 0

0 1

2 0

2 1

DATA 
WORD

0000

0001

1000

1001

CODE 
WORD

101000

1 00000

001000

01 0000

Table 5.6 Additional coding table.

The merged data words in Table 5.6 lead to a complex decoder requiring full word 

look ahead[5.20].

.5.7 Modulation Codes in High Integrity Recording

5.7:1 The Advantages of Group Codes for High Integrity Media

The principle application of group modulation codes is in high untegrity media. 

Both the optical disc and the R-DAT tape use a group code based on eight data bits 

to accommodate the Reed Solomon coding over GF(28).

The two types of Modulation code are very similar as both take a block of 8 data 

bits from the error correction code and map it on to a longer set of transitions. 

This maximises the ability of the Reed Solomon code to correct an entire data 

subword. Such high 'code rates (0.8 for the 8/10 Modulation code) will result in a 

the entire block being corrupted by a single shift error in the output prior to 

demodulation. However this type of error can be fully compensated by the Reed 

Solomon code.
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EFM was devised before 8/10 Modulation but the operating mode of both codes 

are similar as both are high density block codes. Accordingly this Section 

concentrates upon EFM, even though it is used in optical rather than magnetic 

recording.

5.7;2 EFM the Modulation Code in Optical Recording T5.21. 5.22. 5.231

Modulation codes are also used in optical discs which were discussed in Section 

3.5. In the recent past Modulation codes have bo^i applied more widely to optical 

recording. Digital Lagnetic fixed head recorders use the 3PM (2,7) code[5.19] while 

the optical disc uses an EFM code. The EFM code was designed to fulfil the 

following criteria:

(i) low probability of readout error at high information densities;

(ii) resistance to imperfect optics, caused by either defocussing or 

disc skewing about the optical axis. These will cause degradation 

in the phase and amplitude characteristics, so the Modulation 

system should have low sensitivity to tolerances along the 

optical light path. This implies a Modulation code with a high

minimum distance Tmin;

(iii) 3 ood clocking Characteristics. The bit clock is used as a 

method of synchronisation for the motor control of the player 

and the digital data. This is generated by the readout signal 

from the data pit edges. The signal must therefore attempt to
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minimise Tmax the maximum distance between transitions;

(iv) high resistance to dirt and scratches on the surface of the 

cover of the disc. These cause a change in the envelope of the 

readout signal which produces low frequency-noise. These can 

be removed by digital filtering provided that there is no 

significant low-frequency component of the signal. In addition 

the low frequency component leads to interference in the servo 

system causing instabilities;

(v) good resistance to error propagation. This is achieved by 

mapping the demodulated block of eight bits onto a subword of 

Cross Interleaved Reed Solomon Code, used in the error 

correction system.

EFM is a group code based on a block of 8 data bits. It has a minimum 

distance of 3 channel bits (=1.5 data bits< ) with a sampling window of 1 

channel bit (=0.5 data bit), and a maximum distance of 11 channel bits.

There are 267 14 bit patterns which satisfy the two limits on the run length 

Tmm =3 and Tmax =11[5.21]. As only 256 are required for the eight binary 

bits from the Reed Solomon code so the additional 11 are discarded. Those 

discarded exhibit the worst DC characteristics.

Table 5.7 shows part of the conversion between the eight bit data block and

the modulated group of eleven.
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Decimal 

Word

100

101

Data 

Word

01100100

01100101

102 1 01100110

103

104

105

106

107

108

109

110

01100111

01101000

01101001

01101010

01101011

01101100

01101101

01101110

Modulation 

Word

01000100100010

00000000100010

01000000100100

00100100100010

01001001000010

10000001000010

10010001000010

10001001000010

01000001000010

00000010000010

00010001000010

Table 5.7 EFM Modulation

To prevent a violation of the constraint on Tmin=3 at least 2 merging bits must be 

added between modulated codewords. Though to allow flexibility three merging 

bits are added. The merging bits used are either 000, 100, 010, or 001. The last three 

non-zero codes are shown below as cases A, B and C respectively. The use of these 

merging bits in EFM can be shown in Figure 5.5.
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Data
BitS 010 01110
Modulation
Bits 01000001001000 -^ xxx

caseA

case B

Case C

1 00

010

001

1 1 1 00100100

0000001000 1001

DSV= -1

DSV=1

DSV=1

CaseD

CaseE

xxx

000

00 1

0 0

0010

Merging 
Bits

Merging 
Bits

Figure 5.5 Recording Strategy of EFM Showing Merging Bits.[5.3]

The implementation of the .odulation .ode is completed via a lookup table for 

the 8 to 14 conversion, with the optimum merging bits selected automatically. 

Demodulation is performed efficiently by majority array logic.

The improvement gained by using EFM modulation in optical discs on the 

achievable packing density is illustrated below in Figure 5.6. The packing densities 

obtainable by commonly used modulation codes is plotted against the date of their 

introduction.
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Figure 5.6 Packing density for Modulation codes in optical recording. [5.3]

5.7:2 Alternative Modulation for Optical Disc.f5.24. 5.30. 5.311

Although EFM is now the standard modulation code used in optical recording 

media, there are many other codes which satisfy the (2,10) RLL characteristics of 

EFM while maintaining better data rates. These in the main are different types of 

block sliding code, the table below presents the results of the experiments 

undertaken by French and Wolf.

(d,k)

(2.10)

(2,7)

(2,7)

(2,8)

(2,9)

(2.10)

Capacity

0.5418

0.5174

0.5174

0.5283

0.5418

0.5418

m/n

8/17

2/4,3/6,4/8

1/2

1/2

2/4

4/8

DR

1.41

1.50

1.50

1.50

1.50

1.50

Encoder 

States

1

1

7

5

3

3

Splitting 

States

n/a

n/a

3

3

1

1

Comments

EFM

Variable

Length

Sliding Block

Sliding Block

Sliding Block

Sliding Block

Table 5.8 Comparison of Modulation codes used in Optical Recording [5.24]
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p.7:3 8/10 Modulation code in R-DAT F5.25. 5.261

The recording code used in the R-DAT recorders is an optimised 8/10 Modulation 

code. 8/10 codes were first used in digital video recording to give a DC-free code 

with a wide detection window. The code rate of 0.8 for the 8/10 Modulation is 

very high though it is not unique; since there exists a 4/5 Modulation code which 

is used in communications for Fibre Distributed Digital Interfaces, (FDDI)[5.27]. 

Indeed there are codes such as the 8/9 codes which have a higher code rate, though 

the maximum runlength for these codes is large, 11.6T to 18.7T[5.28], where T is the 

length of the data window.

The 8/10 Modulation code is a group code designed to fit with Reed Solomon error 

correction coding. It's design is particular to the priorities of the R-DAT recording 

system. These criteria are given below:

(i) a large timing window. This is necessary due to the low Signal to Noise 

ratio caused by the narrow track pitch and crosstalk;

(ii) the code should be DC free and posses only a small low frequency 

spectrum. This enables the recorder to eliminate low frequency crosstalk noise;

(iii) the maximum transition, Tmax/ should be as low as possible. In addition 

the ratio Tmax /Tmin should be as low as possible. These criteria allow easy

erasure and cause less crosstalk noise.
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placed in the memory until the next conversion.

The DC figure in this algorithm refers to the transitions shown in table 5.10. These 

DC codewords were used to minimise the Digital Sum Variation, DSV which is 

shown as +1 or -1 in Table 5.10.

Dataword

00010000

00010001

00010010

00010011

00010100

Q'=-l

Codeword DC Q

1101010010 0 1

0100010010 2 -1

0101010010 0 -1

0101110010 0 1

1101110001 2 1

Q'=l

Codeword DC Q

1101010010 0 -1

1100010010 -2 -1

0101010010 0 1

0101110010 0 -1

0101110001 -2 1

Table 5.10 Part of the conversion table for 8/10 Modulation[6.26]

The Q is generated by :

Q = (Q'+DO* (-l)P

Where:

Q is the DSV for the present codeword; 

Q' is the DSV for the previous codeword; 

DC is the DC content of the codeword; 

P is the parity of each bit of the codeword.
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The optimal modulation code which fulfils all these requirements is an 8/10 

Modulation code where Tmax = 4Tmm . This system gives a total of 271 

employable codewords. This code can be compared with other codes discussed 

previously in this chapter in the Table 5.9.
Tw

0.5T
0.5T
0.5T
0.8T
0.8T
0.8T

^min

0.5T
T
T
0.8T
0.8T
0.8T

^max

T

2T

2.5T
2.4T
4T
3.2T

Sync Tmax

T
2.5T
3T
3.2T
4.8T
3.2T

DSV
oo

oo

3
oo

3
3

Note

Manchestei
Miller
Miller2
4/5 FDDI
8/10 type 1
8/10 type 1

Table 5.9 Parameters of some commonly used Modulation codes

To generate the 8/10 code it is necessary to follow the procedures outlined below. 

In the generation algorithm the DSV for the present codeword is referred to as Q 

and the DSV for the previous codeword is referred to as Q': 

i) a dataword is converted to a Q'=-l codeword;

ii) the DC content of the codeword is found, the codeword is then labelled as 

being either DC=0 or DC=+2;

iii) the Q 1 which is generated from the previous codeword. This is then 

checked, if Q'=+l and DC=+2 then the first bit of the codeword is -then 

inverted;

iv) Q is calculated from the DC content of the codeword and Q'. This is then
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a = (A+CZ+Y(C« F ( G+H)))

b=(A(B+DEHA(B+O)

c = (AC+A(D+E)+BDE)

d = (A(C+BDE)+CDE+CZ+(AB«FGHY))

e = «AB+D)E+ABCDE+YF(G+H))

f =((AE(C+B«D)) + (( D+CZ)«F(G+H)

g = (FG+Y+(B+O)

h = (FGH+FY)

i=(H+FG+FY)

j=FG+FY

Y=(A(B+C)DE) 

Z = (ADEF(G+H))

Table 5.11 Conversion table for 8/10 Modulation[5.26]

In this conversion table the upper case letters represent bits in the data word and

the lower case letters represent bits in the modulated word.

Although the 8/10 Modulation code seen above is incorporated into the R-DAT 

recording system, other 8/10 rate Modulation codes have been developed. There 

exist codes with better modulation constraints than that those of the codes derived 

above. A Generic Constraint Graph[5.29] has been developed to generate these 

codes. This graph generates a constrained (d,k,c) odulation code, where c is the 

upper limit on the DSV. This code has constraints given by (0,3,5/2) this code 

minimises the product of the maximum runlength and the digital sum variance, 

given by kc, for an 8/10 rate modulation code.
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5.8 Combined Error correction and Modulation Codes 

5.8:1 Basic Principles of Combined Coding

In Chapter 2 it was stated that modulation codes did have an effect on the output 

error rate. However the facility of modulation codes to reduce the error rate is not 

maximised in a conventional recording system.

Codes may be devised which possess both the runlength qualities inherent in 

modulation coding and the Hamming distance properties of Irror orrecting 

codes. This idea of combined E.C.C. and modulation is not new [5.32]. Combined 

coding allows an increase in possible data density on the media while maintaining 

the linear density of the recording. It was illustrated in Chapter 2 that modern day 

recording methods have practically reached the limit of allowable linear recording 

density, due to the effects of ISI, cj-osstalk, Jitter and density dependent oise.

The conventional RLL Modulation codes used in magnetic recording discussed in 

Sections 5.3 -5.7 have very poor Hamming distance properties. Indeed the sliding 

block codes discussed in section 5.7:2, magnify the effect of the channel errors by 

error propagation[5.33]. This can be seen in a plot of 'channel Bit Error Rate against 

Viterbi decoded Bit Error Rate, the two codes used in this experiment were the 

Miller code and a Sliding Block Code.[5.34]
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Figure 5.5 Error Rates for Two Standard Modulation codes[5.34]
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5.8:2 Combined ECC and Runleneth Limited Codes [5.35.5.361

Error correction and m odulation codes may be combined by preserving the 

Hamming distance of the code while imposing runlength constraints{5.35]. This 

can be achieved by bit stuffing; i.e. by adding an extra bit or series of 0 bits on to the 

codeword. This however does not improve the Hamming distance although it 

does give a simple method of modulating the code sequence[5.36]. This will not
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lead to error propagation due to the choice of Modulation code.

In Section 4.1:2 it was stated that words with odd or even Hamming weight will 

always have a Hamming distance of at least 2. So allowing error detection using 

the parity of the Hamming weight. This leads to a simple case of runlength 

constrained error detecting block codes. The combined error detection and 

modulation code consists of runlength limited blocks of either odd or even 

weight. These codes have a minimum Hamming distance of 2 and so will be able 

to detect a single error.

5.8:3 Error Detection Using Runlength Constraints.f5.37.5.9l

The error control capability of a modulation code may be imposed by the choice of 

r.unlength constraints. There are three possible methods by which this may be 

done.

Method 1

This relies on the upper limit for the runlength, k to be twice that of the lower 

limit, d. So within this code the majority of binary symmetric errors will violate 

the runlength constraints.

The (1,2) (3.6) and (7,14) codes are typical examples of the (d,2d) code. The rror 

.orrecting apability of these codes is shown in the following example which uses 

a (3,6) code:
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Original Modulation Vector 1 0001 00001 0000001 00001 0001 

Received Modulation Vector 1 0001 000000000001 00001 01 01

Errors can be detected by blocks which do not fit the bounds on the runlength 

constraints. The third and fifth blocks do not fit the limits.

The first error is found as block length exceeds k+1 and the second error as the 

block length is less than d+1.

To use the (2,4) code will entail a reduction in the capacity of the channel to 

approximately 20% of the level in the industry standard (2,7) code given by 

Franzaek[5.9] as described in Section 5.6:2.

Method 2

The same principle is used to detect and correct the errors, however the 

f.unlengths have a wider range. In these codes the set of allowable ftunlengths is

given by X. So for a pair of allowable runlengths Xj,Xj€ X iff Xj+Xj+l£ X. The 

allowable runlengths can be found from (k,...,dx2(d+l),...4(d+l), a numerical 

example of such a code is the (2,3,4,10,11,12,13,14,15,16,17,18,19,20) where the 

numbers in the brackets represent allowable runlengths. This gives the same error 

detection ability as the code above as it uses the same principle of allowable 

runlengths to correct errors.
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Method 3

This uses a RLL code with no limitations on either d or k. However consecutive 

•runlengths are only permissible if they obey the following criterion:

Xj,Xj € X for which Xj+Xj+1 £ X. 

It is possible to construct a code (1,4) which is 77 efficient for a (1,4) code.

The runlength constraints of these codes only allow the correction of a single error 

and so all the codes will be susceptible to bitslip induced by double errors. In 

addition the Shift Channel Error, which was found by Howell[5.38] to be the most 

common in high density recording, will not be corrected by these codes, all of 

these codes depend upon a proportionally large increase or decrease in the 

runlength to detect errors. Whereas Shift Channel Errors only translates the 

position of the pulse by a single timing window. The majority of shift errors will 

therefore not be detected by this type of code.

5.8:4 Trellis Codesr5.33.5.34.5.39l

Many combined error correcting and ^modulation codes can be developed from 

Trellis diagrams. These are a series of nodes representing the states linked by arcs 

representing the input bit and the data sequence for the recorder[5.33]. The diagram 

below Figure 5.6 shows a trellis diagram for a code with just two states. The code is 

a rate 1/3 code with runlength constraints (1,3).
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0/100

Figure 5.6 2 State Trellis code with free distance 4 [5.34]

Although the code given above is a comparatively simple one there are many 

applications for trellis codes in combined modulation and error control coding. 

Combined trellis codes may be mapped onto Convolutional Codes to enable the 

trellis codes to be synthesised[5.38].

To be able to understand the complexities of trellis codes, it is first important to 

define several terms and notations:

Terms

R code rate when k information bits are mapped onto n code bits the code

rate is given by k/n,

b Minimum runlength d in the above modulation, 

1 Maximum runlength k in the above modulation, 

C upper bound on accumulated charge, 

drem Minimum number of code differences between any two paths which

have diverged from some point and will later remerge.
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dmm Minimum number of code differences between any two paths which 

have diverged from some point. Remergence is not necessary.

These terms can now be used to define a combined error correcting and 

modulation code. The following trellis diagram is for a rate 3/5 code with v=2 

dmin = 3 and (b,l)=(0,4)

Figure 5.7 Trellis Diagram for Combined Modualtion code[5.39]

An example of Trellis coding is the ate 3/8 code given by Ytrehus[5.40]. This uses 

the 32 (1,3) constrained codewords of length 8 and a 4 state encoder to give a 

constrained code of free Hamming Distance 3. The codewords are given a decimal 

notation this shown in Table 5.12.
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1 10101000

2 10101010

3 10101001

4 10100100

5 10100101

6 10010100

7 10010100

8 10010101

9 10010010 17 01010001 25 00101001

10 10010001 18 01001000 26 00100100

11 10001000 19 01001010 27 00100101

12 10001010 20 01001001 28 00100010

13 10001001 21 01000100 29 00010100

14 01010100 22 00101000 30 00010101

15 01010101 23 00101000 31 00010010

16 01010010 24 00101010 32 00010001

Table 6.11 Decimal Representation of 32 (1,3) Constrained Codewords of Length 8

The "into" state selection is done by the initial word which is drawn from GF(23). 

To find the state the decimal representation of the binary word is divided by 2 and 

then 1 is added to the integer part of the state. The word is then selected to bridge 

the gap between the states. This mapping between the states is given in Table 5.13.

Into(Si) Into(S2)

Outof(S1 ) 1.9

Outof(S2) 4,11

Outof(S3) 14,18

Outof(S4) 23,31

7,12

2.21

16,26

28,29

5,6

15,19

22,24

25,32

8,13

3,10

17,27

20,30

Table 5.13 Conversion Table Between Different States for the (1,3) constrained code

This code is a non catastrophic (1,3) code with Code Rate 3/8 and free Hamming 

distance 3. So the code will be able to correct single errors and prevent error 

propagation.
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Chapter 6 

Theoretical Results

ft.l Introduction

This chapter sets out the theoretical and statistical results concerning the effects of 

the two primary Non-clockloss error mechanisms. This includes a discussion of 

the PDF of ISI induced bitshift and its convolution with Noise induced bitshift. 

Plots were drawn of the effect of combining these two primary non-clockloss error 

mechanisms on the output error rate.

Two different PDFs for noise induced bitshift were examined the first given by 

Katz and Campbell[6.1] and the second by Ryley and Loze[6.2]. The differing effects 

of these distributions on the error rate were compared.

The correlation of these error mechanisms pulse to pulse is investigated to 

discover how this effects the error statistics. This is to examine the widespread 

theory that the effects of Non-clockloss errors can be regarded as being broadly 

independent pulse-to-pulse.

The effects of different demodulation schemes for the Manchester Modulation 

code were examined to find their effect upon the output Error Rate of the 

code.This leadsto a considerable reduction in the Error Rate of the code. The 

phenomena of aliasing was also investigated, this leads to additional errors by the 

Error Correction code falsely correcting bits not in error due to the error syndrome.
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The effect of a bitslip is demonstrated in the case of the Ferreira combined 

ffiodulation and error correcting code, this resulted in the complete loss of the 

signal from the channel. A method to prevent bitslips in these combined codes is 

also discussed; these codes have a lower ratio of minimum to maximum 

runlengths to the standard Ferreira combined coding scheme.

6.2 Noise Induced Bitshift

6.2:1 The PDF of Noise Induced Bitshift

Two different models for the PDF of Noise induced bitshift are considered here:

The first that of the Katz and Campbell[6.1]. This model assumes that there is a low 

packing density so giving an isolated pulse. The isolation leads to a negligible 

amount of ISI induced bitshift. The model assumes that the signal is distorted by

zero mean Gaussian Noise source n(t) with mean square value cr 02. The bitshift 

from the centre of the timing window to is given by T .

Therefore at a zero crossing the detector output is:

= -n'(t0+T) (6.1)

Where:

s' is the differentiated Signal; 

n' is the differentiated noise;

T is the amount of bitshift.
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If the SNR is sufficiently large then the amount of bitshift will be small. In 

addition the noise has only a small bandwidth and is therefore slowly varying. 

This will lead vio* the first term of the Taylor expansion to a figure for the 

bitshift of :

T = - n'(tp) (6.2) 
s"(t0)

Eq. (6.2) then gives the PDF of the bitshift which is shown in the Function given 

below.

F(T)= ^ exp t-U 2T 2] (6.3)
[dj27l]

Where:

l_i is the second differential of the signal;

cf j2 is the mean squared value of the differentiated noise; 

T is the amount of bitshift

In addition to the model for the n oise induced bitshift given in Eq. (6.3) there is also 

a model given by Ryley and Loze[6.2], it assumes that the bandwidth of the n oise is 

constrained by the recording channel, so that the signal and noise have comparable 

bandwidths. Expanding the signal about the centre of the timing window gives:

Ts"(t0) = -n'( t0) - T n"( t0) (6.4) 

Rearranging gives:
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T = -n'( to) (6.5) 
In + n"( tb)}

Where:

n"( t0) is the second differential of ft oise with respect to time

This leads to the following equation for the probability density function of 

bitshift:

Where:

tf 22 is the mean squared value of the second derivative of the noise

The above gives the PDF for the bitshift as defined by Ryley and Loze it is 

symmetric about the centre of the timing window.

The PDF of Ryley and Loze varies from that given by Katz and Campbell in the use 

of the term cr 2> The relationship between cr 0/ ffj and cr 2 us ^\>en overleaf:
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(7,2= f 4Tr 2f2w(f) df (6.7)1 -

Where:

W(f) is the PSD of the noise at the input to the differentiator

6.2:2 Comparison of the Noise FDFs

There is a relationship between the two PDFs (Eq. 6.3 and Eq. 6.6). The relationship 

can be expressed through a variable A. This variable is a normalisation factor

which is defined as being the ratio of cr 2 to tf j. The higher the value of A then the 

greater the difference between the two PDFs. This is shown below in Figure 6.1

which plots the PDF given by Ryley and Loze against T for different values of A.

The density functions with the lower variance with respect to T have a higher

value of A. If the value of A is zero, i.e. when a 2 is equal to zero then the Ryley 

and Loze model collapses to that given by Katz and Campbell. This is shown in

Figure 6.1 as the plot whose PDF at T =0 is the least.
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In addition the effects of the differences in the two PDFs can be modelled in 

Figures 6.2 and 6.3. These plot the log of the induced bit error rate against the 

nominal signal to Aoise ratio in decibels. The effect of the Katz and Campbell PDF 

for noise induced bitshift, is shown in Figure 6.2. The effect of the Ryley and Loze 

PDF for noise induced bitshift is shown in Figure 6.3 .

The SNR referenced along the top of the graph, is taken from the tape as being

lOLogio Vo2 /tf 02 . These plots illustrate of how optimistic the PDF postulated by 

Katz and Campbell for noise induced bitshift error was compared to the PDF 

derived by Ryley and Loze.
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6.2;3 The Effect of Windows on the Noise Induced Error Rate

A symmetric Lorenzian type replay pulse is assumed. Hence with zero mean 

oise the timing window is centred upon the peak of the pulse. If a 

non-symmetrical pulse had been assumed then the Optimum Timing Window 

would not be symmetrical about the peak of the pulse. Similarly if any DC bias was 

present then the peak of the replay pulse would be shifted in the timing window.

Guard bands are used to prevent a Shift Channel Error, though there is a penalty 

due to the reduction in the functional size of the timing window. Figure 6.4 and 

6.5 plot log error ate against SNR for the Katz and Campbell PDF Figure 6.4 is for 

noise only while Figure 6.5 includes the additional errors due to ISI. The 

increasing proportion of the timing window used by the guard band is illustrated 

by the different plots. Figures 6.4 and 6.5 show that a timing window with guard 

bands which are sufficiency large to compensate for all shift channel errors will 

lead to a decrease in the effective SNR. This will lead to a timing window which is 

reduced to give no viable read out signal.

However for recordings with low SNR a large guard band is required to prevent 

shift errors. Therefore the optimum size of the guard band depends upon:

the shape of the replay pulse;

the raw error rate;

the pdf of bitshift;

the density of recording;

the minimum run length of the modulation code.
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fi.2:4 The Autocorrelation of Noise

One of the primary assumptions about noise induced bitshift was that it was 

independent pulse to pulse. To examine this hypothesis it is necessary to find the 

autocorrelation function of oise induced bitshift. However as the ACF is 

normalised then only the ACF of the channel noise and its derivatives need be 

found.

The Autocorrelation of the channel noise was found by taking the inverse Fourier 

Transform of the channel noise and its first and second derivatives. The 

Autocorrelation is the standardised Autocovariance of these distributions. The 

Autocorrelation function is given by the inverse Fourier Transform of the PDS of 

the noise. The choice of the tape noise is made to give a good approximation of the 

bandlimited noise channel while retaining a mathematically simple 

Autocorrelation function. The Power Density Spectrum of the channel noise is 

given by W(f)[6.3]. From the inverse Fourier transform of the PDS it is possible to 

drive the autocorrelation function of the noise, which is given below;

ACFn0(0»= V2oce-<OW)/4) (6-8) 

Where:

a is the constant of proportionality

p> is the bandwidth

4> is the is the time difference for the correlation
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Eq. (6.8) gives the Autocorrelation function of the undifferentiated channel Noise 

given by n0 however it is also important to examine the Autocorrelation function 

of the differentiated channel Noise rather than the Autocorrelation of the channel

Noise itself. The PDS of the differentiated noise is given by 47E2 PW(f). This then 

yields the Autocorrelation function;

ACF n0'(c|>) =-(2TT) a 2((3TT) 2 p e-^P^ [l-2(prr) 2 <J> 2 ] (6.9)

Finally the ACF of n0 " is given by the inverse Fourier transform of its PDS. The

PDS is equal to 16 7t4f4W(f). This gives the Autocorrelation function of the second 

differential of the noise to be:

ACFno"(4>) = (-6 (pTT)2 + 24 (£Tr)4 4> 2 + 8 (piT)6 4>4 )k (6.10) 

Where;

kis-(2TT) <x

However to give the correct reading all the above have to be normalised at cj>=0 to 

give the correct Autocorrelation functions.

ACFho'(d»= ' (6J1)

= (1 -4 ( PTT )2 4> 2 -4/3
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The two graphs Figure 6.6 and Figure 6.7 give plots of the Autocorrelation 

functions for the first and second derivatives of the channel o oise. Figure 6.6 is for 

the autocorrelation of the first differential of the noise, while Figure 6.7 is for the 

autocorrelation of the second deferential of the n oise.
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The time difference over which the level of Autocorrelation is measured is shown 

by the figure tor which runs along the vertical axis. The auto-correlation is 

measured horizontally. The bandwidth is set to the value of 100 KHz, which is a 

typical value for a recording channel[6.3]. In addition the tape speed at 15ips is the 

same for the two plots. This enables a comparison to be made between the two 

functions as the Autocorrelation pulse to pulse is dependent upon both the 

bandwidth and the tape speed.

The effects of altering the bandwidth and the i;ape cpeed can be shown in Table 6.1 

which compares different band widths and tape speeds against the value of noise 

autocorrelation pulse to pulse for the first five fundamental distances to the pulse 

under observation.
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IstFD 2ndFD SrdFD 4th FD 5th FD 
Bandwidth =50 KHz

Speed =20ips
Speed =30 ips
Speed =40 ips

Bandwidth=100

Speed =20ips
Speed =30 ips
Speed =40 ips

Bandwidth =200

Speed =20ips
Speed =30 ips
Speed =40 ips

Bandwidth=300

Speed =20ips
Speed =30 ips
Speed =40 ips

0.145
0.562
0.741

KHz

-0.617
-0.247
0.145

KHz

0.103
-0.413
-0.617

KHz

0.0187
0.103
-0.229

-0.617
-0.247
0.145

0.103
-0.413
-0.617

0.0002
0.053
0.103

0.0
0.0002
0.0187

-0.229
-0.617
-0.402

0.0187
0.103
-0.229

0.0
0.0002
0.0187

0.0
0.0
0.0

0.103
-0.413
-0.617

0.0
0.053
0.103

0.0
0.0
0.0

0.0
0.0
0.0

0.078
-0.666
-0.497

0.0
0.0049
0.078

0.0
0.0
0.0

0.0
0.0
0.0

Table 6.1 Level of Autocorrelation for first five fundamental distances

From the table it can be seen that to avoid autocorrelation a wide band recording 

channel is desirable, in addition the lower the tape speed the better the resistance 

of the recording channel to the effects of noise Autocorrelation. The recording 

density is kept constant for these experiments but it will also play a major part in

reducing the correlation pulse to pulse. As at a recording density of 20% of that
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used to tabulate the fundamental distance would be five times that used for the

table.

6.3 Theoretical results involving ISI

6,3:1 The Effect of ISI on Magnetic Recording

As has been shown ISI is the cumulative effect of the interaction of the tails of the 

various replay pulses [6.4]. As an error mechanism ISI's importance is due to its 

relationship to additive noise. The combined effect of these two mechanisms 

leads to a higher error rate than produced by Noise alone disregarding the effects of 

ISI.

The amount of bitshift due to ISI is found by selecting a value of ISI induced 

bitshift from an array together with its probability. The n oise model was the same 

as used for the previous results which did not involve any ISI. The probability of 

error due to the combined effect of ISI and noise was modelled by multiplying the 

probability of ISI induced bitshift by that of the level of .oise required to create an 

error compared to the edge of the timing window.

Plots were made for the combined, woise and ISI induced bitshift error rate/ these 

are shown in Figures 6.8, 6.9, and 6.10. These plots can then be compared to those 

for the Noise only error rates.

It is important to note that ISI causes more errors at high packing density than at 

low ones, this is illustrated by Figure 6.9 and 6.10 which are for ISI with the same 

noise source with different packing densities.
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The recording can be regarded as a series of pulses with their peaks in the centre of 

each of the timing windows. ISI can be thought of as a translation of the peak of 

the recording pulse. Although the peak stays within the timing window it is now 

closer to one side than the other.

b«.
Noise can the cause a further shift in the position of the pulse, txs the distribution ^
for Noise induced bitshift is assumed to be symmetric and of zero mean this 

results in an increase in the error rate. The distribution for the noise induced 

bitshift is Gaussian the probability of bitshift is a higher in the region which is

between p-oc and a standard deviations from the centre of the distribution than

in the region between a and p + a standard deviations from the centre of the 

distribution than in the region. This difference in the sizes of the two regions can 

be expressed mathematically as:

2jf(T)dT <Jf(T)dT+ Jf(T)dT
a p + a p-a

00 00 00 00

Jf(T)dT- Jf(T)dT <jf(T)dT- jf(T)dT
a p + a p-a oc

p+a a

Jf(T)dT< Jf(T)dT
a p-a
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Where :

f(i) is the PDF of the fioise;

a is the half timing window width divided by the deviation of the tfioise;

P is the ISI induced bitshift divided by the deviation of the ft oise.

The first line of Eq. (6.12) states that the probability of a noise induced bitshift error 

is less than that of an error when noise is convolved with ISI. The second line 

separates bitshifts, to give the shift whose probability is increased by the action of 

the ISI on the right hand side of the inequality and the shift whose probability is 

decreased by the action of the ISI on the left.

6.3:2 Formulation of ISI

The amount of ISI present in the recording system is dependent upon several 

variables. These included:

the shape of the recording pulse;

the packing density of the recording;

the choice of the Modulation code.

The pulse shape used in this thesis is the Lorenzian pulse. This gives a figure for 

the ISI of:

ISI = I Wj v (6.13)

If a differential detection system is used such as the gated crossover then it is first 

necessary to differentiate the original value of ISI given in Eq.(6.13). In this case the
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following figure is of interest:

Differentiating the above gives

ISI= .1^ Wj -2Viu (6.14)

Where:

wj e {-1,0,1} the polarity of the j tn pulse 

j is the index value; 

V is the peak voltage;

750 is the half pulse width;

(0. is the length of the timing window.

To obtain the horizontal bitshift the vertical shift at the point of zero crossing 

Eq.(6.14) must be divided by s"(t0) the second differential of the pulse at its peak. 

Now:

s"(t0) = -2V/(T50)2. (6.15)

So the ISI induced bitshift is given by:

ISI = .1 Wj iu (6.16)
(1 +(WT50)2)2

As with Noise it is important to distinguish between the ISI induced bitshift and 

the figure given for the vertical level of ISI. In the case of the ISI, the induced 

bitshift is the amount which the zero crossing of the differentiated pulse is

translated along the horizontal axis. However the figure given for the ISI is the
185



SN
R 

(n
o
m

in
a
l 

d
B

)

1

00 CTV

r r*

L
 

O 111 CD
 

O _J

xi
o

-0
.0

4
'

-0
.3

1

,1 
.5

0
X

IO
.7

2
 

1
.8

3
 

1
.9

4
 

2
.0

5
 

2
.1

6
 

2
.2

7
 

2
.3

8
 

2
.4

9
 

2
.6

0
I. <§. s CO rt> 3 03 1 en

p
lo

t 
oF

 
KC

 
an

d 
is

i 
F

o
r 

lo
w

 
is

i



SN
R

 
N

o
m

in
a
l 

dB

,2
0 

22
 

24
 

26
 

28
 

30
 

32
 

34
 

36
 

38
 

40
 

42
 

44
 

46
 

48
0>

Sr'
fe i 
t

9
-
 

0) a. 0 n Oi en
 

o

-1
:

-2
:

-3
:

-5 -6 -7 -8
J

Pl
ot
 
oF
 
AR
 
no
is
e 

an
d 

AR
 
no
is
e 

wi
th
 
is
i

1 
AR
 
di
st
ri
bu
ti
on
 
wi
th
 
IS
I

2 
AR
 
di
st
ri
bu
ti
on
 
no
 
IS
I



SN
R 

(N
o

m
in

a
l 

dB
)

V 2
0 

21
 

22
 

23
 

24
 

25
 

26
 

27
 

28
 

29
 

30
 

31
 

32
 

33
 

34
 

35
 

36
 

37

i r •sp -&

o i_ & en
 

o

-2
:

-8
:

-1
0J

-1
2J

-1
4:

-1
6J

-1
8J

-2
0:

-2
2:

-2
4:

-2
6J

-2
8:

-3
0:

-3
2;

Ka
tz

 
an
d 

Ca
mb

el
l 

no
is

e 
Fu

nc
ti

on
1 

H
oi

s*
2 

N
oi

M
 a

nd
 I

S!



G
O
 

C
O

(
H •

f I r
o> 00

-
i-s

)
UJ
 
»

17
18

SN
R(
NO
MI
NA
L 

dB
 )

19

Ry
le
y 

an
d 

Lo
ze
 
IS
I 

ma
nd
 
No
is
e 

Di
st
ri
bu
ti
on



The packing density effects the level of ISI in two ways:

by reducing the fundamental recording distance and hence the size of the 

timing window. This leads to an increase in the number of errors. As 

bitshift errors may now be caused by lower values of ISI and .oise;

the high packing densities mean that a greater number of bits become 

involved in the process of ISI. It has been shown by Loze[6.3], that for each 

Kilo Bit per Inch, KBPI of Modulation pulses an additional transition 

effects the ISI.

The higher the data density the greater the number of individual spikes of ISI 

whose height will also increase so giving a greater bitshift effect. This can be best 

illustrated by comparing the ISI at 4 KBPI and that at 16 KBPI:

at the recording density of 16 KBPI we may assume a maximum of 16 

effective transitions either side of the point of reference. This leads to 232 

possible values of ISI. In addition the neighbouring pulse to the one in 

question will be only a quarter of the distance from the pulse of interest 

than is the case for the lower density;

for the lower recording density the ISI will be made up of 4 possible values 

either side of the timing window so giving a maximum of 28 possible points 

of ISI. In addition these values are equal to the 4tn, 8 tn,12 th and 16th values
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for the ISI at 16 KBPI. 

6.3.3 The Effect of the choice of Modulation code on ISI

The readout SNR is affected by:

i) the minimum runlength of O's between each transition in the

Modulation code; 

ii) Code Rate, which effects the size of fc iming window for a fixed data

rate.

Codes with a high minimum runlength and Code Rate tend to have better 

characteristics in combating ISI as there is a greater separation between transitions. 

This can be illustrated below by a comparison of Miller and Manchester 

Modulation codes.

Modulation codes effect the amount of ISI. Pulses which are equidistant from the 

pulse in question to either combine or cancel with those which are opposite. If 

both pulses have the same parity they cancel, but if the parity is opposite they will 

combine. This is a direct result of the symmetry of the assumed Lorenzian pulse.

If a non symmetrical pulse had been used,such as the more accurate description of 

the replay pulse given by Middleton, Miles and Noyau[6.5], complete combination 

or cancellation of opposite pulses would not occur. Hence it would be more 

difficult to obtain a model for the ISI.

Consider first the effect of the structure of the Modulation codes on the level of ISI 

at very low packing densities. Only the effect of the pulses from the neighbouring
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timing windows is measurable as the wider spread pulses give too low a reading. 

This leads to the following probability densities for the two Modulation codes 

being examined.

Manchester

P(ISI from 1 Fundamental distance away)=l/3; 

P(ISI from 2 Fundamental distances away)=l/6; 

P(No ISI assuming symmetry)= 1/2.

Miller

P(ISI from 1 Fundamental distance away)=0;

P(ISI from 2 Fundamental distances away)=l /3;

P(ISI from 3 Fundamental distances away)=l/6 ;

P(ISI from 3 Fundamental distances away interfering with that of 2

Fundamental distances away)=l/6;

P(No ISI assuming symmetry)= 1/3.

Although this is not a complete list of all possible values of ISI for high density 

recording, it does give an effective measure of how the ISI from the important 

neighbouring pulses is affected by the choice of modulation code. For a practical 

data rate and tape speed the effect of ISI is far greater than this simplified model. 

Note that at typical recording densities ISI from the fundamental distance is 10 

times greater than that from three fundamental distance.
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From these figures it is easy to see that ISI will be a greater problem in recordings 

using Manchester Modulation code. This is due to the lower value of the 

minimum run length consistent with the theoretical work done on the run length 

dependencies of errors in Modulation codes[6.6].

6.3:4 Correlation of ISI

Noise has been shown to be correlated pulse to pulse for both Modulation codes. 

Therefore an inspection of the correlation level of ISI between two adjacent pulses 

was undertaken. The correlation of the values of ISI was measured for the two 

different rnodulation codes.

The correlation between the ISI on successive pulse for Miller encoding for the 

Miller code was found by partitioning the values of ISI into several different sets. 

This was done by using the runlength between the two adjacent transitions as a 

marker. Data was thus partitioned into three groups. The correlation was found by 

using the Minitab[6.7] statistical software package.

For both modulation codes it was found that the ISI was correlated, for a fixed 

runlength size. The following results where gained for Miller Modulation code 

and similar results where obtained for Manchester Modulation.
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Miller code Correlation of ISI on successive Replay Pulses

Gap of 2 fundamental distance gives a correlation = - 0.126; 

Gap of 3 fundamental distance gives a correlation = 0.349; 

Gap of 4 fundamental distance gives a correlation = -0.83.

However for both Modulation codes when the total amount of ISI was compared 

the correlation was found to be less than 10% and so could be ignored. This was 

due to the correlation on the different runlengths cancelling each other out to 

leave only a small value for the correlation over all runlengths. This suggests that 

the correlation of ISI may be ignored.

6.4 Modulation Coding Results 

6.4;1 Introduction

All r\iodulation -.odes add redundancy^ therefore the error rate may be reduced by 

careful demodulating of the received pulses. In this case the Miller and 

Manchester Modulation codes are studied.

6.4:2 A Method of decoding Manchester Modulation Codes.

In Manchester Modulation is that there is a transition in the centre of every data 

bit cell. This central transition is present in the data frame regardless of the actual 

data bit This is designed to give good clocking from the replay pulse.
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MP MP MP

Data Cell 

Figure 6.11 Section of Manchester Code Missing a Transition at a Mid Point

In which:

MP is the mid point of a data cell where a transition must be present; 

EP is the end point of a data cell where a transition may be present; 

the dotted lines represent the limits of the data cells.

However in an asymmetric channel it is possible, to use a maximum likelihood 

based decoder, to reconstruct the pulses provided that there is no loss of clocking. 

In addition in the event of a clockloss error, Manchester code has one of the best 

abilities to regain clocking.

Maximum Likelihood Decoder with No Clock Loss

In an asymmetric channel, (1-»0) it is possible to reconstruct the modulated 

sequence. If there is no transition in the mid point of a timing window, then the 

following algorithm is put into effect to determine the missing bit and so to enable

the recovery of the data.
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i) check the two neighbouring transitions to the erroneous data bit;

ii) if one or both of these transitions are non-zero then store the

orientation;

iii) the missing bit will be the opposite of the stored orientation; 

iv)this will enable the mid bit to found as can be shown below.

EP MP MP

EP MP
i
: Data Bit Cell

MP 

Data Bit Cell

Figure 6.12 Reconstruction of Manchester coding from one error

If the two immediate neighbours are both zero: 

i) inspect the next two transitions; 

ii) if their parity is the same, the missing transition is the opposite.
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Figure 6. 13 Manchester Recovery with No Adjacent Wi

If there is a difference between the orientation of the two transitions in the centre of 

the next window then it is impossible to tell the orientation of the missing data bit. 

As there must have been an additional redundant clocking bit in one of the 

missing transitions.

This method results in a reduction of the uniform error rate by removing all 

singleton errors.

6.4:3 Miller Decoding

The encoding algorithm for the Miller code is not as simple as the Manchester code 

as there is a not a single Modulation character for each data cell.

Miller codes represent a data 0 in two different possible ways:
i) no transition in the data window this is represented as a double blank, 00;
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ii) a transition at the end of the data window this can be represented by 01. 

The Miller code represents a data 1 as:

a transmission in the centre of the data window.

When a transmission is shifted from its correct transition window no transitions 

are received in the data cell due to the use of guard bands.

This gives Table 6.2 for the data transmission and reception. Once again a uniform 

error probability is assumed to enable reasonable figures to be drawn in Table 6.2. 

The effect of Autocorrelation on errors is ignored.

Transmited Modulation

R
e
c
e
i
v
e
d

10

01

00

1 0

1-e

0

01

0

E/2

00

0

0

1/2

Table 6.2 Probability Table for Miller Code Reception and Transmission

Hence given that a 00 is received it is more likely that a 0 was transmitted than a 1.
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P(data one/00) =2 e/(l+3e) 

where:

e is the original error rate. 

This means that the algorithm to decode miller code reduces to:

if there is a transition in the first bit cell then demodulate as a data 1;

if there is no transition in the first bit cell then demodulate as a data 0.

Hence the second bit is redundant and hence we required to know only whether 

there is a transition in the first timing window of the data cell.

6.5 Error Correcting Codes

6.5:1 Aliasing

In Chapter 4 a perfect code was defined. This is a code whose error syndromes 

totally fill their vector space: i.e. the code is optimal for the given codeword length 

and error correction over that certain field. However this does lead to the problem 

that these codes are unable to distinguish errors of length half their Hamming 

distance or longer. For these longer errors such codes will attempt to correct for an 

error having the same syndrome but having been generated by a number of errors 

which is less than or equal to the maximum correctable length. This will lead to 

additional errors being generated by the error correcting code and hence to an 

increase in the error rate.
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False error correction is called "aliasing" and may be cured by using a code which 

corrects more bits in the word. Assuming a known uniform data bit error 

probability. The amount of redundancy required can be determined by the 

binomial expansion of the error rate. In this case it is beneficial to use longer 

codewords which allow a greater percentage of correction for the same percentage 

of redundancy.

6.5:2 Bit and Byte Error Rates for Non-Linear codes

It has been stated in Chapter 4 that the Reed Solomon code is a byte error 

correction code. This is a code which will correct a subword of several bits in 

length if there is a fixed bit error probability, a conversion from bit error rate to 

byte error rate follows from the binomial expansion.

This figure is given by the following equation:

Where:

Pa = Byte error rate 

Pe = Bit error rate 

b = Byte length

From this it is possible to draw conclusions about this byte error rate by altering the 

conditions upon which it is dependent. These include:
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i) subword length for a given bit error probability the byte error probability is 

dependent upon the length of the code;

ii) bit Error Rate. For a constant subword length the byte error rate is 

dependent upon the bit error rate.

From the above it is equally possible to make predictions about the byte error rate 

for any given bit error rate probability provided that the bit error rate is constant.

However as has been shown earlier there is no uniform bit error rate due to the 

autocorrelation pulse to pulse of noise. However this does give a good estimate 

for the byte error rate given a bit error rate even with the oise autocorrelation.

6.5:3 Results involving RLL constrained Error Correction

In Section 5.9:4 a set of codes using RLL constraints to trap errors was described[6.8]. 

Such codes trap and correct certain errors. However at high error rates these codes 

will lead to error propagation due to bitslip. Bitslip is caused by a successive loss of 

transitions and may occur in a short dropout or due to a highly correlated n oise 

source. A bitslip error is as severe as a large dropout because it results in a 

translation of the the received data relative to the input data of one place. Table 6.3 

illustrates the (2,4) error detecting code. This code will have runlengths of 5 to 9 

which are shown in the first half of the table for a singleton error. The second 

halve of the table shows all the possible runlengths for a double error.
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Table 6.3 Runlengths for a (1->0 ) ASC for the Ferreria (2,4) code

As can be seen from the shaded double runlengths in Table 6.3 it is possible to 

have a double error with the same runlength as a single error this will lead to the 

original double error being corrected as a single error leading to bitslip.

We now show that the Ferreira codes can be extracted from a single error 

correcting code to one which will correct double errors. This is achieved by 

modifying the constraints of the code, the elimination of double errors will 

resolve the problem of bitslip.

To prevent bitslip it is necessary to be able to distinguish between double errors 

and single errors in the output of the code. To do this the following inequality has 

to be satisfied for the minimum, n and the maximum, d runlengths involved in

the code.
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3d+2>2n+l (6.18) 
Giving:

(3d+l)/2 >n (6.19)

This can then be maximised for n with respect to d to give:

n=3d/2 (6.20)

This then gives an upper bound on n in terms of d for a code which will detect 

double errors in addition to the single errors in the code given by Ferreira. To lose 

three transmissions in succession is highly unlikely and to be able to compensate

for this would require:
4d+3 > 3n+2 (6.21)

This then gives the maximum value for n in terms of d as:

n = 4d/3 (6.21)

This bound on the runlengths is to narrow to be of any use as a rnodulation code. 

The information rate for such a code with would be almost zero. For example the 

maximum information rate of a (6,8) code would be 0.1993 of the unconstrained 

channel {6.4].
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Table 6.4 Double Error Correcting Runlength Limited Family 1 code.

Table 6.4 shows all the runlengths of a (2,3) code which can correct successive

erroneous bits.

This type of code can be extended to include longer runlengths in the same 

manner as before. An example of this type of code is the (2,3,,12,18) Modulation 

code which allows a wide variety of runlengths and in addition the ability to detect 

double errors when they occur.

It is also possible to use constrained modulation codes. In these codes those 

sequences of runlengths which allow a double error to be decoded as a single one 

are inadmissible. Here taking the (1,4) code discussed by Ferreira as the third family 

of codes. Once all those runlengths which lead to error propagation have been 

removed, there are only 29 possible Modulation combinations are allowable, from 

the original 64.
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Table 6.5 Double Error Correcting Constrained Runlength Family 3 Code

The final rnethod of double error detection using runlength limited sequences is 

to combine the idea of a (d,2d) bound on the runlength with the deletion of 

sequences that would lead to bitslip error induction. This concatenated code 

proves to give a high data rate and in addition posses the ability to detect multiple 

errors.

An algebraic description of the allowable runlengths is given below. 

A pair of consecutive runlengths a,b ...(d,2d) are allowable if a+b+2>4d+l. 

This code is illustrated in Table 6.6
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Table 6.6 (2,4) code showing Suppressed Runlengths:

In the above code those runlengths which lead to a bitslip error caused by a double 

error runlength in the shaded area are suppressed. This gives a comparatively 

wide range of runlengths while preventing the bitslip error from occurring. In this 

case any elements from the set of the series of runlengths given by,

2,2,2: 2,2,3 2,3,2 & 3,2,2.

Will be prevented from occurring so as to allow a high Information Rate in the 

channel.
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Chapter 7

Computer Simulation Design and Implementation 

7.1 Introduction

In this chapter an outline of the Monte-Carlo simulation of the recording process 

is given. These experiments compare and contrast two different types of 

fnedulation and of error correcting codes.

The two modulation schemes used are the unmodified Miller code, MFM and 

Manchester code, FM. The purpose of the experiments is to compare the error 

propagation of these modulation codes to show how the different run length 

limitations effect both ISI and and the correlation of noise induced bitshift errors.

Two different error correction codes were used: the linear BCH code which 

encodes the data as a series of single bits, and the nonlinear Reed Solomon code 

groups the data into subwordg. These are then combined to form a long codeword.

The correlation pulse to pulse of the tape noise which was measured earlier in 

Section 6.2:4 was used to gain a more accurate model of the noise induced bitshift. 

The effect of the correlated noise was compared to that of the binomial distribution 

for bitshift errors induced by noise which is independent pulse to pulse. This was 

done to test the effect on the distribution of replay errors J noise correlation for 

the different types of modulation and arror correction code.
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Next the effectiveness of the Ferreira combined modulation and error control 

codes was measured against an independent noise source. The ability of these 

codes to combat non clockloss errors was compared to that of the codes with tighter 

bounds on the runlength limitations. These were discussed in Section 6.5:3. and 

were designed to prevent a bitslip which is caused by a double error.

7.2 Computer Simulation Design

7.2:1 Weiner filter design of the coefficients of the filter for the Autocorrelation

A theoretical model of the correlation pulse to pulse of the tape noise source was 

calculated in Section 6.2:4. This gave a more accurate model for the distribution of 

the noise induced bitshift errors in a codevector. The distribution of bitshift errors 

in a codevector is an influencing factor in the choice of both modulation and error 

correction codes. To simulate the effect of noise correlation it is necessary to use a 

feedback loop for the previous values of the noise source. This gives an output 

noise source which is correlated from sample to sample as each sample is taken at 

the peak of the replay pulse then the noise is correlated pulse to pulse. The output 

is a weighted sum of the previous outputs and the present input. The coefficients 

of this feed back loop are found by using a Weiner filter.

The feedback loop gives the level of noise autocorrelation over multiples of the 

fundamental distance. This can be regarded as an optimal nonrecursive estimator 

for the values of the filter to give the correlation of noise induced bitshift pulse to 

pulse. A four stage feedback loop was used as a compromise between a more 

accurate filter with many terms and the simplicity of mathematical calculation of a

filter with less terms.
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To obtain the necessary feedback loop coefficients to give the correct value 

of the noise correlation pulse to pulse it is necessary to multiply the 

inverse of the correlation matrix by the correlation for the noise from the 

different timing windows.. This tabulates the level of correlation for the

successive fundamental distances. This correlation matrix is given by, a :

a = XiYi.2
XiYi-3 
XiYi.4 Yi.2Yi.4

and the correlation between the different data windows provides the 

coefficients of the column vector x, this is shown below:

x =
Y i Yi-1 
Y i Yi_2
Y i Yi-3 
Y i Yi.4

Where:

Xi is the present input to the feedback loop:

YJ is the present output of the feedback loop;

Yj_k is the output of the the feedback loop k stages previously;

Yi_kYi_j is the correlation between the output k and j stages previously:
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This filter is shown below in Figure 7.1 . The Wiener Filter[7.1,7.2] is used to filter 

the uncorrelated input noise in a weighted sum with previous outputs, to give a 

correlated sample. It can be regarded as a recursive shift register, Jn this case a four 

stage shift register would be used.

a : =

X * — • ~-

10 0
0 1 -.47537
0 -.47537 1
0 -.12668 -.47537
0 .0932 -.12668

.86557"
-.47537
-.12668
.0932
.00863

0
-.12668
-.47537

1
-.47537

0
.0932

-.12668
-.47537

1

-1
a -x =

0.866
-0.953
-0.904
-0.601
-0.303

Figure 7.1 Weiner filter results for autocorrelation of ISI.

These results were validated using the Minitab[7.3] statistical software package to 

test the )rrelation of the output levels of the Weiner Filter.
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7.2.2 Design of the Model of BCH Error Correcting

BCH codes are linear as they treat the input data as a series of single bits for which 

the error syndromes may be combined by superposition. This implies that they 

will correct the error in the code vector wherever it occurs, provided that the total 

number of errors in any single code vector is less than half the Hamming distance 

of the code.

As a consequence of this property linear BCH codes which correct a large number 

of terms have many possible error syndromes. For example the (31,16,3) Error 

Correcting code has nearly 5000 possible error syndromes which have to be 

checked to determine the error. To simulate all the different codes of varying 

Hamming distance is impracticable. The amount of calculation of errors from the 

given syndrome involved for each code and the computer time it would take 

would limit the number of codes to be tested very severely. The alternative 

method of creating a large database of errors and their associated syndromes would 

have demanded a large amount of computing time to generate.

However it is possible to use the linearity of the BCH code to develop a simpler 

test for errors. Thus for the (31,15,3) code mentioned above, it is possible to 

simulate this code by using only 31 information bits. fhe data is assumed to be 

derived from a stationary random process, it is then possible to infer that the 

redundancy in the codeword will also be random. Therefore no actual coding 

need take place, as the data and redundancy can be generated form the same 

source.
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Worst case patterns are allowed to occur solely due to the randomness of the bit 

generator. The BCH ror orrection odes do not generate more worse case 

patterns than those which are already present in the data. This is true for all BCH 

codes with the exception of those codes with a very high correcting rate such as the 

(7,1,3) code. This represents data as either a string of seven encoded 1's for a data 1 

and a string of seven encoded O's for a data 0. This require so much redundancy 

and have such a poor information rate that they are of little use in a practical case.

To best understand the methods used for the simulation a full description of the 

algorithm will be given:

1 generate a series of random binary digits. Copy this series and put a copy into 

memory for later comparison;

2 modulate these digits ;

3 add error through a Gaussian noise channel. This can be either correlated or 

uncorrelated pulse to pulse In addition the rror probability can be increased 

by convolving the pdf of the noise induced bitshift with that for the ISI 

induced bitshift;

4 demodulate the resulting stream of replay pulses;

5 compare the continuous demodulated stream from part 4 with the original 

in the computer memory. Select all the points at which the received and 

generated streams differ, mark these as a 1 in the error stream and the correct

bits as a zero in the error stream;
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6 break the continuous error stream into words of the correct length for the 

given code pattern. This enables the errors to be assessed against the varying 

length of the codewords;

7 count the cotal number of errors and the number which occur during the 

transmission of each code vector. This value for the number of bit errors in 

a word is set into an array which is governed by the amount of errors which 

occur in each codeword. So for the example at the end of the data stream 

array [x] will contain the number of codewords with x errors in;

8 print out the array generated above to give the number of words with that 

amount of errors in;

9 the effects of BCH error correcting code can be found by the errors which will 

be corrected by codes of different Hamming distances. The effect of 

additional data corruption due to aliasing can be be shown. This as stated in 

Section 6.5:2 effects the code by falsely correcting bits which are not in error 

in the data sequence.

The above model gives a simple though thorough method of simulating the effect 

of BCH code and the two Modulation codes. It has been shown earlier that 

complete simulation of the encoding/ decoding process for long BCH codewords 

with a large amount of redundancy take a large amount of computer time as well 

as involving a large number of complex manipulations. The lack of any need to 

use computer time to divide the data sequence by the polynomial brings an

improvement in the run time of the programme .
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A principal benefit of this algorithm is the flexibility in the length of correctable 

errors. As has been shown earlier a code which can correct only three errors 

confronted with a piece of data with four errors in it, will 'correct" those three bits 

which when in error give the same syndrome as the four bits in error. This leads 

to additional errors due to aliasing; these may be found by adding the number of 

bits the code can correct to the the original number of error bits. A code which can 

correct 3 bits in error which has 5 bits in error in one codevector would result in 

an error of 8 bits in the codevector.

7.2:3 Design of the model of Reed Solomon Error Correction coding

Unlike the BCH codes in Section 7.2:2 the Reed Solomon codes are not truly linear. 

They consist of a series of data blocks called subwords which are taken from an 

extended inary Galois field. These subwords can be of varying length which is 

dependent upon the length of the codeword. Though for the 256 subword Reed 

Solomon code used in high Integrity recording there is a direct analogy between 

the eight bit computer subword and the subword in the code. These codes were 

dealt with in section 4.4:7. These codes correct an entire block regardless of the 

number of errors within each block so a Reed Solomon code would not 

distinguish between a block in which every bit is in error or a block with just a 

single error.

This lack of a linear structure for the code was initially found to be a major 

drawback to the applying the simulation techniques used for the BCH code. This 

lack of Monte-Carlo simulation techniques implied the use of a full 

encoder/decoder representation for the Reed Solomon code would be appropriate.
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This full encoder /decoder process is limited for the use of one code of known 

redundancy for each run, as well as using complex binary manipulation to 

generate the parity check blocks and the error syndromes.

However the data subwords are separated from the demodulated bitstream and 

each subword is individually checked for error. If there is one error or more in a 

block then the block is signalled as being in error. Then there is no need for the 

complex binary operations which would have been necessary for the other method 

of simulation. In this the Reed Solomon code can then be regarded as an extension 

of the BCH code. Where the BCH code can be regarded as a Reed Solomon code of 

block length 1, i.e. one one whose subwords come from the Galois field of GF(2), 

therefore the Reed Solomon code is linear over the Galois field from which the 

subwords are drawn.

The total number of bit errors in the data stream is not of primary importance for 

the Reed Solomon correction code as much as the distribution of the errors, ccs 

the code relies on data subwords in error rather than individual bits. Though it is 

put in store for the calculation of the post Modulation bit : error rate. The 

simulation process is a continuation of the work in Section v'-Z^on BCH codes.

The Reed Solomon code can therefore be regarded as being linear over the 

extended Galois Field over which the data subwords were defined. The algorithm 

used to simulate the Reed Solomon code is given below:

1 generate a series of random binary digits. Copy this series, break this into a 

series of subwords and put a copy into memory for comparison later on;
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2 modulate these digits according to the type of modulation code being used;

3 add error via a noise channel The distribution or number of errors can be 

altered by using either correlated noise from the neighbouring digits or by 

convolving the noise induced bitshift with ISI induced bitshift;

4 demodulate the data stream received through the channel;

5 break the demodulated data stream into a series of data sub words. Check each 

subword for error against the original subwords;

6 count the number of subwords. When the correct number has been reached 

for a codeword count the number of subwords in error. The number of 

subwords in error acts as a index to an array. This array stores the number of 

codewords with that amount of subwords in error;

7 print out the array to give the number of codewords with that amount of 

subwords in error in;

The method in the algorithm is a corollary to the method used for the BCH code 

where the errors were given as individual bits of data.
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7.2:4 Design of the Model for Noise and ISI 

7^2:41) Model for Independent Noise

The noise model used was that given by Katz and Campbell[7.4]. This assumes that 

noise induced bitshift has a Gaussian PDF. This can be developed by using the 

NAG (National Algorithms Group)(7.5) model for a Random Variable of Gaussian 

PDF. This standard function may be called from within the programme and can be 

combined with other functions.

The reason for the choice of the Katz and Campbell Noise PDF for this model as 

opposed to the PDF given by Ryley and Loze[7.6]. c^a the recent results showing 

that the combination of a more accurate Non-Lorenzian pulse, such as that given 

by Middleton Miles and Noyau[7.7] and the Ryley and Loze model of the PDF of 

Noise Induced Bitshift are very similar to those given by the original Katz and 

Campbell PDF for Noise induced bitshift.

7.2:4 ii) Model for Correlated Noise

An additional reason for using a zero mean Gaussian model for the noise induced 

bitshift is the ability to add correlation between successive sampled noise pulses. 

The addition of two or more zero mean Gaussian noise sources result in a zero 

mean Gaussian noise output. This in addition to the values of the feedback 

coefficients found by the use of the Wiener Filter in Section 7.2:1, allowed the 

experiments on noise correlation to be undertaken.
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7.2:4 iii) Model for 1ST

The effect of ISI as an error mechanism lies in its convolution with noise to 

induce bitshift errors as has been discussed in Section 2.4:2. It is possible however 

to measure the level of bitshift which is induced solely from ISI. The statistical 

properties of the effect of the ISI are those of the mechanism itself. To change from 

an ISI to the induced bitshift one simply divides the ISI by the gradient of the 

derivative of the replay pulse at the zero crossing.

ISI is dependent upon a series of pulses on either side of the pulse under 

observation. However this is very difficult to model for each pulse in the data 

stream .s the model requires a detailed knowledge of the series of pulses either 

side of the pulse in question. However assuming that ISI can be regarded as a 

Random Variable it is possible to derive a model for ISI.

To get the correct value of ISI induced bitshift an algorithm was used, in which the 

value of a random variable corresponds to the cumulative PDF for the ISI induced 

bitshift. This gives a single value of ISI induced bitshift which is then added onto 

the value of noise induced bitshift to give the combined value of bitshift:

1 read into an array the individual values of the ISI and the cumulative 

probability;

2 generate the random data as done in the earlier algorithms for the noise 

only error source, complete the Modulation and generate a value of 

noise induced bitshift;
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3 use a random number generator to obtain a number between zero and 

one. Select the value of ISI whose cumulative probability is immediately 

below the random number;

4 add the value of the ISI induced bitshift onto the Noise induced bitshift, 

to give the combined induced bitshift. If the combined value is outside 

the limits of the timing window signal a bitshift error by removing the 

transition form the window;

5 demodulation and error monitoring is done as in the above algorithms 

for Noise only error sources.

However this procedure does take a large amount of computer time due to the 

search of all possible cumulative probabilities. The selection of the value of ISI 

induced bitshift can be simplified provided that the probability of all the different 

values of ISI is approximately uniform. This is true for Manchester Modulation 

code where the probability of ISI is uniform due to the code structure.

The selection of the value of ISI is done by multiplying the random number by the 

number of values of ISI in the array and selecting that value. This leads to a 

simple and quick approach for accessing the value of the ISI than via- tW above 

with no loss of accuracy. This same idea can be applied to ISI in different 

Modulation schemes including Miller code with only a negligible loss of accuracy.
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7.2:5 Improvement in Error Rates due to demodulation techniques

As has been shown in Section 6.4 it is possible to Improve upon the error rate at 

the receiver part of the channel by careful demodulation of the received 

information,this can be seen in the results of the experiments.

The first set of results in Table 7.2 a & b below are for a set of data with 

Manchester Modulation without using the modification given in section 6.4:1. 

The second pair of tables, Table 7.3 a & b refer to data encoded with Manchester 

Modulation with a check back to the previous two transmissions. This is 

undertaken when there is no transition at the mid point of a data bit cell. This 

method finds the most likely transition for the data cell.

The code used is a BCH code of length 63^the bit error rate was originally set at 

1/100 for the unmodified modulation code. The noise error source used was 

varied from the uncorrelated noise in tables 7.2a and 7.3a to correlated noise in 

7.2b and 7.3b. This was done to test the effect of noise correlation upon the amount 

of errors recovered by the coding scheme.

Both sets of tables can be compared with the theoretical results given by the 

binomial expansion, given that the error rate for the modified Manchester should 

be the square of the error rate for the unmodified code. This figure is arrived at as 

to cause an error in the modified Manchester coding it is necessary to have two bits 

in error in successive transitions which for an uncorrealated noise source is

P(e)*P(e) =P(e)2, where P(e) is the probability of error.
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Total number of transmitted errors 
Transmitted error rate

6344
0.00512

Number of words with no errors is 
Number of words with one error is 
Number of words with two errors is 

Number of words with three errors is 
Number of words with four errors is 

Number of words with five errors is

14271

4555

749

90

4

1

Table 7.2 a Uncorrelated Noise with no Look -up Table

Total number of transmitted errors 
Transmitted error rate

Number of words with no errors is
Number of words with one error is
Number of words with two errors is
Number of words with three errors is
Number of words with four errors is
Number of words with five errors is
Number of words with six errors is

10014 
0.00707

11740
5991
1567

249
25

6
2

Table 7.2 b Correlated Noise with no Look -Up Table

total number of transmitted errors 
Transmitted error rate

65
0.000052426

Number of words with no errors is 
Number of words with one error is 
Number of words with two errors is

19616
63

1

Table 7.3 a Uncorrelated Noise Error Source with a Look-Up Table
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total number of transmitted errors 165 

Transmitted error rate 0.000133071

Number of words with no errors is 19517
Number of words with one error is 19

Number of words with two errors is 3

Table 7.3 b Correlated Noise Error Source with a Look-Up Table

To be able to estimate the effect of noise correlation on the Manchester 

Modulation code the coding gain was calculated for each of the two codes.

The first for the uncorrelated noise in Tables 7.2a and 7.3a :

Original error rate: 0.00512

Improved error rate : 0.0000543

The error rate improvement is 94.36 for the correction

To obtain the coding gain it is first necessary to convert the error rate to decibels, 

for the above:

Original SNR = 29 dB. 

Improved SNR = 32 dB 

Coding Gain = 3 dB

To compare this with the Correlated noise in Tables 7.2a and 7.2b gives :
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Original Error rate : 0.00707

Improved Error Rate: 0.000133

The Error Rate improvement is : 61.64

Obtaining the coding gain by converting the error rates to SNR gives:

Original SNR = 19.6 dB. 

Improved SNR = 21.5 dB 

Coding Gain = 1.9 dB

These figures for the improvement given by the coding gain are not outstanding., 

This is due to a high initial error rate, a more realistic result with a higher error 

rate of approximately 10~5 would yield better results.

The figures for the coding gain in decibels come from the graph for Katz and 

Campbell's PDF for noise induced errors in Chapter 6. The level of improvement 

is dependent upon the original error rate in addition to the level of 

autocorrelation. The improvement in the error rate is for uncorrelated noise 

theoretically should be the reciprocal of the error rate.
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7.3 Results with BCH Error Control Coding 

7.3;1 Uncorrelated noise with no I SI

This model was run as a check for the error rate and the program the results with 

the binomial expansion. Several different lengths of code were tested;codes of 31,63 

and 127 bits in length. Several different bit error rates were ranging from 0.05 to 

0.0005 were used. This givesa nominal range in decibels of 23 to 29 dB from Figure 

6.2.

To compare these results with the Binomial expansion a one-sided chi-squared 

test, the degrees of freedom were fixed by the codeword with the largest number of 

errors in each set used, this gave the following set of results:

Bit Error Rate

005
0005

00005

Correlation

0998
10

10

Chi Square

5425

0061
0040

DF

7

3
2

Significance 

Level

66%

99-5%
98%

Table 7.4 Uncorrelated Noise and No ISI

From Table7.4 it can be seen that the conclusion that the noise induced errors can 

be represented by a binomial le accuracy of the error model is 

excellent.

In addition to using the Miller code for Modulation the Manchester code was used 

with a two bit Look back and ahead for replacing lost transitions which had been
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shifted outside the timing window. This gave similar results for the significance 

levels.

7.3.2 Correlated noise with no I SI

The correlation feedback loop for the noise source was then added to the program 

while using both Manchester and Miller Modulation codes. No ISI was added 

initially to test the choice of Modulation code against the effect of noise 

autocorrelation.

Differing BCH code lengths where also used to test the hypothesis that Error 

Correction codes which employ a shorter code vector are more prone to noise 

correlation than the longer codes. This is due to the correlation which is 

significant over a short length of data, five transitions becoming less noticeable in 

a long stream of data. This can be shown below, in the two sets of data.The first is 

for BCH coding of length 7 the second of length 255.

The hypothesis is that a shorter word length would be affected more by the noise 

correlation than would a word of greater length. For a modulated word of length 

14 modulation bits the majority of bits in the word would be within the range of 

the corealation of the central bits.

The results for both the run of the 7 data bit word and the 255 data bit word were 

compared using the Chi-squared test on Minitab[7.3] to the binomial expansion,!) 

compare these results to those for uncorrelated noise gave the effect of the noise

autocorrelation on the error rates. The results are given below:
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Miller Modulation

Number of words with no errors is
Number of words with one error is
Number of words with two errors is

Correlated noise

170996
6062

92
Number of words with three errors is r

Uncorrelated noise

177096
6061

92
1

Table 7.4a Effect of Correlated Noise Short Data Length Miller Modulation

Correlated noise | Uncorrelated noise
;

Number of words with no errors is
Number of words with one error is
Number of words with two errors is
Number of words with three errors is
Number of words with four errors is
Number of words with five errors is
Number of words with six errors is
Number of words with seven errors is
Number of words with eight errors is

1356
1691
1125
494
143
44
13
3
1

1327
1729
1123
475
155
40

9
2

Table 7.4b Effect of Correlated Noise Long Data Length Miller Modulation

Manchester Modulation

Number of words with no errors is 
Number of words with one error is 
Number of words with two errors is 
Number of words with three errors is

Correlated noise

167537
9359

240
4

Uhoorrelated noise

167425
9472
230

3

Table 7.5a Effect of Correlated Noise Short Data Length Manchester Modulation
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Number of words with no errors is
Number of words with one error is
Number of words with two errors is
Number of words with three errors is
Number of words with four errors is
Number of words with five errors is
Number of words with six errors is
Number of words with seven errors is
Number of words with eight errors is

Correlated noise
604
1243
1373
795
463
179
57
21
4

—-----—•---- — — | 
Uncorndated noise

637
1302
1323
793
450
170
61
17
4

Table 7.5b Effect of Correlated Noise Long DataLength Manchester Modulation

These sets of data were now compared using a chi- squared test to see if the noise 

Autocorrelation gave a significant effect on the amount of errors over the 

codeword given the same error probability. This gives the following set of results:

For Miller Modulation: 

The code vector of length 7

Chi squared test value of 1.027,

two degrees of freedom

these results give a value of 60% for the level of significance that the two 

streams of data came from the same source.

The code vector of length 255

Chi squared test value of 3.443

six degrees of freedom

These results give a value of 75% for the significance level that the two

streams of data came from the same source.

228



For Manchester Modulation:

The code vector of length 7 ; 

Chi squared test value of 1.196 

two degrees of freedom

These results give a value of 55% for the significance level that the two 

streams of data came from the same source.

The code Vector of length 255; 

Chi squared test value of 3.636 

six degrees of freedom

These results gives a value of 72% for the significance level that the two 

streams of data came from the same source.

Conclusions

These results bear out the hypothesis that the shorter the code vector the greater 

the effect of the noise correlation. In addition it can be shown from these results 

that the choice of Modulation code is not a major factor in the effect of the noise 

correlation on the error distribution.

The error distribution for both Modulation codes subject to correlated noise, are 

not significantly different from those of the binomial expansion for the 

uncorrelated noise. Hence all further experiments in this thesis using the BCH 

code need only use the model for uncorrelated noise. Further there is no 

correlation between successive values of the ISI induced bitshift. Hence it is 

established that the convolved error probability of noise and ISI pulse to pulse is
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independent.

7.3:3 Effect of ISI on BCH encoded sequences

The model used for ISI was that given in section 7.2:4. Simulation runs were made 
to compare the effect of ISI on error rate for the two modulation codes discussed in 
Section 5.4. These codes have been shown in Section 5..4 to have different 

runlength characteristics.

Miller Modulation code

Number of words with no errors is
Number of words with one error is
Number of words with two errors is
Number of words with three errors is
Number of words with four errors is
Number of words with five errors is
Number of words with six errors is
Number of words with seven errors is
Number of words with eight errors is
Number of words with nine errors is
Number of words with ten errors fe

Uncorrelated noise

33396
5202
392

19
1

Uncorrelated noise and ISI

2961
7337

10654
7736
5422
2572

905
302

1 73
19
7

Table 7.6a Effect of the addition of ISI to Miller Modulation 31 bits
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Manchester Modulation code

Number of words with no errors is
Number of words with one error is
Number of words with two errors is
Number of words with three errors is
Number of words with four errors is
Number of words with five errors is
Number of words with six errors is
Number of words with seven errors is

Jhcorrelated noise

17081
2704

204
10

1

Number of words with eight errors is j
Number of words with nine errors is j \

i

Uncorrelated noise and ISI

4792
6958
4884
2271

767
177
42

8
0
1

Table 7.6b Effect of the addition of ISI to Manchester Modulation 31 bits

Table 7.6a and Table 7.6b confirm that for both Modulation codes the addition of 

ISI to the noise leads to a substantial degradation in the error rate. This is entirely 

expected as ISI is the dominant error source. This then leads to the need for extra 

redundancy in the error correction coding to be able to handle these additional

errors.

However f m these tables it can be seen that the amount of degradation in the 

error rate due to the defect of ISI is similar in both cases. One would expect the 

amount of degradation due to ISI to be worse in the Manchester Modulation

Manchester has a lower minimum runlength constraint than Miller. The 

explanation for the lack of this effect is the assumption of a symmetric replay 

pulse[7.8].
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7.4 Results involving Reed Solomon Error Correction Encoding 

7.4;1 Noise nnly. no ISI

In Section 4.5 Reed Solomon coding was be assumed to be an extension of BCH 

coding. So for the Galois field GF (25 ) the code streams are all of length 31, there 

are 31 non zero elements in GF (25). The results for this Reed Solomon code are 

shown in Table 7.7 :

Codes of length 31 subwords with Miller Modulation

Bit Error Rate
Subword Error Rate

Words With 0 errors
Words With 1 error
Words With 2 errors
Words With 3 errors
Words With 4 errors

Words With 5 errors
Words With 6 errors
Words With 7 errors
Words With 7 errors

Words With 9 errors

Words With 10 errors
Words With 11 errors

Words With 12 errors

Words With 13 errors

Words With 14 errors

Number of words

0.05
0.226

0
4

10
39
76

131
147
179

165

99

79

39
20
7

4

1000

0.005
0.025

4616

0.0005
0.0025

j 92529
3595 1 7214

1361

360
251

i

6
59

6

2 !
E

.10000

0.00005
0.00025

992163
7706

31

looooo hoooooo

Table 7.7 Reed Solomon Encoding for Noise Only 31 five Bit words
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Table 7.7 can be compared with Table 7.8 below shows the error distribution for 127 

seven bit Reed Solomon words, i.e. a codevector of 889 bits. However the error rate 

of 0.05 was tcohigh to enable any of the results to be tabulated as the average 

number of sub words in error was 39.

Codes of length 127 subwords with Miller Modulation

Bit Error Rate 
Subword Error Rate

Words With 0 errors

Words With 1 error
Words With 2 errors
Words With 3 errors

Words With 4 errors
Words With 5 errors
Words With 6 errors

Words With 7 errors

Words With 7 errors
Words With 9 errors
Words With 10 errors
Words With 11 errors
Words With 12 errors
Words With 13 errors

0.05 j ' 0.005 
0.301 1 0.0345

i 111
497

1101
1716
1940
1717

• 1299
> 749i
! 436
i m

94

33

11

1 : "

0.0005 

0.003495

63950

27650

6290

1003

97

10

0.00005 

0.00035

956373

42695

907

13

1

Table 7.8 Reed Solomon for Noise Error source 127 Seven bit subwords

This can be compared to the binomial distribution. Let the probability of a bit being

in error be, Pe Let the subword error probability, be Pa The length of a subword to 

be, b. These three elements can be related by the formula below:

Pa. = HI- P£ )b
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Using this formula for the subword error rate the binomial distribution of 

subword errors for the 31 and 127 subword Reed Solomon codes can be found. 

These are then tabulated in tables 7.9 and 7.10.

Binomial Expansion using the Subword Error Rate for 31 Subword code

Bit Error Rate

Subword Error Rate

Words With 0 errors 

Words With 1 error

Words With 2 errors

Words With 3 errors

Words With 4 errors

Words With 5 errors

Words With 6 errors

Words With 7 errors

Words With 7 errors

Words With 9 errors

Words With 10 errors

Words With 11 errors

Words With 12 errors

Words With 13 errors

Words With 14 errors

Words With 15 errors

Number of words

0.05

0.226

0

14

40
71

127

162

169
147
111

71
40

19

7

3
1

1000

0.005

0.025

4597 
3617

1377

337

60
7

!

!
|
I 10000

0.0005 0.00005
y

0.0025' 0.00025

92541 992270 

7173 7662

270 29

7
.:

i

|i
1

i

i 100000 JOOOOOO

Table 7.11 Binomial Error Distribution for 31; five, bit data words

However for the longer 127 subword Reed Solomon code with high bit error rate 

of 0.05 is impractical to tabulate. Due to the subword error rate of 0.301 which 

when modelled gave an average of 39 subwords in error in each of the codewords.

This far exceeds the maximum for all the other error rates,
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Bit Error Rate 0.05 0.05 

Subword Error Rate 0.301

Words With 0 errors

0.005 

0.0345

116
Words With 1 error 525
Words With 2 errors 
Words With 3 errors

Words With 4 errors
Words With 5 errors
Words With 6 errors
Words With 7 errors
Words With 7 errors

1173 
1761

1950

1714

1246

769

412
Words With 9 errors ! 195

I
Words With 10 errors [ 72
Words With 11 errors

Words With 12 errors
Words With 13 errors
Words With 14 errors

31
11

3
1

0.0005 

0.003495

64106

27554

6309 
922

0.00005 

0.00035

956516
42532

937 
14

100 j

9

1

Table 7.10 Binomial Error Distribution for 127 Seven bit data words

From these results it is possible to assess that the error correction potential of the 

Reed Solomon code. When combating uncorrelated noise it is less effective than 

the linear BCH code.

Correlated Noise

Simulation is now used to model the effectiveness of the Reed Solomon code in 

combating noise which is correlated pulse to pulse. These results are shown in 

Table 7.11 and Table 7.12.
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Codes of length 31 subwords with Miller Modulation
Bit Errot Rate 0.05 

Subword Error Rate

Words With 0 errors

Words With 1 error

Words With 2 errors
Words With 3 errors

Words With 4 errors

Words With 5 errors

Words With 6 errors

Words With 7 errors

Words With 8 errors

Words With 9 errors

Words With 10 errors
Words With 11 errors
Words With 12 errors

0.05 
0.226

7
42

67
72
73

77

50

29

24

7

7
2

1

0.005 

0.025

704

1492

1273

737

335
106

36

5
1

1

0.0005 

0.0025

19221

17013

7461

2603
600

77

14

1

Table 7.11 Reed Solomon Encoding for Correlated Noise Only; 31, five Bit words

Table 7.11 can be compared with Table 7.12 for 127 seven bit subwords.
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Bit Error Rate 0.05 

Subword Error Rate 0.301

Words With 0 errors
Words With 1 error
Words With 2 errors
Words With 3 errors
Words With 4 errors

Words With 5 errors
Words With 6 errors
Words With 7 errors
Words With 7 errors
Words With 9 errors
Words With 10 errors
Words With 11 errors
Words With 12 errors
Words With 13 errors
Words With 14 errors

Words With 15 errors

0.005 j

0.0345 1
1

14

46

123
221
270

307

301

290

173

116
76
33
20

7

2
1

0.0005 

0.003495

1612

4070

5246
4347
2732

1317

516
176

51

16
4
1

0.00005 

0.00035

54120

71520

47079
19970
6270

1527

306

60

5
»•*

Table 7.12 Reed Solomon for Correlated Noise Error source: 127, Seven bit 

subwords

Because of the subword structure of the Reed Solomon code it is expected that the 

performance of the Reed Solomon code is better than the BCH code in combating 

Correlated noise. In fact for the same bit error rate there should be an 

improvement in the subword error rate for Correlated noise.The Tables 7.11 and 

7.12 confirm this but suggest that the improvement is too small to be significant.
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7.4;2 Effect of HIP addition of ISI to Reed Solomon Error Correction Codes

Inevitably the addition of ISI into the system will lead to an increase in the Error 

Rate.The simulation results which demonstrate this can be shown in Tables 7.13 

and 7.14.

Bit Errot Rate 0.05 

Subword Error Rate

Words With 0 errors 
Words With 1 error
Words With 2 errors
Words With 3 errors

Words With 4 errors
Words With 5 errors
Words With 6 errors
Words With 7 errors
Words With 7 errors

Words With 9 errors
Words With 10 errors
Words With 11 errors

Words With 12 errors
Words With 13 errors
Words With 14 errors

0.05 

0.226

0 
4

10
39
76

131
147

179

165

99

79
39

20
7

4

0.005 

0.025

4616

3595
1391

360

59
6
2
1

0.0005 

0.0025

92529 

7214

251

6

0.00005 

0.00025

992163 

7706

31

Total Number of Bit Errors 45301 44750 44557

Table 7.13 Noise and ISI effect on Reed Solomon codes 31 five bit Subwords
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Bit Error Rate 0.05 0.005 

Subword Error Rate 0.301 0.0345

I

Words With 0 errors I 
Words With 1 error
Words With 2 errors

111 
497

1101
Words With 3 errors j 1716

i
Words With 4 errors

Words With 5 errors
Words With 6 errors
Words With 7 errors
Words With 8 errors
Words With 9 errors
Words With 10 errors
Words With 11 errors
Words With 12 errors
Words With 13 errors

1940
1717

1299
749

436

191

94

33
11

4

0.0005 

0.003495

63950 
27650

6290
1003

97
10

0.00005 

0.00035

956373 
42695

907
13
1

i

Total Number of Bit Error 5 45301 44750 44557

7.14 Noise and ISI on Reed Solomon Coding with 127 7 bit words

From Tables 7.13 and 7.14 it is possible to see that Reed Solomon code is not 

effective against the combination of the two non clockloss error echanisms of 

Noise and ISI.
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7.4:3 The use of Clock based recovery in Manchester Modulation code and its 

application to Reed Solomon coding.

It has been shown in section 6.4 that at low recording densities, provided there is 

no clock loss. It is possible to recover the majority of the lost signal from the 

additional transitions used in Manchester Modulation.

This is done by referencing the series of transitions to the clock, with the 

knowledge that there has to be a transitions in the middle of every data window. 

Then a transition can be generated if there is no transition in the centre of that 

window, by reference to the transitions either side.

The results that were obtained from combining Manchester Modulation and Reed 

Solomon code with an independent Gaussian noise source are tabulated in Table 

7.15. In this simulation the bit retrieval system has been used to replace lost 

transitions from the centre of the data window. This should lead to a reduction in 

the initial bit error rate. These results have been tabulated in Table 7.15 and can be 

compared to those results given for the Reed Solomon Code with no look ahead 

and back to assist in reducing the error rate. The data retrieval results overleaf can 

be compared to the code length of 127 sub words without this method of retrieval 

in Table 7.8 above.

240



Initial Bit Error Rate ' 0.05 
Initial Subword Error Rate 0.301

Words With 0 errors ! 11
i;

Words With 1 error
Words With 2 errors
Words With 3 errors
Words With 4 errors
Words With 5 errors
Words With 6 errors
Words With 7 errors
Words With 7 errors
Words With 9 errors
Words With 10 errors
Words With 11 errors
Words With 12 errors
Words With 13 errors
Words With 14 errors

75
240

433
627
696
611
503
327

237

106

69

29

16
7

0.005 

0.0345

22317

12962

3760

742

107

11

<

0.0005 
0.003495

377347

21977

659

6

0.00005 
0.00035

3976710
23126

64

Table 7.15 Manchester Modulation and Reed Solomon coding

Table 7. 15 suggests that there is a marked improvement in the error rate for Reed 

Solomon code when it is combined with the Manchester Modulation transition 

recovery. The error rate is reduced to give a sub word error rate for the 127 word 

Reed Solomon code which is shown in Table 7.16.

Original Byte Error Rate

0.3017
0.0345
0.00345
0.00035

New Byte Error Rate

0.04382
0.00461
0.000459
0.0000458

Improvement

688%
748%
752%
764%

Table 7.16 Subword error rate with Look ahead Manchester decoding.
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As can be seen from Table7.16 the level of improvement in the Reed Solomon 

code subword error rate is nearly constant. This is unexpected s the probability of 

a double is proportional to the square of the error rate. We may then expect the 

improvement to be proportional to the error rate.

7.5 Results involving Ferreiria Codes 

7.5:1 Bitslip

In Section 6.5 the problem of bitslip in theftatiria[7.9] codes was discussed This is 

caused by theaJtAse-wftoJ correction of the loss of a double transition as the loss of a 

single transition. This leads to error propagation as the position of the received 

transitions no longer match to those at the input to the channel. This can be 

illustrated by Table 7.17 where the presence of bitslip in the recording is tabulated 

against the bit error rate.

Error Rate

0.01
0.001
0.0001
0.00001

Ferreira

Yes
No
No
No

Derivative Code

No
No
No
No

Table 7.17 Bitslip for Ferieria Integer Composite Codes

The effect of Bitslip on data recording is illustrated by Tables 7.18 and 7.19. Table 

7.19 is for the Ferreira code with a bit error rate of 0.01 it exhibits the characteristic 

effects of a bitslip error, an average of 50% error rate for the bitslip. Table 7.19 is for
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the Ferreira code with a bit error rate of 0.001 it exhibits none of the characteristic 

effects of a bitslip error.

So to conclude, bitslip errors occur in Ferreiria codes at comparatively high Error 

Rates which will not occur in real data recording equipment. In these cases the 

Error rates range from 10*5 to 10'10 which implies that the probability of a bitslip 

error in an independent noise channel ranges from 10'10 to 10'20, so the probablity 

of Bitslip error in a Noise channel is neglible. It is not however possibile to draw 

the same conclusions about correlated noise and channels with prevelant 

Clockloss error mechanisms.

One of the possible explanations for the presence of such high bitslip is that the 

code used was a fixed pulse code not a fixed length code. These codes have a fixed 

number of transitions rather than a fixed length of modulation code to represent 

the data. However, it is possible that bitslip may be inherent in Ferrieria codes due 

to the method of error detection employed by the code.
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errors
errors
errors
errors

14-FEB-1992

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
09

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s

:05:

247355
645

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

41.96

Table 7-1* Code no
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HL NUMbtK UF WORDS 3[S 24800
ai number of transmited errors
iber
nber
nber
nber
nber
nber
nber
nber
nber
nber
nber
nber
nber
nber
nber
nber
nber
nber
nber
fiber
nber
nber
iber
nber
iber
iber
iber
iber
nber
nber
pber
liber

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
Of
of
of
of
of
of
of
of
of
of

data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data

DAMYLES

streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams
streams

wi
wi
wi
wi
wi
wi
wi
wi
wi
wi
wi
wi
wi
wi
wi
wi
wi

th
th
th
th
th
th
th
th
th
th
th
th
th
th
th
th
th

with
wi
wi
wi
wi
wi
wi
wi
wi
wi
wi

th
th
th
th
th
th
th
th
th
th

with
wi th
with
wi th

job terminated at

2491151
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors
errors

l-NOV-1991

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
h

15

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s

:05

25
0
3
0
0
0
0
0
0
0
1
1
5
6

22
52

122
193
403
664
1057
1419
1961
2356
2682
2736
2653
2443
1934
1509
1042
679

05.26

Talk Ferret Code
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Chapter ft

Conclusions and further work

This thesis presents the theoretical results for the effect of Modulation and Error 

Correcting Codes in combating Non-Clockloss Errors. These results are supported 

by computer simulation. However as has been stated in the introduction only 

non-operational values were used for the robability of . rror. This 

was due to the restrictions on the amount of computing time allowable for each 

programme. However these results confirm theoretical predictions and suggest 

trends at operational levels of error rate.

Noise from a bandwidth limited channel such as those which occur in digital 

magnetic recording is correlated pulse-to-pulse, although this has little effect 

upon the error statistics when compared to the uncorrelated case. It has been 

shown that ISI is independent from pulse to pulse in magnetic recording. These 

results confirm the widespread assumption that both Noise and ISI and hence all 

non clockloss errors are independent pulse to pulse.

The channel models considered show that the Asymmetric Channel (ASC) 

.dominates. An appropriate strategy for pulse error reconstruction was 

developed for Manchester Modulation code.

Modulation coding strategies considered both simple, direct and block codes, as 

well as those with fixed lengths and a variable number of pulses and those with 

variable lengths and a fixed number of pulses. The phenomenon of bitslip was 

found to be more prevalent in fixed pulse codes than in fixed rate codes.
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In particular the Ferrieria codes, were shown to be vulnerable to bitslip. A new 

coding scheme for fixed pulse runlength based combined error correcting and 

modulation codes with more stringent runlength constraints was developed to 

give an improved performance against bitslip errors.

Error control coding was investigated: both linear codes (B.C.H.), in which the 

codevector consists of a series of individual bits, and non-linear codes (Reed 

Solomon), where the codevectors are divided into a series of distinct 

subwords, $ie performance of these codes were measured against noise and ISI. 

The results from which form the main part of Chapter 7.

Throughout the work a symmetrical replay pulse was assumed which is 

equivalent to assuming that there is no perpendicular recording component. It 

was shown that this assumption resulted in an underestimation of the level of ISI 

induced bitshift. This was because the symmetrical model resulted in cancellation 

of ISI components which would not occur in more accurate pulse shape models.

The results of chapter 6 and 7 suggest areas of interest for further work: in 

particular there are three areas which may be developed:
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1) The Power Spectral Density of Modulation codes.

Signal-to-noise considerations dictate that the power density spectrum of the 

modulated codevector matches the frequency response of r the recording 

channel.

Currently there exist models for the Autocorrelation function and hence the 

power spectral density of direct modulation and shorter block codes. However 

preliminary work suggests that it is possible to develop the methods to find the 

Power Spectral Density of longer block codes such as EFM and 8/10 by appropriate 

Matrix Manipulation.

2) Combined Error Correction and Modulation codes.

These have been designed to combine the runlength constraints of Modulation 

codes with the Hamming distance properties of the Error Control codes. Their 

purpose is to develop a reliable method of storing data at high densities. As with 

conventional Error Correcting Codes, combined codes should be matched to the 

error channel. Hence for combined codes for digital recording the ASC should be 

fully exploited.

To assess combined codes the data rates of perfect Error Control codes together 

with the limits on the Information Rates of fixed pulse Modulation codes will be 

required. Further, it will be necessary to assess the Power Spectral Densities of any 

new codes. Finally the resistance of these codes to error propagation by either

dropouts jitter or bitslip should be investigated.
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3) Bitslip Analysis

Bitslip is a major source of error in digital data recording. Its effect is similar to that 

of a major dropout as it corrupts every piece of data to the end of the block under 

examination. We may conjecture that the problem of bitslip is very sensitive to 

the choice of channel code used. This is because > bitslip is directly related to 

the ability of the Modulation code to maintain good clocking or synchronisation 

which is generated from the Modulation code. Work is necessary to develop codes 

with specific bitslip resistant properties.
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