3,221 research outputs found

    Low cost angular displacement sensors for biomechanical applications - a review

    Get PDF
    In the general scientific quest for increased quality of life a natural ambition is to know more about human body kinematics. Varied knowledge can be extracted from sensors placed on human body and through associated biomechanical parameter evaluation the causal connection between different biomechanical parameters and medical conditions can be inferred. From a biomechanical point of view, one of the most important parameters within the human body is the amplitude of angular movements of joints. Although many angular sensors are used in industry, particular characteristics such as small size, flexibility and appropriate attachment methods must be taken into consideration when estimating the amplitude of movement of human joints. This paper reviews the existing low cost easy to manipulate angular sensors listed in the scientific literature, which currently are or could be used in rehabilitation engineering, physiotherapy or biomechanical evaluations in sport. The review is carried out in terms of a classification based on the sensors’ working principles and includes resistive, capacitive, magnetic and piezoresistive sensors

    Perkaitan di antara status sosioekonomi keluarga dengan Pencapaian akademik pelajar aliran teknikal

    Get PDF
    Selain daripada mengendalikan fungsi pendidikan, sekolah juga diberikan peranan bagi menyediakan tenaga mahir untuk memenuhi keperluan ekonomi negara. Sekolah aliran teknikal dilihat sebagai satu institusi khusus yang memainkan peranan tersebut. Namun begitu, terdapat pelbagai faktor yang boleh mempengaruhi pencapaian pelajar aliran teknikal ini. Tahap sosioekonomi keluarga telah dikenalpasti antara faktor yang boleh mempengaruhi pencapaian pelajar. Kajian ini dilakukan untuk mendapatkan perkaitan di antara tahap sosioekonomi keluarga seperti tahap pendidikan bapa, jumlah pendapatan dan saiz keluarga terhadap pencapaian akademik pelajar. Sampel kajian ini ialah pelajar-pelajar tingkatan 4 dan 5 yang menetap di asrama Sekolah Menengah Teknik Kuala Terengganu. Pelajar ini dipilih kerana mereka mendapat kemudahan dan persekitaran pembelajaran yang sama. Seramai 80 orang pelajar dalam jurusan teknikal dipilih secara rawak mudah. Keputusan kajian mendapati bahawa hanya saiz keluarga mempunyai korelasi yang tinggi berbanding tahap pencapaian akademik bapa dan jumlah pendapatan keluarga. Ini menunjukkan bahawa faktor saiz keluarga memberikan impak secara langsung kepada pencapaian pelajar walaupun mereka menetap di asrama yang menyediakan suasana dan kemudahan yang sama

    Design and evaluation of a low-cost instrumented glove for hand function assessment

    Get PDF
    BACKGROUND: The evaluation of hand function impairment following a neurological disorder (stroke and cervical spinal cord injury) requires sensitive, reliable and clinically meaningful assessment tools. Clinical performance measures of hand function mainly focus on the accomplishment of activities of daily living (ADL), typically rather complex tasks assessed by a gross ordinal rating; while the motor performance (i.e. kinematics) is less detailed. The goal of this study was to develop a low-cost instrumented glove to capture details in grasping, feasible for the assessment of hand function in clinical practice and rehabilitation settings. METHODS: Different sensor types were tested for output signal stability over time by measuring the signal drift of their step responses. A system that converted sensor output voltages into angles based on pre-measured curves was implemented. Furthermore, the voltage supply of each sensor signal conditioning circuit was increased to enhance the sensor resolution. The repeatability of finger bending trajectories, recorded during the performance of three ADL-based tasks, was established using the intraclass correlation coefficient (ICC). Moreover, the accuracy of the glove was evaluated by determining the agreement between angles measured with the embedded sensors and angles measured by traditional goniometry. In addition, the feasibility of the glove was tested in four patients with a pathological hand function caused by a cervical spinal cord injury (cSCI). RESULTS: A sensor type that displayed a stable output signal over time was identified, and a high sensor resolution of 0.5° was obtained. The evaluation of the glove's reliability yielded high ICC values (0.84 to 0.92) with an accuracy error of about ± 5°. Feasibility testing revealed that the glove was sensitive to distinguish different levels of hand function impairment in cSCI patients. CONCLUSIONS: The device satisfied the desired system requirements in terms of low cost, stable sensor signal over time, full finger-flexion range of motion tracking and capability to monitor all three joints of one finger. The developed rapid calibration system for easy use (high feasibility) and excellent psychometric properties (i.e. reliability and validity) qualify the device for the assessment of hand function in clinical practice and rehabilitation settings

    Development of Artificial Hand Gripper by using Microcontroller

    Get PDF
    This paper focuses on the development of a measurement hand gripper to help handicap patient due to accident and diseases. Basically, when the patient needed to perform exercises they must get an appointment with a doctor. Normally this will take few weeks or months. This is because the rehabilitation devices at Physiotherapy Department in hospital are very limited. From this problem, we suggest to develop a reasonably cheap home-based rehabilitation measurement devices which can perform the task of assisting paralyze patient at home. The basic movement of the patient was limited from a wrist, elbow and shoulder. The development of this project involves the designing of a sensors equipped Smart Glove and a measurement hand gripper device. The hand gripper device will move based on a human operator’s finger movement using the Smart Glove. The purpose of our project is to design and develop a master-slave system robotic hand which can be a substitution for the paralyzed hand in therapy to aid in recovery process of patients upper limb function. The project involves an Arduino microcontroller for the instrumentation, communication and controlling applications. A series of flex sensors are fitted in a master glove to get readings from the movement of human fingers. Microcontroller will further use this information to control multiple servos that controls the movement of slave robotic hand

    A robot hand testbed designed for enhancing embodiment and functional neurorehabilitation of body schema in subjects with upper limb impairment or loss.

    Get PDF
    Many upper limb amputees experience an incessant, post-amputation "phantom limb pain" and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech "rubber hand" illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the "BairClaw" presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger-object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced cognitive burden

    Design and Development of a Multi-sensor Monitoring Device for Arm Rehabilitation

    Get PDF
    A continuous monitoring process for arm rehabilitation activities are important to provide information of rehabilitation results to be analyzed by therapist. The purpose of monitoring is to help them to improve rehabilitation process. Moreover, a portable and simple home-based rehabilitation device can help patients to improve daily rehabilitation activity. Some previous studies regarding home-based rehabilitation process have shown improvement in promoting human movement recovery. But existing rehabilitation devices are expensive and need to be supervised by physical therapist. Some devices are not so efficient to be used at home due to large size and complex system. In this current work, flex sensor, force sensitive resistors and accelerometer were assessed in order to be implemented as a sensory unit for a portable arm rehabilitation device. Analog signal from the sensors will be conveyed to an Arduino microcontroller for data processing and logging. The results of rehabilitation activity can be used for further monitoring and analysis. Experiments were carried out to determine the feasibility of each sensor towards the design of the new rehabilitation monitoring device. The experiments demonstrate the capabilities of the sensors to produce extended information regarding arm movement activity which can be implemented in the design. A liquid crystal display (LCD) monitor will show to the user the achievement of their exercise activity on daily basis

    Wrist and hand rehabilitation software platform based on leap motion controller

    Get PDF
    A software platform based on Leap Motion Controller (LMC) movements’ detection was developed. It allows measurements of clinically proved effective hand and finger exercises. The developed software allows representation of amplitude of each different movement, time interval for each movement, frequency of different movements, asymmetry of bilateral movements, standard deviation of signal amplitude, PoincarĂ© plots. A serious game Collect Color Cube, was developed using Unity, C# scrips, and signals from LMC related to movements of the user’s hands and fingers.info:eu-repo/semantics/publishedVersio

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions
    • 

    corecore