197 research outputs found

    Message dissemination scheduling for multiple cooperative drivings

    Get PDF
    With the advances of control and vehicular communication technologies, a group of connected and autonomous (CA) vehicles can drive cooperatively to form a so-called cooperative driving pattern, which has been verified to significantly improve road safety, traffic efficiency and the environmental sustainability. A more general scenario that various types of cooperative driving, such as vehicle platooning and traffic monitoring, coexist on roads will appear soon. To support such multiple cooperative drivings, it is critical to design an efficient scheduling algorithm for periodical message dissemination, i.e. beacon, in a shared communication channel, which has not been fully addressed before. In this paper, we consider multiple cooperative drivings in a bidirectional road, and propose both the decentralized and the RSU-assisted centralized beacon scheduling algorithms which aim at guaranteeing reliable delivery of beacon messages for cooperative drivings as well as maximizing the channel utilization. Numerical results confirm the effectiveness of the proposed algorithms

    A Survey on Fault Tolerance Techniques for Wireless Vehicular Networks

    Get PDF
    Future intelligent transportation systems (ITS) hold the promise of supporting the operation of safety-critical applications, such as cooperative self-driving cars. For that purpose, the communications among vehicles and with the road-side infrastructure will need to fulfil the strict real-time guarantees and challenging dependability requirements. These safety requisites are particularly important in wireless vehicular networks, where road traffic presents several threats to human life. This paper presents a systematic survey on fault tolerance techniques in the area of vehicular communications. The work provides a literature review of publications in journals and conferences proceedings, available through a set of different search databases (IEEE Xplore, Web of Science, Scopus and ScienceDirect). A systematic method, based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) Statement was conducted in order to identify the relevant papers for this survey. After that, the selected articles were analysed and categorised according to the type of redundancy, corresponding to three main groups (temporal, spatial and information redundancy). Finally, a comparison of the core features among the different solutions is presented, together with a brief discussion regarding the main drawbacks of the existing solutions, as well as the necessary steps to provide an integrated fault-tolerant approach to the future vehicular communications systems

    Survey on decentralized congestion control methods for vehicular communication

    Get PDF
    Vehicular communications have grown in interest over the years and are nowadays recognized as a pillar for the Intelligent Transportation Systems (ITSs) in order to ensure an efficient management of the road traffic and to achieve a reduction in the number of traffic accidents. To support the safety applications, both the ETSI ITS-G5 and IEEE 1609 standard families require each vehicle to deliver periodic awareness messages throughout the neighborhood. As the vehicles density grows, the scenario dynamics may require a high message exchange that can easily lead to a radio channel congestion issue and then to a degradation on safety critical services. ETSI has defined a Decentralized Congestion Control (DCC) mechanism to mitigate the channel congestion acting on the transmission parameters (i.e., message rate, transmit power and data-rate) with performances that vary according to the specific algorithm. In this paper, a review of the DCC standardization activities is proposed as well as an analysis of the existing methods and algorithms for the congestion mitigation. Also, some applied machine learning techniques for DCC are addressed

    A General and Practical Framework for Realization of SDN-based Vehicular Networks

    Get PDF
    With the recent developments of communication technologies surrounding vehicles, we witness the simultaneous availability of multiple onboard communication interfaces on vehicles. While most of the current interfaces already include Bluetooth, WiFi, and LTE, they are augmented further by IEEE 802.11p and the 5G interfaces, which will serve for safety, maintenance, and infotainment applications. However, dynamic management of interfaces depending on application needs becomes a significant issue that can be best addressed by Software Defined Networking (SDN) capabilities. While SDN-based vehicular networks have been promoted previously, none of these works deal with practical challenges. In this thesis, we propose and develop a practical framework that realizes SDN-based vehicular networks for a wide range of applications. Through this framework, we demonstrate a truck platooning application as a use case in which the two truck platoons strive to merge and establish connectivity. The route from source vehicle (i.e., Platoon Leader A) to destination (i.e., Platoon Leader B) is computed with the help of the SDN Controller to transmit the Beacon Safety Messages through Road Side Units (RSUs) at the MAC layer without relying on IP for proper platooning operations. To implement this within ns-3, modifications to the OFSWITCH13 module as well as the WAVE module were made in order to enable their interoperability. The results show the efficiency of the SDN-based approach compared to the traditional routing approaches

    A survey on vehicular communication for cooperative truck platooning application

    Get PDF
    Platooning is an application where a group of vehicles move one after each other in close proximity, acting jointly as a single physical system. The scope of platooning is to improve safety, reduce fuel consumption, and increase road use efficiency. Even if conceived several decades ago as a concept, based on the new progress in automation and vehicular networking platooning has attracted particular attention in the latest years and is expected to become of common implementation in the next future, at least for trucks.The platoon system is the result of a combination of multiple disciplines, from transportation, to automation, to electronics, to telecommunications. In this survey, we consider the platooning, and more specifically the platooning of trucks, from the point of view of wireless communications. Wireless communications are indeed a key element, since they allow the information to propagate within the convoy with an almost negligible delay and really making all vehicles acting as one. Scope of this paper is to present a comprehensive survey on connected vehicles for the platooning application, starting with an overview of the projects that are driving the development of this technology, followed by a brief overview of the current and upcoming vehicular networking architecture and standards, by a review of the main open issues related to wireless communications applied to platooning, and a discussion of security threats and privacy concerns. The survey will conclude with a discussion of the main areas that we consider still open and that can drive future research directions.(c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Cybersecurity issues in software architectures for innovative services

    Get PDF
    The recent advances in data center development have been at the basis of the widespread success of the cloud computing paradigm, which is at the basis of models for software based applications and services, which is the "Everything as a Service" (XaaS) model. According to the XaaS model, service of any kind are deployed on demand as cloud based applications, with a great degree of flexibility and a limited need for investments in dedicated hardware and or software components. This approach opens up a lot of opportunities, for instance providing access to complex and widely distributed applications, whose cost and complexity represented in the past a significant entry barrier, also to small or emerging businesses. Unfortunately, networking is now embedded in every service and application, raising several cybersecurity issues related to corruption and leakage of data, unauthorized access, etc. However, new service-oriented architectures are emerging in this context, the so-called services enabler architecture. The aim of these architectures is not only to expose and give the resources to these types of services, but it is also to validate them. The validation includes numerous aspects, from the legal to the infrastructural ones e.g., but above all the cybersecurity threats. A solid threat analysis of the aforementioned architecture is therefore necessary, and this is the main goal of this thesis. This work investigate the security threats of the emerging service enabler architectures, providing proof of concepts for these issues and the solutions too, based on several use-cases implemented in real world scenarios

    T-VNets: a novel Trust architecture for Vehicular Networks using the standardized messaging services of ETSI ITS

    Full text link
    In this paper we propose a novel trust establishment architecture fully compliant with the ETSI ITS standard which takes advantage of the periodically exchanged beacons (i.e. CAM) and event triggered messages (i.e. DENM). Our solution, called T-VNets, allows estimating the traffic density, the trust among entities, as well as the dishonest nodes distribution within the network. In addition, by combining different trust metrics such as direct, indirect, event-based and RSU-based trust, T-VNets is able to eliminate dishonest nodes from all network operations while selecting the best paths to deliver legal data messages by taking advantage of the link duration concept. Since our solution is able to adapt to environments with or without roadside units (RSUs), it can perform adequately both in urban and highway scenarios. Simulation results evidence that our proposal is more efficient than other existing solutions, being able to sustain performance levels even in worst-case scenarios. © 2016 Published by Elsevier B.VThis work was partially supported by both the Ministerio de Economia y Competitividad, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant TEC2014-52690-R, and the Ministere de l'enseignement superieur et de la recherche scientifique, Programme National Exceptionnel P.N.E 2015/2016, Algeria.Kerrache, CA.; Lagraa, N.; Tavares De Araujo Cesariny Calafate, CM.; Cano Escribá, JC.; Manzoni, P. (2016). T-VNets: a novel Trust architecture for Vehicular Networks using the standardized messaging services of ETSI ITS. Computer Communications. 93:68-83. https://doi.org/10.1016/j.comcom.2016.05.013S68839

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan
    • …
    corecore