9,320 research outputs found

    Using empirical studies to mitigate symbol overload in iStar extensions

    Get PDF
    UID/CEC/04516/2019Modelling languages are frequently extended to include new constructs to be used together with the original syntax. New constructs may be proposed by adding textual information, such as UML stereotypes, or by creating new graphical representations. Thus, these new symbols need to be expressive and proposed in a careful way to increase the extension’s adoption. A method to create symbols for the original constructs of a modelling language was proposed and has been used to create the symbols when a new modelling language is designed. We argue this method can be used to recommend new symbols for the extension’s constructs. However, it is necessary to make some adjustments since the new symbols will be used with the existing constructs of the modelling language original syntax. In this paper, we analyse the usage of this adapted method to propose symbols to mitigate the occurrence of overloaded symbols in the existing iStar extensions. We analysed the existing iStar extensions in an SLR and identified the occurrence of symbol overload among the existing constructs. We identified a set of fifteen overloaded symbols in existing iStar extensions. We used these concepts with symbol overload in a multi-stage experiment that involved users in the visual notation design process. The study involved 262 participants, and its results revealed that most of the new graphical representations were better than those proposed by the extensions, with regard to semantic transparency. Thus, the new representations can be used to mitigate this kind of conflict in iStar extensions. Our results suggest that next extension efforts should consider user-generated notation design techniques in order to increase the semantic transparency.authorsversionpublishe

    The Effect of Security Education and Expertise on Security Assessments: the Case of Software Vulnerabilities

    Get PDF
    In spite of the growing importance of software security and the industry demand for more cyber security expertise in the workforce, the effect of security education and experience on the ability to assess complex software security problems has only been recently investigated. As proxy for the full range of software security skills, we considered the problem of assessing the severity of software vulnerabilities by means of a structured analysis methodology widely used in industry (i.e. the Common Vulnerability Scoring System (\CVSS) v3), and designed a study to compare how accurately individuals with background in information technology but different professional experience and education in cyber security are able to assess the severity of software vulnerabilities. Our results provide some structural insights into the complex relationship between education or experience of assessors and the quality of their assessments. In particular we find that individual characteristics matter more than professional experience or formal education; apparently it is the \emph{combination} of skills that one owns (including the actual knowledge of the system under study), rather than the specialization or the years of experience, to influence more the assessment quality. Similarly, we find that the overall advantage given by professional expertise significantly depends on the composition of the individual security skills as well as on the available information.Comment: Presented at the Workshop on the Economics of Information Security (WEIS 2018), Innsbruck, Austria, June 201

    Identifying and addressing adaptability and information system requirements for tactical management

    Get PDF
    corecore