9 research outputs found

    Preliminary Study on the Use of Digital Surface Models for Estimating Vegetation Cover Density in Mountainous Area

    Get PDF
    Digital surface model (DSM) has been widely available for mapping and was also sometimes used for mapping vegetation height. The authors conducted a preliminary study to evaluate the potential use of DSMs derived from ASTER, ALOS, and SRTM for estimating vegetation cover density in mountainous area.  This study used NDVI and SAVI vegetation indices, in addition to forest cover density (FCD) model as references for evaluation.  A DSM-based volume index (Volindex) concept is introduced, which is the product of the canopy height model (CHM) and the pixel area. CHM was derived from the value difference between the DSM and the reference DEM. The Volindex model was then compared with the NDVI, SAVI and FCD.  We found that all DSM-based Volindex models are not accurate enough to represent the vegetation cover density, although the ALOS Palsar-based Volindex could reach 41.53% accuracy and was finally used to predict the vegetation cover density

    Examination of the Potential of Terrestrial Laser Scanning and Structure-from-Motion Photogrammetry for Rapid Nondestructive Field Measurement of Grass Biomass

    Get PDF
    Above ground biomass (AGB) is a parameter commonly used for assessment of grassland systems. Destructive AGB measurements, although accurate, are time consuming and are not easily undertaken on a repeat basis or over large areas. Structure-from-Motion (SfM) photogrammetry and Terrestrial Laser Scanning (TLS) are two technologies that have the potential to yield precise 3D structural measurements of vegetation quite rapidly. Recent advances have led to the successful application of TLS and SfM in woody biomass estimation, but application in natural grassland systems remains largely untested. The potential of these techniques for AGB estimation is examined considering 11 grass plots with a range of biomass in South Dakota, USA. Volume metrics extracted from the TLS and SfM 3D point clouds, and also conventional disc pasture meter settling heights, were compared to destructively harvested AGB total (grass and litter) and AGB grass plot measurements. Although the disc pasture meter was the most rapid method, it was less effective in AGB estimation (AGBgrass r2 = 0.42, AGBtotal r2 = 0.32) than the TLS (AGBgrass r2 = 0.46, AGBtotal r2 = 0.57) or SfM (AGBgrass r2 = 0.54, AGBtotal r2 = 0.72) which both demonstrated their utility for rapid AGB estimation of grass systems

    Examination of the Potential of Terrestrial Laser Scanning and Structure-from-Motion Photogrammetry for Rapid Nondestructive Field Measurement of Grass Biomass

    Get PDF
    Above ground biomass (AGB) is a parameter commonly used for assessment of grassland systems. Destructive AGB measurements, although accurate, are time consuming and are not easily undertaken on a repeat basis or over large areas. Structure-from-Motion (SfM) photogrammetry and Terrestrial Laser Scanning (TLS) are two technologies that have the potential to yield precise 3D structural measurements of vegetation quite rapidly. Recent advances have led to the successful application of TLS and SfM in woody biomass estimation, but application in natural grassland systems remains largely untested. The potential of these techniques for AGB estimation is examined considering 11 grass plots with a range of biomass in South Dakota, USA. Volume metrics extracted from the TLS and SfM 3D point clouds, and also conventional disc pasture meter settling heights, were compared to destructively harvested AGB total (grass and litter) and AGB grass plot measurements. Although the disc pasture meter was the most rapid method, it was less effective in AGB estimation (AGBgrass r 2 = 0.42, AGBtotal r 2 = 0.32) than the TLS (AGBgrass r 2 = 0.46, AGBtotal r 2 = 0.57) or SfM (AGBgrass r 2 = 0.54, AGBtotal r 2 = 0.72) which both demonstrated their utility for rapid AGB estimation of grass systems

    An analysis of multispectral unmanned aerial systems for saltmarsh foreshore land cover classification and digital elevation model generation

    Get PDF
    1 online resource (viii, 84 p.) : illustrations (chiefly colored)Includes abstract in English and French.Includes appendix.Includes bibliographical references (p. 60-66).Recent advances in Unmanned Aerial Systems (UAS), and increased affordability, have proliferated their use in the scientific community. Despite these innovations, UAS attempts to map a site’s true elevation using Structure from Motion Multi-View Stereo (SFM-MVS) software are obstructed by vegetative canopies, resulting in the production of a Digital Surface Model (DSM), rather than the desired Digital Elevation Model (DEM). This project seeks to account for the varying heights of vegetation communities within the Masstown East saltmarsh, producing DEMs for mudflat/saltmarsh landscapes with an accuracy comparable to that the DSM. DEM generation has been completed in two separate stages. The first stage consists of land cover classifications using UAS derived, radiometrically corrected data. Respective land cover classifications are assessed using confusion matrices. Secondly, surveyed canopy heights and function derived heights are subtracted from their respective classes, generating the DEMs. DEM validation has been performed by comparing topographic survey point values to those modeled, using the Root Square Mean Error (RMSE) measure. The project then compares the various parameters implemented for land cover classifications, and DEM accuracy. DEM generation methods were then coupled to produce a final DEM with a RMSE of 6cm. The results suggest consumer grade Multispectral UAS can produce DEMs with accuracies comparable to the initial DSMs generated, and thus merit further studies investigating their scientific capacities

    Signals in the Soil: Subsurface Sensing

    Get PDF
    In this chapter, novel subsurface soil sensing approaches are presented for monitoring and real-time decision support system applications. The methods, materials, and operational feasibility aspects of soil sensors are explored. The soil sensing techniques covered in this chapter include aerial sensing, in-situ, proximal sensing, and remote sensing. The underlying mechanism used for sensing is also examined as well. The sensor selection and calibration techniques are described in detail. The chapter concludes with discussion of soil sensing challenges

    Evaluation of Orthomosics and Digital Surface Models Derived from Aerial Imagery for Crop Type Mapping

    No full text
    Orthomosics and digital surface models (DSM) derived from aerial imagery, acquired by consumer-grade cameras, have the potential for crop type mapping. In this study, a novel method was proposed for extracting the crop height from DSM and for evaluating the orthomosics and crop height for the identification of crop types (mainly corn, cotton, and sorghum). The crop height was extracted by subtracting the DSM derived during the crop growing season from that derived after the crops were harvested. Then, the crops were identified from four-band aerial imagery (blue, green, red, and near-infrared) and the crop height, using an object-based classification method and a maximum likelihood method. The results showed that the extracted crop height had a very high linear correlation with the field measured crop height, with an R-squared value of 0.98. For the object-based method, crops could be identified from the four-band airborne imagery and crop height, with an overall accuracy of 97.50% and a kappa coefficient of 0.95, which were 2.52% and 0.04 higher than those without crop height, respectively. When considering the maximum likelihood, crops could be mapped from the four-band airborne imagery and crop height with an overall accuracy of 78.52% and a kappa coefficient of 0.67, which were 2.63% and 0.04 higher than those without crop height, respectively

    Intra-field Nitrogen Estimation for Wheat and Corn using Unmanned Aerial Vehicle-based and Satellite Multispectral Imagery, Plant Biophysical Variables, Field Properties, and Machine Learning Methods

    Get PDF
    Management of nitrogen (N) fertilizers is an important agricultural practice and field of research to increase productivity, minimize environmental impacts and the cost of production. To apply N fertilizer at the right rate, time, and place depends on the crop type, desired yield, and field conditions. The objective of this study is to use Unmanned Aerial Vehicle (UAV) multispectral imagery, PlanetScope satellite imagery, vegetation indices (VI), crop height, leaf area index (LAI), field topographic metrics, and soil properties to predict canopy nitrogen weight (g/m2) of corn and wheat fields in southwestern Ontario, Canada. Random Forests (RF) and Support Vector Regression (SVR) machine learning models were tested with combinations of variable datasets and evaluated for accuracy of canopy nitrogen weight prediction. The results demonstrate that UAV and satellite-based prediction models including spectral variables, crop biophysical parameters, and field conditions can provide accurate and useful information for fertilizer management
    corecore