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Intra-field Nitrogen Estimation for Wheat and Corn using 

Unmanned Aerial Vehicle-based and Satellite 

Multispectral Imagery, Plant Biophysical Variables, Field 

Properties and Machine Learning Methods 

 

Abstract 

 

Management of nitrogen (N) fertilizers is an important agricultural practice and field of 

research to increase productivity, minimize environmental impacts and the cost of production. 

To apply N fertilizer at the right rate, time, and place depends on the crop type, desired yield, 

and field conditions. The objective of this study is to use Unmanned Aerial Vehicle (UAV) 

multispectral imagery, PlanetScope satellite imagery, vegetation indices (VI), crop height, leaf 

area index (LAI), field topographic metrics, and soil properties to predict canopy nitrogen 

weight (g/m2) of corn and wheat fields in southwestern Ontario, Canada. Random Forests (RF) 

and Support Vector Regression (SVR) machine learning models were tested with combinations 

of variable datasets and evaluated for accuracy of canopy nitrogen weight prediction. The 

results demonstrate that UAV and satellite-based prediction models including spectral 

variables, crop biophysical parameters, and field conditions can provide accurate and useful 

information for fertilizer management. 

Keywords 

Unmanned Aerial Vehicle (UAV), satellite imagery, precision agriculture, nitrogen 

management, vegetation indices, machine learning, Random Forests, Support Vector 

Machine, corn, wheat 
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Summary for Lay Audience 

The practice of agriculture first began thousands of years ago, when humans began building 

permanent settlements, growing their own crops, and raising livestock for reliable survival 

resources. Today, agriculture continues to be one of the most important industries around the 

world providing food and materials for over 7.7 billion people. As the world population is 

projected to continue growing, for agriculture to meet increasing demands requires sustainable 

production, adaptability to changing climates, and better methods of farming. Advances in 

technology have opened the way for precision agriculture, a management technique that 

gathers many types of data about a crop to improve resource use (e.g., water, fertilizer, 

pesticides), quality of production, profitability, and sustainability.  

Remote sensing is the process of obtaining information about an object or phenomenon at a 

distance. In precision agriculture, remote sensing is especially useful without the need to make 

physical contact with plants to gather valuable crop data for analysis. With our eyes, we see 

colors such as blue, green, and red, through the way light is reflected or emitted from a surface. 

With special cameras designed for certain wavelengths of light, we can see beyond the visible 

spectrum and understand more about a plant’s characteristics (i.e., healthy plants may reflect 

more infrared light than an unhealthy plant, but we cannot see that with our eyes). This thesis 

studied how we may estimate nitrogen levels in corn and wheat plants using both satellite and 

unmanned aerial vehicle (UAV; a.k.a. drone) remotely sensed data.  

The growth of a plant depends on many different factors including light, water, nutrients, and 

more. Using machine learning in this thesis, we built computer models from gathered data of 

a crop’s response to light, biophysical characteristics, and environmental conditions to improve 

nitrogen level estimation of crop fields. Nitrogen prediction maps of a field can be created from 

the best models showing areas of a field that need certain amounts of fertilizers. Following the 

map, a farmer can practice sustainable precision agriculture by applying resources at the right 

rate, time, and place for a bountiful crop.  
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Glossary 

Ensemble learning: a machine learning method using multiple algorithms to improve 

predictive performance of models 

Machine learning: the study and use of computer systems that can improve outcome 

predictions automatically by analyzing patterns in data with algorithms; a type of artificial 

intelligence. 

Orthomosaic: a detailed, accurate photo representation of an area made by combining many 

smaller images mosaicked together   

Precision agriculture: Management strategy that gathers, processes, and analyzes temporal, 

spatial and individual data and combines it with other information to support management 

decisions according to estimated variability for improved resource use efficiency, 

productivity, quality, profitability, and sustainability of agricultural production. 

Pix4D: a suite of photogrammetry software designed for drone mapping applications 

including orthomosaicking images, generating 3D models, and more.  

R programming language: a free programming language and software environment for 

statistical computing, graphics, and analysis. 

RStudio: an Integrated Development Environment for R programming language; designed 

with a user-friendly interface for data cleaning, analysis, and visualization. 

Random Forests (RF): an ensemble learning method for classification and regression using 

a multitude of decision trees to determine the most common or average of outputs. 

Real-Time Kinematic (RTK) positioning: highly accurate spatial positioning system, up to 

centimeter-level, using global navigation satellite systems for real-time location correction. 

Commonly used application includes unmanned aerial vehicle navigation. 

System for Automated Geoscientific Analyses (SAGA): free, geographic information 

system open-source software for spatial data processing and analysis. 
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Support Vector Machines / Regression (SVM / SVR): a supervised machine learning 

method for classification and regression using decision boundaries [hyperplanes] to classify 

or predict data points. 

Unmanned Aerial Vehicle (UAV): an aircraft without any human pilot, crew, or passengers 

on board; part of an unmanned aircraft system with a ground-based controller and 

communication system. 
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Chapter 1  

1 Introduction 

Agriculture is the science of cultivating land, crops, and livestock for food and materials. 

Globally, agriculture is crucial to food security, economic development, and social 

structures (United Nations, 2015). In Canada, agriculture contributes over $110 billion 

annually to the country’s gross domestic product (GDP) (Agriculture and Agri-Food 

Canada, 2018).  Over 2.3 million Canadians are employed in the industry, and Canada is 

the 5th largest agricultural exporter in the world. As the world population is projected to 

continue growing, for agriculture to meet increasing demands requires sustainable 

production, adaptability to changing climates, and better methods of farming. During the 

2021 growing season, Western Canada experienced much drier conditions and higher-than-

average temperatures, leading to very low soil moisture (Statistics Canada, 2021). In the 

Crop Condition Assessment Program (CCAP), results indicated many provinces had crops 

at peak health as much as four weeks earlier than normal before declining quickly with 

lack of moisture and high heat. Since Statistics Canada began monitoring crop conditions 

in 1987 with satellite imagery, these conditions have not been seen before. Canada’s yield 

projections for canola, soybeans, barley, and oats are down substantially, with the greatest 

decrease in wheat production at 34.8% lower compared to the previous year (Statistics 

Canada, 2021). Of principal crops only corn yield is projected to increase slightly by 0.8% 

as Ontario, the major grain corn-producing province, had favorable growing conditions in 

2021. 

Research into agriculture practices have highlighted the severe environmental impact they 

can have; excess fertilizers contaminating water, greenhouse gas (GHG) emissions, 

insecticides, fungicides, and herbicides disrupting ecosystems (Montzka, Dlugokencky, 

Butler, 2011, Balfoutis et al., 2017). Plant genetics, land, water, and soil are key factors to 

crop production, and protecting these resources are vital. The farming management 

technique of precision agriculture can meet these needs as it aims to optimize inputs such 

as fertilizer, water, and pesticides to improve quality and yield of crops, reduce costs to 

farmers, and minimize negative environmental impacts (Das et al., 2015).    
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1.1 Background 

1.1.1 Precision Agriculture & Nitrogen 

From the International Society of Precision Agriculture (2019): 

Precision agriculture is a management strategy that gathers, processes, and analyzes 

temporal, spatial and individual data and combines it with other information to 

support management decisions according to estimated variability for improved 

resource use efficiency, productivity, quality, profitability, and sustainability of 

agricultural production. 

Within the field of precision agriculture, the efficient management of nitrogen fertilizers is 

one of the main goals (Good et al., 2004). Nitrogen is vital to plants as it is a component 

of amino acids for proteins of plant cells, enzymes, nucleic acids, chlorophyll, and more, 

allowing for plants to grow, reproduce, and absorb energy from light to perform 

photosynthesis (Marschner, 2011). As such, nitrogen content affecting above-ground plant 

tissue is an important indicator of crop health. Nitrogen is also one of the most expensive 

nutrients to supply and commercial fertilizers represent the major cost in plant production 

(Bryant et al. 2000; Statistics Canada, 2021). Out of the total fertilizers used in Canadian 

agriculture, 75% are nitrogen fertilizers including ammonia, urea, urea ammonium nitrate, 

ammonium nitrate, ammonium sulphate, monoammonium phosphate, and diammonium 

phosphate (Statistics Canada, 2021). Rates of nitrogen fertilizer application and type used 

are dependent on the crop variety, cultivar, desired yield, and nitrogen present in the soil.  

In global studies, crops absorb an estimated <50% of nitrogen fertilizer applied (Bryant et 

al. 2000). This nitrogen can be leached from the soil and contaminate surface and ground 

water leading to harmful effects on human health (Wolfe and Patz, 2002), algal blooms and 

hypoxia in coastal waters (Rabalais, 2001), and denitrification that results in greenhouse 

gas emissions (Beaulieu et al., 2010). In general, excessive nutrients can reduce crop yield 

as well (Tan & Reynolds, 2003). Nutrients that have been added beyond the critical level 

of maximum growth continues to accumulate in the plant tissue without any further yield 

increase. Commonly in grain crops such as wheat, excessive nitrogen can cause plant stems 

to elongate leading to lodging – the stems bend over making it difficult to harvest, increases 
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chance of grain moisture, disease, and often reduces yield significantly (Foulkes et al., 

2011). Crops such as corn can show little visual symptoms when above-optimal rates of 

nitrogen have been applied, which makes it costly for producers to recognize the issue 

(Marshner, 2011). Usually, nitrogen deficiency can be noted from chlorosis, the condition 

in which leaves yellow as the plant’s chlorophyll content drops (Drew & Sisworo, 1977). 

With reduced photosynthetic activity, the plant will not reach peak health and yield will be 

low. Lack of sufficient nitrogen can also affect protein content in crops including wheat. 

As wheat protein content is a major component in Canada’s wheat grading system, this can 

have great negative economic impact on farmers (Canadian Grain Commission, 2021).  

With better management of nitrogen fertilizers, not only can costs and negative 

environmental impact be minimized but yield and quality can increase. An example would 

be fertilizer application on crops based on nutrient maps, such as that of nitrogen, to aid in 

technologically controlled input by farming machines. Input of the georeferenced crop 

nitrogen information will allow for only the necessary amounts of fertilizer to be distributed 

among the varying field conditions, preventing nitrogen over application or under 

application.  

1.1.2 Remote Sensing Techniques 

Information technology is key to precision agriculture, including the use of Global 

Positioning Systems (GPS), Geographic Information Systems (GIS), sensors, satellites, 

and Unmanned Aerial Vehicles (UAV) to gather precise data of fields (Zhu et al., 2008). 

Remote sensing is the process of obtaining information of the earth’s surface, through data 

acquired by a device at a distance from the targeted area (Lillesand et al., 2015). In 

precision agriculture, remote sensing is especially useful without the need to make physical 

contact with plants to gather valuable crop data for analysis. Access to the technology, 

information, and interpretation allows for better agricultural data for government policies, 

industry management, producers to have data for variable-application methods, reducing 

inputs, and managing fewer crop acres while maximizing yield/acre.  

Electromagnetic radiation of different wavelengths interacts with natural surfaces, and 

unique spectral properties of different land cover can be used for their identification and 
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classification in an image (Figure 1-1). In precision agriculture, spectral imaging provides 

an opportunity to derive useful information about the physical and biological 

characteristics of crops such as leaf pigment, cell structure, and water content to determine 

the health of the vegetation (Jones & Vaughn). There is much successful research on the 

use of spectral imaging for drought stress, pathogen detection, weed detection, nutrient 

status, phenology, and yield prediction (Sishodia et al. 2020). 

 

Figure 1-1. Generalized spectra characteristics of common land surface types in the 

visible and infrared range. Adapted from Gosa, 2009.  

For precision agriculture, remote sensing systems are based on sensor platform and type of 

sensor. Common remote sensor types include red-green-blue (RGB), thermal, 

multispectral, and hyperspectral (Sishodia, 2020). From the study by Maes & Steppe 

(2019) on suitability of sensors for different precision agriculture applications, for nutrient 

status evaluation multispectral and hyperspectral imaging have highest performance. 

Multispectral and hyperspectral imaging is differentiated by the number and width of 

bands. A multispectral sensor has three to 10 bands on average, while a hyperspectral 

sensor is made of hundreds of bands. As differences in plant biophysical characteristics 
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can be within mere nanometers, hyperspectral sensors have a higher chance of capturing 

the spectral differences. However, hyperspectral sensors are expensive, generate large 

datasets requiring powerful computation and are complex to process and interpret (Jones 

& Vaughn, 2010). Multispectral sensors have lenses capturing distinct regions of the 

electromagnetic spectrum (e.g., blue, green, red, red-edge, near-infrared). When tailored 

for applications such as crop nutrient status, multispectral sensors are much more cost-

efficient and can be just as effective in comparison to hyperspectral (Liu et al., 2018). RGB 

sensors have low spectral resolutions in comparison to multi and hyperspectral, but can 

have high spatial resolutions at low costs; applications include creating general 

orthomosaic maps, digital elevation models (DEMs), etc. Thermal sensors often only have 

one band covering the longwave infrared region (7000-12000 nm) and are most useful in 

applications such as drought stress and pathogen detection (Maes & Steppe, 2019).  

From spectral data, most common methods of crop monitoring use vegetation indices. 

Vegetation indices (VIs) are mathematical calculations of canopy reflectance at specific 

visible and near-infrared wavelengths, and have been used in agricultural research to 

monitor and predict vegetation properties, such as nitrogen levels (Eitel et al., 2007, 

Masclaux et al., 2010, Frels, 2018). Many VIs are developed based on the inverse 

relationship between red and near-infrared (NIR) reflectance in healthy, green vegetation 

(Gomez, 2018). High spectral resolution data from remote sensing offers opportunities to 

select optimal wavelength bands to predict the chemical properties in plants. It should be 

kept in mind that VIs are developed from various remote sensing platforms (satellite, UAV, 

ground-based), and are mostly used on similar platform data (Lillesand et al., 2015). 

Commonly used VIs developed for agriculture nitrogen research include normalized 

difference vegetation index (NDVI), green NDVI (gNDVI), and Double-Peak Canopy 

Nitrogen Index (DCNI) (Gomez, 2018). VIs are also developed for chlorophyll estimation, 

as nitrogen is a key component of chlorophyll that absorbs more than 70% of blue and red 

incident spectral bands and reflects green and NIR bands (Daughtry et al., 2000). Examples 

of these VIs include the Modified Chlorophyll Absorption ratio index (MCARI), MCARI 

/Modified Triangular Vegetation Index-Improved (MCARI/MTVI2), and the Transformed 

Chlorophyll Absorption in Reflectance Index/Optimized Soil-Adjusted Vegetation Index 

(TCARI/OSAVI). 
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1.1.3 Remote Sensing Platforms 

In precision agriculture, models for nitrogen monitoring and crop yield estimation has 

largely been through data collected by optical satellites (Agriculture and Agri-Food 

Canada, 2015). As demand for timely, accurate, and cost-effective data on the earth’s 

surface has increased, numerous satellite systems have launched. Examples of current 

optical satellites in operation include Landsat 8, RapidEye, GeoEye-1, Sentinel-2, all of 

which have been used in studies on agriculture management (Chen et al., 2010).  

Limitations in optical satellite imagery include the low spatial sensitivity, as the spatial 

resolution in the range of meters allows for analysis of large areas but not as well suited 

for individual fields. The temporal sensitivity can be rather low, as in the case of Landsat 

8 - within a 16-day revisit time, crops will have changed significantly and valuable 

information on the different stages of growth would not be obtained. In addition to factors 

such as geometric distortion, atmospheric distortion, and cloud cover obscuring view of 

the land, processing to correct the images are often time consuming, costly, and the quality 

of images may not be sufficient for a user’s purpose (Bolstad, 2016). However, with 

technological advances new satellite systems have higher spatial, temporal, and spectral 

resolutions. An example would be PlanetScope satellite constellation consisting of over 

130 satellites, 3 to 5 m spatial resolutions with daily revisit.  

Unmanned aerial vehicle (UAV) based remote sensing can provide low cost, high spatial 

and temporal resolution data for crop management. Individuals can operate a UAV using 

programed routes specific to fields and collect images up to centimeter resolutions. They 

can be flown to capture more frequent image data and offers flexibility in operation for 

times when weather is ideal. In comparison to optical satellite images, UAV images can be 

more precise in capturing smaller areas such as crop fields. This makes it ideal for obtaining 

real time data, and field management can be conducted in a timely and accurate manner 

according to the needs of the crop (Hunt et al., 2010). The overall lower cost of a UAV, 

the system components, data collection and processing as opposed to satellites had made it 

a preferred method of precision agriculture remote sensing (Hunt et al., 2010).  
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1.2 Research Questions 

Remote sensing is an established aspect of precision agriculture with the use of spectral 

imagery to retrieve crop characteristics including yield, biomass, and crop health (Breunig 

et al, 2020; Mulla, 2013; Sadeh et al., 2020). Most commonly, VIs are derived from spectral 

data to estimate crop parameters such as leaf area index (LAI), chlorophyll content, 

pathogen detection, and nutrient status (Sishodia et al., 2020). Studies have shown 

significant correlations between crop spectral variables derived from remotely sensed 

imagery and crop nitrogen content (Jiang et al., 2019; Zheng et al., 2018). Many studies 

are based on single or combinations of different spectral indices’ relationships with crop 

nitrogen content, noting variation in the relationships at different stages of crop growth 

(Jiang et al., 2019). With the development of new remote sensing technologies, processing 

methods, and computing capabilities, estimation models for crop nitrogen can be improved. 

Machine learning is an area of research interest as they are capable of developing accurate 

crop monitoring models for large, nonparametric, nonlinear datasets (Chen et al., 2010; 

Lee et al., 2020.) However, most current literature in using remote sensing data and 

machine learning have only considered spectral information for crop nitrogen modelling 

(Schirrmann et al., 2016). As a crop’s nitrogen status can be affected by many factors 

including fertilizer application methods, soil nutrient supply, water availability, field 

micro-topography, nitrogen prediction models may be improved if these plant 

physiological and environmental variables are considered. Thus, the research questions of 

this thesis are:  

(i) What is the importance of the relationships between the canopy nitrogen 

weight and plant physiology, soil properties, topographic factors, and spectral 

variables, respectively?  

(ii) Can the addition of non-spectral variables in machine learning models be used 

to improve the prediction of canopy nitrogen weight? Which machine learning 

model results in the highest accuracy for predicting canopy nitrogen weight, 

and with which combination of non-spectral and/or spectral variables?  
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(iii) Using the UAV-based and satellite-based prediction models, can prediction 

maps be created, and will they provide useful indications of nitrogen values?  

1.3 Research Objectives 

The objective of this thesis is to evaluate machine learning modelling techniques to predict 

canopy nitrogen values of corn and wheat crops using UAV and satellite-based imagery. 

This empirical research is focused on the plant physiology, soil properties, topographic 

factors, and spectral variables in relation to the crop’s canopy nitrogen. The objectives of 

this study include: 

(i) Generate machine learning regression models to predict canopy nitrogen weight 

of corn and wheat fields using plant height, topographic metrics, soil chemical 

properties, soil moisture conditions, multispectral UAV-based and satellite-

based imagery. 

(ii) Determine the optimal combination(s) of spectral variable(s), crop plant 

physiology variables, and/or environmental conditions (soil, water, topographic 

data) for corn and wheat canopy nitrogen estimation and prediction. 

(iii) Create nitrogen prediction maps for corn and wheat canopy nitrogen weight 

prediction using UAV-based and satellite-based multispectral imagery. 

1.4 Thesis Structure 

This thesis is structured by an introduction, two academic journal papers, and a conclusion. 

Chapter 1 introduces the background information for this thesis, reviewing precision 

agriculture and associated remote sensing applications, research questions and objectives. 

Chapter 2 is a published journal paper on the use of plant, soil, topographic, and UAV-

based spectral variables to estimate canopy nitrogen weight in corn crops. Chapter 3 is the 

second paper on the use of non-spectral variables, UAV-based and satellite based spectral 

variables to estimate canopy nitrogen weight in wheat crops. Chapter 4 is the conclusion 

of the completed objectives for this thesis, including limitations and suggestions for future 

research.  
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1.5 Study Areas 

Southwestern Ontario is a fertile agricultural region, contributing significant portions of 

Canada’s dominant crops including soybean, grain corn, and wheat (Ontario Ministry of 

Agriculture, Food, and Rural Affairs [OMAFRA], 2021b). Hence for this thesis, corn and 

wheat crops were chosen for the chapter studies. The study areas for this thesis are near 

London, Ontario (Figure 1-2). The corn field study site for chapter 2 is in Central Elgin, 

about 25 km south of London. The three wheat fields W1, W2, and W3 study sites for 

chapter 3 are near Mount Brydges, about 25 km southwest of London. In the continental 

climate zone of southwestern Ontario, growing seasons are typically from April to October 

with warm, humid summers (OMAFRA, 2021a). The topography of the area is overall flat 

and experiences frequent precipitation during summer months. 

 

Figure 1-2. Study areas located near London, Ontario. The corn field is indicated in 

yellow, and the three wheat fields are indicated in red. Background image is from 

Google Earth.  
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Chapter 2  

2 Evaluation of Soil Properties, Topographic Metrics, 
Plant Height, and Unmanned Aerial Vehicle 
Multispectral Imagery using Machine Learning Methods 
to Estimate Canopy Nitrogen Weight in Corn 

2.1 Introduction 

Agriculture is an important industry as the basis of food security, and as a significant aspect 

of the world economy. However, factors such as rapidly increasing global demand, 

fluctuations in production due to climate change, and a greater awareness of the negative 

environmental impact of agriculture on surrounding ecosystems, contribute to an 

increasing need for more efficient and sustainable farming practices. Especially in Canada, 

where agriculture is a significant industry, developing agricultural methods to be adaptable 

and resilient is necessary (Tan & Reynolds, 2003). This is possible through precision 

agriculture (PA), a management technique that selectively applies crop farming resources 

such as fertilizer, water, pesticides, and herbicides based on the plant needs within a field 

(Bongiovanni & Lowenberg-Deboer, 2004; Masaclaux-Daubresse et al., 2010; Sishodia et 

al., 2020). 

One of the main fields of applications of precision agriculture is the management of 

nitrogen fertilizers (Good et al., 2004; Fageria et al., 2010). Nitrogen is an essential 

macronutrient to plants, as a major constituent of organic material, enzymic processes, and 

oxidation-reduction reactions (Marschner, 2011). As such, nitrogen content in above-

ground plant tissue is an important indicator of crop health and yield potentials. Several 

global studies demonstrate that the mean nitrogen recovery efficiency by annual crops was 

less than 50% of the amount of fertilizer applied (Fageria, 2009; Fageria et al., 2010). 

Nitrogen is one of the most expensive nutrients to supply, and commercial fertilizers 

represent a major cost in plant production (Bryant et al., 2000). Rates of nitrogen fertilizer 

application depend on the crop type, desired yield, nitrogen present in the soil, and 

subsequently in the plants (Marshner, 2011). Excess nitrogen can reduce crop yield and 

can be leached from the soil, contaminating surface and groundwater, leading to harmful 
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effects on human health and ecosystem consequences such as algal blooms and hypoxia in 

water bodies (Wolfe et al., 2002). The United Nations Food and Agriculture Organization 

identifies classes of agricultural climate adaptation, one major class being management of 

field operation inputs including fertilizers (FAO, 2007). As such, optimizing the 

management of nitrogen fertilizers is an important field of research as new methods and 

technology are developed to improve nutrient use efficiency, quality, and crop yield while 

minimizing significantly negative environ-mental impacts and cost of production.  

Literature does include much research on crop canopy nitrogen retrieval using UAVs, but 

model parameters are often focused on spectroscopy with the use of vegetation indices and 

spectral remote sensors (Lee et al., 2020). PA incorporates the use of many different types 

of spatial technologies such as geographic information systems (GIS), precision 

machinery, and remote sensing imagery to ground-based data collection (Zhu et al., 2008). 

In PA, remote sensing imagery is especially useful because it does not require physical or 

destructive contact with plants to gather valuable crop information. The spectral 

information provided by the imagery can be transformed into vegetation indices (VIs). VIs 

are mathematical combinations or transformations of spectral bands that have been widely 

used in agricultural research because they allow for deriving of specific plant properties 

such as chlorophyll or nutrient content by taking advantage of the differential spectral 

properties of plants in the visible and near-infrared wavelengths (Eitel et al., 2007, Sripada 

et al., 2008; Frels et al., 2018). The resulting VI data can then provide timely information 

for monitoring field conditions and crop health, allowing for the optimal number of 

resources to be placed where they are needed, when they are needed. 

In PA, crop monitoring has largely been conducted using optical satellites (Agriculture & 

Agri-Food Canada, 2007). As demand for timely, accurate, and cost-effective data on the 

earth’s surface increased in the last few decades, numerous satellite systems have been 

launched. Examples of optical satellites in operation include Landsat 8 (since 2013) and 

Sentinel-2 (since 2015), which have been used in studies on agriculture management 

(Sishodia et al., 2020). The Landsat program, which began in 1972 with the launch of 

Landsat 1, is the longest-running program for satellite imagery of the earth (USGS, 2021). 

Landsat 8 Operational Land Imager has nine spectral bands including visible, near-infrared, 
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and shortwave infrared, with varying spatial resolutions of 15 to 30 m. Taking more than 

700 scenes a day, it has a 16-day revisit time to the same area. Sentinel-2 has 13 spectral 

bands in the visible, near-infrared, and shortwave infrared with varying spatial resolutions 

of 10 m, 20 m, and 60 m (ESA, 2020). With the constellation of twin satellites, the revisit 

cycle over an area is five days.  

Limitations in optical satellite imagery include low spatial sensitivity, as the spatial 

resolution in the range of meters allows for analysis of larger-scale regional or national 

areas but is too coarse for small-scale crop fields. The temporal sensitivity can be rather 

low, as in the case of Landsat 8; within a 16-day revisit time, crops would have changed 

significantly and valuable information on the different stages of growth would not be 

obtained. In addition to factors such as geometric distortion, atmospheric distortion, and 

cloud cover obscuring view of the land, advanced processing expertise may be required to 

ensure sufficient image quality (Mulla, 2013). In comparison, UAV-based remote sensing 

can provide lower cost and higher spatial and temporal resolution data for crop 

management. Individuals with basic training can operate a UAV using programmed routes 

and collect images with <10 cm resolutions (Harwin & Lucieer, 2012). They can be flown 

to capture more frequent image data, including monitoring each significant stage of crop 

growth and offer flexibility in operation for times when weather is most suitable. This 

makes them ideal for field management conducted in a timely and accurate manner 

according to the needs of the crop (Hunt et al., 2010). Compared to satellites, overall UAV-

based systems are often lower in cost for data collection and processing. As such, the use 

of UAV imagery in PA has become a research area of great interest due to its potential for 

larger environmental and economic impacts (Sishodia et al., 2020).  

Corn was selected for this study because it is among the most grown crops in Ontario 

(Agriculture and Agri-Food Canada, 2007). Recent studies have tested the use of linear 

regression, Random Forest (RF), and Support Vector Regression (SVR) models in UAV-

based canopy nitrogen weight prediction models (Lee et al., 2020). Although linear 

regression is a commonly used method to predict nitrogen, some VIs (e.g., NDVI) may 

saturate beyond the early growth crop stages and models may have reduced accuracy due 

to multicollinearity (Chen et al., 2010). By contrast, machine learning-based regression 
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methods such as RF and SVR have been found to produce more accurate models compared 

to classical linear regression methods, as they are unaffected by the assumptions of linear 

regression (Chen et al., 2010). However, Lee et al. (2020) considered only UAV spectral 

information and canopy nitrogen weight prediction in their study. The nitrogen prediction 

may be improved if plant physiology, topographic metrics, and soil variables are included 

in the analysis, given that crop nitrogen highly depends on these variables (Marschner, 

2011). 

To make well-informed fertilization management decisions, knowledge about the plant 

nutrient supply, health, and several environmental factors such as water availability, soil 

quality, and micro-topography of a field are key. The objectives of this study include, (i) 

studying the relationship between the spatial variation of canopy nitrogen weight and 

factors such as plant height, topographic metrics, soil chemical properties, and soil 

moisture conditions within a corn field in Southwestern Ontario using multispectral UAV-

based imagery; (ii) determining the optimal combination(s) of spectral variable(s), crop 

plant physiology variables, and/or environmental conditions (soil, water, topo-graphic 

data) for corn canopy nitrogen estimation and prediction; and (iii) evaluating the temporal 

variation of nitrogen estimation and prediction during early growth stages of corn using 

UAV images and select variables. 

2.2 Materials and Methods 

2.2.1 Study Area & Data 

The study site is in Central Elgin, Ontario, Canada (Figure 2-1). Fieldwork was conducted 

during June–July 2020 with an average temperature of 25 °C and high humidity averaging 

71%, typical of southwestern Ontario’s humid continental climate zone. The study area is 

situated in a predominantly agricultural area, about 25 km south of London, Ontario’s 

urban center. The corn was planted in early April, began sprouting in early June, and was 

harvested in late October once the plants were fully dried.  

Data was collected from a corn field about 75 ha large, sown with cultivars “DKC48-

56RI”. Beginning in early June, a total of five sampling dates were collected with at least 

seven days between each visit as the crop reached different significant growth stages. Corn 
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growth stages were recorded following the Biologische Bundesanstalt, Bundessortenamt 

und CHemische (BBCH) scale (Meier, 1997). We acquired and used data during the corn 

crops’ early growth periods (BBCH 0–49) in June for nitrogen estimation, which is 

especially important because fertilizers used during this time can have the greatest impact 

on the final quantity and quality of yield (Marshner, 2011; Hansen et al., 2015). During 

July to August, corn crops reached middle to late growth stages (BBCH 50+) and 

application of nitrogen fertilizer is not recommended after plants begin tasseling (Fageria 

et al., 2010). The plant slows root nitrogen uptake, beginning to translocate nitrogen from 

vegetation to the grains, and excess fertilizer can leach from the field (Vetsch & Randall, 

2004). Corn plants reached full maturity in early September, and the crop was left to dry 

in the field before harvest in October. 

 

Figure 2-1. Location of the corn field in Central Elgin, Ontario, Canada, over a 

Google Earth image. 

Before selecting sample points, a DJI Phantom 4 Real-Time Kinematics (RTK) UAV was 

flown over the bare soil of the field. With the UAV connected to an RTK global navigation 

satellite system (GNSS) base station, images have precise positioning metadata with 1 cm 
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horizontal positioning accuracy and 1.5 cm vertical positioning accuracy. These images 

were used to create a bare earth digital elevation model (DEM). Using Google Earth, 40 

sample points were selected in the field based on the DEM and the UAV imagery (Figure 

2-2). The sample points had to cover the variation of field topography sloping down from 

west to east. Considering corn row directions heading north-south, navigating along rows 

was more efficient compared to against rows. As well, the following factors were 

considered for sample point placement: the large dimensions of the field (1.2 km × 0.7 km), 

the intensive labour required, and the time-sensitive nature of in-situ data collection and 

processing. The sample points were placed in groups of ten spaced 60 m from one another, 

with a distance between groups at least 200 m apart to include a representative sample 

distribution of the field. A minimum distance of 50 m from roads was to reduce possible 

effects of transportation pollution. The sample points were exported from Google Earth to 

a KML file and downloaded onto mobile devices. During the first fieldwork date using the 

KML file for navigation, red flags were placed at the sample points for accurate positioning 

in the following weeks. 

At each sampling point, fresh biomass samples were destructively collected within a 2 m 

radius at a different spot each week to obtain samples representative of the weekly growth 

stages. Biomass sampling for corn involve cutting the plant at the stem base above ground. 

The number of plants within a 1 m2 block around the sample point were counted, and two 

plants were collected and placed in plastic bags. The average distance between rows was 

80 cm. Following fieldwork collection on the same day, the fresh biomass was weighed in 

grams then fully dried in an oven at 60 °C for 48–72 h. Dry biomass was weighed and 

leaves at the top of the plant constituting the canopy layer were separated for A&L Canada 

Laboratories plant analysis using the Laboratory Equipment Company (LECO) FP628 

nitrogen determinate combustion method (AOAC, 2006). The process involves grinding 

biomass leaves into a fine powder, which can be passed through a 1 mm sieve, and the 

combustion method obtains the leaf nitrogen content percentage. 

On every fieldwork date, at each sampling point within a 1 m2 block, six measurements of 

plant height in centimeters were taken to calculate an average height. Detailed plant 

phenology was recorded to determine growth stages according to the Biologische 
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Bundesanstalt, Bundessortenamt und CHemische (BBCH) scale at each sample point, as 

there can be variation in the field depending on growing conditions (Vetsch & Randall, 

2004). Six measurements of soil moisture were collected using an ML3 ThetaProbe (Delta-

T Devices Ltd., England) and averaged (Delta-T, 2017). On the first fieldwork date of 8 

June, soil samples in the 0–30 cm surface layer were collected and sent to A&L Canada 

Laboratories for Vittellus soil health analysis (A&L, 2020). The test results include values 

of soil nitrate-nitrogen, mineralizable nitrogen, water extracted soil nitrate, water extracted 

total nitrogen, soil textural class, and A&L’s Soil Health Index rating. 

 

Figure 2-2. Digital elevation model showing the variation of the corn field's 

topography and the distribution of sample points. 

2.2.2 UAV Imagery 

For this study, two types of UAVs were used: a Da-Jiang Innovations (DJI) (DJI, China) 

Matrice 100 and a DJI Phantom 4 Real-Time Kinematics (RTK) (Figure 2-3). The DJI 
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Phantom 4 RTK was released in 2018, designed for centimeter-accurate horizontal and 

vertical positioning in images using a complementary metal-oxide-semiconductor (CMOS) 

sensor (DJI, 2018). Connected to an RTK global navigation satellite system (GNSS) base 

station, images with precise positioning metadata can be used to generate 3D point cloud 

datasets and digital elevation models (DEM). For this study, the DJI Phantom 4 RTK was 

flown at 30 m altitude as per manufacturer recommendations for optimal performance of 

the UAV’s visual sensor system and RTK base station connection. The image resolution 

was 0.8 × 0.8 cm, and capture was set to 80% side and 80% front image overlap. Studies 

indicate that fine resolution (<10 cm) and high image overlap have higher success for 

mosaicking images together when crop canopy densifies through the season (Harwin & 

Lucieer, 2012). 

First released in 2015, the DJI Matrice 100 is a model designed with a customizable aerial 

platform, ideal for research purposes of attaching small spectral sensors. Including 

batteries, it weighs 2431 g with a maximum take-off weight with a payload of 3600 g. DJI 

Matrice 100 carried a MicaSense RedEdge (MicaSense Inc., Seattle, WA, USA) 

narrowband multispectral camera (MicaSense, 2015). Multispectral imagery acquisition 

was aimed to be conducted on fieldwork dates before biomass collection. If the weather 

for the day was not ideal, flights were scheduled as soon as possible after that to maintain 

consistency with the plant physiology and field conditions (Table 2-1). The field flight plan 

was made in the “Pix4Dcapture” app, part of the Pix4D software suite (Pix4D S.A., Prilly, 

Switzerland), to cover the whole field in a zigzag pattern (Pix4D Documentation, 2020). 

Pix4Dcapture has the functions of adding custom UAV and sensor properties to calculate 

the flight plan’s estimated total time, battery usage, and image resolution at selected 

altitudes. At the study field, wind and gust conditions > 60 m altitude were often greater 

than the UAV’s manufacturer-recommended limits. Flight altitude was set at 60 m and 

based on the MicaSense camera’s specifications (image width, sensor width, and focal 

length) the resulting image resolution was 4 × 4 cm, suitable for the scale of crop spectral 

analysis (Harwin & Lucieer, 2012). Image capture was set to 80% side and 80% front 

overlap. To streamline UAV flight patterns and maintain GPS connection with the 

controller, the study field was divided into two flight plans. Unfortunately, images from 

one flight on 26 June were corrupted and only data from half of the field were usable. 
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Images taken on and after 2 July could not be mosaicked in Pix4D due to the software 

limitations with recognizing and stitching the dense crop canopy at middle/later growth 

stages. Considering the nitrogen estimation for fertilizer management is most important in 

the early growth stages, data from 2 July onwards were omitted from the rest of this study. 

 

Figure 2-3. (a) DJI Matrice 100 UAV, with the MicaSense and RGB Gimbal 

cameras attached. (b) DJI Phantom 4 RTK UAV. 

Table 2-1. Summary of Unmanned Aerial Vehicle (UAV) flight acquisitions with 

MicaSense RedEdge multispectral camera. 

Flight Date Air Temperature (oC) BBCH* Growth Stage 

8 June 26 10 

16 June 25 15 

26 June 28 31 

2 July 32 34 

9 July 33 45 

15 July 29 53 
*Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie Scale [25] 

2.2.3 UAV Image Processing 

UAV images were processed according to the flowchart of Figure 2-4. DJI Phantom 4 RTK 

images, taken in April over the study site’s bare soil, were inputted into Pix4Dmapper 

photogrammetry software to generate a continuous 3D point cloud dataset of the field. 

QGIS, an open-source geographic information software (GIS), was used to convert the 

point cloud dataset into a DEM in GeoTiff format (QGIS, 2021). The DEM enabled 

observation of topographic variation within the field, which can affect plant growth related 
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to landscape shape, soil structure, and water flow (Fageria et al., 2010). Topographic 

metrics were computed from the DEM with the System for Automated Geoscientific 

Analysis (SAGA), free, open-source software for spatial data analysis (Conrad et al., 2015). 

Topographic metrics exported in GeoTiff format included slope, aspect, profile curvature, 

plan curvature, and two topo-graphic wetness indices: (TWI) #1 using a Deterministic 8 

algorithm, and TWI #2 using Multiple Flow Direction algorithm. 

 

Figure 2-4. Flowchart of the methodology used in the study. 

Multispectral images from the MicaSense camera were processed in Pix4Dmapper to 

create one orthomosaic image per band. Radiometric calibration of UAV images is 

important for the quality of image reflectance, taking into consideration the sensor 

influence and scene illumination. Before each flight, the MicaSense camera was positioned 

above a MicaSense Calibrated Reflectance Panel to acquire white reference images for 

each band. In Pix4Dmapper, the sensor settings, properties, and conditions can be obtained 

from the Exchangeable Image File Format (EXIF) metadata of the images. The white 

reference images and manufacturer-provided panel reflectance values were inputted in 

Pix4Dmapper processing options, enabling the software to calibrate and correct images’ 

reflectance for each of the five bands. Pix4Dmapper then uses the Structure from Motion 
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(SfM) algorithm to correct image perspectives to stitch images together (Harwin & Lucieer, 

2012). In addition to UAV image geolocation, Pix4Dmapper processing options include 

georeferencing orthomosaics with ground control points (GCP) to improve the absolute 

location accuracy. Five GCPs were positioned around the corn field area using black and 

white checkered boards, with coordinates obtained from a Global Positioning System 

(GPS) connected with the RTK. The output includes an orthomosaic GeoTiff image file 

with reflectance values of the entire flight area for each MicaSense band. 

2.2.4 Vegetation Indices 

The orthomosaics for each of the five MicaSense bands were exported into ArcGIS to 

extract crop canopy reflectance values at the sample points. The MicaSense RedEdge 

camera bands include the following bands: (1) blue, (2) green, (3) red, (4) red-edge, and 

(5) near-infrared (NIR) (Table 2-2). 

Table 2-2. Spectral characteristics of the five MicaSense bands. 

Band # Name Band Range 

(nm) 

Centre Wavelength 

(nm) 

Bandwidth 

(nm) 

1 Blue 465-485 475 20 

2 Green 550-570 560 20 

3 Red 663-673 668 10 

4 Red-Edge 712-722 717 10 

5 NIR 820-860 840 40 

The orthomosaics were used to compute 11 VIs (Table 2-3). VIs were already found to be 

suitable for estimating canopy nitrogen in crops, such as the normalized difference 

vegetation index (NDVI), green NDVI (GNDVI), and Double-Peak Canopy Nitrogen 

Index (DCNI) (Jones & Vaughn, 2010). Some VIs are related to chlorophyll, which was 

found to be closely related to leaf nitrogen content as the photosynthetic enzyme, rubisco, 

comprises the largest proportion of nitrogen in leaves (Marschner, 2011). Chlorophyll 

absorbs more than 70% of blue and red radiation and reflects green and NIR radiation 

(Daughtry et al., 2000). The VIs were computed with the Raster calculator function of PCI 

Geomatica Banff and exported as GeoTiff files. Using ArcGIS, the VI values were 

extracted at each sample point.  
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Table 2-3. Vegetation indices used in the study. 

Index 1 Formula 2 Authors 

BNDVI (NIR – BLUE) / (NIR + BLUE) Wang et al., 2007 

CI_RE (NIR/REDEDGE) – 1  Gitelson et al., 2003 

ISR RED/NIR Fernandes et al. 2003 

MSR (NIR/RED) − 1

√NIR
RED + 1

 
Chen, 1996 

NDVI (NIR - RED) / (NIR + RED) Rouse et al., 1974 

OSAVI 1.6[(NIR – RED) / (NIR + RED + 0.16)] Rondeaux et al., 

1996 

NDRE (NIR – REDEDGE) / (NIR+REDEDGE) Gitelson & Merzyak, 

1994 

RGBVI (GREEN2  −  BLUE ∗ RED)/(GREEN2  + BLUE ∗ RED) Bendig et al., 2015 

RVI NIR/RED Jordan, 1969 

RVI2 NIR/REDEDGE Kanke et al., 2012 

WDRVI (0.2*NIR - RED) / (0.2*NIR + RED) Gitelson & 

Merzlyak, 1994 

1 Vegetation index abbreviation: BNDVI = blue normalized difference vegetation index; CI_RE = 

chlorophyll index red edge; ISR = infrared simple ratio; MSR = modified simple ratio; NDVI = normalized 

difference vegetation index; OSAVI = optimized soil adjusted vegetation index; NDRE = normalized 

difference red edge index; RGBVI = red green blue vegetation index; RVI = ratio vegetation index; 

WDRVI = wide dynamic range vegetation index  

2 Formula variable: BLUE = blue reflectance; GREEN = green reflectance; RED = red reflectance; 

REDEDGE = red edge reflectance; NIR = near-infrared reflectance 

 

2.2.5 Canopy Nitrogen Weight Estimation 

Canopy nitrogen is defined by calculating canopy nitrogen weight using the following 

method (Hansen & Schjoerring, 2003): 

𝐶𝑁𝑊 =  (𝑁𝑝𝑙𝑎𝑛𝑡𝑠 x 
𝑊𝑑

𝑁𝑏𝑖𝑜𝑚𝑎𝑠𝑠
)  x 𝐿𝑁𝐶     (1) 

Where CNW is the canopy nitrogen weight (g/m2), Nplants is the number of plants in the 1 

m2 area over the sampling point, Wd is the dry biomass weight (g/m2), Nbiomass is the number 

of plants gathered for biomass at the sampling point, and LNC is the leaf nitrogen content 

(%). CNW assumes the plants collected for biomass within a 1 m2 block around the sample 
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point have the same amount of nitrogen. For corn plants, the leaves constitute a majority 

of dry biomass weight, hence the use of total biomass per area in the formula. Compared 

to other agronomic parameters, including plant nitrogen concentration (%), plant nitrate 

content, and Soil Plant Analysis Development (SPAD) readings, canopy nitrogen weight 

has been found to have greater correlation with spectral data (James et al., 2013). 

2.2.6 Canopy Nitrogen Weight Modelling 

 The modelling approaches in this study include Random Forest (RF) regression and 

Support Vector Regression (SVR). RF is an ensemble learning method that can be used for 

classification or regression models of large, nonparametric datasets. The user defines a 

percentage of the dataset to be randomly selected as training data; 70% is commonly used. 

Using the training data, the algorithm generates many decision trees to determine the 

importance of variables in the regression. Decision trees split at nodes depending on the 

most contributing independent variable to the dependent variable. The remainder of the 

dataset not used in training is used as validation data, and the output average of the 

individual trees is used to evaluate the regression model’s performance. Advantages of RF 

include the algorithm not overfitting from the training data, it is quick to compute, and it 

has relatively high performance in studies (Lee et al, 2020).  

SVR is part of the Support Vector Machine (SVM) learning algorithm, which uses a 

decision boundary in a hyperplane to split training data into classes based on the data 

characteristics. The support vectors that are closest to training samples are used to 

determine the optimal position of the decision boundary using the midpoint of the margin. 

SVR performs modelling in a high-dimensional space using the hyperplane. For non-linear 

data, SVR uses a kernel trick (i.e., Radial Basis Kernel), which places the data in a 

dimensional space to separate into groups using the radial distance between data points. 

Advantages of using SVR include its flexibility with nonparametric data, and it has been 

found to have better modelling capabilities compared to simple linear regression by 

capturing nonlinearity (James et al., 2013).  

The modelling was written in R programming language using R Studio (Version 4.0.3), a 

free, open-source Integrated Development Environment (IDE) (RStudio, 2020). RF used 



27 

 

the “randomForest” package and SVR used the “e1071” package. For both models, the in-

dependent variables were the VIs, MicaSense bands, plant physiology variables, topo-

graphic metrics, and soil metrics, and the dependent variable was the canopy nitrogen 

weight. For variable measurements at each sample point, the average of the variable values 

within a 1 m2 block was used. Data from 8 June, 15 June, and 24 June were randomly 

divided into 70% training set and 30% validation set. Dates were selected based on the 

availability of the dataset including UAV imagery and in-situ ground measurements. The 

quality of the models was assessed using the coefficient of determination (R2) and Root 

Mean Square Error (RMSE), calculated using Equation (2) and Equation (3), respectively 

(Palaniswamy, 2006): 

𝑅2  =  1 −  
∑(𝑦𝑖 − �̂�𝑖)2

∑(𝑦𝑖 − �̅�𝑖)2      (2) 

Where yi is the observed value, �̂�𝑖 is the predicted value, and �̅� is the mean of the observed 

values of the dataset; and: 

𝑅𝑀𝑆𝐸 = 
∑ (�̂�𝑖− 𝑦𝑖)2𝑛

𝑖=1

𝑛
      (3) 

Where �̂�𝑖  is the predicted canopy nitrogen weight value (g/m2), yi is the observed canopy 

nitrogen weight value (g/m2), n is the number of observations, and i is the index of 

summation in increments of one. 

2.3 Results 

2.3.1 Nitrogen Statistics 

Canopy nitrogen weight gradually increased in variation from 8 June to 9 July during the 

early to middle growth stages, then decreased slightly on 15 July (Figure 2-5). As the crop 

developed into later growth stages, a decrease in canopy nitrogen results from the dilution 

effect, as discussed in (Justes et al., 1994; Li et al., 2008). An outlier is shown in Figure 5, 

but as it was consistent throughout the growing stages at the same sample point it is unlikely 

to be due to errors in measurements. 
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Figure 2-5. Variation of canopy nitrogen weight (g/m2) as a function of the date of 

field measurements during the 2020 growing season. Outliers are represented by 

dots on the graph. 

2.3.2 Soil Statistics 

The Vittellus soil health analysis (A&L, 2020) produced the following mean values: soil 

nitrate-nitrogen of 72.75 ppm, mineralizable nitrogen of 30.75 ppm, water extracted soil 

nitrate of 71.38 ppm, and water extracted total nitrogen of 88.75 ppm. The A&L’s Soil 

Health Index rating was in the “Good–High” category, and the soil textural class for the 

field was predominantly silt loam. 

2.3.3 Regression Models with all Parameters 

First, all 29 parameters including VIs, MicaSense bands, plant physiology variables, soil 

metrics, and topographic metrics were used in calibrating the RF and SVR model (Table 

2-4). Single date datasets and combinations of the multi-date dataset were tested to evaluate 

the temporal effect on the models. From all calibrated models, RF had better performance 

in comparison to SVR. The best performing RF model was obtained with a combination of 
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all three dates, resulting in R2 of 0.97 and RMSE of 0.71 g/m2. Other RF multi-date 

combinations had high performance close to the best model. Of all the RF models, the 

lowest R2 was at 0.92 with an RMSE of 0.20 g/m2 for 15 June. For SVR, the 15 June model 

also had the lowest performance. Although SVR RMSE values were low overall but close 

to the RMSE of the RF models’, single date models of 8 June and 15 June had low R2 

values at 0.73 and 0.48 respectively. SVR multi-date models had much better performance 

compared to single-date models, but RMSE values were higher than with the RF multi-

date models. 

Table 2-4. Statistics for the calibration of the canopy nitrogen model with all 29 

variables including vegetation indices, the 5 MicaSense band reflectances, plant 

physiology variables, soil metrics, and topographic metrics as a function of the date 

and the modelling approach (RF or SVR)1. 

Date Model R2 RMSE (g/m2) (n) 

8 June 
RF 0.95 0.03 28 

SVR 0.73 0.04 28 

15 June 
RF 0.92 0.20 28 

SVR 0.48 0.31 28 

24 June 
RF 0.94 1.70 14 

SVR 0.94 1.53 14 

8, 15 June 
RF 0.92 0.15 56 

SVR 0.75 0.24 56 

8, 24 June 
RF 0.97 0.90 42 

SVR 0.97 1.10 42 

15, 24 June 
RF 0.97 0.96 42 

SVR 0.95 1.22 42 

8, 15, 24 June 
RF 0.97 0.71 70 

SVR 0.96 1.13 70 

1 All models are significant at p-value <0.001. 

Next, the models were applied to the validation datasets (Table 2-5). RF with the 

combination of all three dates performed the best out of the models with R2 of 0.75 and 

RMSE of 2.29 g/m2. Compared to the best model, there was only a small difference in the 

RF model of 8 June and 24 June with R2 of 0.74 and RMSE of 2.48 g/m2. Single-date 

models for both RF and SVR had poor results overall. However, the small number of 

sample point data in single-date models may have resulted in the calibration model not 
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encompassing normal variation in the field data. Overall, multi-date models had better 

performance compared to single-date models. 

Table 2-5. Statistics for the validation of the canopy nitrogen model with all 29 

variables including selected vegetation indices, the 5 MicaSense bands, plant 

physiology variables, soil metrics, and topo-graphic metrics as a function of the date 

and the modelling approach (RF or SVR). 

Date Model R2 p-value (1) RMSE (g/m2) (n) 

8 June 
RF 0.14 NS 0.09 12 

SVR 0.23 0.100 0.08 12 

15 June 
RF 0.04 NS 0.40 12 

SVR 0.01 NS 0.39 12 

24 June 
RF 0.30 NS 4.07 6 

SVR 0.02 NS 3.37 6 

8, 15 June  
RF 0.50 <0.001 0.31 24 

SVR 0.36 0.001 0.34 24 

8, 24 June  
RF 0.74 <0.001 2.48 18 

SVR 0.69 <0.001 2.28 18 

15, 24 June  
RF 0.63 <0.001 3.13 18 

SVR 0.53 <0.001 2.85 18 

8, 15, 24 June  
RF 0.75 <0.001 2.29 30 

SVR 0.58 <0.001 2.21 30 

1 NS = non-significant 

2.3.4 Variable Importance Plot 

RF modelling can be visualized with a variable importance plot in R Studio using the 

“varImpPlot()” function (Figure 2-6). The more important an explanatory variable is in the 

prediction of canopy nitrogen weight, the higher its IncNodePurity value is. Using the 

dataset containing all dates and the 29 variables used in the model, plant height was the 

most important predictor. The top ten variables were made by seven from the 11 VIs used 

and two MicaSense band reflectance mosaics (blue and red). Among all the topographic 

metrics, the profile curvature was the top-performing variable. From the soil metrics, soil 

moisture was the top-performing variable. 
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Figure 2-6. Variance Importance plot produced by the Random Forest model of all 

three dates and 30 variables, using the function varImpPlot() in R Studio. Higher 

IncNodePurity values indicate more impact on nitrogen. (1) Please refer to Table 1 

for the full name of vegetation indices. N_Weight, plant nitrogen weight; 

Soil_Nitrate_N, soil nitrate nitrogen (NO3-N); Soil_Miner_N, soil mineralizable 

nitrogen; Soil_Total_N, water extracted total soil nitrogen; TWI_1, total wetness 

index #1; TWI_2, total wetness index #2. 

2.3.5 Regression Models with Selected Variables 

As the best performing model from the calibration and validation datasets was the 

combination of all three dates using RF, we tested numerous variable combinations with 

the data from all three dates. Based on Figure 6, we selected the top 6, 10, 15, 18, and 20 

variables based on the evaluation of variable importance thresholds. In addition, we 

considered a separate group containing all spectral variables, because all the VIs and 



32 

 

MicaSense band reflectance mosaics, except the red-edge band mosaic, were in the top 20 

variables. Table 2-6 displays the statistics of RF and SVR applied to the various 

combinations of variables from calibration datasets. Overall, RF had better performance 

than SVR, but there was not a large difference in the R2 or RMSE values. The best model 

was RF with the combination of top 20 variables, resulting in a R2 value of 0.97 and a 

RMSE of 0.70 g/m2. However, in comparison to the best model, there were only small 

differences in R2 and RMSE for the RF models. 

Table 2-6. Statistics for the calibration of the canopy nitrogen model with all dates 

(8, 15, 24 June), different combinations of variables (n = 70)1. 

Input Variables Model Number of 

Variables 

R2 RMSE 

(g/m2) 

Spectral-only: All VIs & 5 MicaSense bands 
RF 13 0.95 0.93 

SVR 13 0.88 1.50 

Top 6: Height, BNDVI, CI_RE, RVI2, 

RE_NDVI, BLUE 

RF 6 0.97 0.73 

SVR 6 0.95 1.01 

Top 10: Top 6 + ISR, RED, RVI, WDRVI 
RF 10 0.96 0.81 

SVR 10 0.95 1.06 

Top 15: Top 10 + NDVI, GREEN, OSAVI, 

RGBVI, Profile Curvature 

RF 15 0.97 0.74 

SVR 15 0.96 0.96 

Top 18: Top 15 + NIR, Soil Moisture, MSR 
RF 18 0.97 0.73 

SVR 18 0.95 1.05 

Top 20: Top 18 + TWI_2, TWI 1 
RF 20 0.97 0.70 

SVR 20 0.95 1.10 

1All models are significant at p-value <0.001. 

The models were then applied to the validation datasets (Table 2-7). The RF model using 

the top 15 variables had the best performance with an R2 value of 0.73 and an RMSE of 

2.21 g/m2. Compared to the top-performing model, the RF model using the top 18 variables 

had the same R2 value with a slightly higher RMSE. Of the top 15 variables, only the plant 

height and the profile curvature were non-spectral variables. All RF models had higher R2 

values than SVM, but the RF model has RMSE values that were slightly higher as well. 

The RF variable importance plot allows identification of the variables that do not affect the 

model significantly. As found in the models with the top 20 variables, removing low 

importance variables from a model can improve the results. 
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Table 2-7. Statistics for the validation of the canopy nitrogen model with all dates 

(June 8, 15, 24), different combinations of variables (n = 30)1. 

Input Variables Model Number of  

Variables 
R2 RMSE (g/m2) 

Spectral-only: All VIs & 5 MicaSense bands 
RF 13 0.61 2.89 

SVR 13 0.58 2.31 

Top 6: Height, BNDVI, CI_RE, RVI2, RE_NDVI, 

BLUE 

RF 6 0.67 2.50 

SVR 6 0.67 2.16 

Top 10: Top 6 + ISR, RED, RVI, WDRVI 
RF 10 0.68 2.47 

SVR 10 0.66 2.06 

Top 15: Top 10 + NDVI, GREEN, OSAVI, 

RGBVI, Profile Curvature 

RF 15 0.73 2.21 

SVR 15 0.60 2.23 

Top 18: Top 15 + NIR, Soil Moisture, MSR 
RF 18 0.73 2.25 

SVR 18 0.67 1.97 

Top 20: Top 18 + TWI_2, TWI 1 
RF 20 0.71 2.36 

SVR 20 0.59 2.17 

1All models are significant at p-value <0.001. 

2.4 Discussion 

In this study, RF and SVM regression methods were used to predict canopy nitrogen weight 

of corn using UAV MicaSense individual band reflectance, associated VIs, plant 

physiology variables, topographic metrics, and soil metrics. The variation of the in-situ 

canopy nitrogen weight measurements was very low in the earliest growth stage on 8 June 

and gradually increased until the latest sampling date of 15 July, with a marked decrease 

afterwards. The increase in canopy nitrogen variation during the early growth stages of 

BBCH 00-49 can be explained by the leaf growth and stem elongation because the crop 

biomass increases rapidly during that period. Then, as the plant reaches the BBCH 51 stage 

that corresponds to the inflorescence emergence and heading, the canopy nitrogen variation 

decreases because of the dilution effect (Fageria et al, 2010).  

The RF and SVR models were first calibrated with all the 29 variables using single and 

multi-date datasets. With the validation datasets, single-date models had overall poor 

performance. Combinations of multi-date models led to better results, with the best 

performance obtained with the RF model. In the variance importance plot of the best RF 

model, the plant height was the most important predictor out of all variables used. Freeman 

et al. (2007) already found that plant height is a useful variable in identifying nitrogen 
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uptake in corn. Precision agriculture studies have used crop height for phenology, biomass, 

and yield prediction successfully, and this crop height can be derived from UAV point 

cloud datasets (Song & Wang, 2019). Among all the individual MicaSense band 

reflectances, the reflectance of the red-edge band has the poorest performance. The red-

edge region (680–800 nm) represents a sharp change in the canopy reflectance and can 

provide important details about phenology (Kanke et al., 2012). Our result agrees with Lee 

et al.’s (2020) work that uses the same MicaSense camera. Likely, the narrow 10 nm band 

range of the red-edge band of the MicaSense camera did not capture the change in the 

region well. This could explain why our results are not in agreement with several other 

studies that find that the red-edge region is a sensitive indicator of leaf chlorophyll content, 

because of the high absorption in the red radiation and the high reflectance in the near-

infrared region during plant growth stages (Schlemmer et al., 2013; Gahrouei et al., 2020). 

Overall, most of the soil metrics had little to no effect on the models, but the soil was 

sampled once at the beginning of the growing season. With the consideration of costs and 

historical farm operations where recommendations for soil tests are only once a year, this 

study emphasizes the limitations of the current soil testing practices. Soil metrics results 

from Mulvaney et al.’s (2006) and Tremblay et al.’s (2012) studies on a soil-based 

approach in corn nitrogen management, found that soil tests were useful in their models 

when field conditions were conducive to soil nitrogen mineralization, crop uptake, and 

utilization. With different sampling methods, soil metrics may still be useful in models. 

There is therefore the need to conduct soil tests at different dates to better characterize the 

soil condition changes, for example, because of fertilizer applications, precipitation 

patterns, and crop growth (Marschner, 2011). 

The RF model’s variable importance plot allowed selecting groups of top 6, 10, 15, 18, and 

20 variables for developing new RF and SVM models. The top 20 variables included plant 

height, all the 11 VIs used in this study, all the MicaSense band reflectance mosaic but the 

red-edge one, the soil moisture, and the profile curvature, as well as the topo-graphic 

wetness indices #1 and #2. The group of top 15 variables that performed best has only the 

plant height and profile curvature as non-spectral parameters. Considering that topographic 

metrics were derived from the UAV Phantom 4 RTK imagery along with the possibility of 

deriving crop height across the field from point cloud data, all variables in the best model 
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can be measured from in-situ, non-destructive, UAV-based data collection (Freeman et al., 

2007). Having all model data that can be collected by remote sensing could be a greater 

benefit, as common limitations of in-situ studies and subsequent application methods are 

the intensive labour and high costs required to obtain model input data.  

In this study, the final validation of canopy nitrogen models with various combinations of 

variables indicated RF models had better performance than SVR in terms of R2 values. 

This is consistent with results from Liu et al. (2016), Lee et al. (2020), and Zha et al. (2020) 

with RF yielding better nitrogen content prediction in wheat, rice, and corn crops compared 

to SVR models. Although SVR had lower RMSE values in comparison to RF, overall RF 

RMSE values were low as well in the context of nitrogen estimation for g/m2. In 

comparison to the study by Lee et al. (2020), the RMSE values of this study’s models are 

much lower, which can be beneficial for fertilizer management recommendations to 

farmers in general. In the case of this study, the RF algorithmic method of using many 

decision trees may better suit the use of numerous variables in regression models. In 

comparison, using many variables in SVR requires user hyper-tuning and the kernel trick 

function to separate data into groups, relying on the radial distance between points to be 

meaningful in the model. Overall, the performance of SVR models was good, but RF 

models can be considered more useful in terms of ease of use and the quality of results. 

2.5 Conclusion 

This study tested machine learning regression methods to predict corn canopy nitrogen 

weight using UAV MicaSense band reflectance mosaics, associated VIs, plant physiology 

variables, topographic metrics, and soil metrics. With all 29 variables in RF and SVR 

models, the combination of all three dates with the RF model produced the best results: the 

validation model having an R2 of 0.75 and an RMSE of 2.29 g/m2. From the multi-date RF 

model’s variable importance plot, the top 6, 10, 15, 18, and 20 variables were tested in RF 

and SVR models. The best validation model was the RF model (R2 value at 0.73 and RMSE 

at 2.21 g/m2) with the top 15 variables, most of them being spectral variables.  

We developed models for estimating canopy nitrogen weight from spectral, plant, soil, and 

topographic variables using machine learning algorithms, but the resulting models are still 
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empirical, and their applicability can be limited to the dataset on which they were built and 

validated. This is a common limitation in agricultural research as in-situ measurements 

often require intensive labour, costs, and variable conditions. Overall, many factors need 

to be considered to define plant growth conditions such as plant species, soil condition, 

environmental factors of field topology, moisture supply, weather, and more. There is a 

need to test the developed models on other datasets to determine their efficacy and to 

understand their applicability in precision agriculture. Future work can consider using a 

more deterministic modelling approach, for example, the PROSAIL model (Jay et al., 

2017), as it is less empirical and applies to a high variety of conditions but requires more 

advanced parameter calibration. The PROSAIL model uses spectral data of leaf and canopy 

level parameters to retrieve chlorophyll and nitrogen content, with robust results from lab 

and field studies (Jay et al., 2017). Eventually, methods of crop height extraction from RTK 

UAVs (Song & Wang, 2019), in addition to UAV-derived topographic and spectral 

variables, can be used to develop a final map for a whole field. The model information can 

be used to improve field nitrogen prediction, leading to more effective and efficient N 

fertilizer management. 
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Chapter 3  

3 Nitrogen Estimation for Wheat using UAV-based and 
Satellite Multispectral Imagery, Topographic Metrics, 
Leaf Area Index, Plant Height, Soil Moisture, and 
Machine Learning Methods 

3.1 Introduction 

Precision agriculture (PA) is a management technique that selectively applies crop farming 

resources such as fertilizer, water, pesticides, and herbicides based on the plant needs 

within a field (Bongiovanni & Lowenberg-Deboer, 2004; Masaclaux-Daubresse et al., 

2010; Sishodia et al., 2020). Nitrogen is an essential macronutrient to plants as a major 

constituent of organic material including enzymic processes, chlorophyll, and oxidation-

reduction reactions; levels of nitrogen in plant tissue can indicate yield potential and crop 

health (Marschner, 2011). However, nitrogen is one of the most expensive nutrients to 

supply, and studies on nitrogen recovery efficiency by annual crops was on average less 

than 50% of the amount of fertilizer applied (Fageria, 2009; Fageria et al., 2010).  

Excessive fertilizer can leach from the soil and contaminate waterways, disrupting local 

ecosystems, and denitrification that results in greenhouse gas emissions (Rabalais et al., 

2001). Nutrients that have been added beyond the critical level of maximum growth can 

continue to accumulate in the plant tissue without any further yield increase (Marschner, 

2011). Commonly in grain crops such as wheat, excessive nitrogen can cause plant stems 

to grow tall to the point of lodging – the stems bend over making it difficult to harvest, 

increasing chances of grain moisture, disease, and often reduces yield significantly 

(Foulkes, 2011). Usually, nitrogen deficiency can be noted from chlorosis, the condition in 

which leaves yellow as the plant’s chlorophyll content drops (Drew & Sisworo, 1977). 

With reduced photosynthetic activity, the plant will not reach peak health and yield will be 

low. Water is also key to the transportation of nutrients from the soil to a plant. The 

availability of water to a plant depends on the weather conditions during the growing 

season, soil moisture, field micro-topography affecting water flow and accumulation 

(Walley et al., 2002; Si & Farrell, 2004). Understanding a field’s characteristics as well as 
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monitoring plant biophysical characteristics including height, leaf area and colour of can 

provide useful information in nitrogen fertilizer applications. 

In PA, remote sensing imagery is useful because it does not require physical or destructive 

contact with plants to gather valuable crop information (Jones & Vaughan, 2010). 

Vegetation indices (VIs) can be derived from the spectral information provided by the 

imager; VIs are mathematical combinations or transformations of spectral bands that have 

been widely used in agricultural research. VIs allow for deriving of specific plant properties 

such as chlorophyll or nutrient content by taking advantage of the differential spectral 

properties of plants in the visible and near-infrared (NIR) wavelengths (Eitel et al., 2007; 

Frels et al., 2018; Sripada et al., 2008). The VI information can then provide timely 

knowledge of crop conditions, allowing for suitable rate of application at the right time and 

location depending on the variations within a field. 

Optical satellite imagery for crop monitoring has had several decades of research and 

application (Agriculture & Agri-Food Canada, 2007). Examples of recently launched 

optical satellites in operation include RapidEye since 2008, Landsat 8 since 2013, and 

Sentinel-2 since 2015, all frequently used in studies on crop nutrient, yield, and growth 

management (Sishodia et al., 2020). RapidEye has five spectral bands with 6.5 m 

resolution. Depending on the location, the five-satellite constellation revisit time is between 

one to five days. Landsat 8 Operational Land Imager has nine spectral bands with varying 

spatial resolutions of 15 to 30 m. It has a 16-day revisit time to the same area and takes 

over 700 scenes a day. Sentinel-2 has 13 spectral bands with 10 m, 20 m, and 60 m spatial 

resolutions depending on the band. Sentinel-2 constellation is composed of two satellites 

allowing for a five-day revisit time over the same area. Limitations in optical satellite 

imagery include low spatial sensitivity as the spatial resolution may be too coarse for small-

scale crop fields (Jones & Vaughn, 2010). The temporal sensitivity can be rather low, such 

as Landsat 8 with a 16-day revisit time crops would have changed significantly and 

valuable information on the different stages of growth would not be obtained. Sentinel-2 

and RapidEye have higher temporal resolution of one to five days, but it can vary by 

location and not all images may be useful due to cloud cover obscuring land. Additionally, 
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factors such as cloud cover, geometric distortion, and atmospheric distortion may require 

advanced processing expertise to ensure sufficient image quality (Mulla, 2013).  

New satellite systems are improving in spatial and temporal sensitivity, such as the 

PlanetScope satellite constellation (Planet, 2020). Designed for collecting information for 

use in land-change detection, crop monitoring, climate monitoring and more, the 

PlanetScope satellite constellation is composed of over 130 satellites called Doves allowing 

for spatial resolutions of 3 to 5 m and daily revisit. Beginning with the first launch of a 

group of Doves in March 2016, over 10 more groups launched since to improve revisit 

time, spatial, and spectral resolutions. PlanetScope imagery products are also available in 

multiple asset forms with different radiometric processing and rectification, such as the 

“surface reflectance” product imagery downloaded for this study. Currently, a select 

portion of Planet data is available for free download under an open data access policy. 

PlanetScope imagery has been used in studies of wheat yield, biomass, and LAI monitoring 

and modelling with promising results (Breunig et al., 2020; Manivasagam et al., 2021; 

Sadeh et al., 2020). However, there are few studies focused specifically on nitrogen 

management using PlanetScope data which this study aims to fill.  

With the rapid advancement in UAV technology in recent years, there is much research 

interest on UAV-based crop canopy nitrogen retrieval (Sishodia et al. 2020). UAV-based 

remote sensing can provide low cost and higher spatial and temporal resolution data for 

crop management. Individuals with basic training can operate a UAV using programmed 

routes and collect images with <10 cm resolutions (Harwin & Lucieer, 2012). They can be 

flown to capture more frequent image data and offer flexibility in operation for times when 

weather is most suitable (Hunt et al., 2012). Compared to satellites, overall UAV-based 

systems are often lower in cost for data collection and processing. Studies have shown 

significant correlations between crop spectral variables derived from UAV imagery and 

crop nitrogen content (Jiang et al., 2019; Liu et al., 2016; Zheng et al., 2018). Many studies 

are based on single or combinations of different spectral indices’ relationships with crop 

nitrogen content, noting variation in the relationships at different stages of crop growth 

(Asataoui et al., 2021; Jiang et al., 2019; Schirrmann et al., 2016). The spectral indices with 

the strongest relationship to crop nitrogen were noted to occur during early wheat growth 
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stages before and up to flowering. Often studies on estimating nitrogen were conducted in 

controlled experimental conditions, and more studies are needed on real field conditions.  

Wheat was selected for this study because it is among the most grown crops in Ontario 

(Agriculture and Agri-Food Canada, 2021). With the development of new remote sensing 

technologies, processing methods, and computing capabilities, estimation models for crop 

nitrogen can be improved. Machine learning is an area of research interest as they can 

develop accurate crop monitoring models for large, nonparametric, nonlinear datasets 

(Lee et al., 2020). Recent studies have tested the use of linear regression, Random Forest 

(RF), and Support Vector Regression (SVR) models in UAV-based canopy nitrogen 

weight (CNW) prediction models (Astaoui et al., 2021; Lee et al., 2020; Liu et al., 2016; 

Zheng et al., 2018). Although linear regression is a commonly used method to predict 

nitrogen, some VIs (e.g., NDVI) may saturate beyond the early growth crop stages and 

models may have reduced accuracy due to multicollinearity (Chen et al., 2010; Zheng et 

al., 2018). By contrast, machine learning-based regression methods such as RF and SVR 

have been found to produce more accurate models compared to classical linear regression 

methods, as they are unaffected by the assumptions of linear regression (Chen et al., 

2010). However, most current literature in using remote sensing data and machine 

learning have only considered spectral information for crop nitrogen modelling 

(Schirrmann, 2016). As a crop’s nitrogen status can be affected by many factors 

including fertilizer application, soil characteristics, water availability, and field micro-

topography, nitrogen prediction models may be improved if these plant physiological and 

environmental variables are considered (Yu et al., 2021).  

With better management of nitrogen fertilizers, not only can costs and negative 

environmental impact be minimized but yield and quality can increase. This study aims to 

evaluate machine learning modelling methods with plant spectral, biophysical, and field 

environmental variables to predict CNW in wheat crops using UAV and satellite-based 

imagery. The objectives of this study include, (i) studying the relationship between the 

spatial variation of CNW and factors such as plant height, LAI, soil moisture, and 

topographic metrics within wheat fields in Southwestern Ontario using multispectral UAV- 

or PlanetScope - imagery; (ii) determining the optimal combination(s) of spectral 
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variable(s), crop variables, and/or environmental conditions (soil, water, topographic data) 

for wheat canopy nitrogen estimation and prediction; and (iii) evaluating the temporal 

variation of nitrogen estimation and prediction during early growth stages of wheat using 

UAV images or PlanetScope images, and related variables. 

3.2 Materials and Methods 

3.2.1 Study Area & Data 

The study sites are in Strathroy-Caradoc, Ontario, Canada, nearby the community of Mount 

Brydges (Figure 3-1). Fieldwork was conducted during May-June 2020 with an average 

temperature of 22 °C and humidity averaging 73%, characteristic of southwestern 

Ontario’s humid continental climate zone. The sites are in a predominantly agricultural 

area about 25 km southwest of London, Ontario’s urban center. 

 

Figure 3-1. Locations of the three 2020 wheat fields in southwestern Ontario, Canada 

over a Google Earth image. Field W1 is situated in the upper left corner, west of 

Mount Brydges. Fields W2 and W3 are in the lower right corner, south of Mount 

Brydges. 
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In southwestern Ontario, winter wheat is planted in autumn for germination, lying dormant 

during winter and resuming growth in spring (Ontario Ministry of Agriculture, Food, and 

Rural Affairs [OMFRA], 2019). This study’s wheat fields’ cultivar was “Soft Red Winter 

Wheat” planted in mid-October 2019, began sprouting mid-April 2020, and harvested in 

early August. The three fields labelled W1, W2, and W3 are sized at 48, 21, and 27 hectares 

respectively. Beginning in early May, sampling was conducted every 7-8 days for a total 

of five sample dates to capture significant growth stages of the crop (Table 3-1). Wheat 

growth stages were recorded following the Biologische Bundesanstalt, Bundessortenamt 

and CHemische Industrie (BBCH) scale (Meier, 2001). The data acquired for this study 

encompassed the wheat crop’s growth period from leaf development up to and including 

inflorescence emergence (BBCH 10 to 59) for nitrogen estimation. The early stages of 

growth before flowering are especially important as fertilizers applied then have better 

nitrogen use efficiency and yield response (Marshner, 2011; N. Hansen et al., 2015). 

Fertilizer can be applied during autumn planting, but lower probability of rainfall also 

decreases the amount of N from moving into the soil. Fertilizer left above soil during winter 

will not penetrate and may move during spring snowmelt. During later growth stages 

(BBCH 60+) from fruit development to ripening, root N uptake slows down as the plants 

translocate N from vegetation to grains and excess fertilizer can leach from the field 

(Vetsch & Randall, 2004).  

Table 3-1. Summary of fieldwork data acquisitions. 

Fieldwork Date Air Temperature (oC) BBCH* Growth Stage 

May 5 17 22-24 

May 12 12 23-26 

May 20 14 30-32 

May 27 21 39-41 

June 4 23 52-58 

*Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie Scale 

Prior to sample point selection, a DJI Phantom 4 Real-Time Kinematics (RTK) UAV was 

flown over the bare soil of the fields. The UAV connected to an RTK global navigation 

satellite system (GNSS) base station acquires images with positioning metadata at 1.5 cm 

vertical and 1 cm horizontal positioning accuracy. These images were mosaicked to create 

a digital elevation model (DEM) GeoTiff image. The DEM was imported into Google 
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Earth and 16 samples points were selected for each field based on the variation of elevation 

and coverage of representative areas (Figure 3-2). Considering the crop rows were planted 

northwest-southwest for field W1 and north-south for fields W2 and W3, the sampling 

pattern followed the row directions for navigation efficiency. The sample points were 

placed in a four-by-four grid, spaced 60m from one another. A minimum distance of 50m 

from roads was used to reduce possible effects of transportation pollution.  

To measure biomass at each sampling point, a square guide made of plastic tubing 50 cm 

x 50 cm was placed around a patch of wheat. The plants within the guide were destructively 

collected by cutting at the stem base above ground, then placed in paper bags. The average 

distance between rows was 17 cm, and mostly three rows of wheat would be collected from 

the 0.5 m2 biomass block. On the same day following fieldwork collection, the fresh 

biomass was weighed in grams then fully dried in an oven at 60°C for 48 h. Dry biomass 

was weighed before being sent to A&L Canada Laboratories for plant analysis. The 

biomass was ground into a fine powder able to pass through a 1 mm sieve before being 

used in the Laboratory Equipment Company (LECO) FP628 nitrogen combustion method 

to obtain leaf N content percentage (Association of Official Analytical Collaboration 

[AOAC], 2006).  
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Figure 3-2. Digital elevation model showing the variation of the wheat field’s 

topography at each sample point for a) W1 wheat field, b) W2 wheat field, c) W3 

wheat field. 

Six measurements of plant height in centimeters were taken around each sampling point 

within a 1 m2 block on every fieldwork date, and an average height was calculated. Six 

measurements of soil moisture were collected within a 1 m2 block around the sampling 

point using an ML3 ThetaProbe (Delta-T Devices Ltd., Burwell, Cambridge, UK) and 

averaged. Plant phenology was recorded at each sample point using the BBCH scale to 

determine growth stage during data collections.  

Leaf area index (LAI) was measured non-destructively using a LAI-2200C Plant Canopy 

Analyzer (Li-Cor, Inc., Lincoln, Nebraska, USA). Following manufacturer 

recommendations, five measurements were taken along the row at each sample point 

during clear skies or uniform overcast. Files from the device were transferred to and 
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processed with the Li-Cor software File Viewer FV2200. Processing options include 

scattering correction based on the field conditions, and output text files with final LAI 

measurements. 

3.2.2 UAV Imagery 

In this study, the two UAVs used were a Da-Jiang Innovations (DJI) (DJI, China) Matrice 

100 and a DJI Phantom 4 RTK. The DJI Phantom 4 was flown at 30m altitude per 

manufacturer recommendations of the visual sensor system’s optimal performance and 

connection to the RTK GNSS base station. The RGB image resolution was 0.9 x 0.9 cm 

and capture set to 80% side and 80% front image overlap. A fine resolution typically < 10 

cm and high image overlap ensures greater chance of successful image mosaicking as crop 

canopy densifies during a growing season (Harwin & Lucieer, 2012).  

The DJI Matrice 100 carried a MicaSense RedEdge (MicaSense Inc., Seattle, WA, USA) 

narrowband multispectral camera including the following bands ordered by increasing 

wavelength: (1) blue, (2) green, (3), red, (4) red-edge, and (5) near-infrared (NIR) (Table 

3-2). Image acquisition was conducted on the same dates as ground fieldwork before 

biomass collection. For the week of 27 May fieldwork, the weather conditions were 

characterized by strong winds and sudden rain showers, so the UAV was flown on different 

dates between 26 and 29 May for each field whenever the weather was suitable. 

Table 3-2. Spectral characteristics of the five MicaSense bands.  

Band Name Band Range 

(nm) 

Centre Wavelength 

(nm) 

Bandwidth (nm) 

1 Blue 465-485 475 20 

2 Green 550-570 560 20 

3 Red 663-673 668 10 

4 Red-Edge 712-722 717 10 

5 NIR 820-860 840 40 

The flight plans for each field were made in the Pix4D software suite “Pix4Dcapture” app 

(Pix4D S.A., Prilly, Switzerland) to cover entire fields in a zigzag pattern (Pix4D 

Documentation, 2020). Pix4Dcapture includes the function of adding custom UAV and 

sensor properties to calculate the flight plan’s estimated total time, battery usage, and image 
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resolution at the plan’s designated altitude. Flight altitude for each field’s plan was set at 

60m, as >60m wind and gust conditions were usually greater than UAV manufacturer 

recommendations. Based on the MicaSense camera’s specifications, the resulting image 

resolution was 4 cm x 4 cm with capture set to 80% side and 80% front overlap. 

Unfortunately, the SD cards storing images for field W3 on May 5th and field W1 on May 

27th were corrupted and data was unretrievable for further processing. The weather for 

subsequent days of those fieldwork weeks were also unsuitable for  

3.2.3 UAV Image Processing 

UAV image processing followed the flowchart of Figure 3-3. The DJI Phantom 4 RTK 

images taken in April over each field’s bare soil were mosaicked in Pix4Dmapper software 

to generate a DEM GeoTiff. Using the System for Automated Geoscientific Analysis 

(SAGA), a free, open-source spatial data analysis software, topographic metrics were 

computed from the DEM (Conrad et al., 2015). Using the “Terrain Analysis – 

Morphometry” tool, metrics generated include slope, aspect, profile curvature, and plan 

curvature. Creating topographic wetness indices (TWI) required several steps. First, using 

the “Terrain Analysis – Hydrology” tool a flow accumulation layer of the field was created. 

Using the “Flow Width and Specific Catchment Areas (SCA)” tool, two SCAs were created 

using different algorithms: Deterministic 8 and Multiple Flow Direction. The 

“Topographic Wetness Index (TWI)” tool was then used to create two maps, TWI #1 and 

TWI #2 based on the respective algorithm SCAs. The final topographic metrics were 

exported as GeoTiff files.  
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Figure 3-3. Flowchart of the methodology used in the study. 

MicaSense camera multispectral images were processed in Pix4Dmapper to create an 

orthomosaic image per band with 4 cm x 4 cm resolution. An important step in producing 

a high-quality final image is radiometric calibration considering the sensor influence and 

scene illumination of the UAV flight. Prior to each flight over a field, the MicaSense 

camera was positioned above a MicaSense Calibrated Reflectance Panel to take a minimum 

of five white reference images for each band. From the Exchangeable Image File Format 

(EXIF) metadata of the images, Pix4Dmapper can read the sensor settings, properties, and 

geolocation at the time the images were taken. Before starting the mosaic processing, 

setting options include inputting the white reference images and manufacturer-provided 

panel reflectance values to calibrate and correct image reflectance for each of the bands. 

Then Pix4Dmapper uses the Structure from Motion (SfM) algorithm to correct image 

perspectives and recognize where to stitch images together (Harwin & Lucieer, 2012). The 

high image overlap parameters set in the flight plan enable the software to recognize 

greater, similar areas of each image for higher chance of mosaic success. Pix4Dmapper 

processing options include georeferencing with ground control points (GCP) to improve 

the absolute location accuracy. Following Pix4D’s recommended number of five GCPs, 

black and white checkered boards were placed around the wheat fields and their 
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coordinates recorded using a Global Positioning System (GPS) connected to the RTK. The 

output orthomosaic images are GeoTiff files with reflectance values for each MicaSense 

band. 

3.2.4 Satellite Imagery 

In this study, PlanetScope satellite imagery was acquired from Planet Labs Inc. through 

submission and acceptance of the project proposal. Revisit times are almost daily 

worldwide with resampled spatial resolution of 3 m x 3 m. Image products available for 

this study are from the third-generation sensors, Dove-R, with four bands ordered by 

increasing wavelength: (1) blue, (2) green, (3) red, (4) NIR (Table 3-3). Products scenes 

are approximately 25 km x 23 km, and in the case of the three study fields all were in one 

image. Five satellite images were downloaded, matching the capture dates with the ground 

data collection dates to maintain consistency with the plant physiology and field conditions. 

The images were available for download as GeoTiff surface reflectance assets, 

orthorectified and radiometrically corrected based on the atmospheric conditions of the 

specific ground locations. In ArcGIS, the large scenes were cropped to smaller images of 

each study field for subsequent processing  

Table 3-3. Spectral characteristics of the PlanetScope Dove-R sensors. 

Band Name Band Range 

(nm) 

Centre Wavelength 

(nm) 

Bandwidth 

(nm) 

1 Blue 464-517 491 53 

2 Green 547-585 566 38 

3 Red 650-682 667 32 

4 NIR 846-888 867 42 
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3.2.5 Vegetation Indices 

MicaSense and PlanetScope reflectance images of each of their respective bands were 

exported into ArcGIS to extract crop canopy reflectance values at the sample points. With 

the “Raster Calculator” tool in PCI Geomatica Banff, the images were used to compute the 

VIs listed in Table 3-4 and exported as GeoTiff files. Using ArcGIS, the VI layer values 

were extracted at each sample point. As MicaSense has a red-edge band, the following 

three indices were included specifically for the UAV-data modelling: the chlorophyll index 

red-edge (CI_RE), normalized difference vegetation index (NDRE), and ratio vegetation 

index #2 (RVI2). Vis have been extensively studied for the purpose of crop monitoring and 

biophysical estimation, such as the normalized difference vegetation index (NDVI) (Jones 

& Vaughn, 2010; Zhu et al., 2008). Vis developed for chlorophyll estimation have been 

found to be related to plant nitrogen content as the photosynthetic enzyme, rubisco, 

encompasses the largest proportion of nitrogen in leaves (Marschner, 2011). Chlorophyll 

reflects green and NIR radiation and absorbs more than 70% of blue and red radiation 

(Daughtry et al., 2000).  
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Table 3-4. Vegetation indices used in the study. 

Index 1 Formula 2 Authors 

BNDVI (NIR – BLUE) / (NIR + BLUE) Wang et al. (2007) 

CI_RE (NIR/REDEDGE) – 1  Gitelson et al. (2003) 

ISR RED/NIR Fernandes et al. (2003) 

   

MSR 

(NIR/RED) − 1

√ NIR
RED

+ 1

 
Chen (1996) 

MTVI2 

1.8(NIR − GREEN) − 3.75(RED − GREEN)

√(2NIR + 1)2 − 6(NIR − 5√RED) − 0.5

 Bagheri et al. (2013) 

 

NDRE (NIR – REDEDGE) / (NIR+REDEDGE) 
Gitelson and Merzyak 

(1994) 

NDVI (NIR – RED) / (NIR + RED) Rouse et al. (1974) 

OSAVI 
1.6[(NIR – RED) / (NIR + RED + 0.16)] Rondeaux, Steven, and 

Baret (1996) 

RDVI 
NIR − RED

√NIR + RED
 

Roujean and Breon 

(1995) 

RGBVI (GREEN2 –  BLUE ∗  RED)/(GREEN2  + BLUE ∗ RED) Bendig et al. (2015) 

RVI NIR/RED Jordan (1969) 

RVI2 NIR/REDEDGE Kanke et al. (2012) 

WDRVI (0.2*NIR – RED) / (0.2*NIR + RED) Gitelson (2013) 

VDVI 
(2 ∗ GREEN − RED − BLUE)

(2 ∗ GREEN + RED + BLUE)
 Fuentes et al. (2012) 

1 Vegetation index abbreviations: BNDVI = blue normalized difference vegetation index; CI_RE = 

chlorophyll index red edge; ISR = infrared simple ratio; MSR = modified simple ratio; MTVI2 = modified 

triangular vegetation index; NDRE = normalized difference vegetation index; NDVI = normalized 

difference vegeta-tion index; OSAVI = optimized soil adjusted vegetation index; RDVI = renormalized 

difference vegetation index; RGBVI = red green blue vegetation index; RVI = ratio vegetation index; 

WDRVI = wide dynamic range vegetation index; VDVI = visible band difference vegetation index 

2 Formula variables: BLUE = blue reflectance; GREEN = green reflectance; RED = red reflectance; 

REDEDGE = red edge re-flectance; NIR = near-infrared reflectance 
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3.2.6 Canopy Nitrogen Weight Modelling 

Canopy nitrogen weight was calculated using the following method (Hansen & 

Schjoerring, 2003): 

𝐶𝑁𝑊 =  𝐿𝑁𝐶 x 𝑊𝑑 (1) 

where CNW is the canopy nitrogen weight (g/m2), LNC is the leaf nitrogen content (%), 

and Wd is the dry biomass weight (g/m2). CNW assumes the plants collected for biomass 

around the sample point, within the 0.5 m2 block, have the same amount of nitrogen. The 

total biomass per area was used as dry biomass of wheat plants at early growth stages 

(BBCH <60) since the leaves constitute most plant weight. Compared to other biophysical 

parameters such as plant nitrate content and plant nitrogen concentration (%), canopy 

nitrogen weight has been found to have greater correlation with spectral data (Li et al., 

2008). 

RF is an ensemble learning method suited for classification or regression of large, 

nonparametric datasets. Training data is randomly selected from the dataset based on a 

user-defined percentage; commonly 70% of a dataset is used to train a model. From the 

training data, many decision trees are generated by the algorithm to determine the 

variables’ importance in the regression. Decision trees split at nodes depending on the 

independent variable that contributes most to the dependent variable. Validation data is the 

remaining dataset not used in training, and the average output from decision trees is used 

to evaluate the model’s performance. Advantages of RF include quick computation, no 

overfitting from training data, and high performance in studies (Lee et al., 2020).  

Support Vector Machines (SVM) are supervised learning algorithms used for classification 

and regression. SVR uses a decision boundary, known as a hyperplane, to split classes of 

training data based on data characteristics. The data points closest to either side of the 

hyperplane are known as support vectors, used as training samples to determine the optimal 

hyperplane position from the midpoint of the margin. SVR performs modelling in a high-

dimensional space. SVR uses a kernel trick (i.e., Radial Basis Kernel) for nonlinear data, 

placing the data in a dimensional space to separate into groups based on radial distance 

between data points. SVR has advantages over simple linear regression models, as its 
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flexibility with nonparametric data has better modelling capabilities (James et al., 2013). 

Modelling for this study was written in R programming language using R Studio (Version 

4.0.3), an open-source and free Integrated Development Environment (IDE) (Rstudio, 

2020). For RF the “randomForest” package was used, and for SVR the “e1071” package.  

Modelling was performed separately for MicaSense-based and PlanetScope-based sensor 

variables for comparison of UAV and PlanetScope data results. MicaSense models used 

all five MicaSense bands, all 14 Vis listed in Table 1, plant height, LAI, soil moisture, 

topographic metrics, and the dependent variable was the canopy nitrogen weight. 

PlanetScope models used all four PlanetScope bands, 11 Vis listed in Table 1 not including 

the red-edge based indices (CI_RE, NDRE, RVI2), plant height, LAI, soil moisture, 

topographic metrics, and the dependent variable was the canopy nitrogen weight. 

Measurements of variables at each sample point were averaged to a 1 m2 scale. Datasets 

were randomly divided into 70% training set and 30% validation set. The quality of the 

models was assessed using the coefficient of determination (R2) and Root Mean Square 

Error (RMSE), calculated using Equation (2) and Equation (3), respectively (Palaniswamy, 

2006): 

𝑅2  =  1 – 
∑(𝑦𝑖  – �̂�𝑖)

2

∑(𝑦𝑖  – �̅�𝑖)
2
 (2) 

where yi is the observed value, �̂�I is the predicted value, and �̅� is the mean of the 

observed values of the dataset; and: 

𝑅𝑀𝑆𝐸 = 
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 (3) 

where �̂�I is the predicted canopy nitrogen weight value (g/m2), yi is the observed canopy 

nitrogen weight value (g/m2), n is the number of observations, and I is the index of 

summation in increments of one.  
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3.3 Results 

3.3.1 Nitrogen Statistics 

Overall, canopy N weight for the wheat fields increased in variation during the fieldwork 

season (Figure 3-4). There was a slight decrease in canopy N weight from 6 May to 12 

May, likely due to a several days of continuous rainfall between samplings. Rainfall can 

lead to leaching of soil N from areas around plant roots, reducing plant N utilization while 

the biomass continued to increase (Justes et al., 1994; Li et al., 2008). After 12 May, the 

farmer applied fertilizer to the wheat field once before 20 May and consequently the canopy 

N weight increased the following weeks. There is an outlier on the 20 May from a sample 

point and was removed from the dataset for modelling.  

 

Figure 3-4. Variation of canopy nitrogen weight (g/m2) as a function of the date of 

field measurements during the 2020 growing season. An outlier is represented by a 

dot on the graph. 
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3.3.2 Soil Statistics 

A Vittellus soil health analysis (A&L, 2020) was conducted the study fields, producing the 

following mean values: soil nitrate-nitrogen of 46.81 ppm, mineralizable nitrogen of 29.17 

ppm, and water-extracted soil nitrate of 44.38 ppm. A&L Canada Soil Health Index ratings 

were in the “Good-High” category, and soil textural class for the fields was predominantly 

sandy loam.  

3.3.3 Regression Models with All Parameters 

3.3.3.1 UAV Regression Models 

For the UAV regression models, the first modelling step used all 28 variables including: 

the five MicaSense band reflectances, 14 Vis, plant height, soil moisture, LAI, topographic 

slope, aspect, profile curvature, plan curvature, TWI #1, and TWI #2. Single-date and 

combinations of multi-date datasets were tested to evaluate the temporal effect on models. 

70% of each dataset was used to calibrate the RF and SVR models, before the remaining 

30% was used to validate. From the calibrated models (Table 3-5), RF had better 

performance in comparison to SVR in terms of higher R2 and lower RMSE values overall. 

The top model performance was RF with the combination of 12, 20, 27 May resulting in 

R2 of 0.96 and RMSE of 1.07 g/m2. Although 20, 27 May, 4 June model had a slightly 

higher R2 of 0.97, RMSE was considerably greater at 1.76 g/m2. Of the RF and SVR 

models, 20 May had the lowest performance. Of the SVR models, 12, 20, 27 May model 

had the best performance at R2 of 0.87 and RMSE of 2.07 g/m2.  
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Table 3-5. Statistics for the calibration of the UAV canopy nitrogen regression 

models with 28 variables as a function of the date and modelling approach (RF or 

SVR)1. 

Date Model R2 RMSE (g/m2) (n) 

5 May 
RF 0.91 0.51 22 

SVR 0.78 0.70 22 

12 May 
RF 0.92 0.31 33 

SVR 0.80 0.46 33 

20 May 
RF 0.85 1.12 33 

SVR 0.58 1.89 33 

27 May 
RF 0.95 1.63 22 

SVR 0.84 2.43 22 

4 June 
RF 0.91 2.36 33 

SVR 0.81 3.00 33 

5, 12 May 
RF 0.95 0.55 56 

SVR 0.77 0.84 56 

12, 20 May 
RF 0.94 0.88 67 

SVR 0.80 1.53 67 

20, 27 May 
RF 0.95 1.37 56 

SVR 0.79 2.87 56 

27 May, 4 June 
RF 0.95 2.28 56 

SVR 0.76 3.86 56 

5, 12, 20 May 
RF 0.92 0.87 89 

SVR 0.79 1.40 89 

12, 20, 27 May 
RF 0.96 1.07 89 

SVR 0.87 2.07 89 

20, 27 May, 4 June 
RF 0.97 1.76 89 

SVR 0.85 3.79 89 

1 All models are significant at p-value <0.001. 

The UAV models were then applied to the validation datasets (Table 3-6). All single date 

models for RF and SVR had low performance. This is likely due to the small number of 

sample point data from single date sets resulting in the calibration model not encompassing 

normal field data variation. The top performing model was RF and 12, 20, 27 May data 

resulting in R2 of 0.74 and RMSE of 2.76 g/m2. Overall, RF had better performance than 

SVR and multi-date models had better performance than single-date models. 

  



62 

 

Table 3-6. Statistics for the validation of the UAV canopy nitrogen models with 28 

variables as a function of the date and modelling approach (RF or SVR). 

Date Model R2 p-value1 RMSE (g/m2) (n) 

5 May 
RF 0.18 NS 0.71 10 

SVR 0.06 NS 0.71 10 

12 May 
RF 0.07 NS 0.95 15 

SVR 0.14 0.1 0.79 15 

20 May 
RF 0.05 NS 2.28 15 

SVR 0.18 0.1 2.14 15 

27 May 
RF 0.25 0.1 4.35 10 

SVR 0.03 NS 5.05 10 

4 June 
RF 0.20 0.1 4.35 15 

SVR 0.06 NS 5.66 15 

5, 12 May 
RF 0.41 <0.001 0.99 24 

SVR 0.52 <0.001 0.81 24 

12, 20 May 
RF 0.66 <0.001 1.72 29 

SVR 0.71 <0.001 1.56 29 

20, 27 May 
RF 0.67 <0.001 2.26 24 

SVR 0.55 <0.001 2.38 24 

27 May, 4 June 
RF 0.45 <0.001 5.80 24 

SVR 0.30 0.001 6.44 24 

5, 12, 20 May 
RF 0.37 <0.001 1.58 39 

SVR 0.52 <0.001 1.32 39 

12, 20, 27 May 
RF 0.74 <0.001 2.76 39 

SVR 0.61 <0.001 3.50 39 

20, 27 May, 4 June 
RF 0.74 <0.001 4.12 39 

SVR 0.71 <0.001 4.46 39 

1 NS = non-significant 

3.3.3.2 PlanetScope Regression Models 

For the PlanetScope regression models, 24 variables were used in the first step including: 

the four PlanetScope band reflectances, 11 Vis, plant height, soil moisture, LAI, 

topographic slop, aspect, profile curvature, plan curvature, TWI #1, and TWI #2. To test 

temporal effect on the models, single-date and multi-date dataset combinations were used. 

Taking 70% of the dataset to calibrate RF and SVR models, overall RF had better 

performance to SVR with higher R2 and lower RMSE values (Table 3-7). Of all models, 

RF with the combination of 12, 20, 27 May data had best performance with R2 of 0.96 and 
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RMSE of 1.10 g/m2. Of the SVR models alone, 12, 20, 27 May model had highest 

performance with R2 of 0.87 and RMSE of 2.12 g/m2. 

Table 3-7. Statistics for the calibration of the PlanetScope canopy nitrogen models 

with 24 variables as a function of the date and the modelling approach (RF or 

SVR)1. 

Date Model R2 RMSE (g/m2) (n) 

5 May 
RF 0.94 0.40 33 

SVR 0.82 0.60 33 

12 May 
RF 0.92 0.30 33 

SVR 0.71 0.49 33 

20 May 
RF 0.85 1.23 33 

SVR 0.52 2.03 33 

27 May 
RF 0.90 1.89 33 

SVR 0.60 3.41 33 

4 June 
RF 0.91 2.23 33 

SVR 0.70 3.80 33 

5, 12 May 
RF 0.95 0.55 67 

SVR 0.76 0.83 67 

12, 20 May 
RF 0.94 0.78 67 

SVR 0.78 1.48 67 

20, 27 May 
RF 0.94 1.27 67 

SVR 0.75 2.57 67 

27 May, 4 June 
RF 0.94 1.93 67 

SVR 0.74 3.87 67 

5, 12, 20 May 
RF 0.93 0.75 100 

SVR 0.74 1.34 100 

12, 20, 27 May 
RF 0.96 1.10 100 

SVR 0.87 2.12 100 

20, 27 May, 4 June 
RF 0.95 1.87 100 

SVR 0.83 3.68 100 

1 All models are significant at p-value <0.001. 

Next, the PlanetScope models were applied to the remaining 30% of datasets for validation 

(Table 3-8). Of all the models, single-date 20 May and 4 June had very low performance 

for both RF and SVR. Comparing all RF to SVR models, RF usually had better 

performance than SVR except in the single date models of 5 May, 12 May, and 20 May 

and the multi-date model with the three dates combined. The top performing model was 

RF with 12, 20, 27 May data resulting in R2 of 0.83 and RMSE of 1.77 g/m2. 
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Table 3-8. Statistics for the validation of PlanetScope canopy nitrogen models with 

24 variables as a function of the date and the modelling approach (RF or SVR). 

Date Model R2 p-value1 RMSE (g/m2) (n) 

5 May 
RF 0.44 0.001 0.92 15 

SVR 0.51 0.001 0.90 15 

12 May 
RF 0.45 0.001 0.62 15 

SVR 0.78 <0.001 0.53 15 

20 May 
RF 0.05 NS 2.24 15 

SVR 0.38 0.001 1.90 15 

27 May 
RF 0.63 <0.001 2.84 15 

SVR 0.50 0.001 3.40 15 

4 June 
RF 0.07 NS 6.24 15 

SVR 0.05 NS 5.54 15 

5, 12 May 
RF 0.44 <0.001 1.06 29 

SVR 0.29 0.001 1.08 29 

12, 20 May 
RF 0.79 <0.001 1.37 29 

SVR 0.71 <0.001 1.03 29 

20, 27 May 
RF 0.63 <0.001 3.24 29 

SVR 0.50 <0.001 3.79 29 

27 May, 4 June 
RF 0.63 <0.001 4.77 29 

SVR 0.63 <0.001 4.94 29 

5, 12, 20 May 
RF 0.50 <0.001 1.73 44 

SVR 0.68 <0.001 1.43 44 

12, 20, 27 May 
RF 0.83 <0.001 1.77 44 

SVR 0.67 <0.001 3.16 44 

20, 27 May, 4 June 
RF 0.75 <0.001 3.64 44 

SVR 0.74 <0.001 4.59 44 

1 NS = non-significant 

3.3.4 Variable Importance Plots 

The top performing UAV and PlanetScope regression models with all variables were both 

from RF and multi-date combination of 12, 20, 27 May datasets. Modelling of RF in 

Rstudio can be visualized with a variable importance plot using the “varImpPlot()” 

function. The higher a variable’s IncNodePurity value is, the more important the 

explanatory variable is in the prediction of canopy nitrogen weight. In the UAV model plot 

(Figure 3-5) with 28 variables, plant height was the most important predictor by far then 

followed by LAI. Red-edge Vis (NDRE, RVI2, CI_RE) were the third, fourth and sixth 

most important predictor variables respectively. Of the MicaSense band reflectances, NIR 
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was the most important. Soil moisture also appears to be among the top group of important 

variables with a greater difference in IncNodePurity compared to the other variables in the 

plot below. Of the topographic metrics, TWI #2 and TWI #1 held more importance than 

the rest.  

 

Figure 3-5. Variance Importance plot produced by the UAV RF regression model of 

data from 12, 20, and 27 May and 28 variables, using the function varImpPlot() in 

Rstudio. Higher IncNodePurity values indicate more impact on canopy nitrogen 

estimation. (1) Please refer to Table 1 for the full name of vegetation indices. 

TWI_1, total wetness index #1; TWI_2, total wetness index #2. 

The PlanetScope RF regression model plot with 24 variables indicates height as the most 

important predictor for canopy nitrogen weight (Figure 3-6). Of the four PlanetScope 

band reflectances, the blue band was most important and second-most important overall 

of all variables followed closely by LAI. Overall, Vis and PlanetScope bands were 
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among the most important variables while topographic metrics and soil moisture were the 

least important.  

 

Figure 3-6. Variance Importance plot produced by the PlanetScope RF regression 

model of data from 12, 20, and 27 May and 24 variables, using the function 

varImpPlot() in Rstudio. Higher IncNodePurity values indicate more impact on 

canopy nitrogen estimation. (1) Please refer to Table 1 for the full name of 

vegetation indices. TWI_1, total wetness index #1; TWI_2, total wetness index #2. 

3.3.5 Regression Models with Selected Parameters 

3.3.5.1 UAV Regression Models 

From the variable importance plot of the best performing UAV regression model using 12, 

20, 27 May data, combinations of variables were tested in RF and SVR models. Evaluating 

based on thresholds of variable importance, as shown in Figure 3-5, we selected variable 

groups for the top 7, 8, 9, 13, and 16 variable groups. An additional group containing only 
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MicaSense band reflectances and Vis was included for comparison as common modelling 

in other studies use only spectral variables (Sishodia et al., 2020). 70% of each variable 

group dataset was used for model calibration (Table 3-9). Overall, RF had better 

performance than SVR in terms of higher R2 and lower RMSE values. All variable group 

models using RF had a high R2 of 0.96 except for the spectral-only variable group with 

lower R2. RF models’ RMSE values were also very close within <0.10 g/m2 difference, the 

lowest being top 9 and top 13 variable groups at 1.07 g/m2. Again, the RF spectral-only 

variable group had poorer performance in comparison to other RF models, as its RMSE 

value is significantly higher. The SVR spectral-only variable group performed poorly 

compared to all the other SVR models. Of the SVR models, the Top 7 variable group had 

the best performance with R2 of 0.86 and RMSE of 2.05 g/m2. Top 8, 9, 13, and 16 variable 

SVR models have only slightly lower R2 and higher RMSE values compared to the best 

SVR model. 

Table 3-9. Statistics for the calibration of the canopy nitrogen model with 12, 20, 27 

May MicaSense data and different combinations of variables (n = 89)1. 

Input Variables Model Number of Variables R2 RMSE (g/m2) 

Spectral-only: All VIs & 5 MicaSense bands 
RF 19 0.92 1.50 

SVR 19 0.66 3.04 

Top 7: Height, LAI, NDRE, RVI2, BNDVI, 

CI_RE, NIR  

RF 7 0.96 1.15 

SVR 7 0.86 2.05 

Top 8: Top 7 + Soil Moisture 
RF 8 0.96 1.12 

SVR 8 0.85 2.21 

Top 9: Top 8 + RDVI 
RF 9 0.96 1.07 

SVR 9 0.85 2.13 

Top 13: Top 9 + OSAVI, WDRVI, VDVI, RGBVI 
RF 13 0.96 1.07 

SVR 13 0.85 2.10 

Top 16: Top 13 + ISR, RVI, MTVI2 
RF 16 0.96 1.11 

SVR 16 0.85 2.11 

1 All models are significant at p-value <0.001. 

The calibrated models were applied to the remaining 30% of datasets for validation (Table 

3-10). In the validation models, SVR had better performance than RF except for the 

spectral-only model. The best performing model is SVR with top 7 variables, resulting in 
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R2 of 0.80 and RMSE of 2.62 g/m2. Compared to the best model other SVR models had 

close performance, but as more variables were added the R2 had lower values. 

Table 3-10. Statistics for the validation of the canopy nitrogen model with 12, 20, 27 

May MicaSense data and different combinations of variables (n = 39)1. 

Input Variables Model Number of Variables R2 RMSE (g/m2) 

Spectral-only: All VIs & 5 MicaSense bands 
RF 19 0.50 3.83 

SVR 19 0.48 3.87 

Top 7: Height, LAI, NDRE, RVI2, BNDVI, 

CI_RE, NIR 

RF 7 0.73 2.81 

SVR 7 0.80 2.62 

Top 8: Top 7 + Soil Moisture 
RF 8 0.73 2.78 

SVR 8 0.78 2.82 

Top 9: Top 8 + RDVI 
RF 9 0.74 2.77 

SVR 9 0.77 2.80 

Top 13: Top 9 + OSAVI, WDRVI, VDVI, 

RGBVI 

RF 13 0.75 2.72 

SVR 13 0.77 2.76 

Top 16: Top 13 + ISR, RVI, MTVI2 
RF 16 0.74 2.73 

SVR 16 0.76 2.81 

1 All models are significant at p-value <0.001. 

3.3.5.2 PlanetScope Regression Models 

For the UAV regression models using single and multi-date datasets, the best performing 

combination was the model using 12, 20, 27 May data with RF. Evaluating by thresholds 

of variable importance from Figure 6, the selected variable groups for futher model testing 

included top 6, 10, 13, 17, and a group containing only PlanetScope band reflectances and 

VIs. 70% of each variable group dataset was used for model calibration (Table 3-11). Of 

the calibration models, all RF models had the same high R2 value with low RMSE 

compared to all SVR models. The best model performance was RF with top 6 variables 

with an R2 at 0.96 with RMSE 1.18 g/m2. For SVR models, the best performing was the 

combination of top 6 variables resulting in R2 of 0.84 and RMSE of 2.31 g/m2. From the 

calibration models, the spectral-only SVR model had the poorest performance at R2 of 0.77 

and RMSE of 2.81 g/m2. 

  



69 

 

Table 3-11. Statistics for the calibration of the PlanetScope canopy nitrogen model 

with 12, 20, 27 May data and different combinations of variables (n = 100)1. 

Input Variables Model 
Number of 

Variables 
R2 

RMSE 

(g/m2) 

Spectral-only: VIs & 4 PlanetScope bands 
RF 15 0.96 1.21 

SVR 15 0.77 2.81 

Top 6: Height, BLUE, LAI, BNDVI, RDVI, 

OSAVI 

RF 6 0.96 1.18 

SVR 6 0.84 2.31 

Top 10: Top 6 + ISR, MTVI2, NIR, RED 
RF 10 0.96 1.20 

SVR 10 0.84 2.35 

Top 13: Top 10 + MSR, GREEN, RBGVI 
RF 13 0.96 1.21 

SVR 13 0.81 2.45 

Top 17: Top 13 + RVI, VDVI, NDVI, 

WDRVI 

RF 17 0.96 1.26 

SVR 17 0.82 2.63 

1 All models are significant at p-value <0.001.  

The remaining 30% of variable datasets were used for validation models (Table 3-12). 

The poorest model performance for RF and SVR were from the spectral-only variable 

group, resulting in the lowest R2 and highest RMSE values out of all tested. SVR had 

better performance compared to RF in the spectral-only, top 6, and top 10 groups, but for 

top 13 and top 17 RF was better. The best performing model is RF with top 17 variables 

with a R2 of 0.92 and RMSE of 1.75 g/m2.  

Table 3-12. Statistics for the validation of the PlanetScope canopy nitrogen model 

with 12, 20, 27 May data and different combinations of variables (n = 44)1. 

Input Variables Model 
Number of 

Variables 
R2 

RMSE 

(g/m2) 

Spectral-only: VIs & 4 PlanetScope bands 
RF 15 0.66 3.20 

SVR 15 0.69 3.09 

Top 6: Height, BLUE, LAI, BNDVI, RDVI, 

OSAVI 

RF 6 0.72 2.90 

SVR 6 0.85 2.17 

Top 10: Top 6 + ISR, MTVI2, NIR, RED 
RF 10 0.83 2.16 

SVR 10 0.84 2.06 

Top 13: Top 10 + MSR, GREEN, RBGVI 
RF 13 0.87 2.20 

SVR 13 0.86 2.39 

Top 17: Top 13 + RVI, VDVI, NDVI, 

WDRVI 

RF 17 0.92 1.75 

SVR 17 0.91 1.85 

1 All models are significant at p-value <0.001.  
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3.3.6 Crop Nitrogen Prediction Maps 

To create the crop nitrogen prediction maps, raster layers of each variable was required. 

The VI raster layers were created using the raster calculator in PCI Geomatica Banff from 

the MicaSense band rasters mosaicked from Pix4Dmapper. To extract raster layers for 

height, the Phantom 4 RTK flight processed in Pix4Dmapper include the option for a digital 

surface model (DSM) output. The DSM captures the natural and built features of the 

environment. By subtracting the DEM raster from the DSM raster pixel values using 

ArcGIS raster calculator, the output raster layer has the height data of the crop (Wu et al., 

2017).  

Generating an LAI raster layer is a more involved process. Based on methodology 

proposed by Song et al. (2020) using a simulated observation of point cloud Multiview 

angle (SOPC-M) designed to obtain 3D spatial distribution of vegetation and bare ground 

points to calculate gap fraction then crop effective LAI (LAIe) from a UAV-based 3D point 

cloud dataset. In ArcGIS, the point data layer was converted to a raster layer using the 

“Point to Raster” conversion tool to a 2 m x 2 m resolution. From the linear regression 

equation, the digital hemispherical photography (DHP) LAIe could be calculated using the 

ArcGIS raster layer to create the final LAI raster used in the model. For field W3, the LAI 

layer processing area error unfortunately only covered 12 of the 16 sample points, thus the 

final map produced does not cover all sample points.  

Prior to running the regression models in R, the raster layers need to have the same 

resolution and extent for the functions to stack them. All raster layers were run through 

ArcGIS “Resample” tool to 1 m x 1 m resolution, as the canopy nitrogen weight variable 

is based on a 1 m2 area. Resampling was conducting with the bilinear technique, which is 

a bilinear interpolation and determines the new value of a cell based on a weighted distance 

average of the four nearest input cell centers. As the LAI raster extent was the smallest of 

all rasters, it was used as the output extent reference layer for the ArcGIS “Clip Raster” 

tool with the selected option to maintain clipping extent. The columns and rows of the 

output raster are adjusted, and pixels resampled to match the reference layer exactly. Next, 

the ArcGIS “Extract by Mask” tool was used to extract the cell values specifically where 
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the LAI raster extent pixels held values greater than zero. Thus, each variable layer was 

prepared for the R modelling.  

For the UAV best performing model, SVR with top 7 variables included height, LAI, 

NDRE, RVI2, BNDVI, CI_RE, and NIR. In R, the “raster”, “rgdal”, and “rasterVis” 

libraries were used to generate the final prediction map outputs. The variable raster layers 

were stacked using the “raster::stack” function, and “raster::predict” tool was used with the 

selected UAV-based SVR model using top 7 variables. The resulting prediction rasters for 

each field were exported as GeoTiff files into ArcGIS to create the final prediction maps 

with 1 m x 1 m resolution (Figure 3-7). The low and high canopy nitrogen weight areas are 

displayed in red and green respectively for distinct contrast between the nitrogen levels. 

From the prediction rasters, the predicted canopy nitrogen weight values around each 

sample point were extracted and compared to the measured values in-field. The resulting 

RMSE for W1, W2, and W3 were 4.27, 2.32, and 3.08 g/m2 respectively.  

The satellite best performing model was using RF with top 17 variables: height, LAI, 11 

VIs, and the four PlanetScope bands. Following the same processing steps as the UAV-

based model, the satellite variable raster images were processed to have the same extent 

and 1 m x 1 m resolution (Figure 3-7). As the satellite images began with 3 m x 3 m 

resolution, much larger compared to the UAV images, the resulting raster layers have a 

smoothed appearance. The final prediction rasters for each field are displayed as maps in 

Figure 8 with 1 m x 1 m resolution. From the prediction rasters, the predicted canopy 

nitrogen weight values around each sample point were extracted and compared to the 

measured values in-field. The resulting RMSE for W1, W2, and W3 were 3.12, 1.79, and 

3.08 g/m2 respectively. 

  



72 

 

  

  

  

 

Figure 3-7. Nitrogen prediction maps of wheat fields: from UAV-based models for 

a) W1, b) W2, and c) W3 fields; from satellite-based models for d) W1, e) W2, and f) 

W3 fields.  
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From the maps in Figure 3-7, there are differences in the spatial distribution and values of 

CNW. It appears the UAV maps show more areas with low canopy nitrogen weight, while 

PlanetScope shows more areas with high CNW. This is likely due to the resampling 

method, as the UAV’s centimeter-level image resolution includes spectral data of the 

visible soil between crop rows. While for PlanetScope images with coarser meter-level 

resolution, the pixel values average towards the spectral values of the crop rather than the 

soil.  

The UAV-based nitrogen prediction maps may have lower performance compared to 

satellite-based maps because of the volatile weather conditions week of May 27th 

fieldwork. The UAV was flown on different dates between May 26th – May 29th for each 

field whenever the weather was suitable, and the crop spectral characteristics may have 

changed. Whereas the satellite images for the three fields for May 27th were all from the 

same date and present a more consistent relationship with the fieldwork data. 

 

3.4 Discussion 

For this study, RF and SVM regression methods were used to predict canopy nitrogen 

weight of wheat using UAV Micasense band reflectances, PlanetScope band reflectances, 

selected VIs, plant height, LAI, soil moisture, and topographic metrics. The models created 

were grouped by UAV-based and satellite-based data.  

For the UAV RF and SVR regression models, calibration was conducted with 28 variables 

from single and multi-date datasets. Evaluating the validation models of each dataset, the 

performance of UAV single-date models was poor with R2 values at most 0.25 and overall 

non-significant results. Combining UAV multi-date data yielded better results, with the 

best performance from the RF three-date model 12, 20, 27 May resulting in R2 of 0.74 and 

RMSE of 2.76 g/m2. For PlanetScope RF and SVR models, calibration of models used 24 

variables for single and multi-date datasets. Of the validation models, single-date models 

20 May and 4 June had the lowest performance. However, the other PlanetScope single-

date models performances overall were much better compared to UAV single-date models. 

In general, PlanetScope multi-date models did not have significantly better results than its 
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single-date models. The best performing PlanetScope model was from three-date 12, 20, 

27 May using RF at R2 of 0.83 and RMSE 1.77 g/m2. Both the UAV and satellite best 

models were from 12, 20, 27 May data, during which the wheat crops were in BBCH 23-

41 growth stages mainly defined by tillering, stem elongation, and the beginning of the 

booting stage. As noted by Hawkesford (2017), the application of nitrogen fertilizer during 

these early growth stages before flowering is most conducive to efficient nitrogen use and 

yield response. To be able to accurately estimate nitrogen levels of the crop during early 

growth stages will be most beneficial for farmers.  

In the RF variance importance plot of the best performing UAV model, of all variables 

plant height was the most important predictor of canopy nitrogen weight. Song & Wang 

(2019) have also noted that plant height is useful in estimating phenology, biomass, and 

yield in addition to nitrogen uptake in wheat. On the plot, LAI was the second most 

important predictor of canopy nitrogen weight. LAI has been used extensively in studies 

to predict crop chlorophyll content, biomass, and yield successfully (Reisi et al., 2020; 

Song et al., 2021). The study by Zhao et al. (2014) found a significant positive relationship 

between LAI and differences in crop nitrogen content across wheat growth stages. The gap 

fraction method of calculating LAI is more accurate during earlier growth stages of a crop 

when the canopy is not so dense, allowing for contrast between the vegetation and soil or 

vegetation and sky images (Song & Wang, 2019). Among the VI’s used in the model, the 

red-edge VIs (NDRE, RVI2, CI_RE) were amongst the most important. The red-edge 

region (680-800 nm) has been shown to encompass sharp change in the canopy reflectance 

and can be used to identify important biophysical parameters of the crop. Nitrogen levels 

have shown the sensitivity of the red-edge region in estimating leaf chlorophyll content 

due to the high absorption of red radiation and high reflectance of NIR radiation (Reisi 

Gahrouei et al., 2020; Schlemmer et al., 2013). Of the MicaSense bands individually, the 

NIR band was of highest importance in the model while other individual bands had little 

effect. Soil moisture also appeared as a variable of high importance, and subsequent 

variables on the plot had noticeably lower importance. Studies have noted the importance 

of soil moisture in soil nitrogen mineralization, crop nitrogen uptake, and utilization 

(Mulvaney et al., 2006; Tremblay et al. 2012). Of the topographic metrics the topographic 

wetness indices were most important, while the remaining metrics had little effect. 
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In the RF variance importance plot of the best performing satellite model, similar to the 

UAV model, plant height was the most important predictor of canopy nitrogen weight with 

LAI following closely. Interestingly, the PlanetScope blue band was the second most 

important variable. As PlanetScope blue band has greater width compared to MicaSense, 

perhaps the wider bandwidth captured a change of canopy reflectance in the blue-edge 

region (480-517nm) which has been noted before in the study by Wei et al. (2008) to be 

related to crop nitrogen. Other PlanetScope bands in the model had varying levels of 

importance interspersed amongst the 11 VIs used. On the plot, other non-spectral variables 

of soil moisture and topographic metrics were of least importance to the model.  

From the UAV-based RF variance importance plot, groups of variables were selected for 

testing in models. Groups of the top 7, 8, 9 13, 16, and spectral-only variables were 

modeled, with the group of top 7 variables SVR model performing the best with R2 of 0.80 

and RMSE of 2.62 g/m2. Top 7 variables included plant height, LAI, all three red-edge VIs, 

BNDVI, and MicaSense NIR band. Comparing to best models from studies by Asataoui et 

al. (2021), Jiang et al. (2019), and Zheng et al. (2018) using UAV-based spectral variables 

to estimate wheat nitrogen content, their models had lower R2 values ranging from 0.76-

0.63 and greater RMSE values. With the UAV-based best model in this study, significantly 

lower RMSE is a major advantage in reducing costs of nitrogen fertilizer.  

The satellite-based variance importance plot was used to select variable groups for model 

testing including top 6, 10, 13, 17, and spectral-only variables. The RF model group of top 

17 variables had the best performance with R2 of 0.92 and RMSE of 1.75 g/m2. Height, 

LAI, all four PlanetScope bands, and total 11 VIs were variables in the best performing 

model. For both UAV and satellite best performing selected variable models, plant height 

and LAI are the only non-spectral variables. With methods of deriving height and LAI of 

a wheat crop field from the UAV Phantom 4 RTK imagery, all variables in the top models 

can be obtained from in-situ, non-destructive, remote sensing data. 

For both UAV and satellite spectral-only variable groups, results were poor with R2 values 

<0.50 and significantly higher RMSE values compared to other tested variable groups. This 

is consistent with the studies by Astaoui et al. (2021) and Schirrmann et al. (2016) noting 
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within wheat crops, UAV imagery was limited for observing nitrogen status but had good 

performance in monitoring biophysical parameters. The UAV validation spectral-only 

model compared to the best performing top 7 variable model, RMSE dropped by 32%. In 

the satellite validation spectral-only model compared to its best performing top 17 variable 

model, RMSE dropped by 45%.  

In the final validation of canopy nitrogen models with variable combinations, UAV SVR 

models mostly had greater R2 values, but greater RMSE values as well compared to RF 

models. In the UAV spectral-only variable group models, RF had better results than SVR. 

Considering studies with spectral-only variables for crop nitrogen models, the results are 

consistent with RF yielding better nitrogen level prediction compared to SVR models (Liu 

et al. 2016; Lee et al. 2020; Zha et al. 2020). Only in the UAV best performing model of 

top 7 variables was SVR performance better in both a higher R2 value and lower RMSE 

compared to RF. Of the satellite variable combination models, SVR had better performance 

than RF except for the top 13 and 17 variable groups. The best performing satellite model 

was RF with the top 17 variable group. Although it appears difficult to determine if RF or 

SVR models are better when built with non-spectral and spectral variables together, 

ultimately the ideal result is a model which can most accurately predict canopy nitrogen in 

wheat. In both the UAV and satellite models with different variable combinations, overall 

the top variable groups have good performances. In comparison to studies with spectral-

only variable models, the variable combination models in this study all have lower RMSE 

values. In the context of nitrogen estimation and practical application, lower RMSE (g/m2) 

in models is most beneficial for fertilizer management recommendations.  
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3.5 Conclusion 

In this study, machine learning regression methods were tested to predict wheat canopy 

nitrogen weight using UAV MicaSense band reflectances, PlanetScope band reflectances, 

associated VIs, plant height, LAI, soil moisture, and topographic metrics. For UAV models 

using 28 variables, the combination of 12, 20, 27 May data with the RF validation model 

produced the best results with R2 of 0.74 and RMSE of 2.76 g/m2. From the model’s 

variable importance plot, the top 7, 8, 9, 13, 16, and spectral-only variable groups were 

tested. The best validation model used SVR with the top 7 variables, which included plant 

height, LAI, four VIs, and the MicaSense NIR band. For the PlanetScope models using 24 

variables, the best performing model was RF with 12, 20, 27 May data resulting in R2 of 

0.83 and RMSE of 1.77 g/m2. Based on the model’s variable importance plot the top 6, 10, 

13, 17, and spectral-only variable groups tested. The validation model with the best 

performance was RF using top 17 variables including height, LAI, all four PlanetScope 

bands, and 11 VIs.  

A common limitation of in-situ agricultural models including those developed in this study 

are the empirical nature, and applicability can be limited to the dataset they are built and 

validated upon. Each field and growing season has different conditions and factors that 

affect plant growth, so models will need further testing to determine their effectiveness in 

precision agriculture methods. PlanetScope satellite constellation has also launched and a 

third generation of sensors in 2020 known as SuperDove with the potential of capturing 

imagery with eight spectral bands including a red-edge band. Future work can consider 

further testing satellite-based nitrogen prediction models including red-edge VI variables. 
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Chapter 4  

4 Conclusion 

This chapter presents the thesis summary, responses for the objectives of this thesis, 

limitations of this research, and the possibilities of future studies. 

4.1 Summary 

Precision agriculture is an important management technique and field of research to 

increase productivity, minimize environmental impacts and the cost of production. With 

the continuous advancement of remote sensing technologies, processing methods, and 

computing capabilities, new estimation models for crop nitrogen can be developed. It is 

well understood that the growth of a plant is affected by many factors such as nutrient 

supply, plant physiology, soil conditions, field topology, and water availability. Using the 

remotely sensed spectral properties, plant biophysical parameters, and environmental 

variables in canopy nitrogen estimation models can lead to more effective fertilizer 

management methods.  

In Chapter 2, RF and SVM regression methods were used to predict canopy nitrogen weight 

of corn. Model variables included UAV MicaSense individual band reflectances, 

associated VIs, plant height, topographic metrics, and soil metrics. Single-date and multi-

date data were tested, with the best model’s variable importance plot used to identify 

groups of top variables related to corn canopy nitrogen weight. Further model development 

allowed for evaluating the benefit of using both spectral and non-spectral variables 

together, which types of variables are most important, and how they can be applied to 

precision agriculture methods feasibly.  

In Chapter 3, RF and SVM regression methods were used to predict canopy nitrogen weight 

of wheat. Variables in the models included UAV Micasense band reflectances, PlanetScope 

band reflectances, selected VIs, plant height, LAI, soil moisture, and topographic metrics. 

The models created were grouped by UAV-based and satellite-based data. Combinations 

of multi-date data and single date data were used for model testing. The best performing 

UAV-based and satellite-based models’ variable importance plots were used to select 
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groups of top variables related to wheat canopy nitrogen weight. Select spectral and non-

spectral variable groups were evaluated, and the most important variables each for UAV-

based and satellite-based models were determined. Nitrogen prediction maps were then 

created for each wheat field constructed solely from remotely sensed data. 

4.2 Conclusions 

The research objectives for this thesis were completed, and responses to each are as 

follows: 

(i) In both Chapters 2 and 3 for corn and wheat respectively, machine learning RF 

and SVM regression models were used to predict canopy nitrogen weight. First 

by testing single-date and multi-date data in RF and SVM models, the best 

temporal periods for nitrogen estimation were determined for each crop. In 

corn, the combination of three dates (8, 15, 24 June) had the best model 

performance of R2 0.75 and RMSE 2.29 g/m2 around BBCH 10-31. In wheat, 

both UAV-based and satellite-based best performing models were from the 

combination of three dates (12, 20, 27 May) at R2 0.74, RMSE 2.76 g/m2 and 

R2 0.83, RMSE 1.77 g/m2 respectively around BBCH 23-41. Using the variable 

importance plots from these multi-date data models, groups of spectral-only and 

both spectral/non-spectral variables together were tested in RF and SVM 

regression models.  

(ii) In Chapter 2 estimating canopy nitrogen weight of corn, the RF model using 

top 15 variables performed best with R2 of 0.73 and RMSE of 2.21 g/m2. Of the 

15 variables, plant height and profile curvature were the only non-spectral, then 

spectral included 10 VIs and three MicaSense bands (blue, red, green).  

In Chapter 3 estimating canopy nitrogen weight of wheat, models were created 

separately from UAV-based and satellite-based data. For UAV-based, the 

group of top 7 variable SVR model performing the best with R2 of 0.80 and 

RMSE of 2.62 g/m2. Top 7 variables included plant height, LAI, all three red-

edge VIs, BNDVI, and MicaSense NIR band. For satellite-based, the RF model 

group of top 17 variables had the best performance with R2 of 0.92 and RMSE 

of 1.75 g/m2. Height, LAI, all four PlanetScope bands, and total 11 VIs were 
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variables in the best performing model. For both UAV and satellite best 

performing selected variable models, plant height and LAI are the only non-

spectral variables.  

In the best performing models for predicting nitrogen weight in corn and wheat 

fields, all included non-spectral variables. The spectral-only models had 

significantly poorer performance with low R2 values and high RMSE for both 

crop types in both RF and SVR methods. Of the top models’ non-spectral 

variables for both corn and wheat, plant height was the most important 

predictor. 

(iii) For both Chapter 2 and Chapter 3, all the non-spectral variables in the top 

models (plant height, LAI, and topographic metrics) for both corn and wheat 

can be derived from in-situ UAV data, meaning practical application of the 

models is feasible. Algorithms for creating accurate maps of corn crop height 

still need improvement, thus nitrogen prediction maps were not created in 

Chapter 2. The difficulties in generating height maps of corn include the nature 

of the plant structure where the highest point is the tassel composed of narrow 

branches, layers of leaves are narrow and angled which could not be captured 

in detail with the UAVs used in this study. Creating accurate height maps for 

wheat is simpler as the plant structure and planting density create large, uniform 

areas of height. In Chapter 3, the UAV-based and satellite-based nitrogen 

prediction maps for wheat were created with 1 m x 1 m spatial resolution and 

able to differentiate areas of the field with highs and lows of canopy nitrogen 

weight. The low RMSE (g/m2) of the top-performing models are useful to 

farmers for practical fertilizer management recommendations. 

  



88 

 

4.3 Limitations & Future Work 

With in-situ fieldwork collection come many challenges and limitations. Sample point 

distribution in fields is dependent on many factors: the number of people in the fieldwork 

team, available equipment, size of field, intensity of labour, time constraints, weather, and 

associated operation costs. For both wheat and corn fields’ sample point groups were 

selected with consideration of the field characteristics and feasibility of data collection, but 

ideally points would be placed across a whole field for full representation of conditions.  

Other limitations involved the UAV data, in which a fieldwork week had consistently poor 

weather conditions including heavy rain, thunderstorms, and strong winds unsuitable for 

UAV flights. There was difficulty finding a day suitable for both fieldwork data collection 

and a UAV flight, and when conducted several days apart may affect results as plants reach 

new growth stages and field conditions (e.g., soil moisture) change. Although in Chapter 2 

corn field soil metrics had little to no effect on the models and was subsequently omitted 

as variables in Chapter 3 wheat models, the soil for each field was only tested once at the 

beginning of the growing season. Considering the costs and typical recommendations for 

soil tests are only once a year, there is the limitation of soil testing practices. Future studies 

can consider more conducting soil tests throughout the growing season to improve 

evaluations of soil metrics in nitrogen prediction models, as it can be affected by fertilizer 

application, precipitation patterns, and crop growth. 

As for the use of satellite-based spectral data in future model development, PlanetScope 

launched a new generation of sensors called SuperDove with five spectral bands: blue, 

green, red, NIR, and red-edge. As imagery from PlanetScope SuperDoves becomes 

available, future work can test its red-edge VIs in canopy nitrogen prediction models to 

evaluate the importance of a satellite-based red-edge band. For UAV-based model 

development, future work with hyperspectral sensors can explore more of the 

electromagnetic spectrum to improve prediction accuracies.  

This thesis used machine learning Random Forest and Support Vector regression methods. 

Machine learning does have limitations in that models usually require very large training 

datasets in order to be effective, and computational costs of collecting, storing, and 
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processing power needed to handle big datasets. It should be noted that the regression 

analyses performed in this thesis are not explicitly spatial analyses. Spatial data was used 

in analyses, but there were assumptions of independence and homogeneity for the variables 

used. Explicit spatial analyses take into consideration spatial autocorrelation and 

heterogeneity, where relationships in data vary in space. For example, sample points which 

are closer to one another are likely to be more related than points further away. Different 

fields can have dissimilar conditions that may not have been fully captured in the methods 

used. Further work can try implementing spatial statistics, such as nearest neighbor analysis 

or Thiessen polygons, to discern nuances in data relationships for crop monitoring.  

From the results of this thesis, the use of UAV and satellite spectral imagery in conjunction 

with non-spectral plant biophysical variables and field properties in wheat and corn crop 

nitrogen estimation models has promising results. The developed models need to be tested 

on other datasets to determine their efficacy, understand their applicability and feasibility 

in precision agriculture.  
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5 Appendices 

5.1 Appendix A – Field Photos 

 

Figure A 1. Example of ground control point marker. 

 

Figure A 2. Piloting the unmanned aerial vehicles. The tall device on the left is the 

real time kinematic (RTK) navigation base station. 



91 

 

 

Figure A 3. Sensors attached to the underbody of the DJI Matrice 100 UAV. The 

RGB camera is on the top, and the red MicaSense RedEdge camera with five sensor 

bands is on the bottom. 
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Figure A 4. Photos of corn crop taken on 8 June 2020. 
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Figure A 5. Photos of corn crop taken on 15 June 2020. 
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Figure A 6. Photos of corn crop taken on 24 June 2020. 



95 

 

 

Figure A 7. Photos of wheat crop taken on 12 May 2020. 
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Figure A 8. Photos of wheat crop taken on 20 May 2020. 
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Figure A 9. Photos of wheat crop taken on 27 May 2020.  
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5.2 Appendix B – Pix4D Processing 

 

Figure B 1. Example of Pix4Dmapper flight pattern map view. Each red circle 

represents the UAV’s location with the sensor taking a picture. The diagonal flight 

patterns are due to the UAV returning to the starting point for a battery change 

midway through and returning upon completion of the specified flight area. 



99 

 

 

Figure B 2. Example of the Pix4Dmapper rayCloud view of a field. Each blue-green 

dot is a representation of a UAV image tied to metadata (e.g., camera positions, 

geographic coordinate). The black and white layer beneath is an orthomosaic of all 

images taken.  
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5.3 Appendix C – Topographic Metrics Processing 

 

Figure C 1. Example of System of Automated Geoscientific Analyses (SAGA) 

interface and topographic metric processing results. 

 

Figure C 2. Example of the corn field aspect layer created in SAGA. 
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Figure C 3. Example of the corn field slope map created in SAGA.  

 

Figure C 4. Example of the corn field topographic wetness index map created in 

SAGA. 
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5.4 Appendix D – LAI Layers  

 

Figure D 1. Example of LAI layer for wheat field W2 on 16 May 2020. 

 

Figure D 2. Example of LAI layer for wheat field W2 on 21 May 2020. 
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5.5 Appendix E – R Code 

#Install “randomForest” and “e1071” packages for Random Forest (RF) and Support 

Vector Machine (SVM) before loading 

#Load library packages  

library (randomForest); library (e1071) 

 

#Load data from Excel file into a variable and view to ensure it is correct 

library (readxl) 

data <- read_excel(“D:/data.xlsx”); View(data) 

#Split dataset for models: 70% data for training and 30% for validation 

#Set the starting number used to generate a sequence of random numbers 

set.seed(123); train <- sample(nrow(data), 0.7*nrow(data), replace = F) 

trainset <- data[train,] 

validset <- data[-train,] 

#Run RF model of training set, view results 

RFmodT <- randomForest(N_weight ~., data = trainset); RFmodT 

#Apply the model to both training and validation datasets 

predictT <- predict(RFmodT, newdata = trainset) 

predictV <- predict(RFmodT, newdata = validset) 

#Calculate RMSE of the models, look at variable description for result 

rmsemodT <- sqrt(mean((predict – trainset$N_weight)^2)) 

rmsemodV <- sqrt(mean((predict – trainset$N_weight)^2)) 

#Calculate R-squared of the models, view results 

RsqmodT <- lm(trainset$N_weight – predict, data = trainset); summary(RsqmodT) 

RsqmodV <- lm(validset$N_weight – predict, data = validset); summary(RsqmodV) 

#Repeat steps above for SVM, starting with running model for training set 

SVRmodT <- svm(N_weight ~., data = trainset); SVRmodT 

Figure E 1. R code of Random Forest and Support Vector regression models. 
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#After creating regression models and selecting the best model, create a model 

prediction image 

#Install “raster”, “rgdal”, and “rasterVis” libraries before loading 

library (raster); library (rgdal), library (rasterVis) 

#Set up a folder containing the “.tif” images to use in the model 

#Ensure the image names match the headers in your data for later steps 

#The “list.files” function will read through the folder to look for files ending with “.tif” 

images <- list.files(path = “D:/thesis_images”, pattern = “tif$”, full.names = T) 

#The “raster::stack” function will stack the list of image files  

#Ensure the images have the same resolution and extent for the function to work 

imageStack <- raster::stack(images) 

#The “raster::predict” function calls the image stack dataframe to predict values for 

each pixel based on the model selected (see code for making regression models)  

imagePredict <- raster::predict(object = imageStack, model = RFmodT, fun = predict) 

#Create the final prediction raster using the “writeRaster” function 

#Set the desired output location and file name; set file type to “.tif” 

writeRaster(imagePredict, “D:/thesis_images/W1_predictN.tif”) 

Figure E 2. R code for building a prediction image from multi-layered raster 

images. 
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5.6 Appendix F - Copyrighted Material & Permissions 

Chapter 2, published under MDPI Remote Sensing requires no special permission to reuse 

all or part of an article under an open access Creative Common CC BY license, provided 

that the original article is clearly cited.  
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Our published paper was selected as the feature cover story in MDPI Remote Sensing Vol. 

13 Issue 16. Available online at: https://www.mdpi.com/2072-4292/13  
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Chapter 3, published under MDPI Nitrogen requires no special permission to reuse all or 

part of an article under an open access Creative Common CC BY license, provided that 

the original article is clearly cited. 
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