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Chapter 8 

Signals in the Soil: Subsurface Sensing 

Abstract In this chapter, novel subsurface soil sensing approaches are presented 
for monitoring and real-time decision support system applications. The methods, 
materials and operational feasibility aspects of soil sensors are explored. The soil 
sensing techniques covered in this chapter includes aerial sensing, in-situ, proximal 
sensing, and remote sensing. The underlying mechanism used for sensing are also 
examined as well. The sensor selection and calibration techniques are described in 
detail. The chapter concludes with discussion of soil sensing challenges. 

8.1 Introduction 

Soil is a primary resource in agriculture. Soil fertility is ability of a soil to sustain 
the plant growth. Several physical (particle size, structure, water etc.), chemical 
(mineralogy, organic matter and acidity etc.) and biological properties (beneficial 
organism) are used by the scientist to describe soil fertility (see Table. 8.1). It is 
important to know these properties of soil fertility in order to optimize the plant 
production. However, complex nature of the soil makes it di cult to assess the soil 
fertility. Soil properties may vary on micro or macro level. Micro-variability is due 
to granularity of the soil. Macro-variability is due to the climate, parent material, 
time and how human treats the soil. [93]. Soil properties shows various spatial and 
temporal variations. Observing soil in di"erent areas within the field or between 
multiple fields to study its spatial variations is known as soil survey. Studying the 
temporal variations refers to the soil monitoring [47, 49] 

Traditional approach to investigate soil fertility involves manual collection of soil 
samples from the field and analyzing them in laboratories. This method specially 
applies to study the chemical properties and soil texture. However, manual sampling 
of soil is time intensive, requires a lot of labor work and highly expensive. Due to these 
drawbacks, studying spatial and temporal properties of soil, using traditional approach, 
does not make digital agriculture a viable farming method. The implementation 
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Fig. 8.1: Organization of the Chapter 

and widespread of digital agriculture rely on use of fast and cost-e"ective methods 
[52, 192]. 

Another approach to study soil properties is to use sensor-based technologies. Soil 
sensors collects the data for sensing chemical, biological and physical properties 
directly from the field. However, due to the complex nature of the soil, only few sensor 
systems have been successful for use in agriculture. Complex nature of soil makes it 
di cult to separate the sensor stimuli. The minerals components in the soil causes the 
mechanical stress and wear in the sensor. Soil absorbs or attenuates most of the EM 
spectrum due to which remote sensors receive signal from the surface of the soil only. 
Hence, the success of mapping soil through remote sensing is very limited. Sensing 
has always been a key technology in the farming industry. In earlier days, farmers 
used to evaluate the crop properties manually by assessing each plant individually. 
They used to estimate yield potential, identify stresses from specific symptoms, 
di"erentiate water deficiency from nutrient deficiency and identify diseases from 
insect infestation. Modern farmers are no di"erent than their ancestors, however, scale 
of the crops is a major concern now-a-day. Farmers, in old days, used to manage small 
portion of the land, e.g., some fraction of the hectare, however, modern farmers may 
have to manage hundreds even thousands of hectares of fields. Large field size makes 
it impossible to manually analyze and manage them. Hence, farmers are becoming 
increasingly reliant on sensors in their day-to-day farming operations [47, 71]. 

In this section we are going to discuss di"erent types of sensor technologies that 
can be used in monitoring of soil and crop conditions. 

8.2 Current Challenges in Sensor Development 

EM-based crop canopy sensors have high potential to improve 
N-fertilizer-management, however, some factors may influence its accuracy. 
These factors may include sensors’ operating characteristics (wavelengths and VIs), 
seasonal variations, genotype e"ects and stresses [50, 174]. N-fertilizer management, 
using proximal crop canopy sensors, assumes that the e"ect of other stresses, e.g., 
water, insects, and nutrient, is either absent or equally present in reference and target 
area, thus, canceling the e"ect of each other. Even in the irrigated environments, 
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water stress can confound N management during the critical times of the growing 
season. Some VIs are found to be successful di"erentiating between N stress and 
water stress [32]. These indices include three wavebands in the equation (eq. 1) 
namely the Canopy Chlorophyll Content Index [60], the DATT index [24, 45]and 
the Meris Terrestrial Chlorophyll Index [40, 44]. However, these three indices are 
currently not available in any of the commercially available crop canopy sensor 
system. 

Most of the research with proximal crop sensors is being done in N fertilizer 
management. However, there is a huge potential of application of proximal crop 
sensor in identifying other stresses. Few commercial systems are available which 
identify plant stresses other than the N stress. WeedSeeker Spary system [4] uses 
the same sensors as GreenSeeker system. It successfully finds the weed in the crop 
and apply herbicides on the go. WeedSeeker system successfully solves the weed 
infestation problem in cotton [53, 197]. [34, 188] studies machine vision-based weed 
detection and control systems using reflectance with the crop sensor for real-time weed 
control. Crop canopy sensor can also be used in disease and insect detection. High 
resolution and multispectral imagery is used to detect disease onset in wheat. [66] 
uses visible to red-edge bands (580-710 nm) to inspect powdery mildew infestation 
during growth season. Hyperspectral imaging is sued to detect damages in sugar beet 
due to nematodes and fungal pathogens [82]. In (Bravo et al., 2004), authors used 
multispectral fluorescence images for the detection of foliar diseases in winter wheat. 
Huanglongbing disease in citrus canopy is detected by using the ratio of yellow 
fluorescence to simple fluorescence. 

Another trending current of area of research is the concept of Sensor fusion. Sensor 
fusion refers to using multiple proximal crop sensor over single sensor. Combining 
various sensing techniques can give more accurate measurements promoting the 
widespread adoption of sensor-based technologies from crop management [11, 33]. 
Veris Technologies combines multiple sensors for soil electrical conductivity (EC), 
pH level of the soil and soil organic matter to a single platform [25]. [47, 187] uses 
three di"erent types of sensors: optical for canopy reflectance, thermal for temperature 
and ultrasonic distance sensor for height, to assess the N status in the crop. The 
authors in [213] combines four di"erent sensors to study the herbicide dosage control. 
Sensor Fusion in [65, 108] documents the information about crop and straw yield 
and grain protein content for stress evaluation in harvesting wheat. [25, 103] uses 
the combination of active and passive sensors to map a cotton field. Sensor fusion 
are also used to study high throughput phenotyping. A sensor fusion system for field 
phenotyping in [31, 34] integrates a color camera, Light Detection and Ranging 
(LIDAR), time-of-flight cameras, light curtain imaging systems and a hyperspectral 
imaging sensors. The system could measure plant moisture, lodging biomass yield and 
tiller density. High throughput phenotyping platforms [17, 37, 71] uses multispectral 
active crop canopy sensors, LIDAR or ultrasonic sensors and thermal sensors. 
Crop Circle Phenom [3, 71] incorporates sensors for canopy temperature, humidity 
atmospheric pressure, air temperature and canopy reflectance wavelengths of 670, 
730 and 780 nm. 
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8.2.1 Proximal Sensing 

The term proximal indicates the close proximity of the sensors to the crops. They are 
deployed close to the crops; thus, di"erent from remote sensors. Due to advancement 
in Unmanned Aerial Systems (UAS), which used to be a remote sensing technique, is 
now considered as a proximal sensing technique. We consider the proximal sensors as 
the sensors which determine and evaluate the crops’ properties ranging from physical 
contact with canopy to a few meters above the canopy [48, 55]. 

Crop producers are interested in the properties which may influence yield and 
quality, and issues which can be detected and managed during crop producing seasons. 
Some of the properties that may interest a farmer includes biomass accumulation, 
water status, nutrient deficiency (particularly nitrogen), disease onset and insect 
infestation. Monitoring these properties is crucial during some specific periods of 
growing seasons. Remote sensing, e.g., aerial platforms, is easily a"ected by weather 
and clouds condition limiting their use. However, proximal sensing is not a"ected by 
these making it an appropriate choice during growing season [48, 55]. 

• Contact or in-situ sensors: Some sensors are either directly attached or placed 
among the plants. Sap flow sensors, attached to the stem of the plant, are used to 
estimate transpiration [32, 54, 193]. Ground-based sensors are used to measure 
Leaf Area Index (LAI) [27, 31]. However, measuring sap flow and LAI with static 
instrument is a time-consuming process. Crop-meter [53, 59] is a simple biomass 
sensor for the cereals which works on the pendulum principle. Crop-meter 
is mounted on vehicle driven through the crops. If crops’ biomass is higher, 
crop-meter is highly deflected. 

• Ranging Sensors: Range-finding or distance measurement is another approach to 
find biomass and height of the crop. [31, 58] measures the biomass, characteristics 
of the canopy and crop stand using acoustic and electromagnetic (EM) wave 
ranging. Geometric characteristics of the citrus trees can be quantified by laser 
scanner. Its is used for yield prediction, measurement of water consumption, 
health and long-term productivity monitoring of the crop [104]. Water stress in 
maize can be detected by integrating acoustic ranging sensors with multi-spectral 
and thermal sensors [45, 187]. 

• Electromagnetic (EM) Sensors: Most of the crop canopy sensors use EM 
spectrum. EM sensors can be classified as active-with internal energy source, 
or passive-using external emitted energy source. The four regions of interest in 
EM spectrum includes visible, near-infrared, mid-infrared and thermal infrared 
ranging from 400nm (visible) to 14000nm (thermal infrared) [20, 26]. The 
properties of the plants, e.g., plant pigment concentrations, cell structure, water 
content in canopy and leaves, are determined by reflection or transmission in 
these spectrum ranges. Reflectance does not give much information about plant 
stress. Vegetation Index (VI) allows to infer the plant stress and specific properties 
of plants by using the relationship between or reflectance in multiple spectral 
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regions. Among 150+ VIs, the most famous VI is Normalized Di"erence VI 
(NDVI) [65, 139]. NDVI is calculated using following equation: 

(NIR ≠ RED)
NDV I  = (8.1)

(NIR + RED) 

Chlorophyll meter, frequently used instrument in the plant research, is used to 
measure the chlorophyll content in a plant. It is based on the reflectance meter 
presented by [212]. Konica Minolta SPAD 502 Plus [118] is a commonly 
used and mostly available chlorophyll meter today. The meter is used in 
determining chlorophyll concentration [113] at 650 and 940nm of wavelengths. 
The performance of this meter has been studied [113] for determining the 
chlorophyll content and ability to detect N stress and, assuming the high 
correlation between chlorophyll and nitrogen content in a plant, consequently 
predict the demand for N fertilization [29, 33, 35, 180]. 
The Dualex Scientific [2, 37] is another handheld senor which measures the 
chlorophyll and polyphenol contents in ultraviolet, visible and NIR wavelengths. 
Polyphneols can be used to determine plant stress factors such as N availability 
[40, 174]. When used together, Dualex and SPAD meter are more sensitive 
in calculating the corn N status rather than being used alone. Force-A also 
manufactures the handheld sensors used to determining abiotic stresses in the 
plant especially in detecting disease [28, 34, 44, 176]. 
Chlorophyll meters are useful in estimating the properties of a given plant, 
however, it becomes laborious to measure the properties of a group of a plants or 
fields. It is a useful proximal sensing tool for a plot of small size. However, the 
labor challenges associated with the chlorophyll meter prevents it to be used by 
the farmers for N-fertilizer management. 

• Mobile EM Sensors: Yara N-Sensor [6, 33] is a passive spectrometer system 
that can be mounted on a tractor. It consists of two spectrometers which are 
used to scan crop canopy and real-time correction of the reflected signal in 
a wavelength selected between 450nm and 900nm [42, 174, 225]. NDVI and 
various other VIs are calculated through reflectance. The system then adjusts 
the application rate of N fertilizers for scanned region in real-time. N-Sensor is 
majorly used for spatial N management of wheat [28], however, its applications 
are also found in corn [39, 204] and potato [38, 225]. 
Passive sensors face the challenges of clouds, angle of the sun and time of the 
day. Active sensors have been developed to address the challenges of passive 
sensors. Active sensors, as discussed earlier, uses internal light source[43, 191]. 
Optical sensors, a type of proximal active sensors, uses radiometric principle. 
(Holland et al., 2012) discusses how this principle, especially inverse square law 
of optics, e"ects the functionality and use of the sensor. [36, 133] showed that, 
as compared to the traditional methods, sensor-based N application methods can 
increase the Nitrogen Use e ciency (NUE) by 15%. This system was developed 
by Oklahoma State University and was named GreenSeeker. GreenSeeker system 
[4, 51] is an active crop canopy sensor system commercially available for the 
N-fertilizer management. It uses an in-field reference for the calibration of the 
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sensor for specific field conditions. It measures reflectance at the wavebands 
of 671 ±6 and 780 ±6 nm. The system generates the Response Index (RI) by 
dividing the in-field reference NDVI by targets’ NDVI. RI and in-season estimate 
of yield (INSEY- Lukina et al., 2007) are used in various crop and locale specific 
algorithms to generate the real-time fertilizer N rate. This system can be used for 
many crops, however, majorly used for corn [8, 52] and winter wheat [30, 198]. 
Handheld version of this sensor has also been developed by Trimble for the 
exploration purposes. It comes with an integrated power supply data logger and 
GPS. 
Crop circle suite of sensors, initially developed by Holland Scientific as ACS-210, 
is set of active crop canopy sensor. ACS-210 is two-band active sensor which 
measures reflectance at 590 ±5.5 and 880 ±10 nm. It is not used commercially 
anymore and is replaced by various other three-band sensors such as ACS-430 
and ACS-470. They also have handheld sensor, RapidScan CS-45, equipped with 
a data logger, power supply and a GPS. It has the optics similar to ACS-430. 
The set of sensors described above are primarily used for the research purposes. 
Holland Scientific has integrated the technology into OptRx® crop sensor system 
[35, 194] for the commercial use. OptRX uses the ACS-430 and measures the 
reflectance at wavebands of 670, 730 and 780 nm. OptRX, like Green Seeker 
system, uses in-field calibration. OptRX is designed to be used with a universal 
N recommendation algorithm which can either be adjusted by the user [45, 85] or 
virtual reference approach [27, 86]. In virtual reference approach, healthiest area 
of the field is selected as a reference N status of the crop and the area is scanned in 
real time. This prevents the grower to establish a nitrogen rich area as a reference 
strip in the field. Yara N-Sensor ALS (active kight systemn) uses xenon flash 
lamp as a light source. CropSpec system uses laser as a light source and measures 
reflectance at 730-740nm and 800-810nm bands. The operating characteristic of 
both, CropSpec and N-Sensor ALS, are similar to those of passive N-Sensor. 

Sensors sense analogue physical or chemical stimuli, e.g., temperature, heat etc., 
and convert them to a digital signal for further analyses. Data analysis methods are 
used to get information from this data and finally incorporated in decision making to 
take appropriate agricultural decisions. As discussed in previous section, complex 
nature of soil requires sensors to be placed in the soil at very short distance from 
the soil. Proximal sensing is highly e"ective in creating high-resolution soil maps. 
[46, 55, 138] defines proximal sensing as the application and development of sensor 
that operates close by or inside the soil. A proximal soil sensor system ranges 
from simple stationary systems with one or more sensors and data recording and 
transmission unit to a complex automated and mobile systems. Complex proximal 
system may be equipped with a platform to carry sensors, sampling unit, sample 
heads, sample preparation equipment and GNSS. 
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Table 8.1: Soil properties relevant for plant production as indicated by the notion of 
soil fertility [72] 

Physical Chemical Biological

Particle size: gravel, sand, 
Mineralogy: quartz, clay type Mineralization fixation 

loam, clay 

Water water content, water Organic matter: total content, 
Beneficial organisms 

potential fractions (labile, stable) 

Structure· bulk density, Nutrients: total content, plant Bioturbation by animals and 
porosity available (e.g. N, P. K) plants 

Thermal properties thermal 
di"usivity, heat capacity, heat Acidity pH 
conductivity, specific heat 

Relief. slope, exposure Redox potential: O2 

Toxic substances 

8.2.1.1 Future Research Directions 

Proximal sensing is used to achieve sustainability and reducing the environmental 
impact that may occur due to crops. Proximal sensing enables spatial management 
and manages temporal variations for the site-specific management in precision 
agriculture. Proximal sensors allow an e cient use of resources by detecting and 
taking preemptive measures in a timely manner. 

There is a huge research potential in developing active proximal sensors for use 
with UAV. Apart from N stress, it can be used to explore water and nutrient stress and 
many other diseases. There is potential to study di"erent stresses using multi-spectral 
fluorescence, mid-infrared and thermal region of EM spectrum. Non-EM sensors, 
e.g., pheromone and spore detectors can be investigated for disease or insect inset. 

8.2.2 Electrical Soil Sensing 

Some sensors use electric circuits to measure the electrical conductivity (EC) of a soil, 
capacity of the soil to become polarized or form magnetic fields. Such sensors are 
known as electrical sensors [26, 105]. Electrical sensors are assessed in the frequency 
range of 0 (direct current) -300 (radar) GHz. Electrical sensors are the most common 
proximal soil sensors. In the next section, we discuss relevant electrical properties of 
soil [99, 179]. 
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8.2.2.1 Electrical Soil Properties 

Electrical Conductivity (EC) of a soil refers to the amount of salt in the soil (salinity). 
It indicates the health of the soil. EC e"ects the crop growth, crop suitability and plant 
nutrient availability (RSEC). EC in soil can be due to movement of free electrons, 
movement of ions in dissolved water, and surface conductivity [99]. EC due to all 
three mechanisms is known as bulk electrical conductivity (ECa). The ECa is mainly 
associated with the properties of soil such as: water content, hydraulic permeability, 
temperature, bulk density and surface changes. In non-saline soils, spatial variations 
of soil ECs within the field is due to the soil texture. Coarse sands have limited 
contact and low capacity of holding moisture, hence, are poor conductors. Heavy 
clays have high capacity of holding moisture and high particle contact, hence, are 
good conductors. 

Tendency of a medium to become polarized upon passing electricity is its dielectric 
permittivity [42, 179]. Dielectric permittivity increases with the decrease in frequency. 
Soil sensors measures the permittivity at frequencies between 1MHz and 1GHz. It 
is used to measure the soil water content. Dielectric permittivity of free water is 80 
[38, 179]. The electromagnetic sensors cannot measure the dielectric permittivity 
of the soil directly. They use the travel time or frequencies to derive the values. As 
a result, other interfering soil properties (ECs, temperature, magnetic permeability 
and signal frequency) are also taken into account while measuring these properties 
[41, 64, 119]. 

The ability of the soil to form a magnetic field is known as magnetic permeability. 
Ferromagnetic compounds such as iron oxide and super paramagnetic minerals can be 
found in the soil due to atmospheric deposition and human activities [20, 78, 119]. If 
present, the magnetic permeability is proportional to the volume of these compounds. 
Many proximal sensors measure soil susceptibility which is the ratio of mediums’ 
permeability to permeability of free space minus one. Magnetometers or EM sensors 
are used to measure the magnetic properties of the soil. Magnetic properties of soil, 
both susceptibility and permeability, are mainly used in the field of environmental 
pollution and archaeology [48, 78]. Very limited work has been published on the use 
of magnetic properties in soil mapping from agricultural context [22, 54]. All of the 
above three properties are highly dependent upon the frequency of applied EM field. 
Lower frequency methods are more related to EC and high frequency methods, e.g., 
TDR and radar, are more associated with dielectric and magnetic permeability. 

8.2.2.2 Electrical Soil Sensors 

Galvanic Coupled Resistivity (GCR) measures the bulk electrical resistivity (ERa) 
in �-m under the low frequencies of less than 50Hz. High frequencies can be used 
to analyze polarization e"ect. It uses two electrodes, in direct contact with the soil, 
and an ohmmeter to measure the electricity resistance by the soil to. Wheatstone 
bridge uses four electrodes, in pair of two, to measure more accurate readings. One 
pair is used to inject electric current into the soil and other is used to measure the 
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potential di"erence. GCR is a relatively cheap, robust and low power method of 
measuring electrical resistivity. Contrary to other electrical methods, GCR is less 
sensitive to electromagnetic sources. Main disadvantages of GCR is that it requires 
good contact with the soil and invasive nature of galvanic coupling. The performance 
of electromagnetic induction (EMI) methods is much better in frozen, stony or dry 
soils as compared to GCR methods [32, 72]. 

Electromagnetic Induction (EMI) sensors are greatly impacting the digital 
agriculture [43, 80]. It uses two electrical coils (solenoids) and operates at the 
frequencies of 100-60 kHz (0.4-40 kHz, [29, 43]). On applying alternating current 
(AC) to the transmitter coil, an EM field termed as primary field is generated. This 
primary field induces an eddy current through the soil, which results in a secondary 
field. The secondary field di"ers from primary field in terms of amplitude and phase 
[36, 116]. The phase and amplitude di"erence between primary and secondary field 
depends upon various soil properties [19, 28], spacing between the transmitting and 
receiving coil, distance between and coil and soil surface, and orientation of the coils. 
ECa is calculated by using amplitude and phase di"erences between primary and 
secondary fields, and inter-coil spacing. [205] study the magnetic susceptibility of 
the soil. However, few studies in agriculture uses it. 

Capacitive methods use the capacitor principle to analyze the soil properties. 
Electrical oscillator is connected to electrode at frequency of 0.1 to 0.25 GHz (38 – 
150 MHz) to create an electric field penetrating the dielectric medium (soil). The 
dielectric permittivity of the soil can be determined by estimating the charging time 
of the capacitor with that medium [39, 121]. FDR and capacitance probes are mostly 
used for measuring the water content in the soil. Both are sensitive to clay and 
temperature variation of the soil. However, they are cheaper with a flexible electrode 
geometry. Mobile mapping of ERa is also one of the applications of capacitance 
principle. Capacitive coupled resistivity (CCR) is based upon classical GCR method 
with only di"erence of using capacitive plates/antennae instead of galvanic electrode 
[43, 102]. 

Time domain reflectometry (TDR) is used to determine the water content of the 
soil by measuring the travel time of electromagnetic waves through the soil under high 
frequencies. The travel time is used to measure the dielectric permittivity of the soil 
which in turn is used to measure the soil water content. TDR sends the electromagnetic 
signals via two electrodes buried in the soil. It measures the propagation velocity of 
a step voltage with a bandwidth around 20kHz to 1.5GHz [44, 136]. TDR are less 
a"ected by the interference due to EC because they operate at frequency > 0.5Hz. 

Other variants of TDR and FDR are also used as electrical measurement methods. 
Some of them discussed briefly in [121] includes amplitude domain reflectometry 
(ADR), phase transition, and time domain transition (TDT). 

8.2.2.3 Stationary Electrical Sensors 

Stationary soil sensors are very useful in monitoring soil water properties. It has 
advantage over traditional methods, e.g., tensiometers, in having high range of tension 
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(up to 1500 Pa), ability to be placed for long time and low cost. However, slow 
reaction and intervention of soil salinity are some of the disadvantages [51, 57]. 

Stationary soil sensors must be carefully calibrated to get the correct measures [64]. 
Even a small scale variation can cause several problems. [57], for example, performs 
an experiment with 107 sensors on 60 m2 test site. Sensors readings were varied 
significantly over the two months due small-scale variation (growth of algae) in soil 
surface. It is di cult to distinguish the e"ect of water on electromagnetic properties 
from other factors such as salinity , bulk density etc. [90]. It is recommended to 
use standard procedure, multiple sensors, and rain gauge records for detection of 
error and troubleshooting [29, 57, 65]. [55, 121] presents a detailed survey of various 
commercially available soil sensors. Some sensors are briefly described in coming 
section. 

• Stationary TDR and capacitance sensors can be used for stationary 
measurements. TDR uses metal rods and capacitance sensors are flexible and 
cheap. TDR gives more accurate reading under high frequencies, however, 
comparative studies suggest mixed results [31, 45, 64]. [57] studied 15 di"erent 
types of sensors (FDR, TDR, capacitance) and posited that most sensors respond 
to temporal changes reasonably well, however, with a considerable di"erence in 
absolute values. 

• Gypsum Block method is another method to assess the soil water content. 
Apparatus contains a porous block with embedded electrodes. In an ideal 
scenario, the soil water content and the bock water should be uniform. Fiber 
glass and gypsum can be used as a porous block. Gypsum is a cheaper option 
but it needs calibration and it decompose with time. Fiberglass is durable and 
give more stable calibrations. The simplest implementation consists of a gypsum 
block with two wires connecting to resistivity meter. 

• Electrical resistivity tomography is a method which is used to study the depth 
profiles and spatio-temporal properties of soil water content in high resolution. 
It extends GCR method with array of multiple electrodes (20-100) placed 
equidistantly in a transect. Four of the electrodes placed at di"erent locations 
and spacing are switched on to study the depth variations[71, 72, 94]. 

8.2.2.4 Mobile Electrical Sensors 

Mobile electrical sensors were the first sensors used to measure the soil spatial 
variability in digital agriculture [34, 44, 175]. EMI and GCR based sensor systems 
are still the most commonly used systems in digital agriculture. [33, 41, 73] did a 
comparative study on GCR, EMI and capacitive coupled sensors which is discussed 
in the coming section. 

• Galvanic coupled resistivity Mobile GCR sensors, uses four-point method, 
consist of four wheels acting as electrode. Four-point arrangement is extendable 
by adding more pair of electrodes to get the readings at di"erent depth variations. 
Depth sensitivity is controlled by the spacing and position of electrodes. The 
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most common arrangement of the electrode is Wenner array equally spaced 
electrode in a straight line. Veris 3100 uses injected current of 100 mA and 
frequency of 150 Hz and works with the two depths [162]. Six rolling electrodes 
are arranged in Wenner array. Spacing between the electrode is 24 cm for the 
shallow and 72 cm for the deep measurement. Automatic Resistivity Profiling 
(ARP) is made by Geocarta company in France. It operates at frequency of 225 
Hz and arranges the rolling electrodes in trapezoid pattern [175]. The spacing 
between the current electrode is 1m and that of between voltage electrode is 0.5, 
1, and 2 m. GEOPHILLUS is an advance system from Germany operating at the 
frequency of upto 1 KHz [25, 111]. It uses 6 pairs of galvanic coupled electrodes 
arranged in an equatorial dipole-dipole array. First pair measures the electric 
current while other 5 pairs measures the voltage drop simultaneously. 

• Electromagnetic Induction (EMI) EM38 instrument from Geonic Ltd., is one 
of the most popular mobile electromagnetic instrument in digital agriculture. 
[49, 80] recently gave the review of EM38 applications. Orientation and spacing 
of the coil, and frequency often e"ect the DOI characteristics. EM38 uses the 
inter-coil spacing of 1m and provide the readings for magnetic susceptibility and 
electrical conductivity simultaneously. EM38-DD with same inter-coil spacing 
uses two EM38. EM38-MK2 operates at frequency of 14.5 KHz and uses 
three coils with two receiver coils separated by 0.5 and 1 m from transmitter 
coil. Topsoil Mapper (Geo-prospectors, Traiskirchen, Austria) is the first EMI 
instruments which provides various interesting features specially for the digital 
agriculture. It can be mounted to the front of the tractor because of its ability to 
suppress interference from the metal. It can be used for the estimation of bulk 
density, water content, texture, real time tillage control and seed rate. 

• Capacitance and CCR sensors [9, 50] reviews the mobile sensors that use 
capacitive principle and galvanic coupling. Mobile capacitive coupled sensors 
(CCR) have been in the market for 10 years, however, their use in agriculture 
has been very limited. They work better than the galvanic coupled sensors in 
places where EC is very low and a mechanical contact is di �cult. However, 
places where EC is high, receiver dipoles’ voltage becomes too small and its 
measurements are unreliable [14, 30]. Coaxial cable or metallic conductors are 
used as a capacitor plates. One pair is used to generate current in the ground 
and other is used to measure the potential distribution at the surface of ground 
[48, 102]. 
OhmMapper (Geometrics Inc., SanJose, USA (http://www.geometrics.com/)) 
is a CCR system with capacitive coupling. It can continuously collect the data 
even at the short time interval of 0.5s. A coaxial cable is divided into transmitter 
and receiver sections and both are of 5m in length. An alternating current is 
generated by the transmitter at 16kHz. It consists of a power supply, a data logger, 
and rope separating two dipoles from each other. Distance and length of dipoles 
is used to measure th DOI. Distances can also be set arbitrarily. 

• Mobile TDR and GPR sensors GPR systems are available commercially in the 
market, however, only prototype of TDR systems can be found in the literature. 
[24, 200] studies the modified version of stationary TDR with longer probes 

http://www.geometrics.com
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designed for stop-and-go measurements. For continuous mobile measurement, 
geometry of the traditional TDR probes need to be modified along with the 
consideration of other aspects such as contact and heating. Due to time taking 
data analysis, use of GPR in agriculture is for research purpose only. However, it 
is commonly used in geophysical and archaeology. 

8.2.3 Soil Temperature Sensors 

• Thermal sensors One of the oldest sensor systems in agriculture are thermal 
sensor systems. Electrical and Infrared (IR) thermometers are used to measure the 
temperature. Electrical thermometers need to be in physically contact with soil 
whereas IR ones can be used for stand-o" readings. Thermistor and thermocouple 
are the example of electrical thermometers. Thermistor rely on change in resistance 
and thermocouple use the thermoelectric e"ect. Electrical thermometers are 
cheaper and are integrated with various sensors systems such as TDR and FDR. 
An IR thermometer uses a lens to focus on thermal radiations emitted from an 
object onto a detector. The lens is sensitive in range of 0.7-1.4um. Thermal 
properties such as volumetric heat capacity, thermal conductivity and thermal 
di"usivity, can be utilized for the mineralization, germination and other growth 
related processes. 

• Heat-pulse sensors Heat-pulse sensors [35, 46] are primarily used for measuring 
the volumetric water content. Sensor consist of at least two probes: heater probe 
and a temperature probe (thermocouple). A heat pulse is applied at the heater 
probe and temperature of the soil is measured at the temperature probe. This 
approach is dependent on the fact that specific heat of the water is higher than 
the other constituents of the soil. After applying the heat impulse, temperature 
depends upon the volumetric heat of the soil medium. More water content results 
in low temperature rise and vice versa. In commercial systems, heater probe 
and thermocouple are insulated in a porous matrix. Water potential of the soil 
should be same as of the matrix. By this assumption, the water content of the 
matrix becomes the indirect measure of the water content of the soil [35, 134]. 
Heat-pulse sensors have slow response and are sensitive to soil contact. Due 
to these reasons they are mainly used for the stationary measurements. A very 
less information is available on the continuous heat-pulse mobile sensors in the 
current literature. Authors in [16, 42] describe an approach of IR thermometer 
measuring the temperature variations in soil because of warming up by solar 
irradiation. 
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8.2.4 Electrochemical Soil Sensors 

Electrochemical sensors are used to measure the chemical properties of the soil, e.g., 
nutrient content and pH level of soil. Electrochemical sensor can be categorized 
into potentiometric, amperometric and electromechanical biosensors. The working 
principle is based on chemical interaction between the sensor and chemical component 
of the liquid. The two most popular method used for electrochemical sensors 
are ion-selective electrode (ISE) and ion-selective field e"ect transistor (ISFET). 
The electrochemical sensors for pH uses the combination of ISE and ISFET and 
falls into the category of potentiometer sensors. [40, 85] extensively reviews the 
potentiometer sensors. Their main advantage is that they directly measure the liquids’ 
ions concentration. 

The ISE system consist of a sensing membrane (glass, polyvinyl chloride or 
metal) and a reference electrode both assembled in a single probe. The potential 
di"erence between both electrodes is measured and concentration of selective ions 
is estimated using Nernst equation (reference for Nernst). ISFET uses field-e"ect 
transistor technology along with the selectivity of ISE. The ion-selective membrane 
act as a gate electrode and control the current between the two semiconductor 
electrodes. ISFET di"ers from ISE in that it does not have internal solution and the 
ion-selective membrane is firmly attached on the gate. The pH ISE with antimony 
membrane is being used in on-the-go commercial systems for pH mapping [11, 20]. 

8.2.5 Soil Radioactive Radiation Sensors 

• Gamma ray sensors Gamma rays are produced from decayed nuclei of 
radioactive elements and have highest energy and lowest wavelength within 
the EM spectrum [53, 62]. There are naturally occurring nuclides in soil which 
emits gamma rays in the range of 0.4-2.81 MeV. Large amount of gamma rays is 
harmful that is why active gamma sensors are avoided due to high energy and 
ability of penetration into the material. Gamma ray detectors convert the incoming 
radiation into light photons which are further amplified by photomultiplier and 
detected by photodetector. Passive sensors detect the gamma photons released 
from radioactive decay present in the soil. Passive gamma sensing is very good for 
quick soil mapping because of already established technology, strong theoretical 
background and robust instrument that can quickly collect data. 
In proximal sensing, gamma sensors are used as ex-situ systems in both continuous 
and stop-and-go mode with 90% of the radiations coming from upper 0.3 
to 0.5 m of the soil. Bulk density of the soil can a"ect the readings [112]. 
Many radionuclides occur naturally in the soil, however, only Potassium (40

K), 
Uranium (238

U) and Thorium 232 Th are the ones producing gamma rays with 
su� cient energy and intensity. Radiation not coming from the earth are known 
as background and 222 mainly come from radon ( Rn) [112]. 

https://0.4-2.81
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Clay (soil texture) is usually correlated with the gamma count because K, U 
and Th are incorporated by the major fraction of the clay, i.e., clay minerals 
[79]. Gamma count have also been forum indirect correlated to pH, organic 
carbon, gravel and moisture [37, 79]. These indirect relationships are highly 
dependent upon relation of soil other properties with the total K in the soil. 
These relationships showed high spatial variability which mandated the separate 
calibrations for each site. [79] proposed a general model for predicting soil texture 
fractions (clay, sand, silt) from non-linear support vector machine (SVM). Most 
of the studies counts only three regions (K, Th, Ur) and total gamma counts 
[138], however, some researchers also recommend to study full spectrum [207]. 
Though not much performance gains in prediction model are shown when the 
full spectrum is considered [28, 138]. 

• Neutron sensors Neutron sensors are used to measure the soil moisture. It can be 
classified as active and passive neutron sensors. Neutron Probes (active sensors) 
use the waters’ moderator properties for neutrons. The high-energy neutrons 
from the sensors collides with the H nuclei of water. The number of neutrons 
scattered back at the device are directly proportional to the water content in the 
soil. More water content results in more neutron scattered at device and vice 
versa. Neutron probes though accurate, however, are very expensive and their 
operation is strictly regulated by the law because of radioactive neutron source. 
Hence, they are rarely in use today. 
Cosmic ray probes are the passive neutron sensors. They measure the low energy 
neutron (1 keV) generated within the soil by moderation of cosmic ray neutrons 
[38, 54]. This moderation is primarily controlled by the soil water content. This 
method provides a continuous and above ground (without contact) method of 
monitoring of water content. Cosmic ray neutron sensor can be used to measure 
the soil water content over footprint 600 m and depth varies from 0.76m (dry 
soils) to 0.12m (wet soils). The depth of exploration is highly dependent on soil 
moisture. Soil moisture is calculated from neutron intensity using a universal 
function which is indi"erent to changes in soil chemistry [38, 38]. Mobile probes, 
mountable on vehicles, are also designed for in-depth spatial investigation [38]. 

8.2.6 Mechanical Soil Sensors 

• Cone penetrometers Vertical cone penetrometer is a device that is used to 
measure the soil resistance to penetration, i.e., soil strength, as they are inserted 
to the soil. In agriculture, they have been used for a long time to detect the soil 
compaction [192]. Some of the soil properties that may a"ect the index of the cone 
includes bulk density, soil type, soil moisture and structure of the soil [47, 52]. 
In 2000, Veris technologies were first to design the stop-and-go automated cone 
penetrometers (Profiler 3000) for soil mapping [27, 54]. However, high variation 
of penetration resistance makes the soil mapping expensive [32, 52]. Therefore, 
systems with continuous mapping were more favored. 
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There were three main approaches use: 1) horizontal penetrometers to measure 
horizontal penetrations [15, 39], 2) use of draft force sensors and vertical force 
sensors between tractor and tillage [81], 3) measuring fuel consumption of 
tractor during tillage [30]. In a review of penetrometer and draft/vertical force 
sensors, [81] emphasize that if soil texture and moisture is known then variation 
in penetration resistance can be understood in terms of bulk density. Mapping of 
bulk density has been done using the integrated multi-sensors system in [185]. 

• Tensiometers Tensiometer is the device used to measure the soil matric potential, 
i.e., soil moisture tension. A matric potential is found in the water when the 
water in soil is under tension. The name, tensiometer, owes to its ability of 
measuring tension. It consists of a porous cup connected to manometer through 
a water-filled tube, vacuum gauge, pressure transducer or any other pressure 
measuring device. The plant needs to overcome the tension to pull water from 
the soil. Tensiometer are advantageous in that they provide direct and easy to 
interpret measurements. However, its maintenance requirement is high and range 
of measurement is limited. They need to be protected in frost and embedded 
properly to establish good contact between porous cup and soil. They are not 
suitable for operation under -85 kPa and it takes several minutes to establish 
equilibrium between porous cup and soil matrix. Due to these reason, tensiometer 
should only be used as stationary sensors [26]. 

8.2.7 Other Sensors 

• Gas Sensors Gas sensors are becoming popular for detection of acetylene. Plants 
emits acetylene in unsuitable conditions, e.g., drought or fungal infections. CO2 
emission is analyzed to study the biological activities in plants. Non-dispersive 
infrared (NDIR) CO2 sensors are used to detect simpler gaseous molecules such 
as CO2, SO2 and NO2. NDIR is e"ected by the cross-sensitivity of these gases 
in low concentration [95]. Electronic noses are used for assessing the complex 
molecules [43, 216]. 

• Capillary electrophoresis Capillary electrophoresis (CA) is used to separate 
solute ions from the liquid soil extract after applying electric field. Soil is put 
in a capillary tube and ions are identified from their time of travel inside the 
capillary. The tuning parameter for the setup contains selection of electrolyte 
solution, capillary’s’ length and applied voltage to electrolyte. CA has been a 
commonly applied method in the labs, however, recent development in making 
portable systems are also being reported [36, 190]. The iMETOS Mobilab was 
recently released by Pessl instruments GmbH. It is based on small and inexpensive 
microfluidic chip CA and measures to measure NO3

≠ 
 , PO4

≠ 
 and K+ (Weiz, 

Austria). 
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8.2.8 Integration of Proximal Sensors in Digital Agriculture 

• Sample preparation for the soil: Ideally, sampling is not required in proximal 
sensing. Due to the impact of several properties of soil on sensor, selectivity of 
a sensor is degraded. Unfavorable soil conditions, e.g., very dry soil, presence 
of plant residue, are also one of the obstacle in taking measurements. Hence, 
sample preparation can solve these issues [51, 106] 

• Calibration and measurement errors in soil sensing: As discussed, sensors are 
a"ected by various soil properties. EC of a soil is a"ected by water, clay content 
and salt. In field, measurements can vary beyond control due to soil properties 
and other environmental factors. Data must be interpreted very carefully. Hence, 
a traditional lab analyses of the soil is advised for calibration of sensor readings. 

• Sampling design for calibration samples for soil sensing: Several studies 
have highly emphasized on the sample calibration for successfully translating 
the sensor measurement to soil fertility properties. Determining sampling site 
for the stationary sensors is easy whereas it’s di �cult for mobile sensors. [10] 
provides an algorithmic solution and gives three criteria for optimal sampling: 1) 
accounting for spatial separation to avoid readings from auto-correlated samples, 
2) increasing spread of value for stability, 3) local spatial homogeneity so that 
sample fully represent the sampling site instead of being an outlier. [10, 48] also 
transformed these criteria into mathematical model. 

• Robustness, safety, ease of handling and economic e�ciency: Due to 
deployment in rough agricultural environment robustness and safety (protected 
cables and watertight plugs) of proximal sensors is a pre-requisite for daily 
usage. Some sensors (XRF systems and GCR) can cause serious injuries and 
operators need to be trained properly as a safety measure. It contributes towards 
the e� ciency and safety of the users. 

• Integrating to decision making algorithm: Sensor data alone does not make 
any sense. It gives information only when integrated into some decision-making 
algorithm. In digital agriculture, decision support system links the input data 
(temperature, moisture) to output (crop yield, profitability). These systems can 
help in decreasing e"ect of agronomic measures and can be used to do cost-benefit 
analysis. 

Future Trends 

Currently, commercially available proximal sensors capture very limited number of 
soil properties and that too with insu �cient accuracy. New proximal sensors systems 
covering wide range of soil fertility properties and more accuracy are needed. These 
sensor systems must be a"ordable and manageable in order for the farmer to be 
comfortable to use them. Low-cost handheld sensors can be used to introduce farmers 
to the benefits of using digital agriculture. 
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A combination of multiple sensors is used to capture di"erent properties of 
the soil. There is no single platform that combines multiple sensors capabilities. 
There is a need of establishment of reliable calibration database and protocols for 
evaluating the sensor data. It also allows to compare the sensors readings. Only few 
countries o"er a scientific sound and robust decision making algorithms to their 
farmer for the management purpose. Only ad-hoc approaches are being used in 
digital agriculture. These approaches have not been validated over a di"erent range 
of conditions. Authorities have to support and establish guidelines for the promotion 
of sensor-based farming. 

Most of the mobile soil sensor data is evaluated o#ine. Due to the requirement of 
quick response in crop management, farmer demands a real-time management. There 
is a lot of uncertainty about the proper soil sensor usage due to which immediate 
rate of investment cannot be guaranteed to the farmers. However, digital agriculture 
must not be evaluated for only its economic potential. A lot of environmental benefits 
(avoiding pollution and erosion) associated to the adoption of digital agriculture. 
These benefits must be quantified to support farmers. Farmers and agriculture advisors 
do not want to waste their time in data calibrating, cleaning and integration to decision 
support systems. They need smooth transition of raw data into information for 
decision making that too with robust and user-friendly systems. These systems must 
be flexible enough to work with various data formats. Decision support algorithms, 
e.g., for fertilizer recommendations are based on simple model and require few input 
parameters. Research in proximal sensing should start out by matching these simple 
models. However, proximal sensing can provide information which is neglected by the 
standard algorithms for best management. Advanced soil-crop model can integrate 
this information for further improvements. 
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8.3 Remote Sensing 

Science of collecting data from the surface of the earth without direct contact is known 
as remote sensing. Remote sensors are the instruments that collect this information 
by detecting and measuring the reflected electromagnetic radiations. Platforms used 
to carry remote sensors includes manned aircraft, satellites and unmanned aircraft 
systems (UAS). Some sensors can be mounted on ground-based vehicle or may be 
integrated into handheld systems. Few factors which can be considered for selection 
of appropriate platform are: size of the area to be imaged, complexity of crop 
types, time and cost. Manned aircraft-based sensors are also known as airborne 
sensors and satellite-based sensors are also known as space borne sensors. Di"erent 
platform should be evaluated for their suitability of and e cacy for digital agriculture 
applications [27, 30]. 

This section provides an overview of airborne imaging system and space 
borne remote sensors being used in digital agriculture. Remote sensors can 
broadly be categorized into two types: 1) imaging (cameras) and 3) non-imaging 
(spectroradiometers). Imaging sensors gives the vertical (nadir) view of the target area. 
As with the proximal sensing, remote sensing is also passive (electro-optical sensors) 
and active (imaging radar) depending on the source of energy. However, active sensors 
can take measurement regardless of time of the day and season. Electro-optical sensors 
are the imaging sensors that detect and convert the reflected radiation to the electrical 
signals which then can be viewed as images on the computer. Electro-optical can 
detect the radiations of wavelength ranging from 0.3 m to 15 m. Most of the airborne 
and satellite remote sensors in digital agriculture are electro-optical sensors. In the 
coming sections, we discuss the advances in airborne and satellite based remote 
sensors along with the examples, advantages and disadvantages in digital agriculture 
[28]. 

8.3.1 Multispectral and Hyperspectral Imaging 

8.3.1.1 Multispectral imaging systems using industrial cameras 

With overall advancement in imaging sensor technology, cameras used in 
multi-spectral imaging systems have also been evolved. Many commercial and 
customized multi-spectral systems have been developed and used for the di"erent 
remote sensing applications such as cropland assessment, digital agriculture and pest 
management etc. [51]. Most systems provide 8-16 bit images with 3-12 narrow spectral 
bands in the visible to near infrared (NIR) region of EM spectrum [63, 218, 222]. 

Multispectral imaging systems are based on di"erent approaches. One approach 
employs monochrome charged couple device (CCD) industrial cameras. Each camera 
in multispectral system uses di"erent band pass filter. It gives advantage of individual 
adjustment of camera for focus and aperture settings. However, one disadvantage 
is that multiple band images needs to be properly aligned. Another approach 
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uses beam-splitting prism and integrate multiple sensors to achieve the e"ect of 
multispectral imagery. One example of such system is CS-MS1920 multispectral 
3-CCD camera (Teledyne Optech, Inc., Vaughan, Ontario, Canada). It uses 3 CCD 
sensors to produce images in 3-5 spectral ranges with EM spectrum range of 400-100 
nm. In this approach, band images are aligned mechanically as well as optically. 

The four-camera imaging system developed by U.S. Department of Agriculture, 
Agricultural Research Service (USDA-ARS) consist of four monochrome CCD 
cameras, PC with frame grabber and image acquisition software [45, 218]. The 
camera uses spectral range of 400-100nm and 12-bit data depth. Spectra-View by 
Airborne Data Systems, Inc. (Redwood Falls, Minnesota USA) can accommodate up 
to eight di"erent cameras. These cameras can vary in size, format and wavelength and 
contains global positioning system/inertia navigation system (GPS/INS) for precise 
geo-registration of the images. Spectra-view 5WT captures 12-bit images in six (Blue, 
Green, Red, NIR MWIR, LIR) spectral bands. A cheap alternative, Agri-view, can be 
used to capture same green, NIR and red band as captured by Spectra 5WT. 

Tetracam’s multispectral imaging systems (Tetracam, Inc., Chatsworth, California, 
USA) come in two product families: 1) Agricultural Digital Camera (ADC) and 2) 
Multiple Camera Array. ADC family is equipped with single camera along with fixed 
filters at red, green and NIR wavelength. Some ADC systems (ADC Micro, ADC Lite 
and ADC) captures 8/10- bit images with 2048 x 1536 pixels while other (ADC Snap) 
captures 1280 x 1024 pixels. MCA family contains 4,6, and 12 cameras synchronized 
to take 8/10-bit images with 1280 x 1024 pixels in visible to NIR wavelengths. The 
family comes is two versions: standard Micro-MCA and Micro-MCA Snap versions. 
RGB+3 system by Tetracam has four cameras: one RGB and three monochrome 
cameras. RGB senses three broad visible bands and monochrome sense s three narrow 
bands are 680, 780 and 800nm, respectively. Mcaw (Multiple camera array wireless), 
comes with a Linux computer system, a storage device for computations and six 1280 
x 1024 snap shutter sensors. Each Tetracam’s systems has PixelWrench2 software 
which allows the editing of the images [47, 52]. 

Teledyne Optech produces RGB color cameras and thermal cameras both as 
standalone or integrated in the LIDAR (light detection and ranging) system. RGB 
CS-10000 and CS-LW640 are the example of Teledyne’s RGB and thermal camera 
respectively. CS-10000 has a resolution of 10320 by 7760 pixels and CS-LW640 
comes with resolution of 640 x 480 pixels. Integrated with Orion C LIDAR system, 
CS-LW640 is a very powerful tool for 3D mapping of thermal features. 

FLIR and ITRES Research Ltd. Also o"ers some thermal cameras. FLIR’s T600 
series cameras comes with the resolution of 640 x 480 pixels and SC8000- series have 
the resolution of 1024 x 1024 pixels. TABI-1800 by ITRES research can di"erentiate 
temperature di"erence of 1/10th of a degree. 

8.3.1.2 Multispectral imaging systems using consumer grade cameras 

Low cost, compact size, data storage and user-friendliness are some of the advantages 
that make a consumer grade camera an attractive choice for remote sensing. Consumer 
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grade cameras are mostly equipped with CCD or CMOS sensors, and Bayer color 
filter mosaic for arranging the RGB color pixel [23, 50, 83]. Various mosaicing 
algorithms are used to interpolate complete RGB values for each pixel which aligns 
the three ban images perfectly. Therefore, these cameras have been used frequently 
by researcher for the agricultural purposes [13, 49, 141]. 

In remote sensing, images in visible and NIR bands are commonly used especially 
in vegetation monitoring. NDVI uses spectral information in NIR and red bands. 
Consumer grade camera use filters to block UV and infrared light. These filters can 
be replaced by long-pass infrared filter to convert the consumer grade RGB camera 
to NIR camera and obtain NIR images. Some companies, e.g., Life Pixel, provide 
services for conversion of camera. Long-pass filter of 720-nm and 830-nm are used 
to replace NIR blocking filter. All three channels can be used to record NIR radiation 
and any of the three can be used as NIR channel, however, red channel is mostly 
preferred because of best sensitivity. These NIR-converted cameras are proved to be 
simple and cheaper tools for plant monitoring, crop monitoring and stress detection 
[123, 217]. 

A cheaper and user-friendly imaging systems are required to capture geotagged 
images at varying altitudes on any traditional or agricultural aircrafts at normal 
airplane speed [222]. Agricultural aircrafts are readily available platform for airborne 
remote sensing. If equipped with imaging system, they can be used to get aerial 
imagery for various applications such as monitoring, detecting stress and analyses of 
aerial applications usefulness. Aerial imaging and aerial spraying must not be done 
simultaneously to avoid contamination of camera. 

A USDA-ARS single-camera uses Nikon D90 camera (Nikon Inc., Melville, New 
York, USA) to capture color images of up to 4288 x 2848, geotag the image and 
is equipped with LCD monitor to view live image. For dual-camera system, it uses 
another same D90 camera but modified to NIR camera. Giga T Pro II wireless timer 
remote receiver (hahnel Industries Ltd) and a transmitted is attached to the camera 
to start and stop the image capturing. Both cameras can be mounted on the aircraft 
with little or no modification [71, 219]. USDA-ARS also produce two other systems: 
one consists of two cannon (Canon USA Inc.) EOS 5D Mark III cameras to capture 
images up to 5760 x 3840 pixels; other system by USDA-ARS consist of two Nikon 
D810 cameras capture images up to 5760 x 3840 pixels. In both of the systems, one 
camera is used to capture RGB color image and other is converted NIR camera with 
830-nm long-pass filter. Both systems use the same sensor size (36 x 24 mm) and 
focal length (20 nm). Cost of each system is around 6500 USD [55, 217, 222]. 

Due to increasing demand of light-weight and cheaper imaging systems, many 
consumer grade camera systems are being converted to capture B-G-NIR or G-R-NIR 
images using single sensor. LDP LLC, for example, provides either of the modified 
cameras or services for modification. Both cameras can also be used simultaneously 
and images can be aligned to create five band images. However, unlike NIR converted 
cameras, these cameras may su"er from light contamination depending on filters 
and algorithms used for the band separation. [39, 131] converted a standard RGB 
camera by replacing NIR blocking filter with long-pass filter to obtain NIR and R 
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bands. However, spatial resolution of the image is reduced due to smoothing e"ect in 
the process. 

8.3.1.3 Hyperspectral imaging systems 

Hyperspectral imaging system can capture images in tens to hundreds of narrow 
and spectral bands from visible to thermal spectral regions. The Airborne Visible/ 
Infrared imaging spectrometer (AVIRIS) was the first hyperspectral imaging system 
developed by Jet Propulsion laboratory and proposed to NASA in 1983. It consists of 
a flight system, ground data system and a calibration system. It captures images in 
224 continuous spectral bands under solar spectral region of EM spectrum. Di"erent 
detectors are used which are separated by four panels of wavelength ranging from 
400 nm to 2500 nm. It provides 12-bit spectral data (AVARIS). The AVARIS system 
has been extensively studied and improved over the time to meet the requirements 
of the scientists using t for the research and application purposes. [76] provides the 
overview of AVARIS sensor along with its various scientific applications [26, 43]. 

HyMap is another popular hyperspectral imaging sensor developed by Integrated 
Spectronics Pty Ltd. (Sydney, Australia). Initially, it was used for mineral exploration 
with 96 channels in 550-2500 nm spectral range [34, 41]. Current HyMap uses 128 
band in spectral range of 450-2500 nm. The system is mounted with 3-axis gyro 
stabilized platform for reduced image distortion. Sensor can capture up to 512-pixel 
images with spatial resolution of 3-10 m for agricultural applications [48, 71, 72]. 
The Compact Airborne Spectrographic Image (CASI) was the first programmable 
hyperspectral sensor first introduced in 1989 by ITRES Research Ltd. It allowed 
user to collect the data in specific band and bandwidth by programming the sensor. 
CASI-1500H, a lighter and smarter design, captures 14-bit images at 288 bands 
in spectral range of 380-1500 nm. SASI-1000A captures 1000-pixel images at 200 
bands in spectral range of 950-2450 nm. MASI-600, first commercial system, is 
available with 600 pixels and 64 band in spectral range of 3-5 um. TASI-600 is a 
hyper-spectral thermal sensor which captures 600 spatial pixel images and 32 bands 
in spectral range of 8-11.5 nm. 

Commercial hyper-spectral imaging systems have become advanced with improved 
spatial and spectral resolutions and improve GPS units for position accuracy. Specim’s 
AISA hyper-spectral systems (Spectral Imaging Ltd., Oulu, Finland) is available 
with spectral ranges from 380 nm to 12.3 um. It covers VNIR, SWIR and thermal 
LWIR spectral ranges. Specims ASIA family of hyper-spectral systems includes: 
AisaKESTREL 10 (spectral range of 400-1000 nm), AisaKESTREL 16 (spectral 
range 600-1640 nm), AisaFENIX and AisaFENIX 1K (spectral range of 380-2500 
nm) and AisaOWL (spectral range of 7.7 – 12.3 um). All systems come with a GPS 
system for accurate positioning [35]. 

Headwall Photonics, Inc. (Fitchburg, Massachusetts, USA) manufactures 
hyper-spectral imaging sensors for UV to visible, VNIR, NIR and SWIR in the 
spectral range of 250 - 2500 nm. It also produces VNIR-SWIR sensor with spectral 
coverage of 400 – 2500 nm. It can capture 1600-pixel swath image at hundreds of 
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bands. USDA-ARS in College Station, Texas, uses hyper-spectral imaging system 
with VNIR E-Series imaging spectrometer, a GPS/INS unit and hyper-spectral data 
processing unit. It can capture 16-bit images within 923 spectral bands, 1600-pixels 
of swath in wavelength of 380-1000 nm [44]. 

8.3.2 Future Trends 

This section discusses some of the challenges and future directions for remote sensing. 
First challenge is that growers do not know about the availability of imagery in the 
fast changing market; they don’t know what type of imagery to select and how to 
order imagery from the archived data for their particular application. Image providers 
and di"erent vendors must develop easy instructions for customers and growers to 
select and order appropriate imagery. Timely acquisition and delivery of the images 
is also one of the challenges. 

Numerous literature exists on processing and conversion of imagery into useful 
information and map, however, there exist no standard procedure for converting 
imagery to vegetation index maps, classification and prescription maps. There are 
many image processing software with di"erent capabilities, complexities and prices. 
However, grower may have di culty in choosing a particular software. 

There is a dire need of practical guidelines for the growers and other end users for 
the conversion of images to appropriate agricultural maps. Researchers need to focus 
on this area. Users having some familiarity with GIS and image processing must 
be able to select and use appropriate software with the help of documentation and 
tutorial. If a grower cannot learn these skills, they can use commercial services to 
process their images and create the relevant maps. Some dealers do provide services 
of image acquisition, prescription map creation and variable rate application. 

Environmental changes in agriculture may result in large variations in soil moisture, 
plant nutrition, crop growth and yields. Fast crop canopy changes need continuous 
crop monitoring [181]. Remote imagery and satellite imagery have been successfully 
used in crop prediction. However, coarse spatial and temporal resolution makes their 
application in agriculture very limited. Airborne multispectral (e.g., [220, 221]and 
hyperspectral [50] have been used to monitor crop condition and yield. 

The recent development in small unmanned aerial systems (UASs) makes 
agriculture sector a largest commercial market for its use and it will see an increase 
of 80-90% in market share (Association of Unmanned Vehicle Systems International, 
2013). Cost-e cient, ultra-high spatial imagery and easy image acquisition makes 
UAS an ideal option for crop monitoring. It is also known by various di"erent names: 
unmanned aerial vehicles (UAVs), drones, unmanned aircraft systems and remotely 
piloted vehicle [122]. 

Applications of UAS in agriculture includes: monitoring of physiological 
characteristics of crops, leaf area index (LAI,), disease and crop stress, monitoring of 
crop growth [26], yield, removal of rainwater [227], spraying fungicide, herbicide 
and pesticide [44, 126], air broadcasting of seeds [107] and measuring of crop 
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and environmental parameters (temperature, humidity, etc., [137]). There remains 
a security and privacy concern regarding the civilian use of UAS, however, its 
usefulness has already been established among the public specially in the agricultural 
sector [69]. 

8.4 Soil Sensing From the Air 

Airborne imaging systems are relatively cheaper, provide high spatial resolution and 
has ability to obtain data in visible to shortwave infrared (SWIR) region of EM 
spectrum [24, 98, 115]. There are two type of imaging systems: 1) multispectral 
and 2) hyperspectral. They di"er in spectral bands and bandwidth. Multi spectral 
uses 3-12 and hyperspectral uses tens to hundreds spectral bands to measure the 
reflected energy. Imagery from hyper spectral has great details of spectral bands and 
multispectral is great in detecting subtle di"erence among similar objects. We will 
discuss in detail the airborne multispectral and hyperspectral imaging systems in 
coming sections. 

UAVs are comprised of two main components: UAVs and sensors. UAVs act as a 
platform for the sensors. UASs can be classified into two categories: 1) fixed-wing, 
2) rotatory-wing [54, 177]. Fixed-wing has long range and are faster, however, 
ideal takeo" and finding landing spot for them is a challenging task. On contrary, 
rotatory-wing UASs have short range and flight duration but improved maneuverability. 
In addition to the sensors, platform may be equipped with the global navigation and 
satellite system (GNSS) and an inertial management unit (IMU). GNSS provide 
information about the position of the platform and IMU provides information about 
the altitude of the platform. This information is integrated with the auto pilot system 
to adjusts the course of the flight. 

One of the challenges in operating UAS is the restriction put by a country on their 
operation. Canada, for example, does not allow to fly a UAS more the 90m of height 
which h gives the images with small footprints. This makes it di cult to map a large 
crop field especially when the average crop field size was 315 ha in Canada in 2010. 

Fig. 8.2 shows variety of sensors and cameras are available for UAS. The 
performance of both, multispectral and commercial, cameras is very good [32, 77]. 
Although, data quality is a concern for the commercial camera [214], however, its 
low cost for data acquisition makes it an appealing option for agriculture. Simple 
RGB camera are not only cost-e cient but also a powerful tool for monitoring 
plant condition and plant phenology [74]. Consumer grade cameras are sensitive to 
illumination, hence, they either must be used under stable lights or adjustment should 
be made with variable illumination [25, 132]. 
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Fig. 8.2: Sensor types and crop monitoring variables [39] 

8.4.1 Flight planning 

8.4.1.1 Image Acquisition 

Most UASs are using autopilot flight planning for image acquisition. A flight plan 
includes: area, height course, and speed of the flight, camera setting, forward and side 
lap; and it is generated using a planning software. Manual control is also possible, 
however, may cause issues with image post-processing. High-resolution images or 
high-scale map are shown as a background for the planning and it is stored prior 
to field trip. GNSS and IMU data is also recorded which assist to determine image 
center position and camera orientation estimations [46, 189, 214]. All data is initially 
store in a storage device in UAS and must be downloaded to the computer for further 
usage and processing. 

The altitude of the flight determines the spatial resolution of images; lower altitude, 
e.g., 100 and 120m are common, gives images with the high spatial resolution. For 
some tasks, e.g., weed mapping, a much lower altitudes (30m) are also used which 
results in much higher spatial resolution. However, altitude is also limited by aviation 
regulations. Flight altitude does not a"ect VIs, however, it greatly influences the 
image segmentation with mixed pixels in images with higher altitudes [31, 132]. Four 
pixels are necessary to identify find ground object. 

Image overlapping is also an important factor to consider for flight planning. 
[41, 42] suggest to set the minimum value of forward and side overlap to 80% and 
60% respectively. High image overlap is recommended to avoid mismatch between 
estimated and actual ground image [53, 214], assist in identifying common points 
in image pair, and minimize the impact of bidirectional reflectance by allowing 
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image processing software to extract the central points of the image for image mosaic 
[29, 89]. 

Prior to image acquisition, researchers have used Ground Control Points (GCP), 
as an artificial target, for spectral calibration. It is recommended to use minimum of 
three GCPs evenly distributed covering the whole study area [189]. Position of these 
GCPs should be measured using a total station or di"erential GNSS to guarantee 
positional accuracy of image mosaic [40, 125]. 

8.4.1.2 Image Processing 

Various photogrammetry algorithms are used to rectify and mosaic images. After 
downloading images and logs, initial position and orientation estimates are determined 
using log files. Ortho-rectified mosaic is generated using various photogrammetric 
software (e.g., GeoLink [182] and MicMac [20]). Structure from Motion (SfM) 
photogrammetry has recently become popular for many UAS applications. It 
uses bundle adjustment algorithms for establishing the structure of the scene, 
internal and the external orientations [7, 37, 189]. SfM has advantages of having 
a simple processing workflow, ability to calculate the camera position, orientation 
and scene of the geometry from overlapping images only, not requiring camera 
calibration parameters and lastly, getting height from two-dimensional images [189]. 
Pix4dmapper [38, 132], Agisoft PhotoScan Pro [26] and Automatic Photogrammetric 
Software (Caturegli et al., 2016) are some of the commercially available SfM software. 
Freely available SfM Web services includes Autodesk 123D Catch (Michelleti et al., 
2015) and Microsoft Photosynth. However, both services were discontinued in 2016 
and 2017. Bundler, VisualSFM, Multi-View Stereo (PMVS2) and Ecosynth falls 
under the category of open-source SfM packages. Although they have been criticized 
for their computational time and reliability, their performance is sometimes found to 
be at apr with some of the commercially available options [20, 189]. 

8.4.1.3 UAS Image Applications in Digital Agriculture 

Researchers have been using UAS imagery for extracting glut of agricultural data. 
UAS imagery data includes: plant height, crop biological parameters and plant stress. 

Plant height is a key indicator for predicting many parameters such as: crop 
biomass and yield potential, growth, treatments and stress monitoring, underlying 
biophysical, ecological and hydrological processes. [26, 33, 74]. Plant height can be 
derived from LiDAR or SfM-based photogrammetry. Terrestrial laser scanning (TLS) 
accurately measures plant height for modeling of crop surface and growth monitoring 
[65, 186, 201]. 

Although Direct DEM product of SfM is produce a digital surface model, vegetation 
canopy points can be filtered from point cloud to obtain ground surface elevation point 
(DTM). Separating ground from non-ground points helps in estimating biomass and 
other relevant parameters [7, 74, 189]. However, separation of vegetation information 



296 8 Subsurface Sensing 

has been only partially successful [42, 67]. DTM can also be extracted using UAS 
before and after growing season [26]. SfM-based heights are found to be more 
accurate than the TLS-based heights. Moreover, lower altitudes (e.g., 40m) give more 
accurate crop heights [36, 87] 

Many studies have shown the application of UAS in monitoring crop biological 
parameters. Information from UAS imaging has been used for evaluation of plant 
growth, biomass, physiological changes, stresses and many other crop biological 
properties. LiDAR, thermal and hyperspectral sensors are used in this type of 
research. The biological parameters are highly e"ected if crop is stressed (water, 
diseases and infection from pests etc.). 20% of irrigated land of the world has high 
salt concentration [117]. It can cause stomatal closure, decreased photosynthesis, 
increased leaf temperature [178]. Crop stress can be monitored by the data from 
periodic thermal and visible to NIR UAS imaging during the growth season. 

Thermal UAS imaging can be used to measure temperature for calculating crop 
water stress index for leaf anomalies [25, 84]. Thermal remote sensing is also used to 
measure the soil moisture and texture, crop residue cover, field drainage tiles and yield 
[96]. Apart from remote sensing, optical sensing can also be used to identify plant 
conditions. Nutrient deficiencies in plants make them more susceptible to herbivores 
pests [51, 178]. Optical UAS images have been used to detect symptoms for plant 
nutrient deficiencies [40, 184]. 

Weeds compete with the crops for the natural resources, e.g., solar radiation, 
nutrition and water. Site-specific weed management can decrease the cost of crop 
production and lower the environmental impact. Ultra-high resolution UAS images 
helps in early and late season detection of weed’s species, density and patches 
[128, 129]. Due to spectral similarities between weeds and crops, hyper-spectral 
sensors are more useful than multispectral sensors [109]. UAS imaging have been 
used in assessing disease development, atmospheric pathogen development and 
monitoring, and precision spraying [18, 20, 48]. However, UAS-based sensing for 
assessment of diseases is still not in the mature stage [27, 30, 178]. 

8.4.1.4 Image analysis 

Prior to analysis of UAS images, some categorical information, e.g., crop type, lodged 
crop, stressed crop etc., needs to be extracted. Many researchers adopt classification 
methods while doing qualitative analysis for assigning di"erent class labels. These 
classification methods can be supervised or unsupervised methods. Some machine 
learning algorithms are also developed for segmentation of vegetation and bare soil 
[55]. 

For quantitative analysis, VIs are computed to find relation between spectral and 
field biological data [88]. Digital numbers, VIs and reflectance can be linked to crop 
biological and environmental parameter. Most common VI, NDVI, is used to measure 
biomass, nitrogen content, chlorophyll content and other biological parameters. Soil 
Adjusted VI is used to amplify spectral di"erence between vegetation and soil [186]. 
RGB camera-based VIs (Green NDVI, Excess Green Index (ExG), Green Ratio VI) 
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proved to be a good indicator of leaf area, pigment content and canopy structure 
[132]. Some VIs are also used to detect vineyard water stress [21, 24, 46]. Studeis 
have indicated that VIs derived from UAS are comparable to those derived from other 
remote sensing method (e.g., satellite and manned-aircraft) and also provide more 
spatial details. 

8.4.2 Future Trends and Conclusion 

UAS has become very popular option for monitoring of crops’ biological and 
environmental parameters, however, they are relatively expensive option. There 
exists no straightforward procedure for image interpretation, processing and analyses 
and it requires considerable amount of expertise and skilled technicians to use this 
option [20]. A straightforward and an automated tool should be developed for wider 
adoption of UAS in agriculture [186]. UAS may not be able to cover large enough area 
which can cause technical di culties. Furthermore, advancement and development 
of UAS technology also rely on loosening of aviation regulations. Local producers 
must be educated on what cost-e"ective UAS options are available to them. Due to 
involvement of di"erent equipment’s and requiring high technical expertise from 
di"erent area, a group of researcher can be formed to raise awareness among farmers 
on using these systems [186, 226]. Farmers, either as a group or individually, can 
also hire the consultancy service to receive proper guidance [226]. 

8.4.3 NASA Soil Moisture Active Passive Mission 

NASA sent a Soil Moisture Active Passive (SMAP) satellite for research purpose 
carrying an L-band radiometer (resolution = 40km) on January 31, 2015. This 
satellite was capable of detecting passive microwave radiation emitted by the Earth. 
It was also equipped with the radar (resolution ¥ 3km) for sending microwave to the 
surface of the earth and detecting the reflection. The mission was to measure soil 
moisture and detect water freeze/thaw states. Backscatters from radars were e"ected 
by the vegetation, bodies of water and surface irregularities. Therefore, signals from 
radiometers and radars were combined to get soil moisture reading within 9km 
resolution [22, 65]. The radar amplifier was failed on September 2, 2015, because 
of which it stopped working. However, NASA was successful in getting images of 
20km resolution by using di"erent methods such as interpolating and de-convolution 
and also the oversampling of radiometer. Another approach can read image if 1km 
resolution by applying active-pass algorithm to the images from other radars [45, 55]. 
The mission’s data plays an important role in developing weather, soil moisture model 
and carbon cycle but SMAP accuracy is major concern 
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8.4.3.1 Cosmic-Ray Neutron Probes 

A neutron probe is an amalgamation of beryllium and a radioactive material which 
releases high and low speed neutrons. High speed neutron collides with light 
hydrogen atom to produce a high amount of energy whereas low-speed neutron form 
a cloud whose density is directly proportional to the soil water content, e.g., dry 
soil will create a less dense cloud fewer low-speed neutron and less amount water 
[59]. Cosmic-ray neutron probes (CRNP) works on the same principle. High-speed 
neutrons are produced by cosmic-rays coming from space and can reach several 
hundred meters. Soil moisture is inversely proportional to the e"ective depth. However, 
while calibrating the instruments, it is very important to consider the other hydrogen 
sources, e.g., decomposing soil organic component and humus, and need average 
in-situ soil moisture measurement and neutron intensity [54]. It is also important to 
properly follow security and safety infrastructure to avoid any radiation hazard while 
CRNP [24][36]. 

Franz et al. [25] did a comparative investigation for soil water content (SWC) 
readings taken by in-situ Time-Domain Transmissivity (TDT) sensors and CRNP. 
The mean absolute error of 0.0286 m3/m

3) was measured. However, while taking 
SWC measurement from TDT sensors, the sensors were not permanently installed in 
the field due to their sparse distribution. Similarly, readings from CRNP does not 
include vegetation type. 

8.4.3.2 GPS Interferometric Reflectometry 

Global positioning system (GPS) also uses L-band microwaves. GPS Interferometric 
Refectometry can detect conditions like snow depth, soil moisture, and vegetation 
water content. To does so by detecting the temporal changes in SNR of line-of-sight 
(direct wave) and multi-path reflected component [37, 55]. Soil permittivity e"ects 
the reflected wave and can change frequency, phase and amplitude of the signal. These 
signal snapshots are refereed to as interferograms. Geodetic-quality GPS antennas 
can detect soil moisture from a very small distance (2-5 cm) from the surface. It is 
fixed on airborne devices. However, one disadvantage of the scheme is that it highly 
dependent on constellation of GPS satellites. These satellites moves around the earth 
few times a day, hence, limiting the number of estimations[1, 51, 54]. 

8.4.3.3 Wireless Sensor Networks 

Precision irrigation applications requires high spatio-temporal resolution for proper 
working which is provided by the sensor networks. Wireless communication helps in 
providing remote information access. this information is provided in real-time so that 
manual manipulation can be avoided to get an idea about the field conditions. [17] 
used small amount of sensors for measuring soil moisture because of precipitation 
duration and rainfall cell radius magnitude. 
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[108] discusses various techniques for estimating exact location of the sensor 
nodes. In general, examining di"erent soil properties with varying soil moisture level 
can give an average soil moisture value for the field. [15] calculates location-specific 
solar radiation intensity values to estimate the evaporation rate corresponding to that 
certain location. A mobile application is used for this approach. The calculations 
matched the reading from agriculture station which helped in generalizing the result 
to all those location which have same radiation conditions. Sensor cluster is then 
placed in chosen area with following the recommendations given in [17, 47, 52]. 

The primary task in the WUSN is to determine number of sample readings. It 
is important because sensing and communicating data consumes large amount of 
power [17, 49]. Shallow roots and high porosity causes speedy water infiltration and 
evaporation in soil. Therefore, large sampling rate is needed to overcome this highly 
fluctuating e"ect. 

8.5 Soil Moisture Sensors Calibration 

Extensive research is being done in designing e cient and accurate soil moisture 
sensors for the irrigation applications [13, 16, 25, 46, 65, 130, 140, 228]. The aim is 
to avoid financial losses because of over- and under- irrigation. The studies helps in 1) 
selecting accurate soil moisture sensor based on the soil texture, 2) error rate of the 
sensor, and 3) using calibration method that can help in accurate decision making.The 
adoption rate of sensing technologies have been very slow not only in America but 
globally as well. For example, in United States, Nebraska leads the sensors adoption 
rate by 30.5% in 2013 [12]. Nebraska has taken a firm position in agricultural 
water management. The organizations like Nebraska Agricultural Water management 
(NAWMN) [92], spread the farm-level technologies among 1500 collaborators to 
increase the adoption rate among stakeholders, i.e., producers, advisors and crop 
consultants etc. However, there is still need to improve th agricultural use and 
management of water give the fact that on 11.2% of the United States farms uses soil 
moisture based sensor devices [12, 54]. 

About 90% of farms in the United States does not adopt science-based irrigation 
water management technologies which raises the questions about the e"ectiveness of 
ongoing research. The major challenge in soil moisture adoption rate is the lack of 
well-defined guidelines to train users to understand and what to expect of technology. 
When one has to choose from multitude of available senors, it can cause uncertainty 
due to di"erent soil textures, therefore, suitability is an important aspect to look for 
while increasing the adoption rate. In addition to accuracy, operational feasibility, e.g., 
financial, ease of operation, durability and logistic features of a sensor, is also very 
important.Although, accuracy is the primary concern for scientific users, however, 
operational feasibility plays an important role in changing preferences of commercial 
in selecting sensors. For example, a field with high spatial variability will require 
many sensors in to cover multiple sites and labor to deploy those sensors. Therefore, 
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operational feasibility parameters (time, cost and labor) will be important inputs to 
consider, in addition to accuracy, while implementing the system [33, 43]. 

In coming sections, a framework is provided to evaluate the sensors on the basis of 
accuracy and operational feasibility. A total of nine commercially available sensors 
are used along with the two di"erent soil types: Silt loam and sandy soil. Two di"erent 
orientations of sensing equipment, i.e., horizontal and vertical to ground surface, are 
used. Finally a decision-making guide is presented to help selecting the sensors on 
the basis of accuracy and operational feasibility [27, 32]. 

8.5.1 Materials and Methods 

• Experimental Sites: Outdoor field experiments were conducted in two sites 
with each having di"erent soil type (sandy and silt loam) in Nebraska during 
growing season of 2017 and 2018. Rest of the discussion will refer these sites 
as per the soil type, i.e., sandy and silt loam. These two soil types provide and 
opportunity for sensor evaluation in irrigated and rainfed agricultural systems. 
Table. 8.2 lists the important details pertaining to both experimental sites. 

• Sensors: As discussed earlier, a total of nine sensors. These nine sensors were 
evaluated in two sets of each sensor: horizontal orientation and vertical orientation. 
The only exceptions were JD multi-sensor probe and TDR315L (Acclima) because 
that can only be used vertically and horizontally, respectively. Following sensors 
were used for the experimentation: 

– TrueTDR-315L (Acclima, Inc., Meridian, ID) 
– CS616 (Campbell Scientific, Inc., Logan, UT) 
– CS655 (Campbell Scientific, Inc., Logan, UT) 
– 5TE (Meter Group, Pullman, WA) 
– SM150 (Delta-T Devices, Cambridge, U.K.) 
– 10HS (Meter Group, Pullman, WA) 
– John Deere (JD) Field Connect (John Deere Water, San Marcos, Cal.) 
– EC-5 (Meter Group, Pullman, WA) 
– Dielectric Water Potential-based SensorTEROS 21 (MPS-6) (Meter Group, 

Pullman,WA) 

The first three are Time-Domain Reflectometry (TDR)-based Sensors and others 
are Capacitance-based Sensors. The sensors measures volumetric water content 
(◊v) (m3m≠3

%vol) except TEROS 21 (MPS-6), which gives soil matrix potential 
(Ym) (kPa) and is converted to ◊v by soil-specific soil-water release curves given 
by. 

• Reference (True) Moisture Measurement: Reference soil moisture values ◊v 
(◊vref ) has been measured using Troxler Model 4302 neutron probe (NP) soil 
moisture gauge (Troxler Electronic Laboratories, Inc., Research Triangle Park, 
N.C.). All other sensor values are calibrated on the basis of NP measurements. 
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Table 8.2: Experiment Site Details [13] 

Site Features Site 1 Site 2 

University of 
Nebraska-Lincoln South Central City approximately 10 

Location Central Agricultural km north of the Platte River, 
Laboratory (SCAL), near Nebraska 
Clay Center, Nebraska 

Average Annual Precipitation 730 mm 732 mm 

Average Growing Season 
437 mm 464 mm

Precipitation 

Soil Type Well-drained 
Hastings silt loam soil Deep, 

Well-drained Hastings silt
Soil Type moderately drained, and

loam soil 
moderately permeable loamy 
sand 

3 ≠3 3 ≠3Soil Field capacity (FC) 0.34 m m 0.19 m m 

Soil Permanent Wilting Point 3 ≠3 3 ≠3
0.14 m m 0.05 m m

(PWP) 

Crops Grown Field maize and Soybean Bu"alograss and Tall fescue 

Size of the field 16.5 ha 70 ha 

Factory calibrated NP measurement are correlated with gravimetric-sample 
determined ◊v to develop site-specific calibration using following equations: 

y = 0.9061x + 0.0354 (8.2) 

y = 1.0848x ≠ 0.0246 (8.3) 

where y is ◊vref , x is ◊v and equation 8.2 and 8.3 are measures calibration for 
silt loam and sandy soil, respectively. 

• Installation Specifications: Sensor output accuracy is also dependent upon how 
they are installed in the field. Four soil type-orientation were referred as: silt 
loam H, silt loam V, loamy sand H, and loamy sand V, where H and V represents 
the vertical and horizontal orientation. For horizontal orientation (silt loam H, 
loamy sand H): soil pits were dug on both sides of sensors in furrow (silt loam 
soil) and grassed area (loamy sand soil). Sensors were installed parallel and 
perpendicular for horizontal and vertical orientation, respectively. The distance 
between the sensors are kept such that one sensor may not e"ect the readings 
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from other sensor. For vertical orientation, distance between the horizontal plane 
and the ground surface is kept 30 cm and 50 cm for silt loam and loamy sand soil 
respectively. The JD probe uses di"erent orientation because of its distinguishing 
characteristic of being a multi-depth probe and is compared with NP probe at 
multiple depths (10, 20, 30, 50, and 100 cm). 

• Soil Moisture Data Measurement and Retrieval: Dataloggers are used to collect 
data from the sensors about soil moisture every minute and hourly averages. Only 
in the case of JD probes, telemetry was used to collect data. NP measurements 
were taken every week throughout growing season. 

• Statistical Analysis: For performance evaluation of sensors, root mean squared 
error (RMSE, 3 m m≠3), is computed as follow: 

Úq
n 2

1(Ei ≠ Mi)  
RMSE = i= (8.4)

n 

where n is total number of observations, Mi is sensor values, and Ei are 
corresponding NP-probe measure values. RMSE value is used as absolute value 
of error for a particular sensor. 

• Evaluation Metrics: The two metrics used for the each sensor evaluation are: 
Operational feasibility and performance accuracy. The next two section briefly 
explain the how sensors are evaluated for these metrics. 

8.5.2 Operational Feasibility 

Operational feasibility of a sensors can be expressed by the following four 
characteristics: 

Telemetry. Telemetry (TM) refers to real-time access of soil moisture data from 
the site on mobile or web platforms which is transmitted using some terrestrial or 
radio system. It prevents users from labor and time investment of going physically 
to the site and monitoring water profile of the soil [40]. The TM information is 
quantified by following equation and referred to as Score1: 

I 
0 No TM 

Score1 = (8.5)
100 With TM 

Sensor Cost. Sensor cost plays a very important role in selection of sensor. The 
absolute cost of sensor (Table 8.3) is quantified and re scaled to scale of 0-100 to 
be consistent with other factors scores and is represented by Score2 as follow: 

3 4 
Maxscaled ≠ Minscaled Score2 = 100 ≠ ◊ (Sensorcost≠ Mincost)+Minscaled Maxcost ≠ Mincost 

(8.6) 
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Table 8.3: Prices (in 
2019 [13] 

USD) of sensors and corresponding dataloggers as on March 

Sensor Sensor Cost ($) 
Sensing and Sensing and 
Logging Cost ($) Logging Cost ($) 
(No TM) (TM) 

CS655 228 1928 2378 

CS616 148 1848 2298 

SM150 230 1590 3590 

10HS 128 624 1274 

EC-5 120 616 1266 

5TE 225 721 1371 

TEROS 21 
(MPS-6) 

225 721 1371 

JD Probe 193 1193 2193 

TDR315L 
(Acclima) 

295 
N/A (Not available 

670 
from manufacturer) 

where Maxscaled and Minscaled are extremes of score metric (0 and 100), and 
Maxcost and Mincost are extremes of absolute cost of sensors in USD. Cheapest 
sensor will have the score of 100 and expensive sensor will have score of 0. 
Cost of Sensing and Data Logging. Accurate sensing and data logging after fixed 
intervals (e.g., 30-60 minutes) is an important part of sensor operations. It gives 
daily status status as well as the historical soil moisture data for decision making 
and scrutiny of data for quality purposes. Therefore, equation 8.7 and 8.8 gives 
the total cost of sensing and data logging with and without TM, respectively: 

Total CostNoT  M  = Sensor Cost + DL cost (8.7) 

Total CostT M  = Per sensor cost + DL cost + TM cost (8.8) 

The total cost of the sensor (Table 8.3) is quantified and rescaled as Score3 using 
method similar to used in Score2 computation as follow: 

3 4 
Max  Min

Score3 = 100 ≠ scaled ≠ scaled 

MaxT otalcost   MinT otalcost  
◊ (Totalcost ≠ Min≠ T otalcost)+Minscaled 

(8.9) 
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where Maxscaled and Minscaled are extremes of score metric (0 and 100), and 
MaxT otalcost  and MinT otalcost  are the extremes of absolute total cost of sensors 
in USD (Table 8.3). Cheapest sensor will have the score of 100 and expensive 
sensor will have score of 0. 
Ease of Operation. Ease of operation can be assessed by measuring ease of 
interaction with users at various stages. The stages can be categorized to setting 
up datalogger, collecting data from datalogger and post-processing the data. The 
following Score4 for this factor is quantified based on the factor if in a sensor 
datalogger comes with a graphical user interface (GUI) and if post-processing of 
data is needed for the sensor: 

Y 
_ 0 No GUI _ _]

100 GUI, no data post-processing 
Score4 = (8.10) _50 GUI, require data post-processing _ _[

1 

All scores applies to any orientation and soil type and remains unchanged if 
site-specific calibrations (S.S.C.) or factory calibrations (F.C.) is used. 

8.5.3 Performance Accuracy 

The performance accuracy shows the ability of sensor to accurately sense the data. It 
is dependent upon soil type and orientation, therefore, for all soil type and orientation 
combinations, root mean squared error (RMSE), for each sensor’s ◊v , is measured 
against reference values from neutron probes. To be consistent with operational 
feasibility, RMSE values are scaled to have score of 0-100 refereed as a performance 
accuracy (P.A.) score. P.A. score is computed as follow: 

3 4 
Maxscaled ≠ Minscaled P .A.score = 100 ≠ 

MaxRMSE ≠ MinRMSE (8.11) 
◊ (RMSE ≠ MinRMSE ) + Minscaled 

where Maxscaled and Minscaled are extremes of score metric (0 and 100), and 
MaxRMSE and MinRMSE are the extremes of sensor’s RMSE value (Fig 8.4). 
Most accurate sensor will have the score of 100 and least accurate sensor will have 
score of 0. 
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 Table 8.4: Root mean squared error RMSE (m3 m≠3) 
orientations, soil types, and calibration types [13] 

for each sensor using multiple 

RMSE
Soil Type Sensor Vertical 

F.C. S.S.C. 

  (m3 m≠3) 

Horizontal 

F.C. S.S.C. 

CS655 0.05 0.03 0.15 0.05 

CS616 0.06 0.03 0.40 0.05 

SM150 0.0 7 0.02 0.06 0.04 

10HS 0.10 0.03 0.07 0.06 

Silt Loam EC-5 0.15 0.03 0.15 N/A 

5TE 0.05 0.02 0.06 0.04 

TEROS 21 0.08 0.03 
(MPS-6) 

0.11 0.05 

JD Probe 0.05 0.06 N/A N/A 

TDR315L 
N/A N/A 

(Acclima) 
0.06 0.04 

CS655 0.03 0.03 0.01 0.02 

CS616 0.03 0.02 0.03 0.025 

SM150 0.04 0.04 0.02 0.02 

10HS 0.04 0.02 0.14 0.02 

Loamy Sand EC-5 0.05 0.04 0.09 0.02 

5TE 0.04 0.04 0.03 0.01 

TEROS 21 0.21 0.03 
(MPS-6) 

0.22 N/A 

JD Probe 0.01 0.02 N/A N/A 

TDR315L 
N/A N/A 

(Acclima) 
0.02 0.02 

8.5.4 Results and Discussion 

Scores from equations (8.5, 8.6, 8.9, and 8.10) were used to assess operational 
feasibility of a sensor (see Table. 8.5). All sensors, except TDR-315L (Acclima), were 
scored 100 for Score1. TDR-315L (Acclima) was scored 0 because of non-availability 



306 8 Subsurface Sensing 

of TM. Score2 shows more variability than Score1 with EC-5 having lowest score of 
0 (most expensive) and TDR-315L (Acclima) sensors having the maximum score 
of 100 (cheapest). Rest of the sensors didn’t had much di"erence ($225-$230) with 
the scores ranging between 37-40. For Score3, there can be two cost cases: with or 
without TM. In category of sensors without TM sensing and datalogging, EC-5 and 
CS655 were cheapest and the most expensive sensors, respectively.In category of 
sensors with TM sensing and datalogging, EC-5 and SM150 were cheapest and the 
most expensive sensors, respectively. TM options had a significant impact on the 
total cost of the sensor, hence, also on the selection of sensor. Finally, all sensors, 
except CS616, CS655, and TEROS 21 (MPS-6), score 100 in Score4. Because of 
need of programming for setting up the datalogger for CS616 and CS655, they were 
scored 0 for Score4. Similarly, TEROS 21 required data post-processing and was 
scored 50 fro Score4 [32, 35]. 

P.A. scores were calculated for four soil type and orientation combinations: silt 
loam H, silt loam V, loamy sand H, and loamy sand V, using equation 8.11 (see Table. 
8.5). P.A. scores are studied from the three perspective: on the basis of site, calibration 
type and orientation. For silt loam V, CS655 with highest P.A., and EC-5 with lowest 
P.A., had extreme P.A. score values under F.C., and SM150 with highest P.A., and JD 
Probe with lowest P.A., had extreme P.A. score values under S.S.C. It is interesting to 
note that changing the calibration method completely alters the P.A. scores. For silt 
loam H, 5TE SM150 with highest P.A., and CS616 with lowest P.A. had extreme P.A. 
score values under F.C., and 5TE with highest P.A., and 10 HS with lowest P.A., had 
extreme P.A. score values under S.S.C. It is interesting to note that 5TE performed 
well in all conditions and can be a suitable choice for irrigation applications. For the 
soil type, following changes were observed for P.A. scores: 10 HS (loamy sand V 
under S.S.C.), JD probe (for loamy sand V under F.C.), CS655 (loamy sand H under 
F.C.), and 5TE (loamy sand H under S.S.C.). P.A scores are singular for the sensors 
and does not have constituent as in operational feasibility scores and it is significantly 
e"ected by changing the orientation, soil type and calibration type [20, 48, 71, 72]. 

8.6 A Guide for Sensor Selection 

Fig. 8.3 gives a step-by-step sensor selection framework to help choosing appropriate 
sensors for given conditions. The steps of this framework are as follow: 

• Choose appropriate factors among operational feasibility components and P.A 
which are most relevant to the users condition to recognize the sensors with 
characteristics more closer to user demand, e.g., for a highly skilled research 
ease of operation (Score4) can be ignored. 

• Each factor is assigned a weight on the basis of importance to user, e.g., for 
research purpose P.A. scores are assigned high weight. 

https://respectively.In
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Table 8.5: Total score calculated for each sensor for operational feasibility (O.F.) and 
performance accuracy (P.A.). P.A. scores may di"ere from parameters of experiments, 
e.g., soil types, orientations and calibration whereas scores for O.F. are universal [13] 

Operational Feasibility (O.F.) Score 

Column 1 2 3 4 5 
ID 

Score Score Score 3 Score 3 Score 
1 2 (Non-TM) (TM) 4Sensor 

100 38 0 52 0CS655 

100 84 6 56 0CS616 

100 37 26 0 100SM150 

100 95 99 100 10010HS 

100 100 100 100 100EC-5 

100 40 92 95 1005TE 

TEROS 21 100 40 92 95 50 
(MPS-6) 

100 58 N/A 60 100JD Probe 

TDR315L 0 0 96 N/A 100 
(Acclima) 

Performance Accuracy (P.A.) Score 
6 

Silt Loam V Silt Loam H Loamy Sand V Loamy Sand H 
F.C. S.S.C. F.C. S.S.C. F.C. S.S.C. F.C. S.S.C. 
100 76 73 47 90 66 100 53 
87 80 0 31 94 74 95 79 
74 100 100 80 85 0 98 0 
44 84 95 2 87 100 41 8 
0 75 73 N/A 84 17 65 84 
97 94 100 100 87 11 91 100 
67 80 85 72 0 23 0 N/A 
99 0 N/A N/A 100 81 N/A N/A 
N/A N/A 98 83 N/A N/A 97 8 

• The assigned weight is multiplied with the corresponding score of the factor. As 
an example, an equation is shown in Fig. 8.3-step 3 where various individual 
factors scores for ease of operation, sensing and datalogging cost, and P.A. scores 
are multiplied by corresponding weights (—2, —1, —3), respectively, and a final 
score is computed. 



Select Factors 
Cost, Calibration, 

TM, Soil Type 

Weigh FactoI"S 
/31 X 83 + 
/32 X 84 + 
/3, x P . A 

sensors 
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Fig. 8.3: Selection procedure of soil moisture sensors 

• All sensors are compared for the final scores for evaluation on the basis of degree 
of success and operational feasibility that can be achieved by a particular sensor. 
The sensor with the highest final score will be most suited for the application. 
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