1,043 research outputs found

    Performance Portability Through Semi-explicit Placement in Distributed Erlang

    Get PDF
    We consider the problem of adapting distributed Erlang applications to large or heterogeneous architectures to achieve good performance in a portable way. In many architectures, and especially large architectures, the communication latency between pairs of virtual machines (nodes) is no longer uniform. We propose two language-level methods that enable programs to automatically adapt to heterogeneity and non-uniform communication latencies, and both provide information enabling a program to identify an appropriate node when spawning a process. We provide a means of recording node attributes describing the hardware and software capabilities of nodes, and mechanisms that allow an application to examine the attributes of remote nodes. We provide an abstraction of communication distances that enables an application to select nodes to facilitate efficient communication. We have developed open source libraries that implement these ideas. We show that the use of attributes for node selection can lead to significant performance improvements if different components of the application have different processing requirements. We report a detailed empirical investigation of non-uniform communication times in several representative architectures, and show that our abstract model provides a good description of the hierarchy of communication times

    Dynamically typed languages

    Get PDF
    Dynamically typed languages such as Python and Ruby have experienced a rapid grown in popularity in recent times. However, there is much confusion as to what makes these languages interesting relative to statically typed languages, and little knowledge of their rich history. In this chapter I explore the general topic of dynamically typed languages, how they differ from statically typed languages, their history, and their defining features

    The modern landscape of managing effects for the working programmer

    Get PDF
    The management of side effects is a crucial aspect of modern programming, especially in concurrent and distributed systems. This thesis analyses different approaches for managing side effects in programming languages, specifically focusing on unrestricted side effects, monads, and algebraic effects and handlers. Unrestricted side effects, used in mainstream imperative programming languages, can make programs difficult to reason about. Monads offer a solution to this problem by describing side effects in a composable and referentially transparent way but many find them cumbersome to use. Algebraic effects and handlers can address some of the shortcomings of monads by providing a way to model effects in more modular and flexible way. The thesis discusses the advantages and disadvantages of each of these approaches and compares them based on factors such as expressiveness, safety, and constraints they place on how programs must be implemented. The thesis focuses on ZIO, a Scala library for concurrent and asynchronous programming, which revolves around a ZIO monad with three type parameters. With those three parameters ZIO can encode the majority of practically useful effects in a single monad. ZIO takes inspiration from algebraic effects, combining them with monadic effects. The library provides a range of features, such as declarative concurrency, error handling, and resource management. The thesis presents examples of using ZIO to manage side effects in practical scenarios, highlighting its strengths over other approaches. The applicability of ZIO is evaluated by implementing a server side application using ZIO, and analyzing observations from the development process

    Adaptive structured parallelism

    Get PDF
    Algorithmic skeletons abstract commonly-used patterns of parallel computation, communication, and interaction. Parallel programs are expressed by interweaving parameterised skeletons analogously to the way in which structured sequential programs are developed, using well-defined constructs. Skeletons provide top-down design composition and control inheritance throughout the program structure. Based on the algorithmic skeleton concept, structured parallelism provides a high-level parallel programming technique which allows the conceptual description of parallel programs whilst fostering platform independence and algorithm abstraction. By decoupling the algorithm specification from machine-dependent structural considerations, structured parallelism allows programmers to code programs regardless of how the computation and communications will be executed in the system platform.Meanwhile, large non-dedicated multiprocessing systems have long posed a challenge to known distributed systems programming techniques as a result of the inherent heterogeneity and dynamism of their resources. Scant research has been devoted to the use of structural information provided by skeletons in adaptively improving program performance, based on resource utilisation. This thesis presents a methodology to improve skeletal parallel programming in heterogeneous distributed systems by introducing adaptivity through resource awareness. As we hypothesise that a skeletal program should be able to adapt to the dynamic resource conditions over time using its structural forecasting information, we have developed ASPara: Adaptive Structured Parallelism. ASPara is a generic methodology to incorporate structural information at compilation into a parallel program, which will help it to adapt at execution

    Reify Your Collection Queries for Modularity and Speed!

    Full text link
    Modularity and efficiency are often contradicting requirements, such that programers have to trade one for the other. We analyze this dilemma in the context of programs operating on collections. Performance-critical code using collections need often to be hand-optimized, leading to non-modular, brittle, and redundant code. In principle, this dilemma could be avoided by automatic collection-specific optimizations, such as fusion of collection traversals, usage of indexing, or reordering of filters. Unfortunately, it is not obvious how to encode such optimizations in terms of ordinary collection APIs, because the program operating on the collections is not reified and hence cannot be analyzed. We propose SQuOpt, the Scala Query Optimizer--a deep embedding of the Scala collections API that allows such analyses and optimizations to be defined and executed within Scala, without relying on external tools or compiler extensions. SQuOpt provides the same "look and feel" (syntax and static typing guarantees) as the standard collections API. We evaluate SQuOpt by re-implementing several code analyses of the Findbugs tool using SQuOpt, show average speedups of 12x with a maximum of 12800x and hence demonstrate that SQuOpt can reconcile modularity and efficiency in real-world applications.Comment: 20 page

    Scaling Reliably: Improving the Scalability of the Erlang Distributed Actor Platform

    Get PDF
    Distributed actor languages are an effective means of constructing scalable reliable systems, and the Erlang programming language has a well-established and influential model. While the Erlang model conceptually provides reliable scalability, it has some inherent scalability limits and these force developers to depart from the model at scale. This article establishes the scalability limits of Erlang systems and reports the work of the EU RELEASE project to improve the scalability and understandability of the Erlang reliable distributed actor model. We systematically study the scalability limits of Erlang and then address the issues at the virtual machine, language, and tool levels. More specifically: (1) We have evolved the Erlang virtual machine so that it can work effectively in large-scale single-host multicore and NUMA architectures. We have made important changes and architectural improvements to the widely used Erlang/OTP release. (2) We have designed and implemented Scalable Distributed (SD) Erlang libraries to address language-level scalability issues and provided and validated a set of semantics for the new language constructs. (3) To make large Erlang systems easier to deploy, monitor, and debug, we have developed and made open source releases of five complementary tools, some specific to SD Erlang. Throughout the article we use two case studies to investigate the capabilities of our new technologies and tools: a distributed hash table based Orbit calculation and Ant Colony Optimisation (ACO). Chaos Monkey experiments show that two versions of ACO survive random process failure and hence that SD Erlang preserves the Erlang reliability model. While we report measurements on a range of NUMA and cluster architectures, the key scalability experiments are conducted on the Athos cluster with 256 hosts (6,144 cores). Even for programs with no global recovery data to maintain, SD Erlang partitions the network to reduce network traffic and hence improves performance of the Orbit and ACO benchmarks above 80 hosts. ACO measurements show that maintaining global recovery data dramatically limits scalability; however, scalability is recovered by partitioning the recovery data. We exceed the established scalability limits of distributed Erlang, and do not reach the limits of SD Erlang for these benchmarks at this scal

    VeriFx: Correct Replicated Data Types for the Masses

    Get PDF
    Distributed systems adopt weak consistency to ensure high availability and low latency, but state convergence is hard to guarantee due to conflicts. Experts carefully design replicated data types (RDTs) that resemble sequential data types and embed conflict resolution mechanisms that ensure convergence. Designing RDTs is challenging as their correctness depends on subtleties such as the ordering of concurrent operations. Currently, researchers manually verify RDTs, either by paper proofs or using proof assistants. Unfortunately, paper proofs are subject to reasoning flaws and mechanized proofs verify a formalization instead of a real-world implementation. Furthermore, writing mechanized proofs is reserved for verification experts and is extremely time-consuming. To simplify the design, implementation, and verification of RDTs, we propose VeriFx, a specialized programming language for RDTs with automated proof capabilities. VeriFx lets programmers implement RDTs atop functional collections and express correctness properties that are verified automatically. Verified RDTs can be transpiled to mainstream languages (currently Scala and JavaScript). VeriFx provides libraries for implementing and verifying Conflict-free Replicated Data Types (CRDTs) and Operational Transformation (OT) functions. These libraries implement the general execution model of those approaches and define their correctness properties. We use the libraries to implement and verify an extensive portfolio of 51 CRDTs, 16 of which are used in industrial databases, and reproduce a study on the correctness of OT functions
    • 

    corecore