24 research outputs found

    Representation, Recognition and Collaboration with Digital Ink

    Get PDF
    Pen input for computing devices is now widespread, providing a promising interaction mechanism for many purposes. Nevertheless, the diverse nature of digital ink and varied application domains still present many challenges. First, the sampling rate and resolution of pen-based devices keep improving, making input data more costly to process and store. At the same time, existing applications typically record digital ink either in proprietary formats, which are restricted to single platforms and consequently lack portability, or simply as images, which lose important information. Moreover, in certain domains such as mathematics, current systems are now achieving good recognition rates on individual symbols, in general recognition of complete expressions remains a problem due to the absence of an effective method that can reliably identify the spatial relationships among symbols. Last, but not least, existing digital ink collaboration tools are platform-dependent and typically allow only one input method to be used at a time. Together with the absence of recognition, this has placed significant limitations on what can be done. In this thesis, we investigate these issues and make contributions to each. We first present an algorithm that can accurately approximate a digital ink curve by selecting a certain subset of points from the original trace. This allows a compact representation of digital ink for efficient processing and storage. We then describe an algorithm that can automatically identify certain important features in handwritten symbols. Identifying the features can help us solve a number of problems such as improving two-dimensional mathematical recognition. Last, we present a framework for multi-user online collaboration in a pen-based and graphical environment. This framework is portable across multiple platforms and allows multimodal interactions in collaborative sessions. To demonstrate our ideas, we present InkChat, a whiteboard application, which can be used to conduct collaborative sessions on a shared canvas. It allows participants to use voice and digital ink independently and simultaneously, which has been found useful in remote collaboration

    A novel approach to handwritten character recognition

    Get PDF
    A number of new techniques and approaches for off-line handwritten character recognition are presented which individually make significant advancements in the field. First. an outline-based vectorization algorithm is described which gives improved accuracy in producing vector representations of the pen strokes used to draw characters. Later. Vectorization and other types of preprocessing are criticized and an approach to recognition is suggested which avoids separate preprocessing stages by incorporating them into later stages. Apart from the increased speed of this approach. it allows more effective alteration of the character images since more is known about them at the later stages. It also allows the possibility of alterations being corrected if they are initially detrimental to recognition. A new feature measurement. the Radial Distance/Sector Area feature. is presented which is highly robust. tolerant to noise. distortion and style variation. and gives high accuracy results when used for training and testing in a statistical or neural classifier. A very powerful classifier is therefore obtained for recognizing correctly segmented characters. The segmentation task is explored in a simple system of integrated over-segmentation. Character classification and approximate dictionary checking. This can be extended to a full system for handprinted word recognition. In addition to the advancements made by these methods. a powerful new approach to handwritten character recognition is proposed as a direction for future research. This proposal combines the ideas and techniques developed in this thesis in a hierarchical network of classifier modules to achieve context-sensitive. off-line recognition of handwritten text. A new type of "intelligent" feedback is used to direct the search to contextually sensible classifications. A powerful adaptive segmentation system is proposed which. when used as the bottom layer in the hierarchical network. allows initially incorrect segmentations to be adjusted according to the hypotheses of the higher level context modules

    A novel approach to handwritten character recognition

    Get PDF
    A number of new techniques and approaches for off-line handwritten character recognition are presented which individually make significant advancements in the field. First. an outline-based vectorization algorithm is described which gives improved accuracy in producing vector representations of the pen strokes used to draw characters. Later. Vectorization and other types of preprocessing are criticized and an approach to recognition is suggested which avoids separate preprocessing stages by incorporating them into later stages. Apart from the increased speed of this approach. it allows more effective alteration of the character images since more is known about them at the later stages. It also allows the possibility of alterations being corrected if they are initially detrimental to recognition. A new feature measurement. the Radial Distance/Sector Area feature. is presented which is highly robust. tolerant to noise. distortion and style variation. and gives high accuracy results when used for training and testing in a statistical or neural classifier. A very powerful classifier is therefore obtained for recognizing correctly segmented characters. The segmentation task is explored in a simple system of integrated over-segmentation. Character classification and approximate dictionary checking. This can be extended to a full system for handprinted word recognition. In addition to the advancements made by these methods. a powerful new approach to handwritten character recognition is proposed as a direction for future research. This proposal combines the ideas and techniques developed in this thesis in a hierarchical network of classifier modules to achieve context-sensitive. off-line recognition of handwritten text. A new type of "intelligent" feedback is used to direct the search to contextually sensible classifications. A powerful adaptive segmentation system is proposed which. when used as the bottom layer in the hierarchical network. allows initially incorrect segmentations to be adjusted according to the hypotheses of the higher level context modules

    Character Recognition

    Get PDF
    Character recognition is one of the pattern recognition technologies that are most widely used in practical applications. This book presents recent advances that are relevant to character recognition, from technical topics such as image processing, feature extraction or classification, to new applications including human-computer interfaces. The goal of this book is to provide a reference source for academic research and for professionals working in the character recognition field

    Automated recognition of handwritten mathematics

    Get PDF
    Most software programs that deal with mathematical objects require input expressions to be linearized using somewhat awkward and unfamiliar string-based syntax. It is natural to desire a method for inputting mathematics using the same two-dimensional syntax employed with pen and paper, and the increasing prevalence of pen- and touch-based interfaces causes this topic to be of practical as well as theoretical interest. Accurately recognizing two-dimensional mathematical notation is a difficult problem that requires not only theoretical advancement over the traditional theories of string-based languages, but also careful consideration of runtime efficiency, data organization, and other practical concerns that arise during system construction. This thesis describes the math recognizer used in the MathBrush pen-math system. At a high level, the two-dimensional syntax of mathematical writing is formalized using a relational grammar. Rather than reporting a single recognition result, all recognizable interpretations of the input are simultaneously represented in a data structure called a parse forest. Individual interpretations may be extracted from the forest and reported one by one as the user requests them. These parsing techniques necessitate robust tree scoring functions, which themselves rely on several lower-level recognition processes for stroke grouping, symbol recognition, and spatial relation classification. The thesis covers the recognition, parsing, and scoring aspects of the MathBrush recognizer, as well as the algorithms and assumptions necessary to combine those systems and formalisms together into a useful and efficient software system. The effectiveness of the resulting system is measured through two accuracy evaluations. One evaluation uses a novel metric based on user effort, while the other replicates the evaluation process of an international accuracy competition. The evaluations show that not only is the performance of the MathBrush recognizer improving over time, but it is also significantly more accurate than other academic recognition systems

    Acoustic Based Sketch Recognition

    Get PDF
    Sketch recognition is an active research field, with the goal to automatically recognize hand-drawn diagrams by a computer. The technology enables people to freely interact with digital devices like tablet PCs, Wacoms, and multi-touch screens. These devices are easy to use and have become very popular in market. However, they are still quite costly and need more time to be integrated into existing systems. For example, handwriting recognition systems, while gaining in accuracy and capability, still must rely on users using tablet-PCs to sketch on. As computers get smaller, and smart-phones become more common, our vision is to allow people to sketch using normal pencil and paper and to provide a simple microphone, such as one from their smart-phone, to interpret their writings. Since the only device we need is a single simple microphone, the scope of our work is not limited to common mobile devices, but also can be integrated into many other small devices, such as a ring. In this thesis, we thoroughly investigate this new area, which we call acoustic based sketch recognition, and evaluate the possibilities of using it as a new interaction technique. We focus specifically on building a recognition engine for acoustic sketch recognition. We first propose a dynamic time wrapping algorithm for recognizing isolated sketch sounds using MFCC(Mel-Frequency Cesptral Coefficients). After analyzing its performance limitations, we propose improved dynamic time wrapping algorithms which work on a hybrid basis, using both MFCC and four global features including skewness, kurtosis, curviness and peak location. The proposed approaches provide both robustness and decreased computational cost. Finally, we evaluate our algorithms using acoustic data collected by the participants using a device's built-in microphone. Using our improved algorithm we were able to achieve an accuracy of 90% for a 10 digit gesture set, 87% accuracy for the 26 English characters and over 95% accuracy for a set of seven commonly used gestures

    Large vocabulary off-line handwritten word recognition

    Get PDF
    Considerable progress has been made in handwriting recognition technology over the last few years. Thus far, handwriting recognition systems have been limited to small-scale and very constrained applications where the number on different words that a system can recognize is the key point for its performance. The capability of dealing with large vocabularies, however, opens up many more applications. In order to translate the gains made by research into large and very-large vocabulary handwriting recognition, it is necessary to further improve the computational efficiency and the accuracy of the current recognition strategies and algorithms. In this thesis we focus on efficient and accurate large vocabulary handwriting recognition. The main challenge is to speedup the recognition process and to improve the recognition accuracy. However. these two aspects are in mutual conftict. It is relatively easy to improve recognition speed while trading away some accuracy. But it is much harder to improve the recognition speed while preserving the accuracy. First, several strategies have been investigated for improving the performance of a baseline recognition system in terms of recognition speed to deal with large and very-large vocabularies. Next, we improve the performance in terms of recognition accuracy while preserving all the original characteristics of the baseline recognition system: omniwriter, unconstrained handwriting, and dynamic lexicons. The main contributions of this thesis are novel search strategies and a novel verification approach that allow us to achieve a 120 speedup and 10% accuracy improvement over a state-of-art baselinè recognition system for a very-large vocabulary recognition task (80,000 words). The improvements in speed are obtained by the following techniques: lexical tree search, standard and constrained lexicon-driven level building algorithms, fast two-level decoding algorithm, and a distributed recognition scheme. The recognition accuracy is improved by post-processing the list of the candidate N-best-scoring word hypotheses generated by the baseline recognition system. The list also contains the segmentation of such word hypotheses into characters . A verification module based on a neural network classifier is used to generate a score for each segmented character and in the end, the scores from the baseline recognition system and the verification module are combined to optimize performance. A rejection mechanism is introduced over the combination of the baseline recognition system with the verification module to improve significantly the word recognition rate to about 95% while rejecting 30% of the word hypotheses

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man
    corecore