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Abstract

Most software programs that deal with mathematical objects require input expressions
to be linearized using somewhat awkward and unfamiliar string-based syntax. It is natural
to desire a method for inputting mathematics using the same two-dimensional syntax
employed with pen and paper, and the increasing prevalence of pen- and touch-based
interfaces causes this topic to be of practical as well as theoretical interest. Accurately
recognizing two-dimensional mathematical notation is a difficult problem that requires
not only theoretical advancement over the traditional theories of string-based languages,
but also careful consideration of runtime efficiency, data organization, and other practical
concerns that arise during system construction.

This thesis describes the math recognizer used in the MathBrush pen-math system.
At a high level, the two-dimensional syntax of mathematical writing is formalized using
a relational grammar. Rather than reporting a single recognition result, all recognizable
interpretations of the input are simultaneously represented in a data structure called a
parse forest. Individual interpretations may be extracted from the forest and reported
one by one as the user requests them. These parsing techniques necessitate robust tree
scoring functions, which themselves rely on several lower-level recognition processes for
stroke grouping, symbol recognition, and spatial relation classification.

The thesis covers the recognition, parsing, and scoring aspects of the MathBrush rec-
ognizer, as well as the algorithms and assumptions necessary to combine those systems
and formalisms together into a useful and efficient software system. The effectiveness of
the resulting system is measured through two accuracy evaluations. One evaluation uses
a novel metric based on user effort, while the other replicates the evaluation process of an
international accuracy competition. The evaluations show that not only is the performance
of the MathBrush recognizer improving over time, but it is also significantly more accurate
than other academic recognition systems.
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Chapter 1

Introduction

Many software packages exist which operate on mathematical expressions. Such software
is generally produced for one of two purposes: either to create two-dimensional renderings
of mathematical expressions for printing or on-screen display (e.g., LATEX, MathML), or to
perform mathematical operations on the expressions (e.g., Maple, Mathematica, Sage, and
various numeric and symbolic calculators). In both cases, the mathematical expressions
themselves must be entered by the user in a linearized, textual format specific to each
software package.

This method of inputting math expressions is unsatisfactory for two main reasons.
First, it requires users to learn a different syntax for each software package they use.
Second, the linearized text formats obscure the two-dimensional structure that is present
in the typical way users draw math expressions on paper. This is demonstrated with some
absurdity by software designed to render math expressions, for which one must linearize a
two-dimensional expression and input it as a text string, only to have the software re-create
and display the expression’s original two-dimensional structure.

Mathematical software is typically used as a means to accomplish a particular goal
that the user has in mind, whether it is creating a web site with mathematical content,
calculating a sum, or integrating a complex expression. The requirement to input math ex-
pressions in a unique, unnatural format is therefore an obstacle that must be overcome, not
something learned for its own sake. As such, it is desirable for users to input mathematics
by drawing expressions in two dimensions as they do with pen and paper.

Academic interest in the problem of recognizing hand-drawn math expressions orig-
inated with Anderson’s doctoral research in the late 1960’s [2]. Interest has waxed and
waned in the intervening decades, and recent years have witnessed renewed attention to the
topic, potentially spurred on by the nascent Competition on Recognition of Handwritten
Mathematical Expressions (CROHME) [25]. We will explore several recent contributions
to the field in the next chapter.

Math expressions have proved difficult to recognize effectively. Even the best state of
the art systems (as measured by CROHME) are not sufficiently accurate for everyday use
by non-specialists. The recognition problem is complex as it requires not only symbols
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to be recognized, but also arrangements of symbols, and the semantic content that those
arrangements represent. Matters are further complicated by the large symbol set and the
ambiguous nature of both handwritten input and mathematical syntax.

My doctoral research has focused on this problem of recognizing handwritten mathe-
matics in the context of the MathBrush project [13]. This thesis summarizes the theory
and implementation techniques developed to produce the recognition components of Math-
Brush.

1.1 MathBrush recognizer overview

Before diving into technical details, it is worthwhile to explain the context of our math
recognition system, as it grounds this research in a concrete, real-world application and
places many useful and important constraints on the recognizer.

The math recognizer was developed for use in the MathBrush pen-math system, which
allows users to input mathematical expressions by drawing them on a Tablet PC or iPad
tablet screen. Following the input step, the expression is embedded in a worksheet interface
in which the user may interact with it further by invoking computer algebra system (CAS)
commands through context-sensitive menus, examining the results, and so on. As such, it
is necessary for the recognizer to construct a semantic interpretation of the input so that
it may communicate effectively with the CAS; a syntactic representation of the input is
insufficient for this purpose.

The design goals of MathBrush emerged from earlier experiments [14] which discovered,
unsurprisingly, that users became frustrated when incorrect recognition forced them to
erase and re-write their input. This problem was exacerbated by a lack of feedback from
the recognizer to indicate what had gone wrong, and by a disconnected recognition process
in which symbols were recognized and then passed to a separate expression recognition
system, which could fail even if all the symbols were recognized correctly. As a result of
these early experiments, the two primary goals of the current MathBrush system became:

1. To present the user with constant feedback about the state of the recognizer during
the input process. In particular, the recognizer’s current “best guess” is updated
after each new stroke is drawn.

2. To allow the user to easily correct any recognition errors without erasing and re-
writing their input. This is accomplished by selecting alternative recognition results
from drop-down menus.

The goals of MathBrush as a whole place three requirements on the recognizer. The
first is that, since recognition results are reported in real-time as the user writes, the
recognizer should be fast enough to avoid an unreasonable delay between writing and
viewing recognition results. This is the primary motivation for many of the simplifying
assumptions that will appear later in the thesis (see Chapter 7).
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The second requirement is that users are able to train the recognizer to match their
handwriting style. This is most important for symbol shapes (e.g., American vs. European
handwriting styles). It must therefore be straightforward to adapt the recognizer to a
particular writing style. We comment on how such adaptation is possible in the MathBrush
recognizer in Section 4.1.

The final requirement is that users must be able to correct erroneous recognition results.
This implies that, rather than recognizing ink input as a single, definite math expression,
the recognizer should have the following capabilities:

1. to obtain and present multiple interpretations of a given input,

2. to correct a particular subexpression of an interpretation, and

3. to maintain that correction as writing continues.

These requirements significantly complicate the recognition problem, and motivate our
development of algorithms and data representations throughout the thesis, but particularly
in Chapters 6 and 7.

1.2 Two viewpoints on math recognition

Given a sequence of hand-drawn input strokes, each of which is itself an ordered sequence
of points in the plane, the math recognition problem is to represent the mathematical
expression depicted by the strokes as a mathematical expression tree. From such a tree, the
linearized text formats described above may easily be obtained. Of course, one may allow
for more extensive input data – timings, pen pressure, tilt, and so on – but the structure of
the problem remains the same, and most authors do not consider these additional sources
of information because they are not reliably available on current hardware (touchscreen
devices in particular).

Because of its complexity, it is worthwhile to break down the math recognition problem
into smaller subproblems which may be more easily analyzed. We adopt two distinct
viewpoints for this purpose: an abstract, theoretical view, and a practical, system-builder’s
view.

1.2.1 The abstract view

On a large scale, the math recognition problem can be divided in three: 1) to determine
what mathematical content a group of the input strokes represents; 2) to decide which
of several interpretations of a group of strokes is the most plausible; and 3) to identify
which groups of input strokes possess interpretations important to the structure of the
expression as a whole, and how those groups combine together. These three problems may
be conveniently called recognition, scoring, and searching. Together, they form a rubric
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which serves to organize and focus discussion of the various inter-related parts of the math
recognition problem.

These three subproblems are mutually dependent. To recognize a math expression
requires an understanding of its constituent parts. To find those parts necessitates a search
through alternatives. To compare alternatives requires some means of scoring them. To
combine parts into larger expressions requires an understanding of whether and how the
parts fit together. Despite their dependence, though, each subproblem has a quite distinct
structure, and may be solved by distinct, independent strategies. Chapter 2 surveys several
existing approaches to math recognition in terms of how researchers have addressed these
three aspects of the problem.

1.2.2 The system-oriented view

Practical math recognition systems typically include a number of subsystems which are
combined through some unifying formalism. Symbol recognizers, relation classifiers, grammar-
based parsers, and other components may each be a part of a larger math recognition
package. Each of these components may be implemented in many ways, and may have a
different theoretical basis. For example, symbol recognition may be done via neural net-
works, Markov models, similarity metrics, etc., whereas a stroke grouping system may use
timing information, convex hulls, and other geometric computations.

From the systems view, there are three high-level steps to solving the math recogni-
tion problem: 1) identifying how to organize the math recognition system into smaller
subsystems; 2) building and optimizing the accuracy and performance of each individual
subsystem; and 3) deciding how to combine the results of the subsystems into meaningful
mathematical output.

The first two of these points are fairly straightforward. The next section outlines the
high-level system organization of the MathBrush recognizer, and the bulk of this thesis
(Chapters 3 to 7) covers the implementation of recognition subsystems in detail. The third
point on combining subsystems is more subtle. It is a significant practical challenge to
combine various subsystems in a way that both produces consistently meaningful results,
and is theoretically sound. There is no a priori guarantee that the results produced by
one subsystem are compatible with those produced by another, so effort is required when
integrating recognition subsystems with one another. Chapter 8 examines our solution to
this issue of subsystem output compatibility through the MathBrush recognizer’s scoring
framework.

1.3 Ambiguity and interpretation

Mathematical writing is inherently ambiguous at both the syntactic and semantic levels.
Semantically, math is a relatively formal natural language [4] in which one statement often
affords multiple interpretations, depending on context. For example, the notation u(x+ y)
could be either a function application or a multiplication (at least). Similarly, f ′ might
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imply differentiation of a function, or it could simply be a variable related in some way to
another variable f .

These semantic ambiguities are impossible to resolve without contextual knowledge,
and they are not addressed in this thesis. Rather, we assume a fixed set of supported
mathematical semantics, and report all recognized interpretations of the user’s writing so
that they may select the semantic interpretation they meant.

Syntactic ambiguity, though, is an unavoidable and interesting problem addressed
throughout this work. For example, the expressions shown in Figure 1.1 might be rea-
sonably interpreted as Ax+ b, Axtb, Ax+ 6, and P x, pX.

Figure 1.1: Syntactic ambiguity in simple expressions.

In such cases, contextual knowledge is extremely helpful and is used by people when
reading mathematics. The answers to questions such as “which of P, p and t are known
to be variables?” and “is A a matrix and x a vector?” help to disambiguate the writing.
Unfortunately, this contextual knowledge is not currently captured by MathBrush (or any
other math recognition software that we are aware of).

Informed by the interactive nature of MathBrush, we adopt a user-centric viewpoint
that cuts across both the abstract and practical perspectives described above. When the
user writes an expression, they have a particular interpretation of their writing in mind.
Rather than discarding the ambiguity present in the user’s writing and selecting a single
interpretation of the input, we opt to capture that ambiguity as completely as is practical,
and organize a variety of intepretations in such a way that it is easy for the user to select
their intended interpretation.

This decision influences the abstract subdivision of the math recognition problem into
recognition, searching, and scoring. Recognition maps syntax onto semantics, searching or-
ganizes semantic interpretations into hierarchically-meaningful interpretation, and scoring
orders those interpretations according to plausibility. Ideally, the highest-scoring interpre-
tation of the input matches the user’s interpretation. But, because of imperfect recognition
algorithms and the ambiguities just described, it is not possible for this to be the case all
of the time.

In such cases, our goal is to make it as easy as possible for the user to obtain their
interpretation from the recognizer. This is important in an interactive math system like
MathBrush because recognition itself is not the goal, but computation. The system must
understand the user’s interpretation for the subsequent mathematical operations to have
any meaning. The recognition process thus resembles a preliminary conversation ensuring
that the user and the system are on the same page, much as a student might ask a professor
for clarification on what an equation or variable represents before the professor goes through
a proof during a lecture.
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The requirement to capture and organize ambiguity in the input also poses significant
technical challenges in terms of software construction. Much more data must be organized
than if only a single interpretation was to be reported, which in turn makes it more difficult
to attain real-time execution. The user-oriented viewpoint informs the design of recognition
algorithms throughout our software, and much of the novel work in this thesis originated
from efforts to satisfy user-oriented requirements.

1.4 Contributions and thesis organization

In this thesis, we attempt to balance the abstract and system-oriented views described
earlier. My focus has been mainly on the system-building viewpoint, and the theory we have
developed plays largely a supporting role, explaining how to interpret the results of concrete
systems, and how to combine those systems together. As such, this thesis documents the
particular recognition system we have constructed, developing and explaining what theory
is necessary as it progresses.

The recognizer consists of several primary subsystems:

• The stroke grouping system examines the input and identifies groups of strokes which
may correspond to distinct symbols.

• The central parsing system searches for meaningful subdivisions and re-combinations
of the input according to a grammar which specifies valid mathematical syntax.

• The parsing system interacts with symbol and relation classification systems:

– The symbol classifier prepares a scored list of symbol identities that a particular
group of input strokes is likely to represent.

– The relation classifier prepares a scored list of spatial relationships which a pair
of input subsets are likely to satisfy (superscript, horizontally adjacent, etc.)

• The symbol classifier makes use of a symbol database which organizes and controls
access to a library of symbol examples written in various styles.

The rest of this thesis is organized as follows:

• The next chapter surveys related work in math recognition through the three-part
rubric of recognition, searching, and scoring.

• Chapter 3 begins a sequence of three chapters on lower-level classification systems
with a look at the stroke grouping algorithms used in the math recognition system.
This topic is rarely discussed in academic literature, but as the first and most low-
level point of contact between MathBrush and the recognizer, its design has important
ramifications throughout the recognition process.
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• Chapter 4 covers symbol recognition, considering several individual classification
techniques including a novel variant of the traditional elastic matching algorithm.
This chapter also discusses the hybrid classification system developed for the Math-
Brush recognizer.

• Chapter 5 discusses geometric relationship classification and completes our look at
isolated classification problems. Several methods are explored and compared includ-
ing rule-based and probabilistic approaches. A new data structure called the margin
tree is described and evaluated for the purpose of relation classification.

• Chapters 6 and 7 explore the theory and algorithms behind relational grammars
and two-dimensional parsing. We first develop a sophisticated extension of existing
relational grammar formalisms in Chapter 6, then describe in Chapter 7 some prac-
tical constraints affording efficient parsing algorithms. We give both bottom-up and
top-down algorithms, describe how to simultaneously capture and represent multiple
parse trees, and how to efficiently report those trees in decreasing score order.

• Chapter 8 develops fuzzy-set and probabilistic models of the recognition problem
and applies them to the software systems described in earlier chapters. Each can be
seen as a particular strategy for solving the abstract scoring problem, overlaid on the
lower-level software systems. In the probabilistic case, an algebraic technique permits
efficient calculation of probabilities despite the large number of variables present in
the formal model.

• Chapter 9 wraps up the technical content of the thesis with two accuracy evaluations
of the recognition system. A novel user-based accuracy metric is employed, as well
as the detailed subsystem-oriented metrics from the Competition on Recognition Of
Handwritten Mathematical Expressions (CROHME).

• Finally, Chapter 10 concludes the thesis with a summary of the research presented
and a look at promising areas for future research.
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Chapter 2

Related work

Over the last four and a half decades, many researchers have examined the problem of
recognizing hand-drawn math input. In this chapter, I will use the three-pronged rubric of
recognition, searching, and scoring developed in Chapter 1 to review the math recognition
techniques developed by several of these researchers, focusing on more recent work.

2.1 Anderson

Anderson developed a grammar model in which each rule was associated with one or more
predicates [2]. The predicates constrain the positions and sizes of the bounding boxes of
the grammar rule’s right-hand side elements. For example, the grammar rule for a fraction
might include constraints specifying that the bottom of the bounding box of the numerator
must lie above the middle of the bounding box of the fraction bar, which must in turn lie
above the top of the bounding box of the denominator.

Anderson assumes that the symbols comprising the math expression have already been
recognized with no errors or ambiguity. His input consists of bounding boxes labeled
with symbol names. To obtain the math expression represented by a particular symbol
arrangement, a depth-first search (DFS) is performed. Starting with the first grammar rule,
each symbol is assigned to a RHS element such that the rule’s constraints are satisfied, and
then the algorithm recurses on each RHS element. If no assignment exists which satisfies
any relevant rule’s constraints, the algorithm backtracks. When a complete expression
tree is detected, it is reported and the algorithm terminates. The grammar rules must
therefore be carefully ordered so that the “correct” expression is selected before an incorrect
expression is detected. (E.g., the rule for sin must appear before the multiplication rule to
prevent sin being recognized as a multiplication.)

Anderson thus solves the recognition problem by assigning meaning to symbols through
the semantic interpretation of his grammar rules, and he solves the searching problem quite
literally through a depth-first search of the possible subdivisions of the input into smaller
semantic units. His system does not compare alternative interpretations of the input,
but merely reports the first valid interpretation it discovers, so he does not address the
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scoring problem. While the system is impressive for its generality (Anderson also gives
grammars for recognizing matrices and labeled graphs), it is ultimately inefficient (because
of the DFS) and brittle (because of hard-coded grammar predicates and the dependence
on grammar order).

2.2 Zanibbi

Some decades after Anderson’s seminal work, Zanibbi proposed a three-pass math recog-
nizer based on the notion of baseline structure trees (BST) [38]. The first pass – the layout
pass – is the most important. In it, baselines in the input are identified and structured in a
tree that represents their hierarchical relationship with one another. For example, the frac-
tion expression a

b
would be represented by a tree with the fraction bar as the root node, and

two children, labeled “above” and “below” representing the numerator and denominator.

These baseline trees are obtained by determining which symbols represent mathematical
operators which “dominate” other symbols. (E.g., the fraction bar dominates the a and
b symbols, as they are arguments to its operation.) Dominated symbols are assigned to
spatial regions afforded by the dominating operators by means of thresholds on bounding
box position. (E.g., the fraction bar affords “above” and “below” regions, and symbols
dominated by the fraction bar are assigned to one of those regions by comparing the
symbols’ vertical centroids with the fraction bar’s bounding box.) This process of assigning
symbols to baseline tree nodes is somewhat less flexible than Anderson’s predicate-based
approach, but it is also much faster. BST construction is Zanibbi’s solution to the searching
problem.

The lexical pass transforms the BST created by the layout pass by grouping together
over-segmented symbols (e.g., two horizontal lines might be combined into =) and group-
ing related symbols (e.g., the individual numbers 2 and 2 might be combined to form 22).
Finally, the expression pass applies tree transformations to convert the BST into a math
expression tree. One could say that Zanibbi solves the recognition problem by associating
particular BST tree patterns with math semantics. However, in this case, the recognition
process appears to an extent in all three passes. The first pass is largely devoid of recogni-
tion, being concerned solely with syntactic features, yet the rules used to generate baseline
trees assume that mathematical semantics will be applied. So recognition is taking place
to some extent when, for example, the algorithm searches for symbols above and below a
fraction bar. The second pass also performs recognition, as it groups related syntactic units
together into larger semantic groups such as function names and floating-point numbers.

Like Anderson, Zanibbi assumes that the input strokes have already been grouped into
distinct symbols and recognized with no errors. Ambiguity in his system is only possible
when the spatial regions of two or more operators overlap. In such cases, hard-coded rules
are used to assign symbols in ambiguous regions to one region or another. Scoring is thus
obviated in Zanibbi’s work as any ambiguity is eliminated a priori.
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2.3 Winkler, Farhner, and Lang

Winkler, Farhner, and Lang also assume that symbols have already been recognized per-
fectly [35]. They solve the searching problem similarly to Zanibbi, by identifying symbols
that represent math operators and assigning dominated symbols to spatial regions around
the math operator. (In fact, the work of Winkler et al. predates that of Zanibbi.) Unlike
both works discussed above, though, Winkler et al. address the scoring problem and hence
permit their system to choose between multiple interpretations of the same input.

They do this by taking the reciprocals of the distances that a dominated symbol would
need to be shifted in order for its bounding box to lie completely within each of the
dominating symbol’s pre-defined spatial regions. These reciprocals are then normalized
and treated as probabilities. Using our example a

b
, the fraction bar possesses three regions:

“above” and “below” as in Zanibbi’s work, and also “out”, which links to the next symbol
in the same baseline.

In the case of fractions, only the most probable result is used. This is, in effect,
identical to not using scoring at all. Although multiple candidates are considered, only
one is used, and it is determined a priori by the distance calculations used to generate the
probabilities. More interestingly, Winkler et al. permit symbols to participate ambiguously
in superscripts, subscripts, and in-line relations. Each possibility is assigned a probablity,
as with the above and below relations just discussed. But rather than discarding everything
but the most probable option, each possible relation leads to a different parse, and all parses
are reported to the user. Winkler et al. apply thresholds to the probabilities in order to
limit the number of parses reported, which is naively exponential in the number of input
symbols.

The searching procedure of Winkler et al. thus has the same basis as that of Zanibbi,
but is made more sophisticated through its allowance for ambiguous relations. It can be
viewed as searching through the space of directed acyclic graphs (DAGs) with the symbols
as nodes, and edges labeled with the relations linking the symbols.

Like Zanibbi, Winkler et al. only assign semantic meaning to symbols and relations
as a final step, when the DAG generated by their algorithm may be converted into an
expression tree. But, as we saw with Zanibbi’s work, recognition is implied in the earlier
stages of the algorithm, which organize the symbols and relations based on the assumption
that they possess mathematical significance.

2.4 Miller and Viola

Miller and Viola expanded upon the ambiguity permitted by Winkler et al. [24]. In their
system, symbol recognition was not assumed to be complete and perfect. In fact, as well
as permitting ambiguous relations between symbols, Miller and Viola permit the symbols
themselves to be ambiguous. They introduced the notion of a syntactic class which captures
the expected position of a symbol with respect to its baseline. For example, the number 9
extends from the baseline to the “top line”, the letter c from the baseline to the “mid line”,
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and the letter q from below the baseline to the mid line. Miller and Viola use syntactic
classes to manage ambiguity in symbol identity by seeding their parsing algorithm with
the top-ranked alternative from each class for each symbol. They do not describe how the
symbol recognition itself is performed, nor how the input strokes are grouped into distinct
symbols.

The parsing algorithm itself proceeds in a bottom-up fashion. Beginning with the
seeded symbols, it combines recognized subsets of the input to form larger recognized sets
by applying grammar rules, similarly to the CYK algorithm for parsing CFGs. Rather
than exhausting all possible subsets combinations, Miller and Viola introduce two key
ideas to limit the search space. The first is a hard constraint that requires any set of
stokes considered by the algorithm to have no other stroke intersecting its convex hull.
This constraint was later expanded upon by Liang et al. who used rectangular hulls and
partial-ordered sets for a similar purpose [18].

The second idea of Miller and Viola is to use the A-star search algorithm to guide the
parser’s choice of subset combinations. They use the negative log likelihood as the under-
estimate of the “distance” to the search goal. Assuming independence of all symbols and
relations, they treat the symbol recognition results probabilistically, and model relations
between symbols as two-dimensional Gaussians. This approach builds on earlier work of
Hull [12].

The parsing algorithm therefore performs a best-first search as it combines subsets
which satisfy the convex hull criterion. In this way, scoring is integrated into the search
process as a guiding factor, and recognition is a by-product of applying grammar rules
during subset combination. Compared with previous work, the search process has again
become more sophisticated, and the scoring more comprehensive and systematic.

2.5 Garain and Chaudhuri

In 2004, Garain and Chaudhuri proposed another system incorporating both symbol and
expression recognition [7]. In it, symbols are recognized by measuring the distance and
angle between consecutive points in each input stroke. These features are compared against
template strokes by two classifiers (a feature vector classifier, and a hidden Markov model
(HMM) classifier), the results of which are combined to obtain final recognition results.
Symbols are recognized immediately as they are drawn, but Garain and Chaudhuri do not
describe how the system determines that a symbol is complete. For example, after three
strokes, an E may look exactly like an F, and it is not clear whether the system is able to
revise its previous recognition results to account for this.

In any case, after a symbol is drawn and recognized, it is assigned to a particular “level”
of the expression. The expression’s main baseline, to which the first symbol is assumed
to belong, is level 0, and higher or lower levels represent writing lines above and below
the main baseline. Levels are not directly analogous to baselines. For example, in the
expression 2nex, the symbols n and x are distinct baselines, but are both on level 1 using
Garain and Chaudhuri’s terminology.
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By ordering symbols horizontally, spatial relations such as superscripts, subscripts, and
horizontal alignment are determined by the level assignments. Mathematical semantics
are directly associated with these relationships. More complex relationships like limits of
integration are found by segmenting the input strokes into vertical and horizontal “stripes”,
or contiguous regions, and then using a grammar to guide stripe recombination. Some
specialized rules are invoked for vertical structures such as summations with limits. Thus
Garain and Chaudhuri use a combination of baseline analysis and rectangular regions to
solve the searching problem.

The system uses scoring to an extent when ranking symbol recognition results. But it
does not discriminate between alternatives so much as reject invalid choices. After recog-
nizing the input using the top-ranked symbol recognition results, the LATEX representation
of the recognized expression is compared against a validation grammar. If validation fails,
alternative character recognition results are explored, though it is not entirely clear how
this search through alternatives proceeds.

2.6 Laviola, Zeleznik et al.

The MathPad project at Brown University ([17, 40]) was a long-running research pro-
gramme for creating math sketching systems. Its high-level goals differ from those of
MathBrush in that the Brown project aims to facilitate learning and problem-solving
through interactive sketches controlled by mathematical formulae, while MathBrush in-
tends to be a research tool for mathematicians and students. However, many software
features required to attain each of these goals are similar, and so MathPad includes a
math recognition system.

MathPad’s recognition system may be viewed as an informal application of grammar-
based parsing. Rules governing how symbols are arranged into math expressions are ex-
plicitly coded into the program. Input is processed in a way analagous to how a particular
organization of grammar productions could be naively parsed. The recognition system in-
cludes sophisticated heuristics specialized to particular mathematical structures (fractions,
integrals, etc.). While this approach is highly tunable, it is less flexible than other, less
explicitly-specified approaches.

A study of the recognition accuracy of MathPad was presented by LaViola [16]. In the
study, 11 subjects individually provided the system’s symbol recognizer with 20 samples
of their handwriting for each supported symbol. Each subject then provided 12 additional
samples of each symbol as well as drawings of 36 particular math expressions as test
data. The expressions were partly taken from Chan and Yeung’s collection [6] and partly
designed by the author. This data was used to test MathPad’s symbol recognizer and math
expression parser, respectively. Laviola measured the proportion of symbols recognized
correctly and the proportion of parsing decisions which were correct. A parsing decision
arises in LaViola’s system whenever symbols must be grouped together (or not) into a
subexpression (e.g., tan as multiplication versus the function name tan) or a choice must
be made about the type of a subexpression (e.g., superscript vs. inline)
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2.7 Alvaro et al.

The system developed by Alvaro et al. [1] placed first in the CROHME 2011 recognition
contest [25]. It is based on earlier work of Yamamoto et al. [36]. A grammar models
the formal structure of math expressions. Symbols and the relations between them are
modeled stochastically using manually-defined probability functions. The symbol recogni-
tion probabilities are used to seed a parsing table on which a CYK-style parsing algorithm
proceeds to obtain an expression tree representing the entire input.

In this scheme, writing is considered to be a generative stochastic process governed by
the grammar rules and probability distributions. That is, one stochastically generates a
bounding box for the entire expression, chooses a grammar rule to apply, and stochastically
generates bounding boxes for each of the rule’s RHS elements according to the relation
distribution. This process continues recursively until a grammar rule producing a terminal
symbol is selected, at which point a stroke (or, more properly, a collection of stroke features)
is stochastically generated.

Given a particular set of input strokes, Alvaro et al. find the sequence of stochas-
tic choices most likely to have generated the input. However, stochastic grammars are
known to biased toward short parse trees (those containing few derivation steps) [23]. In
our own experiments with such approaches, we encountered difficulties in particular with
recognizing multi-stroke symbols in the context of full expressions. The model has no in-
trinsic notion of symbol segmentation, and the bias toward short parse trees caused the
recognizer to consistently report symbols with many strokes even when they had poor
recognition scores. Yet to introduce symbol segmentation scores in a straightforward way
causes probability distributions to no longer sum to one. Alvaro et al. allude to similar dif-
ficulties when they mention that their symbol recognition probabilities had to be rescaled
to account for multi-stroke symbols.

2.8 Awal et al.

While the system described by Awal et al. [3] was included in the CROHME 2011 contest,
its developers were directly associated with the contest and were thus not official partici-
pants. However, their system scored higher than the winning system of Alvaro et al., so it
is worthwhile to examine its construction.

A dynamic programming algorithm first proposes likely groupings of strokes into sym-
bols, although it is not clear what cost function the dynamic program is minimizing. Each
of the symbol groups is recognized using neural networks whose outputs are converted into
a probability distribution over symbol classes.

Math expression structure is modeled by a context-free grammar in which each rule is
linear in either the horizontal of vertical direction, simplifying the search problem. Spa-
tial relationships between symbols and subexpressions are modeled as two independent
Gaussians on position and size difference between subexpression bounding boxes. These
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probabilities along with those from symbol recognition are treated as independent variables,
and the parse tree with maximal likelihood is reported as the final parse.

This method as a whole is not probabilistic as the variables are not combined in a
coherent model. Instead, probability distributions are used as components of a scoring
function. This pattern is common in the math recognition literature: distribution functions
are used when they are useful, but the overall strategy remains ad hoc.

2.9 Shi, Li, and Soong

Working with Microsoft Research Asia, Shi, Li, and Soong proposed a unified HMM-based
method for recognizing math expressions [29]. Treating the input strokes as a temporally-
ordered sequence, they use dynamic programming to determine the most likely points at
which to split the sequence into distinct symbol groups, the most likely symbols each of
those groups represent, and the most likely spatial relation between temporally-adjacent
symbols. Some local context is taken into account by treating symbol and relation se-
quences as Markov chains. This process results in a DAG similar to one obtained by
Winkler et al., which may be easily converted to an expression tree.

To compute symbol likelihoods, a grid-based method measuring point density and stroke
direction is used to obtain a feature vector. These vectors are assumed to be generated by
a mixture of Gaussians with one component for each known symbol type. Relation like-
lihoods are also treated as Gaussian mixtures of extracted bounding-box features. Group
likelihoods are computed by manually-defined probability functions.

This approach is elegant in its unity of symbol, relation, and expression recognition.
The reduction of the input to a linear sequence of strokes drastically simplifies the search
problem, while probabilistic rules and the probabilistic models selected by the authors
constitute a scoring mechanism. The interpretations associated with particular assignments
of the model’s variables provide recognition, in combination with the features selected for
extraction.

But this assumption of linearity comes at the expense of generality. The HMM structure
strictly requires strokes to be drawn in a pre-determined linear sequence. That is, the model
accounts for ambiguity in symbol and relation identities, but not for the two-dimensional
structure of mathematics.
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Chapter 3

Stroke grouping

The role of the stroke grouping system is to determine, given a set of ink strokes, which
subsets of those strokes correspond to distinct symbols. For example, numbering the strokes
in Figure 3.1 1,2,3,4,5 from left to right, the stroke grouper should report {1} , {2, 3} , {4, 5}
as likely symbols. This task, though necessary for any handwriting recognition system, is
generally neglected in most publications. Note that the identities of those symbols (i.e., a,
+, and b) is irrelevant here. We are concerned only with proposing reasonable subsets of
the ink as candidates for symbol recognition.

Figure 3.1: A simple input for the stroke grouper.

Figure 3.1 might suggest that this task is straightforward, so consider the input shown
in Figure 3.2. It is difficult to determine whether this input is supposed to represent aoH
or ad − 1, even for a mathematically-literate human. But the user who drew this input
presumably knew what they intended it to represent. We will rely in such cases on our
strategy of presenting the user with several reasonable interpretations of their input so that
they can select the one they intended.

Figure 3.2: A more difficult input for the stroke grouper.

It is vitally important for the grouper to avoid false negatives. If an ink subset that
corresponds to a symbol in the user’s interpretation of the ink is not reported by the stroke
grouping system, then that subset will not be subject to symbol recognition, and will not be
included in any recognition results. Therefore, false negatives preclude correct recognition
of the input and should be avoided at all costs.
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The example in Figure 3.2 indicates that the grouper need not limit itself to a single
partitioning of the ink into symbol groups. Rather, any subset of the input that could
reasonably be considered a distinct symbol should be reported, so as to maximize the
likelihood of identifying the user’s preferred interpretation of their writing.

These two observations imply that false positives are acceptable. That is, it is accept-
able for the grouper to identify as a potential symbol a subset of the input which does not
actually correspond to a symbol in the user’s interpretation. We may reasonably assume
that many false positives will be filtered out by later stages of recognition. As an extreme
example, suppose the stroke grouping system identifies the a+ portion of Figure 3.1 as a
potential symbol. These strokes are unlikely to be recognized with high confidence as a
single symbol. So long as the grouper also proposes the a and + subsets individually as
potential symbols, overall recognition should still give the result the user expects.

To summarize, the role of the stroke grouper is to select subsets of the input for symbol
recognition such that all subsets corresponding to symbols in the user’s interpretation of
the input are included. The rest of this chapter describes and evaluates our techniques for
accomplishing this goal.

3.1 Relevant input characteristics

When is a group of ink strokes a good candidate for symbol recognition? One obvious
answer is “when they are close together.” Strokes that are far apart ought not to belong to
the same symbol. However, we should not be too hasty to group nearby strokes. Consider
Figure 3.3 which contains many touching strokes (i.e., separated by zero distance), yet each
stroke corresponds to a distinct symbol. Nonetheless, distance is a useful metric, as many
symbols like B,+, π, λ, k may all be written with multiple strokes close to one another.

Figure 3.3: Distance between strokes is not an infallible grouping criterion.

Another seemingly obvious answer is “when they are drawn one after another.” It is
certainly true that consecutive strokes are more likely to be part of the same symbol than
non-consecutive strokes, but again, care is needed. A user may write sin(2θ) without the
dot and go back later to dot the i. Or they may write the numerator of a fraction and the
fraction bar, but while writing the denominator realize that they did not draw the bar long
enough and extend it. In the context of MathBrush, they might write a polynomial, do
some computation with it, and then realize based on unexpected results that a minus sign
in the input should have been a plus, and correct it. These are all plausible examples of
symbols built from non-consecutive strokes. As such, we do not use stroke ordering when
determining potential symbol groups.
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Note that all of the cases just described follow a pattern in which some strokes for
a symbol are drawn, then some unrelated strokes are drawn, then some strokes for that
symbol are added and are nearby the original strokes. So stroke proximity alone is able to
capture these patterns.

In some cases, such as in the π and F symbols shown in Figure 3.4, not all of the strokes
making up a symbol will be near to one another. Or at least, the distance between the
strokes will be large enough that it is quite ambiguous whether the strokes belong to the
same symbol, or whether the writing is just closely spaced, as in Figure 3.3. In these cases,
though, it is often the case that the bounding box of each stroke has a large intersection
with the bounding box of the other strokes.

Figure 3.4: Bounding box overlap is another good indicator of stroke groups.

Bounding box overlap is thus another useful feature to consider when grouping strokes.
But here too care is needed. Some symbol arrangements, in particular the syntax for
square roots, cause large bounding box intersections but ought not to be grouped together,
as shown in Figure 3.5. So large bounding box intersections should suggest symbol grouping
unless a square root or other containment notation is involved. Conversely, a group should
not have a large overlap with strokes outside of the group, unless a containment notation
is involved.

Figure 3.5: Bounding box overlap is not always a reason to group strokes into symbols.

Labeling the concepts in this discussion as shown in Table 3.1, the following logical
equation summarizes the characteristics of a “good” group identified above:

G = (Din ∨ (Lin ∧ ¬Cin)) ∧ (¬Lout ∨ Cout) (3.1)

Name Meaning
G A group exists
Din Small distance between strokes within group
Lin Significant bounding box overlap of strokes within group
Cin Containment notation used within group
Lout Significant bounding box overlap of group and non-group strokes
Cout Containment notation used in group or overlapping non-group strokes

Table 3.1: Variables names for grouping concepts.

Because of the ambiguity of handwritten input and the requirement of avoiding false
negatives, it is unreasonable to assign binary values to the variables in 3.1. Instead, we
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assign quantitative scores to the variables in a probabilistic evaluation scheme. This process
is described below.

3.2 Grouping algorithm

Because the MathBrush recognizer receives input strokes one-by-one from the interface,
we formulate the grouping problem as follows. Given a set of existing stroke grouping
candidates (not necessarily a partition of the input; i.e., the groups may overlap) and a
new input stroke, find a new set of grouping candidates incorporating the new stroke. This
amounts to identifying the existing groups to which the new stroke may be reasonably
added, and potentially augmenting those new groups with existing strokes. This second
augmentation step is necessary because of cases like the π shown in Figure 3.4. If the
two vertical strokes of π are first drawn fairly far apart, it is unlikely that they will be
identified as being part of the same symbol. Only after the third stroke is drawn can the
entire symbol be reliably identified.

At a high level, group identification proceeds according to Algorithm 1.

Algorithm 1 High-level stroke grouping algorithm.

Require: A set S = {s1, . . . , sn} of input strokes and a set G = {g1, . . . , gN} of subsets of
S \ {sn}
Initialize G′ ← {}
(add sn to existing groups)
for each group g ∈ G do

if score(g, sn) > 0 then
add g ∪ {sn} to G′

(augment new groups with existing strokes)
while G′ 6= {} do
G← G ∪G′;G′′ ← {}
for each group g ∈ G′ and each stroke s ∈ S such that s 6∈ g do

if score(g, s) > 0 then
add g ∪ {s} to G′′

G′ ← G′′

The interesting portion is, of course, the score function referenced by the algorithm.
The value of score(g, s) corresponds to augmenting a group g with a stroke s. To compute
it, we take several measurements of the inputs:

• d = min {dist(s′, s) : s′ ∈ g}, where dist(s1, s2) is the minimal distance between the
curves traced by s1 and s2;

• `in = overlap(g, s), where overlap(g, s) is the area of the intersection of the bounding
boxes of g and s divided by the area of the smaller of the two boxes;
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• cin = max (C(s),max {C (s′) : s′ ∈ g}), where C (s) returns the extent to which the
stroke s resembles a containment notation, as described below;

• `out = max {overlap(g ∪ {s}, s′) : s′ ∈ S \ (g ∪ {s})};

• cout = max (cin, C (s′)), where s′ is the maximizer for `out.

To account for containment notations in the calculation of cin and cout, we annotate
each symbol supported by the symbol recognizer with a flag indicating whether it is used
to contain other symbols. (Currently only the

√
symbol has this flag set.) Then the

symbol recognizer is invoked to measure how closely a stroke or group of strokes resembles
a container symbol. The details of how this is done will be discussed in the next chapter
which covers symbol recognition. For now, we simply model the symbol recognizer as a
function C(T ) of a set T of strokes that returns a value in [0, 1] indicating the degree to
which T resembles a container, with 0 being not at all and 1 being a very close resemblance.

Using DeMorgan’s law, the logical predicate in Equation 3.1 can be rewritten as

G = ¬ (¬Din ∧ ¬ (Lin ∧ ¬Cin)) ∧ ¬ (Lout ∧ ¬Cout)
= ¬ (¬Din ∧ ¬Xin) ∧ ¬Xout,

where X∗ = L∗ ∧ ¬C∗.
This predicate may be transformed into a probability calculation by defining conditional

distributions. We set

score(g, s) = P (G | d, `in, cin, `out, cout)
= (1− P (¬Din | d)P (¬Xin | `in, cin))β P (¬Xout | `out, cin, cout)1−β (3.2)

where

P (¬Din | d) =
(
1− e−d/λ

)α
P (¬Xin | `in, cin) = (1− `in (1− cin))(1−α)

P (¬Xout | `out, cout, cin) = 1− `out (1−max (cin, cout)) .

This definition is loosely based on treating the boolean variables from our logical pred-
icate as random and independent. λ is estimated from training data, with α, β both set
based on experiments to 9/10.

Notice that each of the measurement variables is only defined for multiple strokes. It
remains to handle single-stroke groups so that one-stroke symbols will be recognized. To
do so, denote the score of a multi-stroke group g by

score (g) = max {score (g′, si) : g′ ∪ {si} = g} .

Often this score will coincide with the value score (g′, sn) computed in the first half of
Algorithm 1 (where g = g′ ∪ {sn}). But because of the augmentation step in the second
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half of the algorithm, it is possible for the same group to be obtained through different
sequences of stroke addition, so the maximization is necessary.

Now for each individual stroke s, we simply create a default group gs with score

score(gs) = 1−max {score(g) : g ∩ gs 6= {}} .

As each input stroke is received by the MathBrush recognizer, Algorithm 1 is used to
augment the existing set of candidate symbols by incorporating the new stroke. All of the
resulting groups, along with their scores, are forwarded to the symbol recognition system
for subsequent processing and scoring.

3.3 Evaluation

The grouping algorithm is somewhat difficult to evaluate in isolation because it is designed
to be used in conjunction with higher-level recognition systems like symbol recognizers. I
have employed two correctness metrics:

1. Basic: a symbol is grouped correctly if its group score is non-zero.

2. Strict: a symbol is grouped correctly if its group score is higher than all other groups
sharing strokes with the symbol.

These metrics respectively represent upper and lower bounds on the real-world per-
formance one can expect from the grouping algorithm. The basic metric overestimates
the algorithm’s performance because some groups with non-zero scores will be scored too
low for higher-level recognizers to recover from; those groups will not be reported as sym-
bols during regular use. But the strict metric underestimates the algorithm’s performance
because of our expectation of false positives: if the correct group has a score close to
an intersecting but incorrect group’s score, the symbol recognizer will very often prefer
the lower-scoring group because the incorrect group has no reasonable symbol recognition
results.

The grouping algorithm and score functions defined above were evaluated on a data
set collected in 2009 [20] consisting primarily of randomly-generated math expressions
transcribed by twenty undergraduate students. The data was randomly divided roughly
in half, with one half used for training and the other for testing. The stroke groups
corresponding to symbols in the training data were extracted and used to obtain the
scoring function parameter λ, then the grouping algorithm was applied to the test files and
the two metrics above were measured. This experiment was replicated five times with five
different splits of the data. The evaluation results are shown in Table 3.2.

These results indicate that the grouping algorithm reports over 99% of symbols, and
scores roughly 90% of actual groups higher than all false positives. We will see in Chapter
9 that, in the context of full math expression recognition, the grouping algorithm’s output
results in about 97% of symbols being grouped correctly.
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Metric Split 1 Split 2 Split 3 Split 4 Split 5 Average
Basic 99.25% 99.56% 99.55% 99.58% 99.59% 99.51%
Strict 89.16% 89.61% 90.03% 90.01% 89.80% 89.72%

Table 3.2: Grouping evaluation results.
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Chapter 4

Symbol recognition

The role of the symbol recognition system is to examine the input subsets identified by
the grouping system as potential symbols, and to determine which symbols, if any, those
groups represent. These results are, in turn, incorporated into higher-level systems which
identify mathematical expressions in the input.

4.1 Recognition algorithms

All of the symbol recognition algorithms discussed in this chapter follow the same distance-
based classification paradigm. In this scheme, one uses a distance function d(I,M) to mea-
sure the difference between a set I of input strokes and each set M of model strokes taken
from a library L of labeled symbol models. Then I is recognized by d as the label attached
to argmin {d (I, g) : g ∈ L}. This approach is easily extended to report ordered lists of the
k best recognition candidates. It also easily handles writer-dependent training, as symbols
drawn by a particular user may simply be added to the library to adapt recognition to the
user’s writing style.

For the first three (online) algorithms below, we define the set-wise distance function
above in terms of an algorithm-specific stroke-wise distance function:

d(I,M) =

{
∞ if |I| 6= |M |∑

s∈I d(s,fI,M (s))
|I| otherwise

(4.1)

where fI,M is a function mapping each input stroke in I to the corresponding model stroke
in M . This mapping is necessary to handle situations in which the strokes comprising
the input symbol are drawn in a different order than those comprising the model symbol.
Its construction will be discussed in Section 4.1.1. For the final (offline) algorithm, the
number of input strokes need not match the number of model strokes, so the case yielding
an infinite distance is unnecessary.

In cases where the stroke-wise distance function is not symmetric (d(s1, s2) 6= d(s2, s1)),
we average the results of both match directions so that the second case of Equation 4.1
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becomes
1

2

(∑
s∈I d (s, fI,M (s))

|I|
+

∑
s∈M d (s, fM,I (s))

|M |

)
(4.2)

Prior to invoking the distance function, both I and M are normalized such that the
largest side of their bounding box has length 1. Next we will describe each of the four
distance functions used by the recognizer.

4.1.1 Feature vector norm

The first distance function is the simplest. We define several functions f1(s), f2(s), . . . , fn(s),
each measuring some feature of a stroke as a real number, and take

d (a, b) =

√√√√ n∑
i=1

(fi(a)− fi(b))2,

that is, the 2-norm of the vector of feature differences. We employ two sets of features:
one for use with small punctuation marks, and the other for the general case.

• Small symbol features: aspect ratio; distance between stroke endpoints.

• Standard features: bounding box position and size; first and last point; length
along stroke.

The function fI,M matching up strokes between the input and model stroke sets is
defined greedily using this feature vector distance function, as follows:

1. Pick a stroke a ∈ I.

2. Find the stroke b ∈ M minimizing d(a, b), where d is the feature vector distance
function. Set fI,M(a) = b and remove a and b from consideration in future processing.

3. Repeat until no unmatched input strokes remain.

4.1.2 Greedy elastic matching

The use of elastic matching goes back to Tappert [31], who developed it as a technique for
recognizing cursive writing. In the standard formulation, each point in the input stroke
is matched with a point in the model stroke and a pointwise distance measure is applied
to each matched pair. The stroke-wise distance function is then the sum of pointwise
distances between matched pairs. Tappert’s algorithm finds the minimal such distance,
subject to the three following constraints:

1. The first input point is matched to the first model point;
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2. The last input point is matched to the last model point; and

3. If the ith input point is matched to the jth model point, then the i+ 1st input point
is matched to the jth, j + 1st, or j + 2nd model point.

Let the input stroke be the sequence of points {(x̂i, ŷi) : i = 1, . . . , n} and the model
stroke be the sequence {(xi, yi) : i = 1, . . . ,m}. Given a distance function g(i, j) between
the points (x̂i, ŷi) and (xj, yj), the above constraints induce the dynamic program D[i, j],
representing the minimal distance between model points 1 through i and input points 1
through j, as follows:

D[1, j] = g(1, j) +D[1, j − 1]

D[2, j] = g(2, j) + min {D[2, j − 1], D[1, j − 1]}
D[i, j] = g(i, j) + min {D[i− k, j − 1] : k = 0, 1, 2}

Note that many distance functions g are possible. For cursive writing, Tappert uses

g(i, j) = min
{∣∣∣θ̂i − θj∣∣∣ , ∣∣∣360−

(
θ̂i − θj

)∣∣∣}+ α |ŷi − yj| ,

where θi is the tangent angle at (xi, yi) and α is chosen so that the angular and y-coordinate
components of the sum have equal weight.

Tappert gave a quadratic-time dynamic programming algorithm to find the elastic
matching distance between two strokes. Each dynamic programming table cell requires
only constant time to compute, but there are O(nm) ≈ O(n2) table cells to be computed
and stored. In the context of math recognition, the symbol library is quite large because of
the presence of Greek letters and mathematical symbols, and symbol recognition processes
may be invoked several times if there are several ways to partition a large input into distinct
symbols. We found that the quadratic matching time per stroke consumed a significant
proportion of total processing time in MathBrush, prompting our development of a faster
variant.

Greedy elastic matching

We motivate our algorithm by some straightforward observations about Tappert’s con-
straints. Let I1, I2, . . . , In be the points comprising the input stroke, and M1,M2, . . . ,Mm

be similar for the model stroke. According to constraints 1 and 2, I1 must be matched
to M1 and In must be matched to Mm. By constraint 3, I2 must be matched to one of
M1,M2,M3, and In−1 must be matched to one of Mm,Mm−1,Mm−2. Similarly, supposing
Ii is matched to Mf(i), Ii+1 must be matched to one of Mf(i),Mf(i)+1,Mf(i)+2, and Ii−1

must be matched to one of Mf(i),Mf(i)−1,Mf(i)−2.

Tappert’s dynamic program finds a globally-optimal matching satisfying these con-
straints. Our approximate version is to simply match endpoints to endpoints, then to
greedily choose the locally-optimal matching from the available options for each intermedi-
ate point along the input stroke. To ensure endpoints are matched together, we perform a
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Input:

Model:

Figure 4.1: Many unmatched model points remain after matching every input point.

Input:

Model:

Figure 4.2: No more model points are available, but several input points remain to be
matched.

two-sided match beginning at the start and end of the strokes and working simultaneously
toward the middle.

There are two potential problems we must be aware of in this scheme, particularly
if the number of points differs significantly between the input and model strokes. After
matching all the input points to model points, there may be a large number of points in
the middle of the model stroke which were never considered by the algorithm. Conversely,
the algorithm may run out of model points available for matching before all of the input
points have been considered. These situations are exemplified schematically by Figures 4.1
and 4.2, respectively. In the figures, dashed lines indicate pairs of matched points, and
grey points are unmatched and problematic.

To account for these cases, we include the following two rules in our procedure:

1. After matching each input point to a model point, implicitly match the center-most
input point to every second model point not yet considered for matching. (This
process simulates skipping over model points, as permitted by Tappert’s constraints.)

2. If there are no available model points to consider for matching, match all remaining
input points to the center-most model point.

These rules immediately give an algorithm for approximate dynamic time warping,
listed in Algorithm 2.

Regardless of the length of the strokes, the algorithm uses a fixed number of variables
to track point indices, local and global match costs, and which local match choice was
optimal. In each iteration of the main while loop (line 7), fI is incremented and bI is
decremented, so only n/2 iterations are possible. Notice that the loop body requires only
constant time, assuming g requires constant time. If the else clause at line 24 is invoked,
then the loop at line 30 will not be entered; otherwise that loop will run at most m/2
times. The algorithm’s runtime is thus linear in the number of input and model points.
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Algorithm 2 Greedy approximate dynamic time warping.

Require: Input and model strokes of n,m points respectively; distance function g(i, j) as
in the previous section.
(Initialize indices to the start and end of strokes)
fI ← 1; bI ← n; fM ← 1; bM ← m
(Match endpoints)
cf0 ← g(fM , fI); cb0 ← g(bM , bI)

5: c← cf0 + cb0
fI ← fI + 1; bI ← bI − 1
while fI < bI do

(Measure relevant local match costs)
r ← bM − fM

10: if r > 0 then
cf0 ← g(fM , fI); cb0 ← g(bM , bI)
cf1 ← g(fM + 1, fI); cb1 ← g(bM − 1, bI)
if r > 1 then
cf2 ← g(fM + 2, fI); cb2 ← g(bM − 2, bI)

15: else
cf2 ←∞; cb2 ←∞

(Choose minimum-cost match locally)
i← argmin {cfk : k = 0, 1, 2}
j ← argmin {cbk : k = 0, 1, 2}

20: c← c+ cfi + cbj
(Advance to the next points under consideration)
fM ← fM + i; bM ← bM − j
fI ← fI + 1; bI ← bI − 1

else
25: (Model exhausted; match remaining input points to last matched point)

while fI < bI do
c← c+ g(fM , fI)
fI ← fI + 1

(Input exhausted; match remaining model points to last matched point)
30: while fM < bM do

c← c+ g(fM , fI)
fM ← fM + 2

return c
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4.1.3 Functional curve approximation

Another approach, described by Golubitsky and Watt [9], is to approximate the model and
input strokes by parametric functions and compute some norm on the difference between
those approximations. They interpret a stroke s = {(xi, yi) : i = 1, . . . , n} as a pair of
functions x, y : [0, 1] → R parameterizing the stroke by proportion of arclength. Each of
these functions is approximated by a truncated series expansion of the form

k∑
i=0

αiBi(λ),

where the Bi are the orthogonal basis functions for the Legendre-Sobolev inner product;
i.e., they satisfy

〈Bi, Bj〉 =

∫ 1

0

Bi(λ)Bj(λ) dλ+ µ

∫ 1

0

B′i(λ)B′j(λ) dλ = δ(i− j), (4.3)

where δ is the Kronecker delta function.

Finally, the distance function measuring the difference between input and model strokes
is given by √√√√ k∑

i=0

(
α

(x)
i − β

(x)
i

)2

+
(
α

(y)
i − β

(y)
i

)2

,

where the α
(x)
i and α

(y)
i are the series coefficients for the x- and y-coordinate functions of

the input stroke, respective, and the β
(x)
i and β

(y)
i are similar for the model stroke. That

is, the stroke-wise distance is the two norm of the difference between the concatenated
coefficient vectors.

The computation of the coefficients is interesting because it is designed for use in a
streaming setting, requiring only O(k) operations per point plus O(k2) for normalization
(we use k = 12). It proceeds as follows.

First, approximate the moment integrals

mi =

∫ L

0

λif(λ) dλ,

for f = x, y, where i = 0, . . . , k, and L is the total arclength of the stroke. These are
computed piecewise, extending the range of the integral by adding a new term∫ `j

`j−1

λif(λ) dλ ≈
`i+1
j − `i+1

j−1

i+ 1
× f(`j) + f(`j−1)

2

for each point (xj, yj) in the stroke (`j denotes the stroke arclength up to point j).

After all points are processed, the moments are normalized to have domain [0, 1] (so

mi(f) =
∫ 1

0
τ if(τ) dτ , where τ = λ/L), and the coefficients

αi(f) = 〈f (τ) , Bi(τ)〉 =

∫ 1

0

f(τ)Bi(τ) dτ + µ

∫ 1

0

f ′(τ)B′i(τ) dτ
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are found by integrating by parts:∫ 1

0

f(τ)Bi(τ) dτ + µ

(
f(τ)B′i(τ)|10 −

∫ 1

0

f(τ)B′′i (τ) dτ

)
and moving the sums outside the integrals:

i∑
j=0

[τj]Bi(τ)

∫ 1

0

τ jf(τ) dτ + µ

(
f(τ)B′i(τ)|10 −

i−2∑
j=0

[
τ j
]
B′′i (τ)

∫ 1

0

τ jf(τ) dτ

)

=
i∑

j=0

[τj]Bi(τ)mj(f) + µ

(
f(τ)B′i(τ)|10 −

i−2∑
j=0

[
τ j
]
B′′i (τ)mj(f)

)

where [τ j]X denotes the coefficient of τ j in X.

These operations yield a system of equations that is linear in the coefficients of the
orthogonal basis polynomials, which are easily precomputed based on Equation 4.3.

Finally, the functional approximation is centered at the origin by setting the constant
coefficients α0(x) and α0(y) of both the x and y series to zero, and the coefficient vector is
normalized to have length one.

4.1.4 Hausdorff measure

The three preceding distance functions are all online. That is, they consider the input
stroke to be a time-ordered sequence of points, as opposed to offline approaches which
consider an unordered set of points (typically binarized image data). The ordering infor-
mation is often quite useful, but is not applicable in all situations.

Two such cases are illustrated in Figure 4.3. On the left, the looped shape of the o or
0 symbol makes it difficult to tell whether the loop was drawn in a clockwise or counter-
clockwise direction without tracing the curve. An online distance function may process the
input stroke in one direction and the model stroke in another, leading to an unexpectedly
large distance, whereas an offline measurement naturally obtains a smaller distance since
point ordering is irrelevant. On the right, one a was drawn with one stroke while the other
was drawn with two, precluding the use of online distance algorithms without sophisticated
pre-processing. Again, an offline technique that considers only appearance without point
order handles this case easily.

Figure 4.3: These symbols may be more easily recognized by offline algorithms than by
online algorithms.

The offline distance used in the MathBrush recognizer is a variant of the distance used
by Thammano and Rugkunchon [32] in their neural-network-based classifier. It is based
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on the Hausdorff distance

dH (X, Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(y, x)

}
(4.4)

between two subsets X and Y of a metric space (M,d).

In particular, the input and model strokes are first rasterized onto grids having the
same aspect ratio as the model stroke and 16 cells along their longest side. Each grid is
then treated as a set of points {(x, y) : cell (x, y) of the grid is filled}, and the Hausdorff
distance can be taken using Euclidean distance as the pointwise distance function d.

We have found that summing, rather than maximizing, the distance over the filled grid
cells gives better results in practice, so that Equation 4.4 becomes

dS (X, Y ) = max

{
1

|X|
∑
x∈X

min
y∈Y

d(x, y),
1

|Y |
∑
y∈Y

min
x∈X

d(y, x)

}
. (4.5)

4.2 Combining recognizers

It is often the case that, when one of the above techniques mis-classifies a symbol, another
of them will classify the same symbol correctly (see the experiments below in Section 4.3).
It is therefore worthwhile to consider combining all four techniques into a hybrid classifier.

Such combinations are often made by the so-called voting method or the related but
more sophisticated Borda Count [34]. In this method, the model symbols are sorted into
k lists (one for each classifier); each list is ordered by increasing distance from the input.
Then each model symbol S is assigned

∑k
i=1 posi(S) votes, where posi(S) is the position at

which S appears in the ordered list for classifier i. The final ranked list of classifier results
is sorted in increasing order of votes.

The voting method works well when the set of input strokes is known to correspond to
an actual symbol. But because it discards the underlying distance measurements, it cannot
be used to compare recognition results amongst several alternative sets of input strokes.
Such a situation is illustrated by the three leftmost strokes in Figure 4.4. Numbering
the strokes from left to right as 1,2, and 3, suppose the grouping system proposes all of
{1}, {2, 3}, and {1, 2, 3} as potential symbols. Then the rest of the recognition system
must choose whether to interpret the input as one or two symbols.

Figure 4.4: Voting cannot choose between alternative groupings.
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In this situation, the voting method may easily fail. It is likely that most of the
classifiers will rank H very highly for the potential symbol {1, 2, 3}, giving it a high final
voting rank even though the distance function may have reported relatively large distances
between the stroke sets. There is more ambiguity between competing symbols for the two
smaller groups (1 vs. l and t vs. +, for example). It is therefore less likely for reasonable
interpretations of those groups to be as highly ranked as H by the voting method, even
though the underlying distance measurements may have been much smaller.

That is to say, we would like the hybrid classifier’s numeric output to reflect the un-
derlying distance measurements faithfully so that we can compare alternative subdivisions
of the input and choose amongst them at higher levels of recognition. This suggests that
some form of averaging of the results would be useful, leading to a second problem, namely
that the results of each of the distance functions are incomparable with one another.

Each of the distance functions returns a single real number representing the difference
between the input and model symbols. But the distribution of values returned is different
for each function, as demonstrated in Figure 4.5 which shows histograms of the values ob-
tained from each distance function when comparing the default MathBrush symbol library
against itself. The various difference values therefore cannot be meaningfully combined
arithmetically, as the resulting value would make no sense.
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Figure 4.5: Distributions of the four distance measures.

We approximate these distributions in order to obtain comparable values from the four
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distance metrics. Given distance functions d1, . . . , dn, we empirically model the quantile
function Qi of the distribution of outputs from di as a piecewise linear function. Then the
distances between input set I and model set M are combined by the weighted sum

D (I,M) =
n∑
i=1

wiQi (di (I,M)) . (4.6)

Let L(α) be the set of model symbols for a particular symbol α. Then the overall
hybrid distance measurement for an input group I to be recognized as α is given by

Dα(I) = min {D (I,M) : M ∈ L(α)} . (4.7)

The quantile functions normalize the distances onto [0, 1] in a way that accurately
reflects the behaviour of the underlying distance functions. The weights wi were found as
the least-square error solution to an overdetermined system of equations, each of the form

n∑
i=1

wiQi (di (ap, aq)) = m(ap, aq).

In these equations, each ai variable indicates a single-stroke symbol from the training
set. Each pair of such strokes yields an equation of this form. We set m(ap, aq) = 0 if ap
and aq have the same label, otherwise m(ap, aq) = 1.

4.3 Evaluation

The symbol classifier was evaluated using the same data set as the grouping system (see
Section 3.3) using the same five divisions of the data into training and testing halves. Each
of the training sets were further augmented with a smaller collection of training samples
drawn from the MathBrush symbol library. During testing, each annotated symbol in
each testing file was extracted and passed to the classifier, so no grouping ambiguity was
possible.

After classification, each symbol in the testing data falls into one of three categories:

1. Correct: the symbol is classified correctly,

2. Ranked: it is classified incorrectly, but the correct symbol is in the three most
highly-ranked results, or

3. Incorrect: the correct result is not included in the top three results.

As well as reporting results for each of the four distance-based classifiers and the hybrid
classifier, we also measured the proportion of symbols for which all four distance-based
classifiers were correct (“All”), and for which at least one of those classifiers was correct
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Figure 4.6: Symbol recognition accuracy.

(“Any”). These measurements roughly correspond to lower and upper bounds on the
performance of the hybrid classifier. Figure 4.6 summarizes these results.

The elastic and functional approximation matchers are clearly the most accurate of the
individual recognizers, obtaining average correctness rates of 85.3% and 83.8%, respectively,
while the other two matchers only correctly recognized about 75% of the test symbols.
Despite this gap, we found that removing either of the two weaker distance functions from
the hybrid recognizer led to less accurate classification. While the elastic matcher attained
a higher correctness rate, the functional approximation matcher’s ranked accuracy of 97%
was slightly higher than that of the elastic matcher.

The hybrid recognizer is an effective combination of the individual classifiers. In these
tests, it had a correctness rate of 87.8% (a 16% reduction in errors over the elastic matcher)
and a ranked rate of 97.7% (a 23% reduction in ranked error over the functional approxi-
mation matcher). Yet more improvement is possible: a further 50% reduction in errors is
necessary for the hybrid recognizer to equal the “Any” matcher which counts a classification
as correct if any of the four individual classifiers were correct.

A modification that might further improve the accuracy of the hybrid classifier is to
make the quantile combination weights a function of the symbol being matched against. For
example, if a particular distance function is known to be especially effective for recognizing
the symbol β, then it could be weighted higher for that particular symbol, but not for
others. We currently lack sufficient data for training the hybrid recognizer to this level of
detail.
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Chapter 5

Relation classification

The role of the relation classification system is to determine which spatial relation, if any,
joins two subsets of the input strokes. These relations are what connect symbols and
subexpressions together to form larger mathematical structures. We use five relations,
which we denote by ↗ ,→ ,↘ , ↓ , and � . The arrows indicate a general direction of
writing, while � denotes containment. For example, the symbols in the multiplication ab
are joined by→ , in the exponentiation ex by↗ , in the fraction 1

2
by ↓ , and in the square

root
√
x by � .

Which relation applies to a pair of subexpressions depends primarily on the placement
of one relative to the other. As such, many of the features of the input considered in
this section will be based on the geometric bounding boxes of the subexpressions. But as
well as these purely geometric features, our relation classifier takes into consideration the
mathematical semantics of the subsets. For example, the relation joining the symbols in
Figure 5.1 should be ↗ if the p is lower-case, but → if the P is upper-case. We currently
limit consideration of subset semantics to primarily symbol-level information. The semantic
interpretation of a subset is represented by an element of ΣR = Σ∪C ∪{gen, sym,expr},
where Σ is the set of recognizable math symbols (e.g. a, 6, γ,+,

∫
), expr indicates a multi-

symbol math expression, sym indicates any single symbol, and gen is a generic label which
may be applied to any expression. C is a set of class labels, each of which corresponds to
a family of symbols that share size and placement characteristics. Table 5.1 summarizes
the current set of class labels, giving examples of each.

Figure 5.1: The correct choice of relation depends on symbol identity.

The semantic labels in ΣR may be organized hierarchically with respect to specificity,
as illustrated by Figure 5.2. Any single-symbol subexpression may be described not only
by its symbol label, but also by any class labels in C that apply to that symbol, as well
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Class name Example symbols
Baseline a c x
Ascender 2 A h
Descender g y
Extender ( )
Centered + =

i i
j j

Large-Extender
∫

Root
√

Horizontal -
Punctuation . , ’

Table 5.1: Relational class labels.

as sym and gen. Similarly, any multi-symbol subexpression may be described by either
expr or gen.

GEN

EXPR SYM

etc.Baseline

a c x etc.

Ascender

2 A h etc.

Figure 5.2: Hierarchical organization of semantic labels.

In general, we wish to classify relations using the most specific information available.
But in some cases this may not be possible due to a lack of training data. (E.g., we may not
have enough training examples of the relation ↗ between A and θ to make a meaningful
judgement about how well a pair of stroke subsets match that relation.) In these cases,
we progressively fall back to less and less specific semantic labels until a pair is found for
which there is sufficient training data. Labeling both subsets as gen (i.e., as anything at
all) is always permitted in case no combination of more specific labels has sufficient data.

The rest of this section will describe and evaluate four novel methods for classifying
relations. Throughout, the pairs I1 = (S1, e1) and I2 = (S2, e2) represent the inputs to the
relation classifier, where Si is set of strokes, and ei is the semantic label of Si.

5.1 Rule-based approach

In the rule based approach, we treat the geometric relations as fuzzy relations and define
a membership function µr (I1, I2) for each relation r ∈ R.
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5.1.1 Fuzzy sets review

Recall that a fuzzy set X̃ is a pair (X,µ), where X is some underlying set and µ : X → [0, 1]
is a function giving the membership grade in X̃ of each element x ∈ X. A fuzzy relation
on X is a fuzzy set (X ×X,µ). The notions of set union, intersection, Cartesian product,
etc. can be similarly extended to fuzzy sets. For details, refer to Zadeh [37]. To denote
the grade of membership of a in a fuzzy set X̃, we will write X̃(a) rather than referring
explicitly to the name of the membership function, which is typically left unspecified. By
x ∈ X̃ = (X,µ), we mean µ(x) > 0.

5.1.2 Relation membership functions

The membership function for the containment relation only considers the amount of overlap
between the bounding boxes of S1 and S2:

� ((S1, e1), (S2, e2)) = overlap (S1, S2) ,

where overlap(S1, S2), as in the grouping case, gives the intersection area of the bounding
boxes of S1 and S2 divided by the area of the smaller of the two.

The membership functions for the other geometric relations incorporate the distance
and angle between the bounding boxes of the input. They are all of the form

r ((S1, e1), (S2, e2)) = θ ((S1, e1), (S2, e2))× d (S1, S2)×
(

1− 1

2
overlap (S1, S2)

)
,

where θ is a scoring function based on angle and d is a distance-based penalty function.

The penalty function d ensures that inputs satisfying the relations are within a reason-
able distance of one another. To compute d, the size of each of S1 and S2 is calculated as
the average of bounding box width and height. Next, a distance threshold t is obtained
as half the average of the two sizes, clamped to the range [1/6, 1/3] (measured in inches).
If the distance ∆ between the bounding boxes is less than t, then d = 1. Otherwise, d
decreases linearly to zero at ∆ = 3t. Note that this hard limit implies that the rule-based
approach will not classify two sets of input strokes as related if their bounding box centroids
are more than one inch apart.

To compute the angle-based function θ, we measure the angle ϕ between bounding-box
centroids of I1 and I2. Then θ is a triangular function with three parameters ϕ0, ϕ1, ϕ2, as
follows:

θ(ϕ) =


0 if ϕ < ϕ0

ϕ−ϕ0

ϕ1−ϕ0
if ϕ0 ≤ ϕ ≤ ϕ1

ϕ2−ϕ
ϕ2−ϕ1

if ϕ1 ≤ ϕ ≤ ϕ2

0 if ϕ > ϕ2.

Figure 5.3 schematically illustrates the behaviour of θ. Table 5.2 lists the parameters
for each relation in degrees. These values were selected based on manual examination of a
small dataset. Note that the y-axis increases downward.
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Figure 5.3: θ function component of relation membership grade.

Relation ϕ0 ϕ1 ϕ2

→ -90 0 90
↗ -90 -37.5 0
↘ -20 35 160
↓ 0 90 180

Table 5.2: Angle thresholds for geometric relation membership functions.

5.2 Naive Bayesian model

Generative probablistic models generally model the relationship between a dependent vari-
able X and several observable feature variables F1, . . . , Fn by applying Bayes’ theorem:

P (X | F1, . . . , Fn) = P (F1, . . . , Fn | X)
P (X)

P (F1, . . . , Fn)
.

Naive Bayesian models further assume that the feature variables Fi are independent so
that the RHS above may be factored as

P (X)

P (F1, . . . , Fn)

n∏
i=1

P (Fi | X) .

We created a naive Bayesian model for relation classification using the following feature
variables. Let `(S), r(S), t(S), b(S) denote the left-, right-, top-, and bottom-most coor-
dinates of a set S of strokes. Then, given our two input subsets S1 and S2, the features
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are:

f1 =
`(S2)− `(S1)

N

f2 =
r(S2)− r(S1)

N

f3 =
`(S2)− r(S1)

N

f4 =
b(S2)− b(S1)

N

f5 =
t(S2)− t(S1)

N

f6 =
t(S2)− b(S1)

N
f7 = overlap(S1, S2)

where N = aR + (1− a)C is a normalization scale based on the size

R = max {size(S1), size(S2), 1/16}

of the input sets (measured in inches) and a constant C = 1 inch. The size of an input set
S is given by

size(S) = max (r(S)− `(S), b(S)− t(S)) ,

and we use a = 1/2.

For each relation r ∈ R and each pair of semantic labels e1, e2,

P (X = r | e1, e2, f1, . . . , f7) ∝ P (X = r | e1, e2)
7∏
i=1

P (fi | e1, e2, X = r) . (5.1)

We model each conditional distribution fi | e1, e2, X as Gaussian, while the relation class
prior X | e1, e2 is categorical. The parameters of these distributions are estimated from
training data. Note that the entire model is conditioned on semantic labels, so we have a
different set of distributions for each combination of labels. The feature variables fi were
elided from the computation since P (F1, . . . , F7 | e1, e2) is constant with respect to the
relation variable X.

Given the input (S1, e1), (S2, e2), we need only look up the appropriate set of distribu-
tions (based on e1, e2), and compute the product in Equation 5.1. If any of the distributions
referenced in the product have less than 95% confidence that the true mean was within a
small distance (0.05) from the estimated mean, then the calculation instead returns failure,
and a less-specific pair of semantic labels will be used, as described above.

5.3 Discriminative model

Unlike generative models, discriminative models need not appeal to Bayes’ theorem, as
they model the probability P (X | F1, . . . , Fn) directly. We developed two discriminative
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methods for relation classification, both using the same feature variables f1 through f7 as
described in the previous section.

5.3.1 Discretization grid

The first discriminative model is a straightforward grid-based discretization strategy. The
model was trained using the following process for each pair e1, e2 of semantic labels:

1. Fix a number N of grid cells per dimension. (We used N = 5 based on experiments,
giving a total of 57 = 78125 grid cells for our seven-dimensional data points.

2. Divide the training set into outliers and non-outliers. (We used Tukey’s outlier test
[11].)

3. Divide the inner N − 2 grid cells in each dimension equally-spaced between the min-
imum and maximum values appearing in non-outlier data points in each dimension.
Reserve the two outer grid cells in each dimension for outliers.

4. Assign each input point to the grid cell containing it.

Then to determine P (X = r | e1, e2, f1, . . . , fn), we need only find the cell C containing
the point (f1, . . . , fn) in the grid corresponding to (e1, e2), and compute the ratio

number of points in C corresponding to relation r

number of points in C
.

This method may be seen as a fast approximation of the k-nearest neighbour distribu-
tion. As in the generative case, a provision for insufficient data must be made so that a
less-specific query may be made. In this case, the calculation simply returns failure if the
grid cell C contains fewer than two points.

5.3.2 Margin trees

Margin trees are a machine-learning-inspired variant of the k-d tree data structure. They
are a type of decision tree which partitions the feature space into hypercubes, each of which
offers an approximation to the distribution X | F1, . . . , Fn. k-d trees themselves are an
extension of binary trees to k-dimensional data. Given a set P of points from Rk (with
each p ∈ P indexed by dimention as (p1, p2, . . . , pk)), Algorithm 3 constructs a k-d tree:

Algorithm 3 splits the input points at the median point along the first splitting dimen-
sions, then splits each of those halves at their median points along the second splitting
dimension, and so on, forming a tree structure of the split points. Algorithm 4 demon-
strates how to find the tree node covering a query point q.

To see how this applies to our probability computations, consider each training example
as a tuple (r, f1, . . . , f7), where r ∈ R is a relation and the fi are the geometric features
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Algorithm 3 k-d tree construction.

Require: input point set P =
{
p(1), . . . , p(n)

}
as above, current tree depth D, and a set

S ⊆ {1, . . . , k} of splitting dimensions
if n = 1 then

return leaf node with point p(1)

d← D mod |S|
s← the dth-smallest element in S
M ← median of

{
p

(i)
s : i = 1, . . . , n

}
create an internal node N with split value M
recurse with P = {p ∈ P : ps ≤M} , D = D + 1 to find left child of N
recurse on P = {p ∈ P : ps > M} , D = D + 1 to find right child of N
return N

Algorithm 4 k-d tree cell search.

Require: k-d tree node N , query point q = (q1, . . . , qk), current tree depth D, and a set
S ⊆ {1, . . . , k} of splitting dimensions
if N is a leaf node then

return N
d← D mod |S|
s← the dth-smallest element in S
if qs ≤ the split value for N then

recurse on the left child of N with D = D + 1
else

recurse on the right child of N with D = D + 1
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described in Section 5.2. Consider constructing a k-d tree for these tuples, splitting along
the dimensions corresponding to the geometric features.

After the tree is constructed, the search algorithm (Algorithm 4) may be queried with
a point F ∈ R7 containing features extracted from an input. As the search algorithm is
running, an approximation to P (F ) may be obtained at any tree node N that the algorithm
visits by counting the number of children rooted at N and dividing by the number of nodes
in the entire tree. The discretization scale becomes finer and finer as the search procedure
descends into the tree. Similarly, an approximation to P (r | F ) can be obtained at any
visited node N by counting the number of children rooted at N labeled with relation r
in the appropriate tuple dimension, then dividing by the number of nodes in the subtree
rooted at N .

Every node in the k-d tree thus approximates the distribution X | F1, . . . , F7 in the
hypercube neighbourhood covered by the node. This observation is one of the two key
ideas on which the margin tree data structure is based.

The second key idea behind margin trees addresses a potential mismatch between the
nature of the data being represented and the data partitioning strategy used in the k-d tree
algorithms. By splitting the data at the median point, those algorithms achieve optimal
runtime efficiency, and cycling through the splitting dimensions provides a simple default
behaviour. However, this strategy is not always best for generating accurate function
approximations.

Intuitively, we expect each of the tuples in our database to fall into one of several
clusters, each associated with a particular combination of relation and semantic variables.
I.e., we expect most of the tuples arising from a→ relation between symbols 2 and a to be
near one another, and rather different from those arising from a ↓ relation between symbols
x and —, which form their own cluster. Some of the clusters might overlap significantly; for
example, the expressions bx and px have similar bounding box profiles. But nevertheless
many clusters will be quite distinct.

This distinction is ignored by the standard k-d tree algorithms above, which can lead
to clusters being split across different tree nodes. For example, the leftmost illustration of
Figure 5.4 shows two clusters, coloured orange and blue. The standard median-based k-d
tree construction algorithm (Alg. 3) would split the blue cluster across both halves of the
data, as shown in the central illustration of the Figure. A more appealing subdivision of
the data which preserves the structure of its clusters is shown in the right-most illustration.

Figure 5.4: Data clusters and splitting possibilities.
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Preserving the cluster-based structure of the data segregates distinct clusters into dif-
ferent tree nodes. Since the tree node split points determine the neighbourhoods in which
we compute different approximations of the probability distributions of interest, this seg-
regation effectively divides up the search space into neighbourhoods that more accurately
reflect the natural groupings of data points, rather than the arbitrary neighbourhoods
obtained by splitting the data in half.

To accomplish this cluster separation, we rely on a basic principle from machine learn-
ing: margin maximization. Given two sets of data points X and Y , and a curve dividing
all the points in X from those in Y , the margin is defined as the minimal distance from
any data point to the curve. Choosing the curve with the largest margin yields the “best”
classifier in the sense that the classifier has minimal generalization error: under certain
theoretical conditions, it makes the fewest errors when classifying previously-unseen data.

Therefore, rather than splitting the data at the median point along an alternating
dimension, we shall split the data in such a way that some quantity resembling the margin
is maximized at each step in the algorithm. This does not strictly constitute a maximum-
margin classifier since we are not explicitly segregating all of the distinctly-labeled data into
distinctly-labeled clusters (this is often impossible with the relation data we are using).
However, we are subdividing the data in such a way that a query point is likely to be
mapped to a tree node containing data from exactly the clusters to which the query point
is most likely to belong, and not data from some other clusters which were included in the
tree node by chance.

Margin tree algorithms

Having described the intuition behind margin trees: hierarchical max-margin-based par-
titioning of approximation neighbourhoods, we can now give explicit algorithms for con-
structing and querying margin trees. Algorithm 5 describes the construction process, while
Algorithm 6 shows how to compute a probability of the form P (X | f1, . . . , fn). The no-
tation size(N) denotes the number of margin tree nodes rooted at N (including N itself).

The constants C1 and C2 in Algorithm 6 control the granularity of probability approx-
imations. If a tree node was built from fewer to C1 training samples, it is deemed too
sparsely populated and is not used. Cells constructed from between C1 and C2 samples
are deemed to be sufficiently fine-grained and well-populated, and are used for probability
estimation. Cells containing more than C2 samples are considered too coarse-grained and
are recursively searched for more finely-grained approximation neighbourhoods. In our
experiments, we used C1 = 16 and C2 = 96.

To put these algorithms to practical use, we create a margin tree for each pair (e1, e2) of
semantic labels appearing in the training set; each tree is constructed from all the relevant
tuples (r, f1, . . . , f7) extracted from the training data, splitting on the feature variables,
but not the relation. To compute a probability P (X = r | e1, e2, f1, . . . , f7), Algorithm
6 is invoked for the tree corresponding to the semantic labels e1, e2 using query point
(r, f1, . . . , f7), with query dimension set to the relation.
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Algorithm 5 Margin tree construction.

Require: An input point set P =
{
p(1), . . . , p(n)

}
, and a set S ⊆ {1, . . . , k} of splitting

dimensions
if n = 1 then

return leaf node with point p(1)

Choose a splitting dimension d ∈ S and a split point s such that pd,s+1
d −pd,sd is maximal,

where pi,j is the jth point in P when ordered along dimension i

M ←
(
pd,sd + p

d,(s+1)
d

)
/2

Create an internal node N with split dimension d and point pd,s

Recurse with P = {p ∈ P : pd < M} to construct the left child of N
Recurse on P = {p ∈ P : pd > M} to construct the right child of N
return N

Algorithm 6 Margin tree query.

Require: A k-d tree node N , query point q = (q1, . . . , qk), a set S ⊆ {1, . . . , k} of splitting
dimensions, and a set Q ⊆ {1, . . . , k} \ S of query dimensions
if size(N) < C1 then

return “insufficient data”
if size(N) < C2 then

Let m be the number of nodes rooted at N with data points matching q on all query
dimensions
return m/size(N)

Let d be the splitting dimension for N
if qd ≤ the split value for N then

Recurse on the left child of N
else

Recurse on the right child of N
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This query will either return an approximation to P (X = r | e1, e2, f1, . . . , f7) in a
neighbourhood of the features judged to be appropriate, or it will fail, in which case the
query may be repeated with a less specific pair of semantic labels.

The problem of outliers

As constructed by Algorithm 5, margin trees do not handle outlier data points appropri-
ately. Suppose the set of n input points includes a point p which lies far from the rest
of the points along dimension d. Then the large gap between p and the other points will
cause the algorithm to partition p into its own tree node splitting the data along dimension
d, and will recurse on the remaining n − 1 points. This construction causes a significant
slowdown in the query algorithm, which must search through chains of linearly-structured
nodes arising from outliers before reaching nodes that correspond to true data clusters.

Unlike the grid-based method, a margin tree has no natural way of accounting for
outliers. So rather than filtering and segregating outliers in their own discretization bin,
we adjust the split selection criteria in Algorithm 5 so that it balances between choos-
ing the max-margin and median points. In particular, we replace the maximization of
pd,s+1
d − pd,sd with the maximization of a weight function w(s/n, pd,s, pd,s+1, d). Based on

experimentation, we chose

w(x, p(1), p(2), d) = ω
(
p(1), p(2)

) (
1− 4(x− 1/2)2

) (
p

(2)
d − p

(1)
d

)
.

The third factor is the same as in Algorithm 5. The second weights each potential split
point based on its position in the sorted point list; the median point is assigned the highest
weight, and weights tail off to zero at the list’s extremities. The first factor ω(p(1), p(2)) is
another weight function measuring the difference in the query variables (i.e., the dimensions
not used for splitting – for our application, the clustering variables r, e1, e2):

ω(p(1), p(2)) =
1 +

∑
i 6∈S 1− δ

(
p

(1)
i , p

(2)
i

)
1 + k − |S|

.

ω assigns higher weights to pairs of points belonging to “more different” clusters, and lower
weights to points belonging to the same cluster.

The weight function w thus prefers to split the data at the maximum margin position,
by weighting in favour of large gaps from different data clusters. But it balances this
preference against a second preference to split the data at the median point for runtime
efficiency.

5.4 Evaluation

To evaluate the efficacy of the models proposed above, we trained each of them on one half
of the 2009 data and tested them on the other half, using the same five random splits as in
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the grouping and symbol recognition evaluations. For each test, the relation maximizing
each model’s scoring function was chosen as the model’s classification result. If any of
the relation queries for a model reported failure due to insufficient data, the semantic
labels e1 and e2 were degraded to less specific values, and the queries were retried. Each
test is therefore correct or incorrect based on whether the reported relation matches the
ground-truth relation, with no partial correctness possible.

Figure 5.5 shows the correctness rates of each classifier on the 2009 data. To account
for potential overtraining, we also evaluated each classifier on the Tablet PC data collected
in a 2011 study [21], using the same five training sets as in the first experiment. Figure
5.6 shows the classifiers’ correctness rates on that data set.
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Figure 5.5: Relation classifier accuracy on 2009 data set.
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Figure 5.6: Relation classifier accuracy on 2011 data set.

The margin tree and grid-based implementations were the most accurate in both data
sets, and neither seemed to suffer from overtraining on the 2009 data set. The generative
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model was also quite accurate, but had significantly poorer performance for the ↘ and
� relations in the 2011 data set, as compared with the 2009 data; however, its overall
accuracy was higher on the 2011 data due to improved accuracy on the more common ↗
relation.

Note that, although the discriminative models were most accurate in this isolated test-
ing scenario, we use the Naive Bayes classifier in practice in the MathBrush recognizer
because it performs better under more realistic conditions (see Section 8.2.4).
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Chapter 6

Relational grammars

The relational grammar formalism described in this chapter is the central component gov-
erning how the MathBrush recognizer assigns precise mathematical meaning to its noisy,
ambiguous input. The recognition grammar is designed in such a way that particular pro-
ductions correspond to particular real-world mathematical semantics. When the recognizer
finds a plausible parse of a given production on an input subset, it tentatively associates
the production’s semantics with that subset. This tentative process and how the semantic
associations are made specific will be discussed in detail in the next chapter. This chapter
describes the formal grammar model developed for the MathBrush recognizer.

In previous work, we described a fuzzy relational grammar formalism which explicitly
modeled recognition as a process by which an observed, ambiguous input is interpreted as a
certain, structured expression [22]. In this work, because we wish to apply both fuzzy and
probabilistic scoring techniques to the recognition system, the grammar is defined more
abstractly so that it only describes syntactic layout and has no intrinsic support for one
scoring technique or another.

6.1 Preliminary grammar definition

We divide our grammar definition into two parts. Definition 1 outlines the primary struc-
ture of a relational context-free grammar (RCFG).

Definition 1. A relational context-free grammar G is a tuple (Σ, N, S,O,R, P ), where

• Σ is a set of terminal symbols,

• N is a set of non-terminal symbols,

• S ∈ N is the start symbol,

• O is a set of observables,

• R is a set of relations on I, the set of interpretations of G (defined below),

46



• P is a set of productions, each of the form A0
r⇒ A1A2 · · ·Ak, where A0 ∈ N, r ∈ R,

and A1, . . . , Ak ∈ N ∪ Σ,

This definition is similar to that of a traditional one-dimensional CFG. After discussing
the differences, we will augment the definition with detailed linkage parameters which serve
primarily as parsing aids.

6.1.1 Observables and partitions

The set O of observables represents the set of all possible concrete inputs. Each o ∈ O is
a set of ink strokes, each tracing out a particular curve in the (x, y) plane.

Denote by T (o) the set of recursive partitions of an observable o ∈ O, defined as follows.

If |o| = 1, then T (o) = {{o}}. Otherwise, T (o) is defined inductively as

T (o) =

|o|⋃
n=1

Tn(o),

where Tn(o) is the set of recursive partitions of o having an n-ary top-level partition:

Tn(o) =
⋃

o1 ∪ · · · ∪ on = o
oi ∩ oj = {}, i 6= j

{(t1, . . . , tn) : ti ∈ T (oi)} .

Each recursive partition t ∈ T (o) represents a tree in which each node corresponds to a
subset o′ of o and has links to nodes which together form a partition of o′. In many cases,
we will use a recursive partition t of o and o itself interchangeably. In these situations, t is
understood to represent o; i.e., the recursive disjoint union of the components of t. Finally,
T =

⋃
o∈O T (o) is the set of all possible recursive partitions.

6.1.2 Relations

The set R contains relations that give structure to expressions by modeling the relationships
between subexpressions. These relations are the same as those described in Chapter 5.
Recall that the relations use semantic labels as well as geometric information so that
expressions like the one shown in Figure 6.1 may be interpreted differently based on the
identity of its constituent symbols. In the context of RCFGs, we say that the relations
act on interpretations (i.e., geometric input paired with semantic labels), allowing context-
sensitive statements to be made about recognition in an otherwise context-free setting.
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Figure 6.1: An expression in which the optimal relation depends on symbol identity.

6.1.3 Set of interpretations

While typical context-free grammars deal with strings, we call the objects derivable from
RCFGs expressions. Any terminal symbol α ∈ Σ is an expression. An expression e may
also be formed by concatenating a number of expressions e1, . . . , ek by a relation r ∈ R.
Such an r-concatenation is written e1re2r · · · rek.

The representable set of G is the set E of all expressions derivable from the nonterminals
in N using productions in P . It may be constructed inductively as follows:

For each terminal α ∈ Σ, Eα = {α}. For each production p of the form A0
r⇒ A1 · · ·Ak,

Ep = {e1r · · · rek : ei ∈ EAi
} .

For each nonterminal A,

EA =
⋃

p∈P having LHS A

Ep.

Finally,

E =
⋃
A∈N

EA.

An interpretation is a pair (e, t), where e ∈ E is an expression and t is a recursive
partition in T (o) for some observable o ∈ O. An interpretation is essentially a parse
tree of o where the structures of e and t encode the hierarchical structure of the parse.
The set of interpretations I referenced in the RCFG definition is just the set of all these
interpretations:

I =
⋃
o∈O

{(e, t) : e ∈ E, t ∈ T (o)} .

6.1.4 Productions

The productions in P are similar to context-free grammar productions in that the left-
hand element derives the sequence of right-hand elements. The relation r appearing above
the ⇒ production symbol indicates a requirement that r is satisfied by adjacent elements
of the RHS. Formally, given a production A0

r⇒ A1A2 · · ·Ak, if oi denotes an observable
interpretable as an expression ei derivable from Ai (i.e., ei ∈ EAi

and (ti, ei) ∈ I), then
for

⋃k
i=1 ti to be interpretable as (e1 r · · · r ek) requires ((ei, ti) , (ei+1, ti+1)) ∈ r for i =

1, . . . , k − 1.
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6.2 Examples

The following examples demonstrate how RCFG productions may be used to model the
structure of mathematical writing.

1. Suppose that [ADD] and [EXPR] are nonterminals and + is a terminal. Then the
production [ADD]

→⇒ [EXPR] + [EXPR] models the syntax for infix addition: two
expressions joined by the addition symbol, ordered from left to right.

2. Similarly, the production [PAREN]
→⇒ ([EXPR]) models the syntax for parenthesized

expressions.

3. The production [FRAC]
↓⇒ [EXPR]—[EXPR] models a fraction: a numerator, fraction

bar, and denominator ordered from top to bottom.

4. The production [SUP]
↗⇒ [EXPR][EXPR] models superscript syntax. Interpreted as

exponentiation, the first RHS token represents the base of the exponentiation, and
the second represents the exponent. The tokens are connected by the ↗ relation,
reflecting the expected spatial relationship between subexpressions.

5. The following pair of productions models the syntax of definite integration:

[ILIMITS]
↓⇒ [EXPR]

∫
[EXPR]

[INTEGRAL]
→⇒ [ILIMITS][EXPR]d[VAR]

Definite integrals are drawn using two writing directions. The limits of integration
and integration sign itself are written in a vertical stack, while the integration sign,
integrand, and variable of integration are written from left to right.

6.3 Linkage parameters

It is often convenient to specify what portion of an expression a relation should apply to.
For example, in the expression ∫ ∞

0

e−x
2

dx,

we may want the → relation between the limits of integration and the integrand to apply
to the symbols

∫
and e, and the ↗ relation between e and its exponent to apply to e and

−x. Yet in ∫ 1

0

x2 + 1√
x2 − 1

dx,

we may want the→ relation between the limits of integration and the integrand to apply to
the

∫
symbol and the fraction as a whole, and the ↓ relations linking the numerator to the
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fraction bar and the fraction bar to the denominator to apply to complete subexpressions
as well.

This flexibility is made possible by augmenting grammar productions with head, tail,
and linkage parameters. Define the set S = {sym,grp,def} of linkage specifiers corre-
sponding to the notions “symbol”, “group” and “default”, respectively. Then we augment
the grammar definition by adding the following components to the tuple:

1. H : P → N is a function mapping each production to the RHS element which is its
head,

2. T : P → N is a function mapping each production to the RHS element which is its
tail,

3. L : P × N → S2 is a function defining the linkage specifier at each position of each
production, and

4. L0 : P → S is a function specifying the parent linkage of each production.

Let p be a production A0
r⇒ A1 · · ·Ak. Then p has a tail T (p) which is the RHS com-

ponent from which outgoing relations are tested, and a head H(p) which is the component
to which incoming relations are tested.

For example, in the production for addition above, we might choose the first [EXPR]

on the RHS as the expression’s head, and the second (final) [EXPR] as the expressions tail.
But in the production of [ILIMITS], we might choose the integral sign as both the head
and tail so that when a parse of [ILIMITS] is included in a parse of [INTEGRAL], the →
relation joining the limits of integration to the integrand is tested against the integral sign
and not against some other part of that subexpression.

The linkage function L(p, i) gives a pair (`i, `i+1) of linkage specifiers controlling how a
relation between Ai and Ai+1 should be tested. Consider a relation r ((ei, ti), (ei+1, ti+1))
as being from (ei, ti) and to (ei+1, ti+1). The head and tail pointers of the productions used
to obtain those two interpretations may be followed recursively until individual symbols
are reached. These symbols are called the head and tail symbols of the expression.

The from and to components with which the relation r is queried are chosen based on
the linkage specifiers as follows:

1. If `i = sym, then the from component is given by the tail symbol of the interpretation
(ei, ti). If `i+1 = sym, then the to component is given by the head symbol of the
interpretation (ei+1, ti+1).

2. If `i = grp, then the from component is the entire interpretation (ei, ti); similarly if
`i+1 = grp, then the to component is the entire interpretation (ei+1, ti+1).

3. If `i = def, then the from component is selected based on the parent linkage L0(pi)
of the production pi with LHS Ai used to obtain the interpretation (ei, ti). Similarly,
if `i+1 = def, then the to component is selected based on the parent linkage L0(pi+1)
of the production pi+1 with LHS Ai+1 used to obtain the interpretation (ei+1, ti+1).
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The parent linkage L0(p) of a production p determines how a relation from or to an
expression derived from p is tested in the case where that expression appears as a subex-
pression in some larger expression using the def linkage specifier (i.e., item 3 above). As
such, at any given point in a parse, the parent linkage of p determines either the from or
to component of a relation query, as follows:

1. If L0(p) = sym, then the tail (head) symbol of the interpretation of p is used as the
from (to) component.

2. If L0(p) = grp, then the entire interpretation of p is used as the from (to) component.

3. If L0(p) = def, then the from (to) component is obtained recursively based on the
parent linkage L0(p∗), where p∗ is the production with LHS AT (p) (AH(p)) used to
obtain the interpretation of the tail (head) nonterminal of p.

By default, the head of a production A0
r⇒ A1 · · ·Ak is 1 (i.e., its first RHS element)

and the tail is k (i.e., its last RHS element). If linkage parameters are not specified by the
grammar, they default to def.

6.3.1 Examples

For example, assume the following parameters for the productions in section 6.2.

• the head and tail of the [ADD] and [ILIMITS] productions are as described above,
and the parent linkage of [ILIMITS] is sym;

• the parent linkage of the [FRAC] production is grp, and within the production,
the linkage from [EXPR] to — is (grp, sym) and the linkage from — to [EXPR] is
(sym,grp); and

• the parent linkage of [SUP] is grp, and the linkage from [EXPR] to [EXPR] within
the production is (sym,grp).

When deriving the expected parse of the expression in Figure 6.2, relations will be
tested as follows:

• The ↓ relation will be tested between 1 and
∫

and between
∫

and 0 when parsing
[ILIMITS], as usual.

• When parsing the exponential, the↗ relation will be tested between the right paren-
thesis ) and the entire subexpression x2 + 1 because the relevant linkage specifier is
(sym,grp), and ) is the tail symbol of the subexpression (ae).

• When parsing the fraction, the ↓ relation will be tested between the entire numerator
(ae)x

2+1 and the fraction bar, and between the fraction bar and the denominator x−1
because the linkage specifiers are (grp, sym) and (sym,grp), respectively.
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Figure 6.2: An expression demonstrating a variety of subexpression linkages.

• When parsing the entire expression as [INTEGRAL], the → relation will be tested
between the integral sign and the entire fraction. Because no explicit linkage was set
between those two nonterminals in the [INTEGRAL] production, the default specifier
will lookup the parent linkages. For [ILIMITS], the parent linkage is sym, so the
tail symbol

∫
is used. For the fraction, the parent linkage is grp, so the entire

subexpression is used.

As these examples demonstrate, the linkage parameters permit very flexible yet precise
control over which subexpressions are selected for relation queries during parsing.

6.4 Set of interpretations as a directed set

Given a particular input observable o ∈ O, define the set of interpretations of o as the
subset of the grammar’s set of interpretations that concern o:

Io = {(e, t) ∈ I : t = o} .

It is useful to define notation for further subsets of Io matching the structure of the
representable set of G. For cleaner notation, assume that the grammar productions are in
a normal form such that each production is either of the form A0 ⇒ α, where α ∈ Σ is
a terminal symbol, or of the form A0

r⇒ A1 · · ·Ak, where all of the Ai are nonterminals.
This normal form is easily realized by, for each α ∈ Σ, introducing a new nonterminal
Xα, replacing all instances of α in existing productions by Xα, and adding the production
Xα ⇒ α.

Then, for every observable o, define the following notations.

Definition 2 (Interpretations of o).

1. For every production p of the form A⇒ α, define

Ipo = {(α, t)}

for t the trivial recursive partition {o}.
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2. For every nonterminal A, define

IAo =
⋃

p having LHS A

Ipo .

3. For every production p of the form A0
r⇒ A1 · · ·Ak, define

Ipo = {(e1r · · · rek, (t1, . . . , tk)) : (ei, ti) ∈ IAi
ti , i = 1, . . . , k;

(t1, . . . , tk) ∈ Tk(o);
((ei, ti) , (ei+1, ti+1)) ∈ r, i = 1, . . . , k − 1} .

Given a scoring function sc (e, t) : I → [0, 1] on interpretations, we treat these sets
of interpretations as directed sets using the preorder (e1, t1) ≤ (e2, t2) ⇐⇒ sc (e1, t1) ≤
sc (e2, t2). (Recall that the preorder for a directed set is reflexive and transitive, but not
necessarily antisymmetric; that is (e1, t1) ≤ (e2, t2) and (e2, t2) ≤ (e1, t1) do not together
imply that the two interpretations are identical.)

Using these definitions, recognizing an input o can be seen as a process which reports
elements of ISo (for S the grammar’s start symbol) from greatest to least.

6.5 Semantic expression trees and textual output

RCFG productions model the two-dimensional syntax of mathematical expressions. To
represent mathematical semantics, each production is also associated with rules for gener-
ating textual output and math expression trees with semantic information. For example,
consider again the production [ADD]

→⇒ [EXPR] + [EXPR]. A rule to generate a MathML
string would be written in our grammar format as <mrow>%1<mo>+</mo>%3</mrow>, where
the “%n” notation indicates that the string representation of the nth RHS element should
be inserted at that point. A rule to generate a semantic expression tree would be written
ADD(%1,%3). This rule would generate a tree with the root node labelled with addition
semantics (“ADD”) and two subtrees. Similarly to the string case, the %n notation indicates
that the tree representation of the nth RHS element should be used as a subtree. Hence,
the first child tree corresponds to the left-hand operand of the addition expression, and
the second child tree corresponds to the right-hand operand.
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Chapter 7

Two-dimensional parsing

There are two particular properties of RCFGs that make parsing difficult. Like other
relational grammars, the languages they generate are multi-dimensional. This prevents the
straightforward application of common parsing techniques like Earley’s algorithm, which
assume a simply ordered sequence of input tokens. Multi-dimensionality also complicates
the task of deciding which subsets of the input may contain a valid parse. Furthermore,
because our input is ambiguous, we require a parser to report all recognizable parse trees.
Since there may be exponentially many trees, some effort is required to ensure a reasonable
running time.

7.1 Shared parse forests

Each of the three recognition subsystems described in Chapters 3, 4 and 5 may introduce
ambiguity into parsing, reflecting the ambiguity present in the user’s handwritten input.
The ambiguity takes one of three forms based on its origin:

• A particular subset of the input may or may not correspond to a distinct symbol.
The output of the grouping system measures the plausibility that a given subset is
in fact a symbol.

• The identity of a given symbol candidate is ambiguous. The output of the symbol
recognizer assigns scores to each possible identity.

• The spatial relationship between input subsets, whether symbols or subexpressions,
is ambiguous. The output of the relation classifier assigns scores to each possibility.

Because of these ambiguities, the number of potential parses of a given input is, in
general, exponential in the number of input strokes. It is therefore infeasible to generate
all possible parses and pick one to report to the user. This problem is similar to that
of parsing ambiguous languages, in which the same input may be represented by many
parse trees. (Indeed, the language of math expressions is ambiguous even in the absence
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of syntactic fuzziness due to the semantic ambiguities identified in Chapter 1). Parsing
ambiguous languages is a well-studied problem; we adopt the shared parse forest approach
of Lang [15], in which all recognizable parses are simultaneously represented by an AND-
OR tree.

For example, consider the expression shown in Figure 7.1 along with the following toy
grammar:

[ST]⇒ [ADD] | [TRM]
[ADD]

→⇒ [TRM] + [ST]

[TRM]⇒ [MUL] | [SUP] | [CHR]
[MUL]

→⇒ [SUP][TRM] | [CHR][TRM]

[SUP]
↗⇒ [CHR][ST]

[CHR]⇒ [VAR] | [NUM]
[VAR]⇒ a | b | · · · | z
[NUM]⇒ 0 | 1 | · · · | 9

Figure 7.1: An ambiguous mathematical expression.

Figure 7.2 depicts a shared parse forest representing some possible interpretations of
Figure 7.1. In the figure, the boxed arrows are AND nodes in which the arrows indicate the
relation that links derived subexpressions. The ovals are OR nodes representing derivations
of nonterminals on particular subsets of the input. The circles relate subsets of the input
with terminal symbols from the grammar. Simple productions of the form [CHR]⇒ [VAR],
for example, have been omitted for clarity. Any tree rooted at the [ST] node that has
exactly one path to each input element is a valid parse tree. This shared parse forest
captures, for example, the expressions Ax+ b, AX + 6, Ax + 6, AXtb, etc. If an expression
is incomplete (e.g., (x+ y without the closing parenthesis), then no parse will exist for the
correct interpretation. However, other parses using different interpretations of the input
may exist (e.g., lx+ y or Cxty).

Parsing an RCFG may be divided into two steps: forest construction, in which a shared
parse forest is created that represents all recognizable parses of the input, and tree extrac-
tion, in which individual parse trees are extracted from the forest in decreasing score order.
We describe each of these steps in turn.
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VAR

A + tX x 6b

VAR VAR VAR NUM

MUL

→

SUP
→

TRM

CHR

MUL

→

MUL

→

→MUL

→

ADD

→

ST

Figure 7.2: Shared parse forest for Figure 7.1.
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7.2 Shared parse forest construction

Because the symbols appearing in a two-dimensional math expression cannot be simply
ordered, one would naively have to parse every subset of the input in order to obtain all
possible parses. To develop a practical parsing algorithm, we introduce constraints on how
the input may be subdivided into individual symbols and subexpression so as to limit how
many input subsets must be considered. The constraints are based on the two-dimensional
structure of mathematical notation.

7.2.1 The ordering assumption and rectangular sets

Define two total orders on observables: <x orders observables by minimum x-coordinate
from left to right, and <y orders observables by minimum y-coordinate from top to bottom.
(We take the y axis to be oriented downward.) Associate each relation r ∈ R with one of
these orders, denoted ord r. ord r is the dominant writing direction used for a particular
relation. For math recognition, we use ord→ = ord↗ = ord↘ = ord� =<x, and
ord ↓ =<y.

Informally, we assume that each relation r ∈ R is embedded in either <x or <y. Thus,
we may treat any grammar production as generating either horizontal or vertical concate-
nations of subexpressions, making the partition-selection problem much simpler.

More formally, denote by mind t the element a ∈ t such that a <d b for all b ∈ t aside
from a, and define maxd t similarly.

Assumption 1 (Ordering). Let t1, t2 be observables, and let e1, e2 be representable expres-
sions. We assume that ((e1, t1), (e2, t2)) 6∈ r whenever maxord r t1 ≥ord r minord r t2.

The ordering assumption says that, for a parse to exist on t1 ∪ t2, the last symbol of
t1 must begin before the first symbol of t2 along the dominant writing direction of the
expression being parsed. For example, in Figure 7.1, to parse Ax + b in the obvious way
requires that the A begins before the x, and the + begins after the x but before the b,
when the symbols are considered from left to right (i.e., ordered by <x).

Similarly, we could formulate a production for fractions as [FRAC]
↓⇒ [EXPR]—[EXPR].

Then to parse a fraction would require that the bottom symbol of the numerator began be-
fore the fraction bar, and the fraction bar began before the top symbol of the denominator,
when considered from top to bottom (i.e., ordered by <y).

Liang et al. [18] proposed rectangular hulls as a subset-selection constraint for two-
dimensional parsing. A very similar constraint that we call rectangular sets is implied by
the ordering assumption.

Definition 3 (Rectangular set/partition). Call a subset o′ of an observable o rectangular
in o if it satisfies

o′ =
{
a ∈ o : min

x
o′ ≤ a ≤ max

x
o′
}
∩
{
a ∈ o : min

y
o′ ≤ a ≤ max

y
o′
}
.
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Call a recursive partition t of o rectangular if every component in t is rectangular in o.

From the definition of <x and <y, a set o′ that is rectangular in o must include all
strokes from o whose left edge lies between the left-most left edge of an element in o′ and
the right-most left edge and whose top edge lies between the top- and bottom-most top
edges of elements of o′.

Proposition 1. Let o ∈ O be an observable, and let p be a production of the form
A0

r⇒ A1 · · ·Ak. Under the ordering assumption, if (e1r · · · rek, (t1, . . . , tk)) ∈ Ipo , then
the recursive partition t = (t1, . . . , tk) of o is rectangular.

Proof. Let d = ord r, and choose any component ti of t. We must show that

ti =
{
a ∈ o : min

x
ti ≤x a ≤x max

x
ti

}
∩
{
a ∈ o : min

y
ti ≤y a ≤y max

y
ti

}
.

It is clear that ti is a subset of the RHS, so suppose that there is some a′ ∈ o in the
RHS put into tj 6= ti by the partition of t. If j < i, then

((tj, ej), (tj+1, ej+1)) , . . . , ((ti−1, ei−1), (ti, ei)) ∈ r.

By the assumption,

max
d
tj <d min

d
tj+1 ≤ max

d
tj+1 <d · · · <d min

d
ti.

But mind tj ≤d a′ ≤d maxd tj since a′ ∈ tj, and mind ti ≤d a′ ≤d maxd ti since a′ is in the
RHS, so mind ti ≤d a′ ≤d maxd tj, a contradiction. A similar contradiction can be obtained
in the case where j > i.

Rectangular sets are the natural two-dimensional generalization of contiguous sub-
strings in one-dimensional string parsing. This definition could be generalized to arbitrary
dimension, giving “hypercube sets” of input elements.

Following Liang et al., notice that any rectangular set u ⊆ o can be constructed by
choosing any four strokes in o and taking them to be represent the left, right, top, and
bottom boundaries of the set. There are therefore O (|o|4) rectangular subsets of o. If we
instead naively parsed every subset of the input, there would of course be 2|o| subsets to
process. The ordering assumption thus yields a substantial reduction in the number of
subsets that must be considered for parsing.

Liang et al. define a rectangular hull of a set of input elements to be their geometric
bounding box, and they parse only those sets whose rectangular hulls have a null intersec-
tion. That is, no bounding box of a subset selected for parsing can intersect that of any
other parsed set. This formulation causes problems for containment notations like square
roots, as well as for somewhat crowded or messy handwriting styles, which our rectangular
set formulation avoids. For example, consider the square root expression on the left of
Figure 7.3. The rectangular hulls of the root symbol and its argument are shown as solid
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Figure 7.3: Expressions with overlapping symbol bounding boxes.

boxes and are the (union of) geometric bounding boxes of the symbols. Note that the
rectangular hull of the square root symbol intersects (in fact contains) that of its contents.
The argument cannot be separated from the operator into non-intersecting hulls.

When considering input subsets as rectangular sets, we do not use the natural geometric
bounding box of the strokes, as Liang et al. do. Instead, we take only the minimal x and
y coordinates of each stroke, and consider the bounding box (or rectangular hull) of those
points. The “boundary” of the root symbol in Figure 7.3 is thus the single point at the
top-left of its bounding box, and the boundary of the rectangular set representing the
argument 2π is shown as a dotted box. By using minimal coordinates instead of complete
bounding boxes, the rectangular set boundaries do not intersect.

Similarly, in the expression on the right of Figure 7.3, the rectangular hull of opening
parenthesis intersects the hull of the a symbol, and that of the closing parenthesis inter-
sects the hulls of both the 3 and the exponent 2. As before, the expression cannot be
partitioned such that the required subsets’ hulls are non-intersecting. But the boundary of
the rectangular set representing a− 3 (indicated by a dotted box) extends only to the left
edge of the 3 symbol. The boundaries of the parentheses and the exponent are, as for the
root sign, single points at the top-left corner of their bounding boxes. This small change –
taking the left- and top-most coordinates of strokes as their representative points, “spaces
out” overlapping writing and facilitates non-intersecting partitions.

Figure 7.4 illustrates schematically the recursive rectangular partitioning of an expres-
sion, following the expected parse of

∑n−1
i=1

i2

n−i . The whole expression is a rectangular set.
The central dotted vertical line indicates a rectangular partition into the sum symbol (with
limits) and the summand. In the summand, for example, the two horizontal dashed lines
indicate a rectangular partition into the numerator, fraction bar, and denominator, and the
numerator and denominator are further partitioned into rectangular sets, each containing
a single symbol. Note that the resulting boxes in the figure are meant to emphasize the
hierarchical structure of the partition. They do not indicate the geometric bounding boxes
of the rectangular sets.

7.2.2 Parsing algorithms

Using the restriction to rectangular partitions derived above, we develop bottom-up and
top-down algorithms for constructing the shared parse forest of an input. The output of
each of those techniques is a table B of parse links indexed by a nonterminal grammar
symbol A ∈ N and a rectangular subset o of the input observable. Table entry B(A, o)
represents the set IAo of interpretations of A of the observable o.
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Figure 7.4: Recursive rectangular partitions in an expression.

Bottom-up parsing

Algorithm 7 generalizes to two dimensions the well-known CYK algorithm for CFG parsing.
It uses dynamic programming to parse each rectangular subset of the input from smallest
to largest. As in the CYK algorithm, the grammar is assumed to be in Chomsky Normal
Form. That is, each production is either of the form A0 ⇒ α for some α ∈ Σ, or of the
form A0

r⇒ A1A2, where r ∈ R and B,C ∈ N .

Algorithm 7 Bottom-up RCFG parser.

Require: An input observable o.
for every rectangular subset o′ ⊂ o of size |o′| = 1, 2, . . . , |o| do

for each production p of the form A⇒ α do
if o′ is recognizable as α by the symbol recognizer then
B(A, o′)← B(A, o′) ∪ {(p; (o′))}

for each production p of the form A0
r⇒ A1A2 do

d← ord r
for x ∈ (o′ \ {mind o

′}) do
o1 ← {a ∈ o′ : a <d x}
o2 ← {a ∈ o′ : a ≥d x}
if B(A1, o1) 6= {} and B(A2, o2) 6= {} then
B(A, o′)← B(A, o′) ∪ {(p; (o1, o2))}

Any rectangular subset of an observable o may be constructed by following Algorithm
8. We can thus pre-compute all rectangular subsets of o so that they are accessible to
Algorithm 7 in constant time. This precomputation step requires O (|o|5 log |o|) operations
using standard sorting techniques. The algorithm proper requires O (|P ||o|) operations per
rectangular subset, for a total runtime of O (|o|5 (|P |+ log |o|)).

Top-down parsing

The bottom-up parsing algorithm above is straightforward but has two downsides. First,
the requirement to re-write the grammar in Chomsky normal form complicates the imple-
mentation of linkage parameters in the grammar. By re-organizing the productions, the
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Algorithm 8 Rectangular subset extraction.

Let d be one of x, y and let d′ be the other.
List the elements of o in increasing order under <d.
Extract a contiguous subsequence. (We now have a set o′ ⊆ o satisfying o′ =
{a ∈ o : mind o

′ ≤d a ≤d maxd o
′}.)

Re-order the remaining elements into increasing order under <d′ .
Extract a contiguous subsequence. (The subsequence elements comprise a rectangular
subset of o.)

correspondence between non-terminals and input subsets is changed – the group of strokes
referred to by a grp linkage parameter in the CNF grammar may be different from the
group referred to by the same parameter in the original grammar. Second, experiments
with the CYK approach showed that, while all rectangular sets must be enumerated and
parsed, relatively few actually contribute to valid parse trees. A similar observation was
made by Grune and Jacobs [10] in the case of ambiguous languages. The algorithm’s
runtime, while predictable, is always the worst-case time.

Instead of CYK, we therefore adapted to RCFGs a tabular variant of Unger’s method
for CFG parsing [33]. In this approach, we assume that the grammar is in the normal form
described in Section 6.4. At a high level, the algorithm parses a production p on an input
subset o as follows:

1. If p is a terminal production, A0 ⇒ α, then check if o is recognizable as α according
to the symbol recognizer. If it is, then add the parse link (p; (o)) to table entry
B(A0, o); otherwise parsing fails.

2. Otherwise, p is of the formA0
r⇒ A1 · · ·Ak. For every rectangular partition (t1, . . . , tk)

of o, parse each nonterminal Ai on ti. If any of the sub-parses fail, then fail on the
current partition. Otherwise, add (p; (t1, . . . , tk)) to table entry B(A0, o). If parsing
fails on every partition, then parsing fails on o.

One drawback of this algorithm is that its runtime is exponential in the size of the
RHS of a grammar production, since case 2 above iterates over

( |o|
k−1

)
partitions. This

bound is obtained by sorting the input by <ord r and choosing k−1 split points to induce a
rectangular partition. In the worst case, then (i.e., when parses exist on every partition),
our algorithm must consider every grammar production on every rectangular set, giving a
complexity of O

(
n3+kpk log n

)
, where n is the number of elements in the input observable,

p is the number of grammar productions, and k is the number of RHS tokens in the largest
production. The extra factor of k arises from writing up to k partition subsets into a parse
table entry in case 2 above. Importantly, k can be controlled by the designer of a grammar
as a tradeoff between RHS size and number of grammar productions. For example, if the
grammar is written in Chomsky Normal Form (CNF), then the complexity is O (n5p). Note
that the general bound is asymptotically tight to the worst-case size of the parse forest,
since there may be O (n4p) table entries (counting each production as a distinct entry),
each of which may link to O

(
nk−1k

)
other table entries.

61



Instead of writing our grammar in CNF, we allow arbitrary production lengths and
use the following three optimizations to reduce the number of partitions that must be
considered. The first two are typical when using Unger’s method [10]; the third is specific
to fuzzy r-CFG parsing.

1. Terminal symbol milestones. The symbol recognizer may be used to guide parti-
tioning. Suppose p is A0

r⇒ A1 · · ·Ai−1αAi+1 · · ·Ak, where α is a terminal symbol.
Then for a parse to exist on the partition (t1, . . . , tk), the symbol α must have been
reported as a candidate for the subset ti. In general, given a partition, any subset
corresponding to a terminal symbol in the grammar production must be recognizable
as that terminal symbol. We therefore “seed” the parse table with symbol recogni-
tion results, and limit the enumeration of rectangular partitions to those for which
the appropriate terminal symbols are already present in the parse table. Such seed-
ing also facilitates recognition of typeset symbols, which are simply inserted into the
parse table with their known identities prior to invocation of the parsing algorithm.

2. Minimum nonterminal length. If there are no empty productions in the grammar,
then each nonterminal must expand to at least one terminal symbol. Moreover, given
a minimum number of strokes required to recognize a particular symbol (e.g., at least
two strokes may be required to form an F ), one can compute the minimal number
of input elements required to parse any sequence of nonterminals A1 · · ·Ak. These
quantities further constrain which partitions are feasible.

For example, consider the expression in Figure 7.1. Suppose we are parsing the
production [ADD]

→⇒ [TRM] + [ST] and we know that the + symbol must be drawn
with exactly two strokes. Then [ADD] cannot be parsed on fewer than 4 input strokes,
and the input must be partitioned into subsets t1, t2, and t3 such that |t1| ≥ 1, |t2| =
2, |t3| ≥ 1. Furthermore, from the previous optimization, t2 must be chosen such
that it is recognizable as the symbol +. In this particular case, only one partition is
feasible.

3. Spatial relation test. Just because an input subset can be partitioned into rectangular
sets does not mean that those sets satisfy the geometric relations specified by a
grammar production. Unfortunately, the grammar relations act on expressions as
well as observables, so they cannot be tested during parsing because expressions
are not explictly constructed. As there may be exponentially many expressions,
they cannot be constructed, and therefore we cannot evaluate the grammar’s spatial
relations, which vary with expression identity. Still, we can speed up parsing by
testing whether relations are satisfied which approximate the grammar relations.

Namely, we use the rule-based relation classifier described in Section 5.1 with seman-
tic labels both set to the generic label gen. If the classifier reports a score of zero
when tested on adjacent partition subsets ti and ti+1, then the entire partition is
discarded. The rule-based variant is not as accurate as the other relation classifiers,
but it is fast to compute and accepts inputs with a wide variance of features. For
this filtering stage, it is better to accept false positives than to reject false negatives.

62



In the algorithms below, we denote by r̂ the rule-based relation corresponding to
grammar relation r.

Parsing a production A0
r⇒ A1 · · ·Ak on an observable o proceeds by two mutually

recursive procedures. The first procedure, Parse-Nt-Seq, parses a sequence A1 · · ·Ak of
nonterminals on an observable o, as follows:

1. If k = 1, then parse the nonterminal A1 on o. Fail if this sub-parse fails.

2. Otherwise, for every rectangular partition of o into two subsets, o1 and o2, such that
|o1| ≥ minlen(A1) and |o2| ≥ minlen(A2 · · ·Ak), parse A1 on o1, and recursively
parse the nonterminal sequence A2 · · ·Ak on o2. Fail if either parse fails.

The second procedure, Parse-Seq, parses a general sequence A1 · · ·Ak of nonterminals
and terminals on o, as follows. Let d = ord r, and let i be minimal such that Ai is a terminal
symbol. Then each rectangular o′ ⊆ o that is recognizable as Ai according to the symbol
recognizer induces a rectangular partition of o into o1, o

′, o2, where maxd o1 <d mind o
′ and

maxd o
′ <d mind o2. For each of these partitions satisfying |o1| ≥ minlen(A1 · · ·Ai−1) and

|o2| ≥ minlen(Ai+1 · · ·Ak), parse A1 · · ·Ai−1 on o1, and parse Ai+1 · · ·Ak on o2. Fail if
either sub-parse fails.

So, to parse a production, we just check whether its RHS contains terminals or not,
and invoke the appropriate procedure. To clarify the outline of the algorithm, we have
omitted the relational tests described in optimization 3 above. These details are included
in the pseudocode below.

Algorithm 9 Parse-Nt-Seq: Top-down parser for nonterminal sequences.

Require: A sequence A1 · · ·Ak of nonterminal symbols, a set o of input strokes, a grammar
relation r, a leading set oL, and a trailing set oR.
B′ ← {}
d← ord r
if k = 1 then

(Verify that o fits in via r̂ with the leading and trailing sets)
if ((oL, o) ∈ r̂ or oL = {}) and ((o, oR) ∈ r̂ or oR = {}) then

return Parse(A1, o)
for L = minlen(A1), . . . , |o| −minlen(A2 · · ·Ak) do

Let o1 ⊆ o be the first L elements of o ordered by <d.
if (oL, o1) ∈ r̂ or oL = {} then
B1 ← Parse(A1, o1)
if B1 6= {} then
B2 ← Parse-Nt-Seq(A2 · · ·Ak, o \ o1, r, o1, oR)
B′ ← B′ ∪ {b1, b2 : b1 ∈ B1, b2 ∈ B2}

return B′

These functions comprise the two-dimensional parsing algorithm that we use in practice
for MathBrush. Each production A0

r⇒ A1 · · ·Ak is parsed recursively by parsing A2 · · ·Ak
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Algorithm 10 Parse-Seq: Top-down parser for general production sequences.

Require: A sequence A1 · · ·Ak of grammar symbols from N ∪Σ, a set o of input strokes,
a grammar relation r, and a leading set oL.
Let i be minimal such that Ai is a terminal symbol
B′ ← {}
d← ord r
for every rectangular subset o′ of o recognizable as the terminal symbol Ai do
o1 ← {a ∈ o : a <d mind o

′}
o2 ← {a ∈ o : maxd o

′ <d a}
if minlen(A1 · · ·Ai−1) ≤ |o1| and minlen(Ai+1 · · ·Ak) ≤ |o2| then
B1 ← Parse-Nt-Seq(A1 · · ·Ai−1, o1, r, oL, o

′)
if at least one of Ai+1, . . . , Ak is a terminal symbol then
B2 ← Parse-Seq(Ai+1 · · ·Ak, o2, r, o

′)
else
B2 ← Parse-Nt-Seq(Ak+1 · · ·Ak, o2, r, o

′, {})
B′ ← B′ ∪ {b1, o

′, b2 : b1 ∈ B1, b2 ∈ B2}
return B′

Algorithm 11 Parse: Top-down parser entry point.

Require: A nonterminal A0 and a set o of input strokes.
if B(A0, o) is not marked “parsed” then

for each production p of the form A0
r⇒ A1 · · ·Ak do

if at least one of A1, . . . , Ak is a terminal symbol then
B′ ← Parse-Seq(A1 · · ·Ak, o, r, {})

else
B′ ← Parse-Nt-Seq(A1 · · ·Ak, o, r, {}, {})

Mark B(A0, o) “parsed”
B(A0, o)← {(p;x) : x ∈ B′}

return B′

for each valid subset choice for A1, aborting a recursive branch when no valid subset choices
exist. This approach may be seen as a depth-first search in the space of valid partitions.
But the optimizations described above constraint the search space and significantly speed
up the parsing process. The technique is fast enough that recognition results may be
updated and displayed in real-time as the user is writing.

7.3 Extracting interpretations

Recall from Chapter 6 that ISo is the set of interpretations of an observable o with respect
to a given RCFG. Our goal is to extract elements of ISo and report them to the user in
decreasing score order. The parse forest constructed using the algorithms in the previous
section is a representation of ISo from which individual parse trees, each corresponding to
an interpretation, may be extracted. In this section, we develop algorithms for performing
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this tree extraction task efficiently.

7.3.1 The monotone assumption

Define the rank of an element x of a directed set (X,≤) as the number of elements y ∈ X
such that x ≥ y. Applying this definition to the set ISo of interpretations, with ≤ defined in
terms of the scoring function sc as described in Section 6.4, the top-scoring interpretation
will have rank 1, the interpretation with second highest score will have rank 2, and so on.
Denote the element of a directed set X with rank n by [n]X.

Consider the problem of finding [1]Ipo , the highest-ranked parse of a production p on the
observable o. Supposing, as usual, that p has the form A0

r⇒ A1 · · ·Ak, every interpretation
(e, t) in Ipo includes t a recursive partition (t1, . . . , tk) of o and e an r-concatenation of the
form e1r · · · rek, where each subexpression ei is an element [mi]I

Ai
ti for some mi. Since we

have not constrained how sc (e, t) is calculated, the only way to determine [1]Ipo is to iterate
over all combinations of mi and find the highest-scoring expression.

This exhaustive algorithm is impractical. To develop a tractable algorithm, we must
constrain the behaviour of the scoring function. Its exact structure will be detailed in
the next chapter, but for now we assume that the score of a terminal interpretation is a
function of a symbol recognition score S(α, o) related to recognizing the observable o as α
and some stroke grouping score G(o) giving the plausibility that o constitutes a symbol:

sc (α, t) = g (S (α, o) , G(o)) ,

for t the trivial partition {o} of o.

Similarly, the score of interpreting the recursive partition t = (t1, . . . , tk) as the r-
concatenation e = e1r · · · rek is assumed to be a function of symbol recognition, stroke
grouping, and relation classification scores, decomposable as

sc (e, t) = fk (sc (e1, t1) , . . . , sc (ek, tk) , Rr ((e1, t1), (e2, t2)) , . . . , Rr ((ek−1, tk−1), (ek, tk))) ,

where Rr(a, b) is a scoring function for the relation r applied to the interpretations a and
b.

Given this assumption on the general structure of sc, we further assume that the com-
bination functions g and fi increase monotonically with their arguments, subject to some
constraints. Let c`(e) denote the semantic label associated with an expression e. (Recall
from Chapter 5 that the semantic labels group together symbols with similar bounding-box
profiles.)

Assumption 2 (Monotone). Assume

1. If S (t, β) > S (t, α), then g (S (t, β) , G(t)) > g (S (t, α) , G(t)).

2. If c`(e1) = c`(e′1) and c`(e2) = c`(e′2), then Rr ((t1, e1), (t2, e2)) = Rr ((t1, e
′
1), (t2, e

′
2)).
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3. If sc (ti, ei) ≥ sc (ti, e
′
i) and c`(ei) = c`(e′i) for i = 1, . . . , k, then

fk (sc (t1, e1) , . . . , sc (tk, ek) , Rr ((t1, e1), (t2, e2)) , . . . , Rr ((tk−1, ek−1), (tk, ek))) ≥
fk
(
sc (t1, e

′
1) , . . . , sc (tk, e

′
k) , Rr ((t1, e

′
1), (t2, e

′
2)) , . . . , Rr

(
(tk−1, e

′
k−1), (tk, e

′
k)
))
.

7.3.2 Extracting elements of ISo

Using the monotone assumption, we develop an algorithm for extracting elements of ISo
in rank order. The basic idea of our algorithm is to first extract the most highly-ranked
expression, [1] ISo , and then to recursively maintain an expanding “frontier” of potential
next-best expressions, from which subsequent expressions are obtained.

In the following, we use the following refinements of the sets of interpretations in Defi-
nition 2. For each nonterminal A and semantic label c, let IAo (c) =

{
(e, t) ∈ IAo : c`(e) = c

}
restrict IAo to expressions with label c. For a recursive partition t ∈ T (o), let Ipt =
{(e, t) : (e, t) ∈ Ipo} restrict Ipo to interpretations using the partition t. Finally, for semantic
labels c1, . . . , ck, let Ipt (c1, . . . , ck) = {(e1r · · · rek, t) ∈ Ipt : c`(ei) = ci, i = 1, . . . , k} restrict
Ipt to interpretations in which each subexpression has a particular semantic label.

Number the semantic labels derivable from A0 as c1, . . . , cN . It is clear that [1]IA0
o =

argmax
{

sc(e) : e = [1]IA0
o (ci), i = 1, . . . , N

}
. Suppose we have determined [j]IA0

o up to
j = n, yielding a partial set of expressions I =

{
[j]IA0

o : j = 1, . . . , n
}

. Then [n+ 1] IA0
o is

given by the following result.

Proposition 2. Let I =
⋃
i

{
[j] IA0

o (ci) : 1 ≤ j ≤ ni
}

. That is, the ni most highly-ranked
elements of each IA0

o (ci) have already been extracted from IA0
o . Then

[n+ 1]IA0
o = argmax

{
sc(e) : e = [ni + 1]IA0

o (ci), i = 1, . . . , N
}
.

In this proposition, the indices ni represent the expanding frontier of potential next-best
expressions. The actual next-best expression is just the best expression from the frontier.
After extraction, the frontier must be updated by incrementing the appropriate ni.

Expressions may be extracted in ranked order from the set Ipo by similarly maximizing
over a frontier of potential “next-best” expressions, based on the initial maximizations

[1]Ipo = argmax {sc(e) : e = [1]Ipt , t ∈ Tk(o)}

and

[1]Ipt = argmax {sc(e) : e = [1]Ipt (c1, . . . , ck); c1, . . . , ck are semantic labels} .

However, this strategy must be generalized somewhat to extract expressions from the
sets Ipt (c1, . . . , ck). For brevity, we denote an r-concatenation [n1] IA1

t1 (c1)r · · · r [nk] I
Ak
tk

(ck)
in a given set Ipt (c1, . . . , ck) by its indices as (n1, . . . , nk).
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Part 3 of the monotone assumption implies that the score of an interpretation using
the expression n = (n1, . . . , nk) is at least that of an interpretation of the same input using
expression m = (m1, . . . ,mk) whenever ni ≤ mi for all i (written n ≤ m; we similarly define
other comparison relations component-wise). Proposition 3 uses this observation to show
how to extract expressions from Ipt (c1, . . . , ck) in ranked order. But first, we introduce the
idea of successor sets, which describe how the frontier of expressions expands.

Definition 4. Let e ∈ Ipt (c1, . . . , ck) be (m1, . . . ,mk) for some indices mi. We define the
successor set of e to be

succ(e) = { (m1 + 1,m2, . . . ,mk) ,

(m1,m2 + 1, . . . ,mk) , . . . ,

(m1,m2, . . . ,mk + 1)} .

Thus, succ(e) contains all of the expressions obtainable from Ipt (c1, . . . , ck) by incre-
menting exactly one of the extraction indices mi of e. Given a subset I of Ipt (c1, . . . , ck)
already extracted in ranked order, the next-best expression is found in the successor set of
an expression on the frontier of I. The following result makes this idea precise.

Proposition 3. Suppose we have determined [j] Ipt (c1, . . . , ck) up to j = n, yielding a
partial set of expressions I. Define the boundary of I to be bd I = {e ∈ I : succ(e) 6⊆ I} .
Let X = Ipt (c1, . . . , ck). Then,

1. If I is empty, then [1]X = (1, 1, . . . , 1).

2. Otherwise, let S =
(⋃

e∈bd I succ(e)
)
\ I. Then

[n+ 1]X = argmax
e∈S

sc(e)

Proof. 1. Suppose to the contrary that [1]X = (m1, . . . ,mk). This immediately contra-
dicts the monotone assumption since (m1, . . . ,mk) ≥ (1, . . . , 1).

2. Suppose to the contrary that [n+ 1]X = e′ = (m1, . . . ,mk) with e′ 6∈ S. Wlog,
suppose that m1 is the largest entry in the tuple, and consider the expression repre-
sented by e∗ = (m1 − 1,m2, . . . ,mk). By the monotone assumption, this expression
is scored higher than e′. Inductively, since [n + 1]X = e′, e∗ must already be in I.
But e′ is in the successor set of e∗, a contradiction.

Figure 7.5 illustrates graphically an example of applying Proposition 3 for k = 2. The
extraction process can be thought of as growing a staircase-type shape out from the origin
in a k-dimensional lattice.

The following algorithms make these results concrete with respect to the parse graph B
produced by the algorithms in the previous section. The details of iterating over semantic
labels are omitted for clarity, but are discussed following the pseudocode listings.
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After 1 extraction After 2 extractions After 7 extractions

n1

n2

Successor set

Extracted

Not yet considered

Legend

Figure 7.5: Illustration of expression extraction for a two-token production.

We divide the problem into two parts: extracting interpretations from a particular
branch (p; (t1, . . . , tk)), and extracting interpretations from a nonterminal node B(A, o).
These two parts are implemented as mutually-recursive procedures invoked according to
the structure of the grammar productions.

Algorithms 12 and 14 implement the first part, while Algorithms 13 and 15 implement
the second part. They essentially translate the consequences of the monotone assumption
into parse graph operations. Note that each algorithm uses data structures local to the
point in B from which it is extracting expressions. One can think of these algorithms as
being associated directly with each node and branch in the parse graph. The process is
initialized by calling Best-Nonterminal-Expression(S, o) with S the start symbol and
o the entire input. Next-Nonterminal-Expression(S, o) may then be called repeatedly
to iterate over all parses of o.

Furthermore, two distinct modes of extraction are supported. In the exhaustive
mode, expressions are extracted exactly as suggested by the monotone assumption. How-
ever, this leads to an overwhelming number of expressions being available to the user. A
second mode, called semantics, is more restrictive, and is the default mode for expressions
larger than a single terminal symbol.

In semantics mode, all reported expressions must either be derived from different
productions (and thus represent different parse structures), or, if derived from the same
production, must partition the input differently into subexpressions. This restriction ef-
fectively constrains the number of alternatives available, while still allowing all possible
parse results to be obtained by examining the alternatives for different subexpressions. It
is easily implemented by extracting only one expression per branch.

It is difficult to precisely quantify the complexity of these algorithms. However, we can
characterize them in terms of the size of B. The initialization step, yielding [1]It, follows
every possible branch in B(S, t) for S the start symbol and t the entire input, visiting
each node once. Extracting [n + 1]It entails a visit to only one branch per nonterminal
visited, but to k nonterminals per branch (p; (t1, . . . , tk)) visited, where k is the number
of RHS tokens in the production p. Note, though, that each such token corresponds to a
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Algorithm 12 Best-Link-Expression: Extract the most highly-ranked expression from
a branch.
Require: A branch (p; (t1, . . . , tk))
cache← {} (Initialize priority queue local to the branch)
if p is a terminal production A0

r⇒ α then
e∗ ← α

else
(p is of the form A0

r⇒ A1 · · ·Ak)
for i = 1, . . . , k do
ei ← Best-Nonterminal-Expression(Ai, ti)

e∗ ← (e1r · · · rek)
[0] Ipt1∪···∪tk ← e∗

return e∗

Algorithm 13 Next-Link-Expression: Extract the next most highly-ranked expression
from a branch.
Require: A branch (p; (t1, . . . , tk))

if extraction mode is semantics then
return NONE

if p is a terminal production A0
r⇒ α then

return NONE
(p is of the form A0

r⇒ A1 · · ·Ak)
Suppose n expressions have already been extracted from this branch.
Let (e1r · · · rek) = [n] Ipt1∪···∪tk be the last expression extracted here

Let mi be such that ei = [mi] I
Ai
ti for i = 1, . . . , l

for i = 1, . . . , k do
if mi = |Iti | then
êi ← Next-Nonterminal-Expression(Ai, ti)

else
êi ← [mi + 1] IAi

ti

Add e = (e1r · · · rei−1rêirei+1r · · · rek) to cache with priority Ipt (e)
if cache is empty then

return NONE
Pop e∗ from cache
[n+ 1] Ipt1∪···∪tk ← e∗

return e∗
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Algorithm 14 Best-Nonterminal-Expression: Extract the most highly-ranked ex-
pression derivable from a nonterminal.

Require: A nonterminal A and an observable t.
cache← {} Initialize priority queue local to (A, t)
for every branch (p;x) ∈ B(A, t) do

Add e = Best-Link-Expression(p;x) to cache with priority Ipt (e)
Pop e∗ from cache
[0] IAt ← e∗

return e∗

Algorithm 15 Next-Nonterminal-Expression: Extract the next most highly-ranked
expression derivable from a nonterminal.

Require: A nonterminal A and an observable t.
Suppose n expressions have already been extracted from B(A, t).
Let e = [n] IAt be the last expression extracted here
Let (p; (t1, . . . , tk)) be the branch from which e was extracted
Add ê = Next-Link-Expression (p; (t1, . . . , tk)) to cache with priority Ipt (e)
if cache is empty then

return NONE
Pop e∗ from cache
[n+ 1] IAt ← e∗

return e∗

subexpression in the parse. The amount of work performed in this case is therefore directly
proportional to the number of nodes in a parse tree representing [n]It.

To include semantic labels in these algorithms requires some modifications of Algo-
rithms 12 and 13. Whenever a terminal expression is extracted by a recursive call in one
of the algorithms (say from the nonterminal A on the trivial recursive partition t), that
recursive call is repeated to extract all of the terminal interpretations of A on t. All the
interpretations arising from those extractions are added to the priority queue. In this way,
all combinations of semantic labels are accounted for. Because of this exhaustive extrac-
tion of terminal expressions, the first part of the monotone assumption is unnecessary in
practice.

In the worst case, if all possible combinations of labels are populated, this adds an
additional factor of Ck to the complexity of the tree extraction algorithm, where C is the
number of semantic labels and k is the number of RHS elements of p. Importantly, both
C and k are controlled by the grammar designer. Furthermore, recall that only different
terminal symbols are given meaningfully different semantic labels; all larger expression
share the generic labels expr and gen. This restriction is important because it limits this
extra iteration to only those expressions directly involving terminal symbols (i.e., near the
leaves of the parse forest). No extra iteration is invoked for larger expressions because they
do not possess any non-trivial semantic labels.

The restriction of semantic labels to terminal expressions also simplifies data organi-
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zation. In general, to iterate over interpretations of a production A0
r⇒ A1 · · ·Ak on a

recursive partition t1, . . . , tk whose subexpressions have semantic labels c1, . . . , ck requires
iteration over interpretations of each Ai on ti to be restricted to semantic label ci. If differ-
ent nonterminal expressions possessed a variety of semantic labels, this semantic restriction
would add significant complexity to the structure of the parse forest as well as Algorithms
14 and 15.

7.3.3 Handling user corrections

As mentioned in the introduction, we wish to provide to users a simple correction mech-
anism so that they may select their desired interpretation in case of recognition errors or
multiple ambiguous interpretations. Our recognizer facilitates such corrections by allowing
locks to be set on any subset of the input.

Two types of locks are supported:

1. Expression locks, which fix the interpretation of a particular subset of the input to
be a specified expression, and

2. Semantic locks, which force interpretations of a particular subset of the input to be
derived from a specified nonterminal.

Each of these lock types is useful in different circumstances. For example, if x+ a was
recognized as X + a, then an expression lock may be applied to the portion of the input
recognized as the X symbol, forcing it to be interpreted as a lower-case x instead. If x+ a
was recognized as xta, then a semantic lock may be applied to the entire input, forcing
an addition expression to be derived. If recognition gave Xta, then the lock types may be
combined.

Consider extracting an expression from input o. If o is locked to an expression e by
an expression lock, then we consider Io to contain only one element, e. If o is locked to
a nonterminal AL by a semantic lock, then we take IA

′
o to be empty for all nonterminals

A′ 6= AL, except those for which a derivation sequence A′ ⇒∗ AL exists, in which case we
take IA

′
o = IAL

o .

MathBrush allows users to navigate ranked interpretations on any subset of their input,
as shown in Figure 7.6. In case recognition is not accurate, the user may select the correct
interpretation and an appropriate lock is applied to the parse graph. The corrections
are maintained in subsequent parse results as the user continues to write. In this way,
correction is simple and relatively painless – certainly easier than erasing the expression
and rewriting it from scratch.
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Figure 7.6: Interface for displaying and selecting alternative interpretations.
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Chapter 8

Scoring interpretations

The previous chapter described how a scoring function on interpretations, sc(e, t), may
be used to efficiently organize and report all parses of an input observable in order of
decreasing score. The algorithms we developed assumed that sc was either:

1. A function sc (α, t) = g (S (α, t) , G(t)) of underlying symbol and stroke grouping
score functions for a terminal expression α, or

2. A function

sc (e1r · · · rek, (t1, . . . , tk)) = fk ( sc (e1, t1) , . . . , sc (ek, tk) ,

Rr ((e1, t1), (e2, t2)) , . . . , Rr ((ek−1, tk−1), (ek, tk)))

of sub-interpretation scores and a relation scoring function, in the general case.

In either case, we require the combination functions g and fk to be monotonic increasing
in all of their arguments, as described in the previous chapter.

In this chapter, we develop two concrete scoring functions satisfying these assumptions,
respectively based on fuzzy logic and probability theory. In the next chapter, the systems
resulting from combining these scoring functions with the parsing techniques described pre-
viously will be evaluated and compared with an earlier version of the MathBrush recognizer
as well as other recognition systems.

8.1 Fuzzy logic-based scoring

In the fuzzy case, we treat the set Io of interpretations of o as a fuzzy set, and treat sc as its
membership function. Although the classical membership function for conjunctive variable
combinations (e.g., “the strokes of o correspond to a symbol and represent the symbol α”)
is the min function, Zhang et al [41] found that using multiplication when computing
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membership grades helped to prevent ties. We therefore compute the membership grade
in the terminal case as

sc (α, t) =
√
S (α, o)G(t),

where S (α, o) = Dα(o)−2 for Dα the hybrid symbol distance function from Equation 4.7,
and G(t) is the stroke grouping score from Chapter 3.

In the general case of an r-concatenation, we compute the membership grade as

sc (e1r · · · rek, (t1, . . . , tk)) =

((
k∏
i=1

sc (ei, ti)

)(
k−1∏
i=1

µr ((ei, ti) , (ti+1, ei+1))

)) 1
2k−1

,

where µr is the membership function from Section 5.1 treating each relation r as fuzzy.

The geometric averaging used in these scoring functions preserves the tie-breaking prop-
erties of multiplication while normalizing for expression size.

8.2 Probabilistic scoring

The probabilistic case requires significantly more care to develop than the fuzzy case. None
of the underlying scoring functions described above naturally produce probability distri-
butions, so some transformation of those functions is required. However, probabilistic
formalisms do offer straightforward and systematic ways in which to represent “common-
sense” information such as symbol and subexpression co-occurrence frequencies (e.g., pre-
ferring sin over sjn), and we wish to include such details in our model.

8.2.1 Model structure

Given an input observable ô ∈ O, we define the following families of variables:

• An expression variable Eo ∈ {e : (e, t) ∈ Io for some t} ∪ {nil} from the set of inter-
pretations of each o ⊆ ô. Eo = nil indicates that the subset o has no meaningful
interpretation.

• A symbol variable So ∈ Σ ∪ {nil} for each o ⊆ ô indicating what terminal symbol
o represents. So = nil indicates that o is not a symbol. (o could be a larger
subexpression, or could have Eo = nil as well.)

• A relation variable Ro1,o2 ∈ R ∪ {nil} indicating which grammar relation joins the
subsets o1, o2 ⊂ ô. Ro1,o2 = nil indicates that the subsets are not directly connected
by a relation.

• A vector of grouping-oriented features go for each o ⊆ ô.

• A vector of symbol-oriented features so for each o ⊆ ô.
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• A vector of relation-oriented features fo for each o ⊂ ô.

• A “symbol-bag” variable Bo distributed over Σ ∪ {nil} for each o ⊆ ô.

This is a large group of variables: there are 22|o| relation variables alone! Fortunately,
we may restrict ourselves to variable assignments which correspond to valid parse trees,
which significantly reduces the model’s complexity through the following deterministic
constraints.

• The set of subsets {o : Eo 6= nil} with non-nil expressions must correspond exactly
to a recursive partition of ô, otherwise the expressions do not combine to form a
parse tree.

• If Eo = nil, then So = nil, and all Ro,∗ and R∗,o are also nil.

• Eo is a terminal expression iff So 6= nil.

Additionally, the ordering assumption of Section 7.2.1 allows us to also specify Eo = nil
if o is not a rectangular set. This immediately reduces the number of potential non-nil
expression variables to O(|o|4) and the number of relation variables to O(|o|8).

That is still a considerable number of variables, though, so direct assessment of the joint
distribution is infeasible. Instead, we rely on the algorithms from the previous chapter to
propose parse trees. Each parse tree corresponds to an assignment to the capitalized
variables defined above in which the constraints just given are known to be satisfied. We
compute a score for each such assignment that is proportional to the joint probability

P

(∧
o⊆ô

Eo,
∧
o⊆ô

So,
∧

o1,o2⊂ô

Ro1,o2 ,
∧
o⊆ô

go,
∧
o⊆ô

so,
∧
o⊂ô

fo,
∧
o⊆ô

Bo

)
.

To do so, first factor the joint distribution as the following Bayesian network:

P
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o⊆ô
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so,
∧
o⊂ô
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=
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Ro1,o2 ,

∧
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∧
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)
×
∏
o⊆ô

P (So | go, so)

×
∏

o1,o2⊂ô

P (Ro1,o2 | Eo1 , Eo2 , fo1 , fo2)

×
∏
o′⊆ô

P

(
Bo′ |

∧
o⊆ô

So

)
×
∏
o⊆ô

go
∏
o⊆ô

so
∏
o⊂ô

fo. (8.1)
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Note that the probabilities of the feature variables go, so, and fo are functions only of
the input and do not change with the other variables. They may thus be omitted from
calculation as we wish only to compare the relative scores of different parse trees.

Next, we will describe each of the conditional distributions before showing how to
calculate their product.

8.2.2 Expression variables

The distribution of expression variables,

Eo′ |
∧
o⊂o′

Eo,
∧
o⊆o′

So,
∧

o1,o2⊂o′
Ro1,o2 ,

∧
o⊆o′

go,
∧
o⊆o′

so,
∧
o⊂o′

fo,

is deterministic and based on the grammar productions. In a valid joint assignment (i.e.,
one derived from a parse tree), each non-nil conditional expression variable Eo is a subex-
pression of Eo′ , and the non-nil relation variables indicate how these subexpressions are
joined together. This information completely determines what expression Eo′ must be, so
that expression is assigned probability 1.

In the case where Eo′ is a terminal expression α, it must be the case that Eo = nil
in the joint assignment for all o ⊂ o′, and similarly all the relation variables dealing with
subsets of o′ must be nil. Only the symbol variable So takes a non-nil value, and it must
be α. So again we have the deterministic distribution

P

(
Eo′ = α | So = α,

∧
o⊂o′

(Eo = So = nil) ,
∧

o1,o2⊂o′
(Ro1,o2 = nil) ,

∧
o⊆o′

go,
∧
o⊆o′

so,
∧
o⊂o′

fo

)
= 1.

8.2.3 Symbol variables

Each grouping-oriented feature vector go is a 5-tuple with elements given by the mea-
surements d, `in, cin, `out, and cout (respectively “distance”, “in-group overlap”, “in-group
containment notation score”, “out-of-group overlap”, and “out-of-group containment no-
tation score”) described in Section 3.2 on the grouping algorithm. Let NG be the grouping
score given by Equation 3.2.

Each symbol-oriented feature vector so contains an element so,α for each α ∈ Σ with
so,α = Dα(o), the hybrid symbol recognition distance from Equation 4.7 in Section 4.2.
For a given observable o, let pα = s−2

o,α for each α, and let NS = maxα∈Σ 1/so,α. Then the
probability that the strokes in o do not correspond to a symbol is defined to be

P (So = nil | go, so) = 1− N

N + 1
,

where N = log (1 +NSNG).
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The remaining probability mass, corresponding to the case where o is indeed a symbol,
is distributed amongst the terminal symbols such that

P (So = α | go, so) ∝
pα∑
α∈Σ pα

.

8.2.4 Relation variables

Each relation-oriented feature vector fo encodes the bounding box of o. From a pair fo1 , fo2
of such vectors, the bounding-box features f1 through f7 described in Section 5.2 are easily
computed.

For each relation r ∈ R, let pr = P (X = r | e1, e2, f1, . . . , f7) from Equation 5.1 (the
naive Bayesian probability of relation r holding between expressions e1, e2 with bounding
box features f1, . . . , f7), and let N = log (1 + maxr∈R pr). Then, similarly to the symbol
case, we set

P (Ro1,o2 = nil | Eo1 , Eo2 , fo1 , fo2) = 1− N

N + 1
,

and distribute the remaining probability mass amongst the relations so that

P (Ro1,o2 = r | Eo1 , Eo2 , fo1 , fo2) ∝
pr∑
r∈R pr

.

This distribution only applies when Eo1 , Eo2 6= nil. If either expression is nil, then the
relation must be nil, so

P (Ro1,o2 = nil | Eo1 = nil, Eo2 , fo1 , fo2) = P (Ro1,o2 = nil | Eo1 , Eo2 = nil, fo1 , fo2) =1.

Although the naive Bayesian classifier did not perform as well as the grid- and margin-
tree-based relation classifiers in the isolated relation classification task from Chapter 5, we
found that the performance of those classifiers dropped significantly in the more complex
environment of math recognition. In the evaluation, every test example consisted of two
known subexpressions with an unknown but non-nil relation joining them. But in the full
context of recognition, there are a large number of potential subexpressions which may or
may not be joined by relations. The discriminative classifiers, because they rely exclusively
on frequency counts of positive examples, are not well-suited for distinguishing between
the nil and non-nil cases. So, although they performed well in the isolated classification
task, we use the naive classifier in the context of full expression recognition.

8.2.5 Symbol-bag variables

The role of the symbol-bag variables Bo is to apply a prior distribution to the terminal
symbols appearing in the input, and to adapt that distribution based on which symbols are
currently present. Because those symbols are not known with certainty, such adaptation
may only be done imperfectly.
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We collected symbol occurrence and co-occurrence rates from the Infty project corpus
[30] as well as from the LATEX sources of University of Waterloo course notes for intro-
ductory algebra and calculus courses. The symbol occurrence rate r(α) is the number
of expressions in which the symbol α appeared and the co-occurrence rate c(α, β) is the
number of expressions containing both α and β.

In theory, each Bo variable is identically distributed and satisfies

P

(
Bo = nil | So = nil,

∧
o′⊆ô

So′

)
= 1

and

P

(
Bo = α | So = δ,

∧
o′⊆ô

So′

)
∝ r(α) +

∑
β∈Σ

P (So′ = β for some o′ ⊆ ô)
c(α, β)

r(β)
,

for any non-nil δ ∈ Σ (recall that ô is the entire input observable).

The trivial nil case allows us to remove all terms with Bo′ = nil from the product∏
o′⊂ô P

(
Bo′ |

∧
o⊆ô So

)
in our scoring function.

In the non-nil case, note that for any subset o′ of the input for which the grouping score
G(o′) is 0, we have So = nil with probability one. Thus in the P (So′ = β for some o′ ⊆ o)
term above, we need only consider those subsets of o such that G(o′) > 0. Rather than
assuming independence and iterating over all subsets with non-zero grouping score, or
developing a more complex model, we simply approximate this probability by

max
o′⊆ô,G(o′)>0

P (So′ = β | go′ , so′) .

Evaluation of these symbol-bag probabilities proceeds as follows. Starting with an
empty input, only the r(α) term is used. The distribution is updated incrementally each
time symbol recognition is performed on a candidate stroke group. The set of available
candidate groups is updated each time a new stroke is drawn by the user. When a group
corresponding to an observable o is identified, the symbol recognition and stroke grouping
processes induce the distribution of So, which we use to update the distribution of the B∗
variables by checking whether any of the max expressions need to be revised. Intuitively,
B∗ treats the “next” symbol to be recognized as being drawn from a bag full of symbols.
If a previously-unseen symbol β is drawn, then more symbols are added to the bag based
on the co-occurrence counts of β.

This process is similar to updating the parameter vector of a Dirichlet distribution,
except that the number of times a given symbol appears within an expression is irrelevant.
We are concerned only with how likely it is that the symbol appears at all.

8.2.6 Calculating the joint probability

Based on the discussion above, it is clear that many of the variables in our Bayesian model
must be set to nil in order for the joint assignment to correspond to a valid parse tree.
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In particular, a variable is set to nil unless is corresponds exactly to some meaningful
part of the parse tree, whether that is a symbol name, a subexpression, or a relation
between subsets. We will use this fact to dramatically simplify the calculation of the joint
probability given in Equation 8.1.

Let

Z =
∏
o⊆ô

P (So = nil | go, so)×
∏

o1,o2⊂ô

P (Ro1,o2 = nil | Eo1 , Eo2 , fo1 , fo2) .

Then, under the assumption that Z is constant with respect to the E∗ variables, we
divide Equation 8.1 by Z to remove all of the nil variables, and divide by go, so, fo as
described earlier, since they are functions only of the input:
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So,
∧

o1,o2⊂ô
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so,
∧
o⊂ô
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(8.2)

The RHS of Equation 8.2 as the scoring function for the parse tree extraction algorithms
from the previous chapter. The division removes from consideration any variables not
directly involved with the parse tree in question; we need only divide each individual
symbol and relation probability by the corresponding probability that that variable would
be nil. As a result, only linearly many variables are used in the multiplication, since
parse tree size is linear in the number of input strokes. Note that such a division is not
required for the expression variables Eo because of their deterministic nature: if o is not a
component of the recursive partition used by the parse tree, then Eo = nil with probability
1 and so need not be included in the calculation.

A caveat of this division is that, to meaningfully compare the scores of different parse
trees, the probability

P (Ro1,o2 = nil | Eo1 , Eo2 , fo1 , fo2)
must not depend on the values of Eo1 , Eo2 , as mentioned above. Otherwise the constant
elided by the proportionality symbol would vary by changing the parse tree. In practice,
when computing N for the relation nil probability described in Section 8.2.4, we fix e1 =
e2 = gen when querying the relation classifier to obtain the pr values.
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Chapter 9

System evaluation

We evaluated the MathBrush recognizer on two data sets using different methodologies.
In the first, the system was tested on the data collected during our 2009 study [20]. These
tests allow us to compare the accuracy of the recognizer’s current incarnation with that
of previous versions via a user-oriented accuracy metric which is described below. In the
second scenario, we test the recognizer on the data from 2011 and 2012 Competitions
on Recognition of Handwritten Mathematical Expressions (CROHME), and measure its
accuracy using the CROHME accuracy metrics. This methodology allows us to evaluate
our system on a subsystem-by-subsystem basis, and to compare our system against several
others created by researchers around the world.

9.1 Evaluation on Waterloo corpus

9.1.1 Correction count metric

Devising objective metrics for evaluating the real-world accuracy of a recognition system
is difficult. Several authors have proposed accuracy metrics (e.g., [39, 5, 16, 8, 27]) based
on implementation details specific to their particular recognizers. It is therefore difficult to
directly compare their evaluation results to one another, or to apply their methodologies
to our evaluation.

Some authors have proposed recognizer-independent evaluation schemes that rely only
on the output of a recognizer, and treat its implementation as a black box. Awal et al. [3]
proposed an approach in which the accuracy of symbol segmentation, symbol recognition,
relation, and expression recognition are reported separately. A positive feature of this
approach is that it makes clear, in the case of incorrect expression recognition, which
recognizer subsystem failed, and a version of it was used for the CROHME competition
(no relation accuracy measurements were used). Sain et al. [28], following the intuition of
Garain and Chaudhuri [8] that errors far from the dominant baseline are less important
than those on or near the main baseline, proposed a scheme called EMERS. In it, the
edit distance between parse trees representing recognized and ground-truth expressions
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measures the accuracy of a recognition result. Edits are weighted so that those more
deeply-nested in the parse tree have less cost.

These approaches are both valuable in that they are easily implemented, permit ob-
jective comparisons between recognizers, and provide valuable feedback to recognizer de-
velopers. But they both measure the amount by which a recognized expression deviates
from its ground-truth, and do not consider whether the ground-truth was achievable by
the recognizer at all. If a recognizer consistently fails to recognize a particular structure
or symbol, the deviation from ground-truth may be small, even though the recognizer is
effectively useless for that recognition task.

Because our recognizer is designed specifically for real-time, interactive use within the
MathBrush pen-math system, we believe that a user-oriented accuracy model provides the
best way to assess its performance. So as well as asking “Is the recognition correct?”, we
want to ask not “How many symbols were wrong?” or “How many transformation steps
give the correct answer”, but “Is the desired result attainable?”, and “How much effort
must the user expend to get it?” To a user, it is not necessarily the case that an error on
the main baseline (say, recognizing a+ b as atb) is more incorrect than one on a secondary
baseline (say, recognizing n21−ε

as n2l−ε
).

To answer these questions, we count the number of corrections that a user would need
to make to a recognition result in order to obtain the correct parse. If an input is rec-
ognized correctly, then it requires zero corrections. Similarly, if it is recognized “almost
correctly”, it requires fewer corrections than if the recognition is quite poor. This metric is
generally applicable to any recognition system, though it clearly is intended to be used with
systems providing some correction or feedback mechanism. One could similarly navigate
the recognition alternatives provided by Microsoft’s math recognizer, for instance, count
the number of required corrections, and obtain comparable measurements. Our evaluation
scheme thus provides an abstract way to compare the performance of recognition systems
without direct reference to their implementation details.

Liu et al. [19] also devised a user-based correction cost model for evaluating a diagram
recognition system. They measured the physical time required to correct the errors in
recognized diagrams. This approach would also be useful for evaluating our system, but
the size of the expression corpus makes it impractical to manually test and correct the
recognition results.

Instead, we have automated the evaluation process. We developed a testing program
that simulates a user interacting with the recognizer. The program passes ink representing
a math expression to the recognizer. Upon receiving the recognition results, the program
compares them to the ground-truth associated with the ink. If the highest-ranked result is
not correct, then the testing system makes corrections to the recognition results, as a user
would, to obtain the correct interpretation. That is, the system browses through lists of
alternative interpretations for subexpressions or symbols, searching for corrections match-
ing the symbols and structures in the ground-truth. It returns the number of corrections
required to obtain the correct expression.

Algorithm 16 outlines this process. The recognizer uses a “context” to refer to any node
in the shared parse forest. So, as the algorithm descends into an expression tree, it can
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request alternatives for any particular subexpression, and having any particular semantics.
For example, if an expression intended to be a + c was instead recognized as a + C, the
algorithm would detect the correct top-level structure, and the correct expression on the
left side of the addition sign. On the right side, it would request alternatives “in context”;
that is, using only the ink related to the c symbol, and being feasible for the right side of
an addition expression, as determined by the grammar.

Algorithm 16 cc(g, e): Count the number of corrections required to match recognition
results to ground-truth.

Require: A recognizer R, a ground-truth expression g, and the first recognition alternative
e from R.
if e = g then

return 0
errorhere ← 0 (Indicates whether an error appears in the top level of the expression
tree)
while e has different top-level semantics from g or uses a different partition of the input
do
errorhere← 1
e← the next alternative from R in this context
if e is null then

(R provides no more alternatives)
return ∞

for each pair of subexpressions ei, gi of e, g do
ni ← recurse on R, gi, ei
if ni =∞ then

return ∞
return errorhere+

∑
ni

The correction count produced by this algorithm is akin to a tree edit distance, except
that it is constrained so that the edits must be obtainable through the recognizer’s output.
They cannot be arbitrary terminal or subtree substitutions.

9.1.2 Methodology and results

To facilitate meaningful comparison with previous results, we have replicated the experi-
ments performed in a previous publication [22] as closely as possible. These tests used the
probabilistic scoring function.

The correction count metric provides accuracy scores for both correct and incorrect
recognition results, but there are some types of recognition errors that it cannot account
for. For example, if an expression is recognized correctly except for one symbol, for which
the correct alternative is not available, then the correction count will be ∞, even though
the expression is “nearly correct”.

To reduce the number of these types of results, we tested the recognizer in two scenarios.
In the first, called default, we divided the 3674 corpus transcriptions into training and

82



testing sets. The training set contained all 1536 transcriptions having fewer than four
symbols. The remaining 2138 transcriptions formed the testing set. These transcriptions
contained between four and 23 symbols each, with an average of seven. All of the symbols
were extracted from the training set and used to augment our pre-existing symbol database.
The pre-existing database contained samples of each symbol written by one to three writers,
and is unrelated to the evaluation data set. It was used to ensure baseline coverage over
all symbol types. Because the training transcriptions contained at most a few symbols,
they did not yield sufficient data to adequately train the relation classifiers using semantic
labels. We therefore augmented the relation classifier training data with transcriptions
from a 2011 collection study [21]. (The symbol recognizer was not trained on this data.)

The second scenario, called perfect, evaluated the quality of expression parsing in iso-
lation from symbol recognition. In it, the same training and testing sets were used as in
the default scenario, but the terminal symbols were extracted directly from ground truth,
bypassing both the stroke grouping and symbol recognition modules. There were thus
no alternative symbols for the parser to choose between, and no ambiguities in stroke
grouping.

Each recognized transcription may be placed into one of the following categories:

1. Correct : No corrections were required. The top-ranked interpretation was correct.

2. Attainable: The correct interpretation was obtained from the recognizer after one or
more corrections.

3. Incorrect : The correct interpretation could not be obtained from the recognizer.

In the original experiment, the “incorrect” category was divided into both “incorrect”
and “infeasible”. The infeasible category counted transcriptions for which the correct sym-
bols were not identified by the symbol recognizer, making it easier to distinguish between
symbol recognition failures and relation classification failures. In the current version of
the system, many symbols are recognized through a combination of symbol and relation
classification, so the distinction between feasible and infeasible is no longer useful. We
have therefore merged the infeasible and incorrect categories for this experiment.

Figure 9.1 shows the recognizer’s accuracy and average correction count in the default
scenario for both the current version and the version used in our previous experiments [22].
Figure 9.2 shows similar information for the perfect scenario.

In the default scenario, just over 33% of transcriptions were recognized correctly, a
further 47% were attainable with corrections (about 0.85 corrections per attainable tran-
scription, on average), and about 20% were incorrectly recognized. The rates of attain-
ability and correctness were both significantly higher for the probabilistic recognizer than
for our earlier fuzzy variant (80% vs. 67% and 33% vs. 19%, respectively). The average
number of corrections required to obtain the correct interpretation was also lower for the
new recognizer.

In the perfect scenario, about 96% of transcriptions were attainable (requiring about
0.11 corrections on average) with 85% being correct. The previous recognizer achieved
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Figure 9.1: Default scenario results.
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Figure 9.2: Perfect scenario results.
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comparable rates of 98% attainable (just over 0.16 corrections on average) and 83% correct.
The current version again achieved a somewhat higher correctness rate, but in this scenario
had a slightly lower attainability rate. Rather than this indicating a problem with the
probabilistic recognizer, it likely indicates that the hand-coded rules of the fuzzy relation
classifier were too highly tuned for the 2009 training data. The large changes in the
accuracy rates of the rule-based relation classifier between the 2009 and 2011 testing data
in Section 5.4 support this point.

9.2 Evaluation on the CROHME corpora

Since 2011, the CROHME math recognition competition has invited researchers to submit
recognition systems for comparative accuracy evaluation. In previous work, we compared
the accuracy of a previous version of the MathBrush recognizer against that of the 2011
entrants [22]. We also participated in the 2012 competition, placing second behind a
corporate entrant [26]. In this section we will evaluate the current MathBrush recognizer
described in this thesis against its previous version as well as the other CROHME entrants.

The 2011 CROHME data is divided into two parts, each of which includes training and
testing data. The first part includes a relatively small selection of mathematical notation,
while the second includes a larger selection. For details, refer to the competition paper
[25]. The 2012 data is similarly divided, but also includes a third part, which we omit from
this evaluation as it included notations not used by MathBrush (namely notations from
boolean logic such as overbar negations, etc.)

For each part of this evaluation, we trained our symbol recognizer on the same base
data set as in the previous evaluation and augmented that training data with all of the
symbols appearing in the appropriate part of the CROHME training data. The relation
and grouping systems were trained on the 2011 Waterloo corpus. We used the the gram-
mars provided in the competition documentation by converting them into the file format
recognized by our parser.

The accuracy of our recognizer was measured using a perl script provided by the compe-
tition organizers. In this evaluation, only the top-ranked parse was considered. There are
four accuracy measurements. Stroke reco. indicates the percentage of input strokes which
were correctly recognized and placed in the parse tree. Symbol seg. indicates the percent-
age of symbols for which the correct strokes were properly grouped together. Symbol reco.
indicates the percentage of symbol recognized correctly, out of those correctly grouped.
Finally, expression reco. indicates the percentage of expressions for which the top-ranked
parse tree was exactly correct (corresponding to a “correct” result in our classification
scheme for the previous evaluation).

In Tables 9.1 and 9.2, the first two rows show the test results for the current version
of MathBrush using the fuzzy and probabilistic scoring funtions. In the first (2011) table,
the third row shows evaluation results the version of our recognizer used for CROHME
2012, the fourth row shows results from a previous publication [22], and the remainder of
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the table is reproduced from the CROHME 2011 report [25]. In the second (2012) table,
all rows but the first two are reproduced from the CROHME 2012 report [26].

Part 1 of corpus

Recognizer Stroke reco. Symbol seg. Symbol reco. Expression reco.

MathBrush prob. 93.16 97.64 95.85 67.40
MathBrush fuzzy 92.20 96.54 95.65 62.43
MathBrush (2012) 88.13 96.10 92.18 57.46
MathBrush (2011) 71.73 84.09 85.99 32.04
Rochester Institute of Tech. 55.91 60.01 87.24 7.18
Sabanci University 20.90 26.66 81.22 1.66
University of Valencia 78.73 88.07 92.22 29.28
Athena Research Center 48.26 67.75 86.30 0.00
University of Nantes 78.57 87.56 91.67 40.88

Part 2 of corpus

Recognizer Stroke reco. Symbol seg. Symbol reco. Expression reco.

MathBrush prob. 91.64 97.08 95.53 55.75
MathBrush fuzzy 88.85 94.99 95.08 48.28
MathBrush (2012) 87.08 95.47 92.20 47.41
MathBrush (2011) 66.82 80.26 86.11 20.11
Rochester Institute of Tech. 51.58 56.50 91.29 2.59
Sabanci University 19.36 24.42 84.45 1.15
University of Valencia 78.38 87.82 92.56 19.83
Athena Research Center 52.28 78.77 78.67 0.00
University of Nantes 70.79 84.23 87.16 22.41

Table 9.1: Evaluation on CROHME 2011 corpus.

These results indicate that the MathBrush recognizer is significantly more accurate
than all other entrants except the Vision Objects recognizer, which is much more accurate
again. (Vision Objects is a French company based in Nantes). They are of more interest for
our purpose because they allow us to roughly compare different versions of the MathBrush
recognizer on a subsystem-by-subsystem basis. The comparison can only be approximate
because correctness is evaluated based on the single top-ranked interpretation of the input,
which depends on a complex combination of the individual subsystems.

The accuracy of the stroke grouping system is roughly equivalent to the 2012 version
of MathBrush. This is expected as the algorithms used are very similar. The symbol
recognizer in the 2012 was a preliminary version of the hybrid recognizer described here
with a simpler version of the offline classifier; the changes have led to a modest improvement
in accuracy (roughly 3% in absolute terms, but a 40-50% reduction in errors). It is difficult
to determine exactly how much of the improvement in the expression recognition rate
is due to symbol recognition as compared with the probabilistic relation classifier or the
overall probabilistic scoring function, both of which were not present in the 2012 recognizer,
which used the rule-based relation classifier and the fuzzy scoring function. But given the
magnitude of some of the improvements, especially in Part 1 of these corpora, it seems
unlikely that all of the improvement was due to increased symbol recognition accuracy.
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Part 1 of corpus

Recognizer Stroke reco. Symbol seg. Symbol reco. Expression reco.

MathBrush prob. 91.54 96.56 94.83 66.36
MathBrush fuzzy 90.72 95.56 93.96 56.07
MathBrush (2012) 89.00 97.39 91.72 51.85
University of Valencia 80.74 90.74 89.20 35.19
Athena Research Center 59.14 73.31 79.79 8.33
University of Nantes 90.05 94.44 95.96 57.41
Rochester Institute of Tech. 78.24 92.81 86.62 28.70
Sabanci University 61.33 72.11 87.76 22.22
Vision Objects 97.01 99.24 97.80 81.48

Part 2 of corpus

Recognizer Stroke reco. Symbol seg. Symbol reco. Expression reco.

MathBrush prob. 92.74 95.57 97.05 55.18
MathBrush fuzzy 89.82 94.49 95.73 42.47
MathBrush (2012) 90.71 96.67 94.57 49.17
University of Valencia 85.05 90.66 91.75 33.89
Athena Research Center 58.53 72.19 86.95 6.64
University of Nantes 82.28 88.51 94.43 38.87
Rochester Institute of Tech. 76.07 89.29 91.21 14.29
Sabanci University 49.06 61.09 88.36 7.97
Vision Objects 96.85 98.71 98.06 75.08

Table 9.2: Evaluation on CROHME 2012 corpus.
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Chapter 10

Conclusion

This thesis described the theory and implementation details underlying the MathBrush
math recognizer. Building from low-level distance metrics and classification routines, we
detailed the components and combination strategies underlying our sophisticated and ac-
curate recognition system. This chapter summarizes the thesis, pointing out primary
contributions and offering thoughts on future research directions.

10.1 MathBrush requirements

Chapter 1 listed the three requirements placed upon the recognizer by the MathBrush
system in which it is used:

• it must be reasonably fast,

• it must be trainable, and

• it must support user corrections.

We made significant efforts to ensure that the recognizer is fast enough for real-time use,
including the linear-time variant of elastic matching (Section 4.1.2), the ordering assump-
tion and corresponding restriction to rectangular sets (Section 7.2.1), and the optimizations
applied to Unger’s algorithm (Section 7.2.2). In practice, the recognizer is quick enough
to use comfortably on the Tablet PC platform for most inputs. However, on less powerful
tablet devices (such as Android tablets and the iPad) and for large expressions, there is
often a delay after adding a stroke to the input. User studies would help to determine
the impact of such delays on the input process. If they are a significant impediment to
effective use of MathBrush, it would be worthwhile to investigate additional optimizations,
including:

• Judicious use of pruning to avoid invoking the parser on input subsets or non-
terminals which are unlikely to yield useful results.
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• A fast pre-processing step which could avoid invoking the full parsing algorithm by
first considering a small number of likely parses incorporating a new input stroke.

• Using a single symbol recognition algorithm (rather than four), and only invoking the
hybrid classifier in case of ambiguity. This could be driven by data collected about
recognizer behaviour.

To facilitate user training, our symbol recognizer easily accomodates new symbol styles
by adding them to the symbol library, as described in Section 4.1. This process is made
fairly simple by the MathBrush interface, which prompts the user to write the symbol they
wish to train in a few on-screen ink collection areas. The training process for the relation
classifier is much less straightforward and is not exposed to users. However, the corrections
which users make to change erroneous recognition results are a rich and currently un-tapped
source of training information. Future research should investigate how those corrections
can be used to create custom-trained writer-dependent recognizers, as well as how those
corrections may be pooled to improve the writer-independent baseline recognizer.

The correction process itself is made possible by our use of parse forests (Section 7.1),
the tree extraction algorithms described in Section 7.3, and the scoring models of Chapter
8. Because the parse forest generally represents exponentially many trees in the input
size, the “semantics mode” of tree extraction is vital for keeping the number of displayed
results manageable for users. All the same, the correction count employed in Section 9.1
as a user-centric accuracy metric was measured automatically, rather than by observing
real users. User studies would indicate to what extent our correction system is truly an
improvement over erasing and re-writing when input is mis-recognized.

10.2 Low-level classifiers

Chapters 3, 4, and 5 respectively discussed our approaches to stroke grouping, symbol
recognition, and relation classification. We developed a novel stroke-grouping system based
on translating logic- and rule-based heuristics into the language of binary random variables.
This system reported false negatives only about 0.5% of the time, was correct by the
strictest definition about 90% of the time, and obtained the correct grouping result in a
practical context in about 96% of cases.

We proposed a hybrid symbol classification method using four underlying distance-
based classifiers, including a novel time- and space-optimized variant of the well-known
elastic matching algorithm. The hybrid method attained a correctness rate of about 88%
on isolated symbols, an improvement on the correctness rates of the underlying classifiers,
which ranged from about 75-85%. During testing on the CROHME data set, the recognizer
reached even higher correctness rates of 95-97%; however these results were on a smaller
set of symbols than is present in the Waterloo corpus.

The correctness rates of both of these systems must be improved in order to improve
overall recognition quality. As well as developing new recognition algorithms or adapt-
ing existing methods to a mathematical context, improvement may be possible through
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combining the grouping and recognition modules more closely. Whether a collection of
strokes should be considered a symbol certainly depends on whether those strokes actually
look like a known symbol, yet that information is not taken into account in our system
(except in the case of square root signs to determine whether stroke overlap is acceptable
or not). The main challenge in combining the two systems is to maintain real-time per-
formance. Symbol recognition is an expensive step, and applying it to every stroke subset
the grouping system considers is not practical.

Several techniques were proposed and evaluated for relation classification, including a
rule-based heuristic approach and three probabilistic techniques: a naive Bayesian model
using Gaussian distributions, a grid-based discretization strategy, and a second discretiza-
tion method using the margin tree data structure which we developed. Both the discretiza-
tion techniques performed very well in isolated testing with correctness rates of about 95%.
But in the full context of math recognition, they proved less able to distinguish between
cases where a relation existed and did not exist, so we use the naive Bayesian approach in
practice. The majority of relation classification errors occur on the horizontally-oriented
relations ↗ ,→ , and ↘ because of the natural ambiguity of bounding box features. Im-
provements using the same feature set should rely on more context-sensitive models (which
in turn require more training data). Given the effectiveness of the quantile-based method
used for combining symbol classifiers, it seems worthwhile to apply that technique to the re-
lation classifiers as well. Also, the present classifers use only information local to the stroke
groups in question. Considering how the expressions resulting from each candidate relation
would fit into the larger picture may also yield improvements. During our experiments with
fuzzy sets, estimating global baselines and measuring how well a given relation matched its
expected placement with respect to the baseline yielded modest improvements in relation
classification accuracy. Finally, the hybrid symbol recognizer described in Chapter 4 was
more accurate than any of the underlying individual recognizers. A similar quantile-based
combination method may improve accuracy for the relation classification task as well.

10.3 Grammars and parsing

Chapter 6 developed a novel relational grammar formalism offering sophisticated control
over subexpression combination through linkage parameters. The linkage parameters are
quite powerful, and we observed a significant increase in recognition accuracy after in-
corporating them into our grammar model. We adapted familiar notions such as strings
and languages to our model, and described how the grammar formalism relates to the
recognition process. Chapter 7 built efficient parsing algorithms for this grammar model,
inspired by classic CFG parsing algorithms. By introducing some natural assumptions
on the structure of the input and scoring algorithms, we attained acceptable performance
for real-time use. The algorithms maintain a user-centric design by making available all
recognizable interpretations of the input and organizing those results hierarchically so that
the user may select alternative recognition results rather than re-writing their expression
if recognition is incorrect.

The ordering assumption is reasonable in theory, but is sometimes violated in practice,
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even on expressions that are easily readable by people. It would be beneficial to eliminate
or weaken the assumption as much as possible while still achieving fast recognition speed
and avoiding consistent worst-case behaviour as in the CYK parsing algorithm. A well-
specified and efficient method of identifying all “reasonable” combinations of rectangular
sets which cover the input would improve accuracy without unduly affecting performance.

10.4 Scoring methods

Finally, Chapter 8 detailed two scoring functions on which to base the rank-based reported
scheme of Chapter 7. The fuzzy scoring function simply treats the sets of interpretations
introduced in Chapter 6 as fuzzy sets and define a membership function on them using the
geometric average. The probabilistic scoring function treats the expressions and symbols
recognized on input subsets as random variables and organizes them in a Bayesian model.
An algebraic technique dramatically reduces the number of variables it is necessary to
consult when evaluating the score of a given parse tree.

In our evaluation, the probabilistic model was more effective than the fuzzy model.
This is not surprising, given its greater sophistication and inclusion of more details (e.g.,
symbol co-occurrence counts, nil probabilities, etc.). The relative ease with which such
details can be systematically included in an expression’s score is a real strength of the
probabilistic approach, and the addition of more real-world data would likely further im-
prove performance. We have developed a preliminary implementation that assigns a prior
distribution to the expression variables based on known subexpression occurrences and so
on. (E.g., addition expressions are more likely to contain subscripts than function names,
etc.) But we currently lack sufficient data for such a model to be useful. The number of
potential subexpression combinations is very large, and the resulting look-up tables are so
sparsely populated that they give nonsense answers to queries even when using smoothing.
Nonetheless, this remains a promising idea for the future, when larger collections of math
expressions may be available.
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