1,126 research outputs found

    Thesis

    Get PDF
    This work intends to assess current Quality Management System at Private Institution “USM” and develop recommendations in order to improve it based on existing issues. This topic is quite important to be studied as increasing competitiveness in developing markets requires businesses to be effective and efficient in their operations. As a result of the study, it can be concluded that the main competitive advantage of USM is provision of unique full spectrum of infrastructure management services, while ensuring high quality of services meeting international standards. In the long run USM should improve its competitiveness by optimizing process of request for services and enter foreign markets. These tasks will be achieved through Kaizen philosophy by highly involving management in formation of needs for changes, systematization of actions and fixation of habits. At the same time, USM should eliminate following factors in the short-run in order to successfully reach its goals: develop motivation among employees, optimize stocks, improve communications among teams, make procurement process more efficient and develop feedback policy for services conducted

    Production planning process optimization

    Get PDF
    Produktionsautomationssysteme sind komplexe Systeme mit viele Entitäten (Roboter, Transportsysteme usw.) die mannigfaltig aufeinander einwirken und zusammenspielen um das Ziel einer Produktendfertigung zu ermöglichen. Multiagenten-Systeme basierend auf verteilter Kontrolle sind der praktikabelste Ansatz die ansteigende Kompliziertheit solcher Systeme in den Griff zu bekommen und gleichzeitig eine flexible Anpassung des Produktionsautomationssystems an variable Rahmenbedingungen zu gewährleisten (z.B. Änderung von Produktionsstrassen oder die Koordination von Transportelementen). Für solch kritische Produktionsautomationssysteme ist eine Überprüfung aller Schritte im Entwicklungsprozess erforderlich um ein sicher funktionierendes System zu gewährleisten. Qualitätsmessungen zur Sicherstellung der Korrektheit von Systemelemente stellen bei der Zielerreichung daher einen wichtigen Schritt dar. Die Softwaresimulation des Werkstatt-Systems erlaubt sowohl Leistungsmessung einer Systemkonfiguration als auch schnellere und preiswertere Reaktion auf sich ändernde Voraussetzungen. Hinzu kommt, dass die Softwaresimulation von Produktionsautomationssystemen immer mehr einen praktikable Möglichkeit darstellt, um Produktionsvorgänge zu planen und/oder zu optimieren.Production Automation Systems are complex systems. They typically have many entities like robots, transport systems, etc. that interact in complex ways to provide production automation functions like assembly of products. The increasing complexity of these systems makes central control more and more difficult. Therefore systems with distributed control are areas of intense research such as multi-agent systems. Moreover, changing requirements for production automation systems require better system and model flexibility for e.g. easy-to-change workshop layouts or coordination of transportation elements. Meeting all this tasks makes the design of a production automation system a challenge hard to solve for designers and system engineers. For safety-critical systems like production automation systems, verification is required for all steps in the development process. Testing aims at measuring the quality of executable system elements, especially the validity of a configuration and correctness of calculated results. A particular challenge is measurement of non-functional quality requirements such as system performance before the actual hardware system is built. Software simulation of the workshop system would allow both performance measurement of a configuration and faster, cheaper reaction to changing requirements, however the validity of the simulation has to be assured. On top of this, software simulation of production automation systems can get more and more a sufficient part during the production planning and optimization process

    The Automation of the Taxi Industry – Taxi Drivers’ Expectations and Attitudes Towards the Future of their Work

    Get PDF
    Advocates of autonomous driving predict that the occupation of taxi driver could be made obsolete by shared autonomous vehicles (SAV) in the long term. Conducting interviews with German taxi drivers, we investigate how they perceive the changes caused by advancing automation for the future of their business. Our study contributes insights into how the work of taxi drivers could change given the advent of autonomous driving: While the task of driving could be taken over by SAVs for standard trips, taxi drivers are certain that other areas of their work such as providing supplementary services and assistance to passengers would constitute a limit to such forms of automation, but probably involving a shifting role for the taxi drivers, one which focuses on the sociality of the work. Our findings illustrate how taxi drivers see the future of their work, suggesting design implications for tools that take various forms of assistance into account, and demonstrating how important it is to consider taxi drivers in the co-design of future taxis and SAV services

    Railway operations, time-tabling and control

    Get PDF
    This paper concentrates on organising, planning and managing the train movement in a network. The three classic management levels for rail planning, i.e., strategic, tactical and operational, are introduced followed by decision support systems for rail traffic control. In addition, included in this paper are discussions on train operating forms, railway traffic control and train dispatching problems, rail yard technical schemes and performance of terminals, as well as timetable design. A description of analytical methods, simulation techniques and specific computer packages for analysing and evaluating the behaviour of rail systems and networks is also provided

    A Microscopic Simulation Laboratory for Evaluation of Off-street Parking Systems

    Get PDF
    The parking industry produces an enormous amount of data every day that, properly analyzed, will change the way the industry operates. The collected data form patterns that, in most cases, would allow parking operators and property owners to better understand how to maximize revenue and decrease operating expenses and support the decisions such as how to set specific parking policies (e.g. electrical charging only parking space) to achieve the sustainable and eco-friendly parking. However, there lacks an intelligent tool to assess the layout design and operational performance of parking lots to reduce the externalities and increase the revenue. To address this issue, this research presents a comprehensive agent-based framework for microscopic off-street parking system simulation. A rule-based parking simulation logic programming model is formulated. The proposed simulation model can effectively capture the behaviors of drivers and pedestrians as well as spatial and temporal interactions of traffic dynamics in the parking system. A methodology for data collection, processing, and extraction of user behaviors in the parking system is also developed. A Long-Short Term Memory (LSTM) neural network is used to predict the arrival and departure of the vehicles. The proposed simulator is implemented in Java and a Software as a Service (SaaS) graphic user interface is designed to analyze and visualize the simulation results. This study finds the active capacity of the parking system, which is defined as the largest number of actively moving vehicles in the parking system under the facility layout. In the system application of the real world testbed, the numerical tests show (a) the smart check-in device has marginal benefits in vehicle waiting time; (b) the flexible pricing policy may increase the average daily revenue if the elasticity of the price is not involved; (c) the number of electrical charging only spots has a negative impact on the performance of the parking facility; and (d) the rear-in only policy may increase the duration of parking maneuvers and reduce the efficiency during the arrival rush hour. Application of the developed simulation system using a real-world case demonstrates its capability of providing informative quantitative measures to support decisions in designing, maintaining, and operating smart parking facilities

    Designing an architectural blueprint of a smart BPM system

    Get PDF

    Evaluating a holistic energy benchmarking parameter of lift systems by using computer simulation

    Get PDF
    At present, there are benchmarking parameters to assess the energy performance of lifts, e.g. one in Germany adopted by VDI (4707-1/2), one internationally published by ISO (BS EN ISO 25745-2:2015), and the other in Hong Kong adopted by The Hong Kong Special Administrative Region (HKSAR) Government. These parameters are mainly checking the energy consumed by a lift drive without considering real time passenger demands and traffic conditions; the one in Hong Kong pinpointing a fully loaded up-journey under rated speed and the two in Europe pinpointing a round trip, bottom floor to top floor and return with an empty car, though including energy consumed by lighting, displays, ventilation etc. A holistic normalization method by Lam et al [1] was developed a number of years ago by one of the co-authors of this article, which can assess both drive efficiency and traffic control, termed J/kg-m, which is now adopted by the HKSAR Government as a good practice, but not specified in the mandatory code. In Europe, the energy unit of Wh has been used but here, Joule (J), i.e. Ws, is adopted to discriminate the difference between the two concepts. In this article, this parameter is evaluated under different lift traffic scenarios using computer simulation techniques, with an aim of arriving at a reasonable figure for benchmarking an energy efficient lift system with both an efficient drive as well as an efficient supervisory traffic control

    Modelling of a rope-free passenger transportation system for active cabin vibration damping

    Get PDF
    Conventional vertical passenger transportation is performed by lifts. Conventional traction-drive electrical lifts use ropes to transfer the rotational motion of an electrical motor into a vertical motion of the cabin. The vertical passenger transportation system discussed in this paper does not use any ropes, the motor directly provides a driving force, which moves the cabin. This new propulsion is realized through an electrical linear motor. The use of the linear motor requires a new design of the passenger transportation system (PTS), which includes reducing the weight of the car through lightweight construction. The reduced stiffness of the lightweight design renders the construction more vulnerable to vibrations. In order to improve ride quality of the transportation system it is necessary to develop new concepts to damp the vibrations. One way to increase stiffness characteristics of the system is to introduce active damping components to be used alongside passive damping components. It is essential to derive a dynamic model of the system in order to design and also later control these damping components in the best possible way. This paper describes the fundamental steps undertaken to derive a dynamic model for designing and controlling active damping components for the new type of vertical PTS. The model is derived as a Multi-Body System (MBS), where the connections between the bodies are modelled as spring damper elements. The derivation of the MBS is demonstrated on a transportation system, consisting of three main components: a sledge, holding the rotor of the linear motor; a mounting frame, which is used to provide support for the cabin; and the actual cabin. The modelling of the propulsion system, thus the electrical part of the PTS, will not be the focus of this work
    corecore