463 research outputs found

    Secure Authentication Mechanism for Cluster based Vehicular Adhoc Network (VANET): A Survey

    Full text link
    Vehicular Ad Hoc Networks (VANETs) play a crucial role in Intelligent Transportation Systems (ITS) by facilitating communication between vehicles and infrastructure. This communication aims to enhance road safety, improve traffic efficiency, and enhance passenger comfort. The secure and reliable exchange of information is paramount to ensure the integrity and confidentiality of data, while the authentication of vehicles and messages is essential to prevent unauthorized access and malicious activities. This survey paper presents a comprehensive analysis of existing authentication mechanisms proposed for cluster-based VANETs. The strengths, weaknesses, and suitability of these mechanisms for various scenarios are carefully examined. Additionally, the integration of secure key management techniques is discussed to enhance the overall authentication process. Cluster-based VANETs are formed by dividing the network into smaller groups or clusters, with designated cluster heads comprising one or more vehicles. Furthermore, this paper identifies gaps in the existing literature through an exploration of previous surveys. Several schemes based on different methods are critically evaluated, considering factors such as throughput, detection rate, security, packet delivery ratio, and end-to-end delay. To provide optimal solutions for authentication in cluster-based VANETs, this paper highlights AI- and ML-based routing-based schemes. These approaches leverage artificial intelligence and machine learning techniques to enhance authentication within the cluster-based VANET network. Finally, this paper explores the open research challenges that exist in the realm of authentication for cluster-based Vehicular Adhoc Networks, shedding light on areas that require further investigation and development

    An Event Based Digital Forensic Scheme for Vehicular Networks

    Get PDF
    The software in today's cars has become increasingly important in recent years. The development of high-tech driver assistance devices has helped fuel this movement. This tendency is anticipated to accelerate with the advent of completely autonomous vehicles. As more modern vehicles incorporate software and security-based solutions, "Event-Based digital forensics," the analysis of digital evidence of accidents and warranty claims, has become increasingly significant. The objective of this study is to ascertain, in a realistic setting, whether or not digital forensics can be successfully applied to a state-of-the-art automobile. We did this by dissecting the procedure of automotive forensics, which is used on in-car systems to track the mysterious activity by means of digital evidence. We did this by applying established methods of digital forensics to a state-of-the-art car.Our research employs specialized cameras installed in the study areas and a log of system activity that may be utilized as future digital proof to examine the effectiveness of security checkpoints and other similar technologies. The goal is to keep an eye on the vehicles entering the checkpoint, look into them if there is any reason to suspect anything, and then take the appropriate measures. The problem with analyzing this data is that it is becoming increasingly complex and time-consuming as the amount of data that has been collected keeps growing. In this paper, we outline a high-level methodology for automotive forensics to fill in the blanks, and we put it through its paces on a network simulator in a state-of-the-art vehicle to simulate a scenario in which devices are tampered with while the car is in motion. Here, we test how well the strategy functions. Diagnostics over IP (Diagnostics over IP), on-board diagnostics interface, and unified diagnostic services are all used during implementation. To work, our solution requires vehicles to be able to exchange diagnostic information wirelessly.These results show that it is possible to undertake automotive forensic analysis on state-of-the-art vehicles without using intrusion detection systems or event data recorders, and they lead the way towards a more fruitful future for automotive forensics. The results also show that modern autos are amenable to forensic automotive analysis

    Design Models for Trusted Communications in Vehicle-to-Everything (V2X) Networks

    Get PDF
    Intelligent transportation system is one of the main systems which has been developed to achieve safe traffic and efficient transportation. It enables the road entities to establish connections with other road entities and infrastructure units using Vehicle-to-Everything (V2X) communications. To improve the driving experience, various applications are implemented to allow for road entities to share the information among each other. Then, based on the received information, the road entity can make its own decision regarding road safety and guide the driver. However, when these packets are dropped for any reason, it could lead to inaccurate decisions due to lack of enough information. Therefore, the packets should be sent through a trusted communication. The trusted communication includes a trusted link and trusted road entity. Before sending packets, the road entity should assess the link quality and choose the trusted link to ensure the packet delivery. Also, evaluating the neighboring node behavior is essential to obtain trusted communications because some misbehavior nodes may drop the received packets. As a consequence, two main models are designed to achieve trusted V2X communications. First, a multi-metric Quality of Service (QoS)-balancing relay selection algorithm is proposed to elect the trusted link. Analytic Hierarchy Process (AHP) is applied to evaluate the link based on three metrics, which are channel capacity, link stability and end-to-end delay. Second, a recommendation-based trust model is designed for V2X communication to exclude misbehavior nodes. Based on a comparison between trust-based methods, weighted-sum is chosen in the proposed model. The proposed methods ensure trusted communications by reducing the Packet Dropping Rate (PDR) and increasing the end-to-end delivery packet ratio. In addition, the proposed trust model achieves a very low False Negative Rate (FNR) in comparison with an existing model

    A Novel Energy-Efficient Reservation System for Edge Computing in 6G Vehicular Ad Hoc Network

    Get PDF
    The roadside unit (RSU) is one of the fundamental components in a vehicular ad hoc network (VANET), where a vehicle communicates in infrastructure mode. The RSU has multiple functions, including the sharing of emergency messages and the updating of vehicles about the traffic situation. Deploying and managing a static RSU (sRSU) requires considerable capital and operating expenditures (CAPEX and OPEX), leading to RSUs that are sparsely distributed, continuous handovers amongst RSUs, and, more importantly, frequent RSU interruptions. At present, researchers remain focused on multiple parameters in the sRSU to improve the vehicle-to-infrastructure (V2I) communication; however, in this research, the mobile RSU (mRSU), an emerging concept for sixth-generation (6G) edge computing vehicular ad hoc networks (VANETs), is proposed to improve the connectivity and efficiency of communication among V2I. In addition to this, the mRSU can serve as a computing resource for edge computing applications. This paper proposes a novel energy-efficient reservation technique for edge computing in 6G VANETs that provides an energy-efficient, reservation-based, cost-effective solution by introducing the concept of the mRSU. The simulation outcomes demonstrate that the mRSU exhibits superior performance compared to the sRSU in multiple aspects. The mRSU surpasses the sRSU with a packet delivery ratio improvement of 7.7%, a throughput increase of 5.1%, a reduction in end-to-end delay by 4.4%, and a decrease in hop count by 8.7%. The results are generated across diverse propagation models, employing realistic urban scenarios with varying packet sizes and numbers of vehicles. However, it is important to note that the enhanced performance parameters and improved connectivity with more nodes lead to a significant increase in energy consumption by 2%
    • …
    corecore