173 research outputs found

    Survey and Analysis of Production Distributed Computing Infrastructures

    Full text link
    This report has two objectives. First, we describe a set of the production distributed infrastructures currently available, so that the reader has a basic understanding of them. This includes explaining why each infrastructure was created and made available and how it has succeeded and failed. The set is not complete, but we believe it is representative. Second, we describe the infrastructures in terms of their use, which is a combination of how they were designed to be used and how users have found ways to use them. Applications are often designed and created with specific infrastructures in mind, with both an appreciation of the existing capabilities provided by those infrastructures and an anticipation of their future capabilities. Here, the infrastructures we discuss were often designed and created with specific applications in mind, or at least specific types of applications. The reader should understand how the interplay between the infrastructure providers and the users leads to such usages, which we call usage modalities. These usage modalities are really abstractions that exist between the infrastructures and the applications; they influence the infrastructures by representing the applications, and they influence the ap- plications by representing the infrastructures

    Mobile 2D and 3D Spatial Query Techniques for the Geospatial Web

    Get PDF
    The increasing availability of abundant geographically referenced information in the Geospatial Web provides a variety of opportunities for developing value-added LBS applications. However, large data volumes of the Geospatial Web and small mobile device displays impose a data visualization problem, as the amount of searchable information overwhelms the display when too many query results are returned. Excessive returned results clutter the mobile display, making it harder for users to prioritize information and causes confusion and usability problems. Mobile Spatial Interaction (MSI) research into this “information overload” problem is ongoing where map personalization and other semantic based filtering mechanisms are essential to de-clutter and adapt the exploration of the real-world to the processing/display limitations of mobile devices. In this thesis, we propose that another way to filter this information is to intelligently refine the search space. 3DQ (3-Dimensional Query) is our novel MSI prototype for information discovery on today’s location and orientation-aware smartphones within 3D Geospatial Web environments. Our application incorporates human interactions (interpreted from embedded sensors) in the geospatial query process by determining the shape of their actual visibility space as a query “window” in a spatial database, e.g. Isovist in 2D and Threat Dome in 3D. This effectively applies hidden query removal (HQR) functionality in 360º 3D that takes into account both the horizontal and vertical dimensions when calculating the 3D search space, significantly reducing display clutter and information overload on mobile devices. The effect is a more accurate and expected search result for mobile LBS applications by returning information on only those objects visible within a user’s 3D field-of-view. ii

    Mobile 2D and 3D Spatial Query Techniques for the Geospatial Web

    Get PDF
    The increasing availability of abundant geographically referenced information in the Geospatial Web provides a variety of opportunities for developing value-added LBS applications. However, large data volumes of the Geospatial Web and small mobile device displays impose a data visualization problem, as the amount of searchable information overwhelms the display when too many query results are returned. Excessive returned results clutter the mobile display, making it harder for users to prioritize information and causes confusion and usability problems. Mobile Spatial Interaction (MSI) research into this “information overload” problem is ongoing where map personalization and other semantic based filtering mechanisms are essential to de-clutter and adapt the exploration of the real-world to the processing/display limitations of mobile devices. In this thesis, we propose that another way to filter this information is to intelligently refine the search space. 3DQ (3-Dimensional Query) is our novel MSI prototype for information discovery on today’s location and orientation-aware smartphones within 3D Geospatial Web environments. Our application incorporates human interactions (interpreted from embedded sensors) in the geospatial query process by determining the shape of their actual visibility space as a query “window” in a spatial database, e.g. Isovist in 2D and Threat Dome in 3D. This effectively applies hidden query removal (HQR) functionality in 360º 3D that takes into account both the horizontal and vertical dimensions when calculating the 3D search space, significantly reducing display clutter and information overload on mobile devices. The effect is a more accurate and expected search result for mobile LBS applications by returning information on only those objects visible within a user’s 3D field-of-view

    Efficient multilevel scheduling in grids and clouds with dynamic provisioning

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 12-01-2016La consolidación de las grandes infraestructuras para la Computación Distribuida ha resultado en una plataforma de Computación de Alta Productividad que está lista para grandes cargas de trabajo. Los mejores exponentes de este proceso son las federaciones grid actuales. Por otro lado, la Computación Cloud promete ser más flexible, utilizable, disponible y simple que la Computación Grid, cubriendo además muchas más necesidades computacionales que las requeridas para llevar a cabo cálculos distribuidos. En cualquier caso, debido al dinamismo y la heterogeneidad presente en grids y clouds, encontrar la asignación ideal de las tareas computacionales en los recursos disponibles es, por definición un problema NP-completo, y sólo se pueden encontrar soluciones subóptimas para estos entornos. Sin embargo, la caracterización de estos recursos en ambos tipos de infraestructuras es deficitaria. Los sistemas de información disponibles no proporcionan datos fiables sobre el estado de los recursos, lo cual no permite la planificación avanzada que necesitan los diferentes tipos de aplicaciones distribuidas. Durante la última década esta cuestión no ha sido resuelta para la Computación Grid y las infraestructuras cloud establecidas recientemente presentan el mismo problema. En este marco, los planificadores (brokers) sólo pueden mejorar la productividad de las ejecuciones largas, pero no proporcionan ninguna estimación de su duración. La planificación compleja ha sido abordada tradicionalmente por otras herramientas como los gestores de flujos de trabajo, los auto-planificadores o los sistemas de gestión de producción pertenecientes a ciertas comunidades de investigación. Sin embargo, el bajo rendimiento obtenido con estos mecanismos de asignación anticipada (early-binding) es notorio. Además, la diversidad en los proveedores cloud, la falta de soporte de herramientas de planificación y de interfaces de programación estandarizadas para distribuir la carga de trabajo, dificultan la portabilidad masiva de aplicaciones legadas a los entornos cloud...The consolidation of large Distributed Computing infrastructures has resulted in a High-Throughput Computing platform that is ready for high loads, whose best proponents are the current grid federations. On the other hand, Cloud Computing promises to be more flexible, usable, available and simple than Grid Computing, covering also much more computational needs than the ones required to carry out distributed calculations. In any case, because of the dynamism and heterogeneity that are present in grids and clouds, calculating the best match between computational tasks and resources in an effectively characterised infrastructure is, by definition, an NP-complete problem, and only sub-optimal solutions (schedules) can be found for these environments. Nevertheless, the characterisation of the resources of both kinds of infrastructures is far from being achieved. The available information systems do not provide accurate data about the status of the resources that can allow the advanced scheduling required by the different needs of distributed applications. The issue was not solved during the last decade for grids and the cloud infrastructures recently established have the same problem. In this framework, brokers only can improve the throughput of very long calculations, but do not provide estimations of their duration. Complex scheduling was traditionally tackled by other tools such as workflow managers, self-schedulers and the production management systems of certain research communities. Nevertheless, the low performance achieved by these earlybinding methods is noticeable. Moreover, the diversity of cloud providers and mainly, their lack of standardised programming interfaces and brokering tools to distribute the workload, hinder the massive portability of legacy applications to cloud environments...Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEsubmitte

    Computational methods to engineer process-structure-property relationships in organic electronics: The case of organic photovoltaics

    Get PDF
    Ever since the Nobel prize winning work by Heeger and his colleagues, organic electronics enjoyed increasing attention from researchers all over the world. While there is a large potential for organic electronics in areas of transistors, solar cells, diodes, flexible displays, RFIDs, smart textiles, smart tattoos, artificial skin, bio-electronics, medical devices and many more, there have been very few applications that reached the market. Organic photovoltaics especially can utilize large market of untapped solar power -- portable and affordable solar conversion devices. While there are several reasons for their unavailability, a major one is the challenge of controlling device morphology at several scales, simultaneously. The morphology is intricately related to the processing of the device and strongly influences performance. Added to this is the unending development of new polymeric materials in search of high power conversion efficiencies. Fully understanding this intricate relationship between materials, processing conditions and power conversion is highly resource and time intensive. The goal of this work is to provide tightly coupled computational routes to these expensive experiments, and demonstrate process control using in-silico experiments. This goal is achieved in multiple stages and is commonly called the process-structure-property loop in material science community. We leverage recent advances in high performance computing (HPC) and high throughput computing (HTC) towards this end. Two open-source software packages were developed: GRATE and PARyOpt. GRATE provides a means to reliably and repeatably quantify TEM images for identifying transport characteristics. It solves the problem of manually quantifying large number of large images with fine details. PARyOpt is a Gaussian process based optimization library that is especially useful for optimizing expensive phenomena. Both these are highly modular and designed to be easily integrated with existing software. It is anticipated that the organic electronics community will use these tools to accelerate discovery and development of new-age devices

    Highly scalable algorithms for scheduling tasks and provisioning machines on heterogeneous computing systems

    Get PDF
    Includes bibliographical references.2015 Summer.As high performance computing systems increase in size, new and more efficient algorithms are needed to schedule work on the machines, understand the performance trade-offs inherent in the system, and determine which machines to provision. The extreme scale of these newer systems requires unique task scheduling algorithms that are capable of handling millions of tasks and thousands of machines. A highly scalable scheduling algorithm is developed that computes high quality schedules, especially for large problem sizes. Large-scale computing systems also consume vast amounts of electricity, leading to high operating costs. Through the use of novel resource allocation techniques, system administrators can examine this trade-off space to quantify how much a given performance level will cost in electricity, or see what kind of performance can be expected when given an energy budget. Trading-off energy and makespan is often difficult for companies because it is unclear how each affects the profit. A monetary-based model of high performance computing is presented and a highly scalable algorithm is developed to quickly find the schedule that maximizes the profit per unit time. As more high performance computing needs are being met with cloud computing, algorithms are needed to determine the types of machines that are best suited to a particular workload. An algorithm is designed to find the best set of computing resources to allocate to the workload that takes into account the uncertainty in the task arrival rates, task execution times, and power consumption. Reward rate, cost, failure rate, and power consumption can be optimized, as desired, to optimally trade-off these conflicting objectives

    Renewable Energy Resource Assessment and Forecasting

    Get PDF
    In recent years, several projects and studies have been launched towards the development and use of new methodologies, in order to assess, monitor, and support clean forms of energy. Accurate estimation of the available energy potential is of primary importance, but is not always easy to achieve. The present Special Issue on ‘Renewable Energy Resource Assessment and Forecasting’ aims to provide a holistic approach to the above issues, by presenting multidisciplinary methodologies and tools that are able to support research projects and meet today’s technical, socio-economic, and decision-making needs. In particular, research papers, reviews, and case studies on the following subjects are presented: wind, wave and solar energy; biofuels; resource assessment of combined renewable energy forms; numerical models for renewable energy forecasting; integrated forecasted systems; energy for buildings; sustainable development; resource analysis tools and statistical models; extreme value analysis and forecasting for renewable energy resources

    Bridging a Gap Between Research and Production: Contributions to Scheduling and Simulation

    Get PDF
    Large scale distributed computing infrastructures (e.g., data centers, grids, or clouds) are used by scientists from various domains to produce outstanding research results, such as the discovery of the Higgs Boson in High Energy Physics. These infrastructures are also studied by Computer Scientists to produce their own set of scientific results. Ideally, a virtuous circle should exist between Domain and Computer Scientists: the former raising challenges that could be addressed by the latter. Unfortunately, in many occasions, a gap exists that prevents such an ideal and fostering collaboration. This habilitation covers research works conducted in the fields of scheduling and simulation that contribute to the filling of this gap. It discusses the necessary conditions to achieve this goal and details concrete initiatives in this endeavor

    Human Health Engineering Volume II

    Get PDF
    In this Special Issue on “Human Health Engineering Volume II”, we invited submissions exploring recent contributions to the field of human health engineering, i.e., technology for monitoring the physical or mental health status of individuals in a variety of applications. Contributions could focus on sensors, wearable hardware, algorithms, or integrated monitoring systems. We organized the different papers according to their contributions to the main parts of the monitoring and control engineering scheme applied to human health applications, namely papers focusing on measuring/sensing physiological variables, papers highlighting health-monitoring applications, and examples of control and process management applications for human health. In comparison to biomedical engineering, we envision that the field of human health engineering will also cover applications for healthy humans (e.g., sports, sleep, and stress), and thus not only contribute to the development of technology for curing patients or supporting chronically ill people, but also to more general disease prevention and optimization of human well-being
    corecore