1,929 research outputs found

    Testing SDRT's Right Frontier

    Full text link
    The Right Frontier Constraint (RFC), as a constraint on the attachment of new constituents to an existing discourse structure, has important implications for the interpretation of anaphoric elements in discourse and for Machine Learning (ML) approaches to learning discourse structures. In this paper we provide strong empirical support for SDRT's version of RFC. The analysis of about 100 doubly annotated documents by five different naive annotators shows that SDRT's RFC is respected about 95% of the time. The qualitative analysis of presumed violations that we have performed shows that they are either click-errors or structural misconceptions

    A framework for structuring prerequisite relations between concepts in educational textbooks

    Get PDF
    In our age we are experiencing an increasing availability of digital educational resources and self-regulated learning. In this scenario, the development of automatic strategies for organizing the knowledge embodied in educational resources has a tremendous potential for building personalized learning paths and applications such as intelligent textbooks and recommender systems of learning materials. To this aim, a straightforward approach consists in enriching the educational materials with a concept graph, i.a. a knowledge structure where key concepts of the subject matter are represented as nodes and prerequisite dependencies among such concepts are also explicitly represented. This thesis focuses therefore on prerequisite relations in textbooks and it has two main research goals. The first goal is to define a methodology for systematically annotating prerequisite relations in textbooks, which is functional for analysing the prerequisite phenomenon and for evaluating and training automatic methods of extraction. The second goal concerns the automatic extraction of prerequisite relations from textbooks. These two research goals will guide towards the design of PRET, i.e. a comprehensive framework for supporting researchers involved in this research issue. The framework described in the present thesis allows indeed researchers to conduct the following tasks: 1) manual annotation of educational texts, in order to create datasets to be used for machine learning algorithms or for evaluation as gold standards; 2) annotation analysis, for investigating inter-annotator agreement, graph metrics and in-context linguistic features; 3) data visualization, for visually exploring datasets and gaining insights of the problem that may lead to improve algorithms; 4) automatic extraction of prerequisite relations. As for the automatic extraction, we developed a method that is based on burst analysis of concepts in the textbook and we used the gold dataset with PR annotation for its evaluation, comparing the method with other metrics for PR extraction

    Applications of Finite Model Theory: Optimisation Problems, Hybrid Modal Logics and Games.

    Get PDF
    There exists an interesting relationships between two seemingly distinct fields: logic from the field of Model Theory, which deals with the truth of statements about discrete structures; and Computational Complexity, which deals with the classification of problems by how much of a particular computer resource is required in order to compute a solution. This relationship is known as Descriptive Complexity and it is the primary application of the tools from Model Theory when they are restricted to the finite; this restriction is commonly called Finite Model Theory. In this thesis, we investigate the extension of the results of Descriptive Complexity from classes of decision problems to classes of optimisation problems. When dealing with decision problems the natural mapping from true and false in logic to yes and no instances of a problem is used but when dealing with optimisation problems, other features of a logic need to be used. We investigate what these features are and provide results in the form of logical frameworks that can be used for describing optimisation problems in particular classes, building on the existing research into this area. Another application of Finite Model Theory that this thesis investigates is the relative expressiveness of various fragments of an extension of modal logic called hybrid modal logic. This is achieved through taking the Ehrenfeucht-Fraïssé game from Model Theory and modifying it so that it can be applied to hybrid modal logic. Then, by developing winning strategies for the players in the game, results are obtained that show strict hierarchies of expressiveness for fragments of hybrid modal logic that are generated by varying the quantifier depth and the number of proposition and nominal symbols available

    Elements of Finite Model Theory [book review]

    Get PDF

    A Framework for Consistency Algorithms

    Get PDF
    We present a framework that provides deterministic consistency algorithms for given memory models. Such an algorithm checks whether the executions of a shared-memory concurrent program are consistent under the axioms defined by a model. For memory models like SC and TSO, checking consistency is NP-complete. Our framework shows, that despite the hardness, fast deterministic consistency algorithms can be obtained by employing tools from fine-grained complexity. The framework is based on a universal consistency problem which can be instantiated by different memory models. We construct an algorithm for the problem running in time ?^*(2^k), where k is the number of write accesses in the execution that is checked for consistency. Each instance of the framework then admits an ?^*(2^k)-time consistency algorithm. By applying the framework, we obtain corresponding consistency algorithms for SC, TSO, PSO, and RMO. Moreover, we show that the obtained algorithms for SC, TSO, and PSO are optimal in the fine-grained sense: there is no consistency algorithm for these running in time 2^{o(k)} unless the exponential time hypothesis fails

    A history and theory of textual event detection and recognition

    Get PDF

    First IJCAI International Workshop on Graph Structures for Knowledge Representation and Reasoning (GKR@IJCAI'09)

    Get PDF
    International audienceThe development of effective techniques for knowledge representation and reasoning (KRR) is a crucial aspect of successful intelligent systems. Different representation paradigms, as well as their use in dedicated reasoning systems, have been extensively studied in the past. Nevertheless, new challenges, problems, and issues have emerged in the context of knowledge representation in Artificial Intelligence (AI), involving the logical manipulation of increasingly large information sets (see for example Semantic Web, BioInformatics and so on). Improvements in storage capacity and performance of computing infrastructure have also affected the nature of KRR systems, shifting their focus towards representational power and execution performance. Therefore, KRR research is faced with a challenge of developing knowledge representation structures optimized for large scale reasoning. This new generation of KRR systems includes graph-based knowledge representation formalisms such as Bayesian Networks (BNs), Semantic Networks (SNs), Conceptual Graphs (CGs), Formal Concept Analysis (FCA), CPnets, GAI-nets, all of which have been successfully used in a number of applications. The goal of this workshop is to bring together the researchers involved in the development and application of graph-based knowledge representation formalisms and reasoning techniques
    corecore