143 research outputs found

    Transport Systems: Safety Modeling, Visions and Strategies

    Get PDF
    This reprint includes papers describing the synthesis of current theory and practice of planning, design, operation, and safety of modern transport, with special focus on future visions and strategies of transport sustainability, which will be of interest to scientists dealing with transport problems and generally involved in traffic engineering as well as design, traffic networks, and maintenance engineers

    Traffic estimation, sensing, and control in work zone environments

    Get PDF
    This dissertation is motivated by practical safety and mobility concerns in freeway work zones. Smart work zone systems are composed of sensors, communication technologies, and data processing algorithms that are used to monitor and disseminate critical information such as congestion and severe slowdowns. Though a large number of smart work zone technologies have been deployed, many systems are still not well understood in terms of the technologies employed and the overall performance of the system. To address this gap, this dissertation develops theoretical, algorithmic, and practical contributions to the improvement of smart work zone systems from the aspects of traffic estimation, sensing, and control. To understand the impact of the sensing technologies and estimation algorithms, several hundred combinations of sensor network configurations and traffic estimation algorithms are assessed in a traffic micro simulator calibrated with data from a work zone in Illinois. The simulations allow the importance of the sensor type and spacing, the accuracy of individual sensors, and the estimation algorithm to be quantified. It is identified that the spacing of sensors is an important factor for improving the traffic estimation accuracy, and significant improvements can be obtained through traffic estimation algorithms relying on nonlinear filtering techniques. When less sophisticated (but more commonly deployed) algorithms are used, dense sensor deployments offer the most improvement in traffic estimation accuracy. Unfortunately, most existing traffic sensor technologies in work zones are expensive, which prohibits dense deployments. Motivated by this result, a low cost and energy efficient work zone traffic sensor is proposed relying on passive infrared sensing. The sensor hardware and software is developed to assess the potential of passive infrared technologies for traffic monitoring. To detect vehicles and estimate vehicle speeds from the passive infrared sensor, unsupervised machine learning algorithms are developed. Field experiments show that the developed sensors are capable of achieving approximately 3% vehicle detection errors and 3 mph root mean square error for the estimated vehicle speeds aggregated in one-minute intervals. Finally, to improve mobility in work zones, the problem of traffic control in work zones is examined. The traffic dynamics on each link in the work zone is modeled using the Hamilton Jacobi Partial Differential Equation (PDE) augmented with flow constraints at the junctions. A model predictive controller is designed which solves the control problem as a single convex program. The numerical scheme used in the algorithm efficiently computes the evolution of traffic dynamics on the network without the discretization of the PDE, and provides a natural framework for a variety of optimal traffic control problems. The effectiveness of the framework is validated in a microsimulation environment

    Engenharia de sistemas baseada em modelos: um sistema para o tráfego & ambiente

    Get PDF
    Doutoramento em Gestão IndustrialThe contemporary world is crowded of large, interdisciplinary, complex systems made of other systems, personnel, hardware, software, information, processes, and facilities. The Systems Engineering (SE) field proposes an integrated holistic approach to tackle these socio-technical systems that is crucial to take proper account of their multifaceted nature and numerous interrelationships, providing the means to enable their successful realization. Model-Based Systems Engineering (MBSE) is an emerging paradigm in the SE field and can be described as the formalized application of modelling principles, methods, languages, and tools to the entire lifecycle of those systems, enhancing communications and knowledge capture, shared understanding, improved design precision and integrity, better development traceability, and reduced development risks. This thesis is devoted to the application of the novel MBSE paradigm to the Urban Traffic & Environment domain. The proposed system, the GUILTE (Guiding Urban Intelligent Traffic & Environment), deals with a present-day real challenging problem “at the agenda” of world leaders, national governors, local authorities, research agencies, academia, and general public. The main purposes of the system are to provide an integrated development framework for the municipalities, and to support the (short-time and real-time) operations of the urban traffic through Intelligent Transportation Systems, highlighting two fundamental aspects: the evaluation of the related environmental impacts (in particular, the air pollution and the noise), and the dissemination of information to the citizens, endorsing their involvement and participation. These objectives are related with the high-level complex challenge of developing sustainable urban transportation networks. The development process of the GUILTE system is supported by a new methodology, the LITHE (Agile Systems Modelling Engineering), which aims to lightening the complexity and burdensome of the existing methodologies by emphasizing agile principles such as continuous communication, feedback, stakeholders involvement, short iterations and rapid response. These principles are accomplished through a universal and intuitive SE process, the SIMILAR process model (which was redefined at the light of the modern international standards), a lean MBSE method, and a coherent System Model developed through the benchmark graphical modeling languages SysML and OPDs/OPL. The main contributions of the work are, in their essence, models and can be settled as: a revised process model for the SE field, an agile methodology for MBSE development environments, a graphical tool to support the proposed methodology, and a System Model for the GUILTE system. The comprehensive literature reviews provided for the main scientific field of this research (SE/MBSE) and for the application domain (Traffic & Environment) can also be seen as a relevant contribution.O mundo contemporâneo é caracterizado por sistemas de grande dimensão e de natureza marcadamente complexa, sócio-técnica e interdisciplinar. A Engenharia de Sistemas (ES) propõe uma abordagem holística e integrada para desenvolver tais sistemas, tendo em consideração a sua natureza multifacetada e as numerosas inter-relações que advêm de uma quantidade significativa de diferentes pontos de vista, competências, responsabilidades e interesses. A Engenharia de Sistemas Baseada em Modelos (ESBM) é um paradigma emergente na área da ES e pode ser descrito como a aplicação formal de princípios, métodos, linguagens e ferramentas de modelação ao ciclo de vida dos sistemas descritos. Espera-se que, na próxima década, a ESBM desempenhe um papel fundamental na prática da moderna Engenharia de Sistemas. Esta tese é dedicada à aplicação da ESBM a um desafio real que constitui uma preocupação do mundo actual, estando “na agenda” dos líderes mundiais, governantes nacionais, autoridades locais, agências de investigação, universidades e público em geral. O domínio de aplicação, o Tráfego & Ambiente, caracteriza-se por uma considerável complexidade e interdisciplinaridade, sendo representativo das áreas de interesse para a ES. Propõe-se um sistema (GUILTE) que visa dotar os municípios de um quadro de desenvolvimento integrado para adopção de Sistemas de Transporte Inteligentes e apoiar as suas operações de tráfego urbano, destacando dois aspectos fundamentais: a avaliação dos impactos ambientais associados (em especial, a poluição atmosférica e o ruído) e a divulgação de informação aos cidadãos, motivando o seu envolvimento e participação. Estes objectivos relacionam-se com o desafio mais abrangente de desenvolver redes de transporte urbano sustentáveis. O processo de desenvolvimento do sistema apoia-se numa nova metodologia (LITHE), mais ágil, que enfatiza os princípios de comunicação contínua, feedback, participação e envolvimento dos stakeholders, iterações curtas e resposta rápida. Estes princípios são concretizados através de um processo de ES universal e intuitivo (redefinido à luz dos padrões internacionais), de um método simples e de linguagens gráficas de modelação de referência (SysML e OPDs/OPL). As principais contribuições deste trabalho são, na sua essência, modelos: um modelo revisto para o processo da ES, uma metodologia ágil para ambientes de desenvolvimento baseados em modelos, uma ferramenta gráfica para suportar a metodologia proposta e o modelo de um sistema para as operações de tráfego & ambiente num contexto urbano. Contribui-se ainda com uma cuidada revisão bibliográfica para a principal área de investigação (ES/ESBM) e para o domínio de aplicação (Tráfego & Ambiente)

    Smart Cities: Inverse Design of 3D Urban Procedural Models with Traffic and Weather Simulation

    Get PDF
    Urbanization, the demographic transition from rural to urban, has changed how we envision and share the world. From just one-fourth of the population living in cities one hundred years ago, now more than half of the population does, and this ratio is expected to grow in the near future. Creating more sustainable, accessible, safe, and enjoyable cities has become an imperative

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Transportation Systems Analysis and Assessment

    Get PDF
    The transportation system is the backbone of any social and economic system, and is also a very complex system in which users, transport means, technologies, services, and infrastructures have to cooperate with each other to achieve common and unique goals.The aim of this book is to present a general overview on some of the main challenges that transportation planners and decision makers are faced with. The book addresses different topics that range from user's behavior to travel demand simulation, from supply chain to the railway infrastructure capacity, from traffic safety issues to Life Cycle Assessment, and to strategies to make the transportation system more sustainable

    Evaluation of railway system performance under changing levels of automation using a simulation framework

    Get PDF
    Modern mainline railways are under constant pressure to meet the demands of higher capacity and to improve their punctuality. Railway system designers and operators are increasingly looking to use automation as tool to enable proactive strategies to optimise the timetable, improve the reliability of the infrastructure & rolling stock, to allow for a more dynamic command & control system which can respond to passenger demand and overall to linearize the response behaviour of the system under duress. In the first part of this thesis, I, the author, will discuss the development of automation over the years and the techniques that have been developed to analyse automation changes in a system. Further to this, I outline the various changes to the railway technology over the last century in brief. In the second part, I apply the techniques described earlier to design an automation framework to develop a grade of automation for the railway system to meet the demands of improved capacity and performance. Further to this, I develop parallel testable levels of automation using existing railway technology to demonstrate the effectiveness of a framework developed using the methodology discussed before. These levels are then tested on a network topology using micro-simulation to verify if they produce improved capacity and performance. In the final part, A case study is developed for the network from Kings Cross station to Welwyn Garden on the East Coast Main Line with the traffic dense branch line from Hertford north joining this line. The network is simulated under similar conditions to that adopted for the theoretical network and the results are compared with the previous outcomes. Results from the above studies have several significant outcomes. Firstly, the methodology developed over the course of this thesis can produce automation levels that are distinct from each other. Secondly, these simulation results show that there is a step change in the performance of the systems when organised into distinct levels of automation. Thirdly, and perhaps the most important conclusion from the studies, I show that automation of a single railway sub-system does not yield beneficial results unless there are complementary solutions produced for the surrounding sub-systems. In the theoretical phase of the study, the journey time calculations were repeated for 5000 iterations using a Quasi Monte Carlo framework. The results indicate a clear separation between each of the level and stages of automation proposed within the framework. The results from the simulation show that the reduction in journey times between the various levels can be as much as 5%. In the case study, the results were not as distinct but the overall trendlines indicate a reduction in journey times for both intercity and suburban services. Publications produced during the research period: • Venkateswaran, K., Nicholson, G., Chen, L. & Pelligrini, P. 2017. D3.3.2 Analysis of European best practices and levels of automation for traffic management under large disruptions In: IFFSTAR (ed.) Capacity for Rail. UIC. • Venkateswaran, K. G., Nicholson, G. L., Roberts, C. & Stone, R. Impact of Automation on the Capacity of a Mainline Railway: A Preliminary Hypothesis and Methodology. 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pages 2097-2102
    corecore