95 research outputs found

    ACINO: Second year report on dissemination and communication activities

    Get PDF
    This ACINO deliverable presents the communication and dissemination activities performed by the consortium during the first two years of the project. We have communicated using our website, Twitter account and by various communication actions: The website saw over 3000 unique visitors during the first year and over 4000 during the second year; The consortium Twitter account had 49 followers at the end of the first year and 80 at the end of the second year. We posted 50 tweets during the first year and 40 more during the second year; We also held a press release and an interview in a magazine during the first year, and had three more similar communication actions during the second year. The dissemination activities have been composed of participation in public events where the goals and concepts of ACINO were presented via publications, presentation, workshops, courses and demonstrations. Overall, over forty different dissemination activities have been performed: An article has been published in peer-reviewed, open access Journal of Green Engineering; Eighteen articles have been published in conferences: four during the first year and fourteen during the second. One of them was a post-deadline and six were invited papers; We have co-organised three workshops: the Workshop on Network Function Virtualization and Programmable Networks at EUCNC 2015, the first Workshop on Multi-Layer Network Orchestration (NetOrch) at ICTON 2016 and the stand-alone ONOS/CORD workshop; We have held 16 talks, tutorial, courses and demonstrations; Consortium members have won two prizes for work related to ACINO: a team of developers won the 3rd prize of the ONOS Build Hackathon, and TelefĂłnica won the Best SDN-NFV solution award at the LTE and 5G World conference by presenting a solution in which Sedona Systems was involved; We have contributed to six IETF standardisation documents and done some implementation and test of these standards. We have contributed to two open source projects: the NetPhony and ONOS controllers, with the implementation of main features being accepted and merged to the core code of these open source projects. Finally, the project has devised detailed plans for its dissemination activities for the last year of the project. We have: Confirmed plans for the organisation of a workshop, the second edition of the NetOrch workshop, co-located with the ICTON conference; A solid plan for continued dissemination in conferences (already five accepted conference papers, five talk invitations and a list of conferences of interest) and in peer-reviewed journals, with one article accepted for publication in the Journal of Lightwave Technology, two articles under review and plans for four more; Some more planned contribution to open source projects

    6G Vision, Value, Use Cases and Technologies from European 6G Flagship Project Hexa-X

    Get PDF
    While 5G is being deployed and the economy and society begin to reap the associated benefits, the research and development community starts to focus on the next, 6th Generation (6G) of wireless communications. Although there are papers available in the literature on visions, requirements and technical enablers for 6G from various academic perspectives, there is a lack of joint industry and academic work towards 6G. In this paper a consolidated view on vision, values, use cases and key enabling technologies from leading industry stakeholders and academia is presented. The authors represent the mobile communications ecosystem with competences spanning hardware, link layer and networking aspects, as well as standardization and regulation. The second contribution of the paper is revisiting and analyzing the key concurrent initiatives on 6G. A third contribution of the paper is the identification and justification of six key 6G research challenges: (i) “connecting”, in the sense of empowering, exploiting and governing, intelligence; (ii) realizing a network of networks, i.e., leveraging on existing networks and investments, while reinventing roles and protocols where needed; (iii) delivering extreme experiences, when/where needed; (iv) (environmental, economic, social) sustainability to address the major challenges of current societies; (v) trustworthiness as an ingrained fundamental design principle; (vi) supporting cost-effective global service coverage. A fourth contribution is a comprehensive specification of a concrete first-set of industry and academia jointly defined use cases for 6G, e.g., massive twinning, cooperative robots, immersive telepresence, and others. Finally, the anticipated evolutions in the radio, network and management/orchestration domains are discussed

    Feasibility Analysis of the Algorithms: Secured and Efficient Routing Path Update in Software Defined Networking (SDN)

    Get PDF
    Software-defined networking is the talk of the town in today’s networking industry. Because of the limitations of traditional networking, SDN is getting more popular every year. Lots of researches are taking place to improve the efficiency and overcome the challenges of SDN though it has many advantages. Hence one key problem of SDN is the network update. If the route update does not perform well, it causes congestion and inconsistencies in the network system whereas bandwidth utilization and security is our main concern. We have compared two pre-built algorithms especially for routing path update and proposed a new algorithm with maximum security and loop-free network

    Packet forwarding for heterogeneous technologies for integrated fronthaul/backhaul

    Get PDF
    Proceeding of: 2016 European Conference on Networks and Communications (EuCNC)To meet the future mobile user demand at a reduced cost, operators are looking at solutions such as C-RAN and different functional splits to decrease the cost of deploying and maintaining cell sites. The use of these technologies forces operators to manage two physically separated networks, one for backhaul and one for fronthaul. To solve this issue, transport networks for 5G will carry both fronthaul and backhaul traffic operating over heterogeneous data plane technologies. Such an integrated fronthaul/backhaul (denoted as 5G-Crosshaul) transport network will be software-controlled to adapt to the fluctuating capacity demand of the new generation air interfaces. Based on a proposed data- and control-plane architecture for 5G-Crosshaul, we propose a frame format common to both fronthaul and backhaul traffic as well as a corresponding abstraction of the forwarding behavior of the network elements. The common frame format and the forwarding abstraction define the information to be exchanged at the southbound interface (SBI) of the 5G-Crosshaul Control Infrastructure (XCI). This paper derives requirements for the SBI from 5G use cases.The authors of this paper have been sponsored in part by the project H2020-ICT-2014-2 “5G-Crosshaul”: The 5G integrated fronthaul/backhaul” (671598

    Orchestration of Crosshaul slices from federated administrative domains

    Get PDF
    Proceeding of: 2016 European Conference on Networks and Communications (EuCNC)With the advent of 5G networks, more dynamicity and flexibility will be needed for the deployment of services with very distinct requirements. Crosshaul areas (those integrating fronthaul and backhaul) are especially critical because of the variability of the demand and the cost of the (own) network deployment, which in many cases is jeopardized by the huge level of investment needed. A common market place to trade the required networking and computing facilities (in the form of a slice) in a multi-domain federated environment is envisaged as the solution for easing the adaptation to future demands. This paper proposes to develop the concept of multi-domain Crosshaul by enabling the dynamic request of Crosshaul slices through a multi-provider exchange.This work has been supported by the European Community through the projects 5GEx (grant no. 671636) and 5GCrosshaul (grant no. 671598) within the H2020 programme

    FPGA Implementation of UFMC based baseband transmitter: case study for LTE 10MHz channelization

    Get PDF
    Universal filtered multicarrier (UFMC) is a low complexity promising waveform that provides quasi-orthogonal property among subcarriers. In addition, it can achieve much better out-of-band emission performance than orthogonal frequency division multiplexing (OFDM) system. Authors have proposed a hardware platform to implement a UFMC transmitter in this paper. Highly reduced complexity schemes for IFFT, filtering, and spectrum shifting are realized on actual hardware. This helps to achieve overall architecture of the transmitter at the cost of minimal FPGA resource usage. Hence, the overall design uses only 1038 slice registers, 1154 slice LUTs, and 64 multipliers of Xilinx Virtex-7 XC7VX330t device. A throughput of 773.5 Msamples/sec at an operational frequency of 364 MHz is achieved. This throughput is adequate for processing 50 Physical Resource Blocks (PRB) of LTE 10 MHz channelization in required time. The presented architecture provides a latency of only 2% of one LTE 10MHz channelization symbol due to the implementation of pipelining at different levels. Although the presented hardware design in its current form meets LTE 10MHz channelization throughput requirements, further increase in throughput is possible due to the scalable nature of the architecture. To the best of our knowledge, this work is first ever FPGA solution for UFMC transmitter presented in the literature

    Innovations through 5G-Crosshaul applications

    Get PDF
    Proceeding of: 2016 European Conference on Networks and Communications (EuCNC) 27-30 junio 2016 Athens, GreeceA transport network for 5G envisions integrating the fronthaul and backhaul segments (namely 5G-Crosshaul) into a single transport network. This requires a fully integrated and unified management of fronthaul and backhaul resources in a sharable, scalable and flexible way. The integrated and unified management of the transport network resources follows the Software Defined Networking (SDN) principles of centralization, decoupling between control and data plane and application ecosystem. Innovation to enable context-aware resource management and to provide system-wide optimization of QoS, as well as energy related objectives, lies on defining key applications as logical decision entities to program the underlying network and packet forwarding behaviour. This paper presents a set of 5G-Crosshaul SDN applications with the scope of (i) managing the 5G-Crosshaul resources, including not only network but also computing and storage resources, and (ii) offering efficient media distribution and traffic offloading solutions. In order to develop these applications in a real system, we identify the interactions between the applications and the control plane. Based on these interactions, we propose a two-layer application plane and specify the requirements of the applications on the Northbound Interface (NBI) of the control plane.This work has been supported by the H2020 project “5G-Crosshaul: The 5G Integrated fronthaul/backhaul” (671598)

    Resource and Mobility Management in the Network Layer of 5G Cellular Ultra-Dense Networks

    Full text link
    © 2017 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] The provision of very high capacity is one of the big challenges of the 5G cellular technology. This challenge will not be met using traditional approaches like increasing spectral efficiency and bandwidth, as witnessed in previous technology generations. Cell densification will play a major role thanks to its ability to increase the spatial reuse of the available resources. However, this solution is accompanied by some additional management challenges. In this article, we analyze and present the most promising solutions identified in the METIS project for the most relevant network layer challenges of cell densification: resource, interference and mobility management.This work was performed in the framework of the FP7 project ICT-317669 METIS, which is partly funded by the European Union. The authors would like to acknowledge the contributions of their colleagues in METIS, although the views expressed are those of the authors and do not necessarily represent the project.Calabuig Soler, D.; Barmpounakis, S.; Giménez Colås, S.; Kousaridas, A.; Lakshmana, TR.; Lorca, J.; Lunden, P.... (2017). Resource and Mobility Management in the Network Layer of 5G Cellular Ultra-Dense Networks. IEEE Communications Magazine. 55(6):162-169. https://doi.org/10.1109/MCOM.2017.1600293S16216955
    • 

    corecore