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Abstract  Spectrum sharing has been recognized as a key component 
for 5G and beyond wireless networks. Recent trials have revealed the 
business value of spectrum sharing via the Licensed Shared Access 
(LSA) model, wherein both the incumbent and the licensee operators 
are protected from harmful interference by sharing the available 
spectrum using long-term spectrum access agreements. Further 
increase in capacity gains can be achieved by exploiting Dynamic 
Spectrum Access (DSA), where access is granted in shorter time 
intervals, and Spectrum Access System (SAS), which is a more 
flexible version of traditional LSA. This article first hints at LSA-type 
spectrum sharing in regulatory and standards bodies, then proposes 
a few relevant scenarios that would take advantage of LSA and finally 
presents an LSA system architecture and some enabling technologies 
for LSA/DSA/SAS. These include novel sensing, dynamic and radio-
aware resource allocation, and advanced cooperative communication 
techniques. 
 

I. INTRODUCTION 

HE demand for wireless services and applications is growing 
faster than ever in recent years. Mobile services are expanding 
towards data-hungry multimedia services, such as real-time 

traffic data and 8K video. According to a recent forecast, there will 
be 8.7 billion handheld or personal mobile-ready devices and 4.4 
billion M2M connections by 2023 [1]. This tremendous number of 
terminals will generate a huge volume of data, which is expected 
to be effectively handled by the 5th Generation (5G) of wireless 
communication networks. Moreover, an array of future 
technologies like virtual and augmented reality, holographic 
projections, and autonomous vehicles will only increase the strain 
for more capacity on wireless networks.  

In view of the above, policy makers have been considering more 
flexible licensing approaches that go beyond rigid spectrum 
allocation and promote spectrum sharing between operators and 
services. New concepts for spectrum management have been thus 
proposed and are being pushed into standards, most notably 
Licensed Shared Access (LSA), Dynamic Spectrum Access 
(DSA) and Spectrum Access System (SAS). This article provides 
an overview of such flexible spectrum sharing approaches and 
reports a number of relevant advances that were obtained under 
several EU-funded collaborative research projects [2]-[5]. 

This article is organized as follows. Section II focuses on the 
LSA/DSA/SAS (LSA-type) regulatory and standards aspects. 
Section III defines some key LSA-type scenarios. Section IV 
proposes an innovative LSA architecture. Section V details some 
novel proposed technology enablers. Section VI elaborates on the 
experimentations and the achieved results. Finally, Section VII 
concludes the article. 

 
 
 
 

II. REGULATORY AND STANDARDIZATION ASPECTS 

A. Regulatory bodies 

Regulation of spectrum sharing started about two decades ago 
with cognitive radio-type solutions in unlicensed bands and TV 
white spaces. As such regulation could not ensure any quality of 
service (QoS) to licensed (and much less so to unlicensed) users, 
it did not attract much interest from telecom operators, however it 
gave way to the so-called LSA spectrum sharing paradigm. The 
Radio Spectrum Policy Group (RSPG), which assists the 
European Commission (EC) in the development of radio spectrum 
policy, started in 2013 to publish its positive opinion on LSA, and 
since then fosters its adoption in commercial networks, stressing 
how LSA might achieve more spectrum efficiency and create new 
use cases with high market potential [6]. Thanks also to that input, 
the EC directed the European Conference of Postal and 
Telecommunications administrations (CEPT), another European 
coordination body, to review spectrum sharing opportunities with 
the aim to harmonize LSA deployment across the EU. The CEPT 
thus recommended the 2.3-2.4 GHz bands for initial LSA 
deployment. In most EU countries, these bands are allocated for 
use by Program Making & Special Events (PMSE) operators [4].  

Outside Europe, beyond traditional LSA, the US Federal 
Communications Commission (FCC), and the Australian 
Communications and Media Authority (ACMA) proposed the use 
of a similar concept to LSA, i.e. the Dynamic Spectrum Access 
(DSA) [3] in bands used by radars. The FCC proposed a three-
tiered framework, wherein federal, priority access and general 
access operators are granted a varying priority to spectrum access. 
In addition, a network of dedicated sensors detects radar activity 
and notify the priority and general access operators, maximizing 
the spectrum sharing opportunities, while protecting the federal 
operators from harmful interference. Moreover, the FCC has 
introduced the Spectrum Access System (SAS) concept, mainly in 
relation to Citizens Broadband Radio Service (CBRS) networks 
[7]. The SAS is based on LSA but allows for more flexibility and 
ensures coexistence with incumbent users, who are not able to 
provide any a priori information to a central access database.  
B. Standards bodies  

The ongoing LSA and SAS standardization process follows the 
CEPT recommendations, focusing on the 2.3 GHz band, 
considered as additional spectrum for mobile operators. The main 
standards bodies involved in LSA are the Workgroup 1 of the 
Technical Committee on Reconfigurable Radio Systems of the 
European Standardization Telecommunication Institute (ETSI TC 
RRS WG1), and the Workgroup 5 of the Technical Specification 
Group on Services and Systems Aspects of the 3rd Generation 
Partnership Project (3GPP TSG SA WG5), with inputs coming 
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from the CBRS Alliance.   
The ETSI, in its first version of the LSA standard, proposed that 

mobile operators access the available LSA band according to static 
or semi-static predefined frequency plan(s) and to the proposed 
system reference parameters. This approach, while somewhat 
conservative, fosters a fast and simple implementation to facilitate 
an initial LSA adoption. According to the ETSI standard, every 
mobile operator should deploy an LSA Controller that would 

-
ot in use by the corresponding incumbent. 

More recently, ETSI completed the definition of the LSA 
requirements, the specification of the system architecture and 
related network procedures, and the protocol details for the 
implementation of these procedures. 

In 3GPP some preliminary discussions started already in the 
3GPP Rel-14 timeframe. However, it is with the recently 
concluded Rel-15, and even more with the forthcoming Rel-17 
(which, according to the latest 3GPP SA plenary meeting, held in 
March 2020, will be completed in September 2021) that effective 
specifications are expected to be published. 

Finally, the CBRS Alliance aligned its Release 3 specifications 
with the content of 3GPP Rel-15, and is currently working on 
Release 4, which will match the work ongoing in 3GPP Rel-16/17. 

III. EXEMPLARY LSA SCENARIOS  

The application of LSA may vary from extremely short to 
significantly long allocation periods, from short range to wider 
service areas, and may address varying bandwidth requirements, 
as outlined in three exemplary reference scenarios, proposed by 
the EU-funded project ADEL [5], characterized in Table 1, and 
briefly described below. 

Scenario I : The LSA spectrum is added to the pool 
of bands currently available in order to support additional 
backhaul links between trains in motion and static base stations 
placed along the tracks. The LSA licensee, e.g., the railway 
operator, must request in advance access to spectrum in the LSA 
band (assumed 2.3-2.4 GHz) in the specific portion of the track 
that the train will pass through, according to a specific timetable 
[5]. 

Scenario II - : In this scenario, LSA resources are 
used to support links between base stations and end-user devices 
in macro cells. These LSA resources are used as added spectrum 
to provide more capacity to macro cellular networks in a cost-
efficient manner. The LSA resources are shared in time and space 
with the incumbents that exist in the coverage range of mobile 
network operators (MNO). There must be a prior agreement 
between the LSA licensee and the LSA system regarding the use 

of the LSA resources, including the time slots that the resources 
are available for use by the MNO [5]. 

Scenario III -ce : The LSA resources are deployed in 
small-cells in densely populated areas to provide added capacity 
for mobile broadband services at reduced cost. The deployment of 
LSA small cells in this scenario is integrated with legacy micro-
/macro-cells. Due to anticipated high demand for spectrum in such 
areas, two LSA bands are to be used for the small cells, i.e. 2.3-
2.4 GHz and 3.5-3.6 GHz. Both LSA bands need to be shared with 
the incumbents, e.g., wireless cameras in the 2.3 GHz band or rural 
fixed broadband operators in the 3.5 GHz band [5]. 

IV. PROPOSED LSA ARCHITECTURE 

The proposed system architecture facilitates the implementation 
of the LSA vision as defined by the CEPT, which consider LSA 
as a spectrum sharing approach implicitly associated with dynamic 
and coordinated radio resource management [5]. Such 
architecture, shown in Fig. 1, 
(LBM) that coordinates the access of several incumbent and 
licensee operators to the LSA band, according to agreed sharing 
rules. It includes an LR that contains the information of spectrum 
utilization by the incumbent(s), and acts as a proxy between them 
and the LBM, hiding confidential information, when required.  

The frequency allocation decisions, made well in advance by 
the LBM, are assisted by a radio propagation database called 

 to keep updated 
information about the radio environment conditions along time 
and space. The information on this database results from four 
sources: i) the LR, which contains availability information 
provided by the incumbent operators; ii) the LBM, that provides 
information on resource allocations that have been scheduled; iii) 
internal propagation calculations that behave as initial estimations 
of the impact of these allocations on the radio environment; and, 
iv) information from several spectrum sensing networks 
consolidated by the spectrum sensing reasoning module. It should 
be noted that spectrum sensing information in LSA architecture is 
utilized in following ways: a) to make fine adjustments in the 
propagation models within the REM; b) to gather information not 
available from the incumbents through the LR; c) to detect sharing 
agreement violations; and, d) to collect band usage statistics that 
may be made available to the LBM to improve future frequency 
allocation decisions [5]. 

As mentioned earlier, the FCC has recently introduced SAS, 
which considers additional flexibility with respect to LSA. A key 
challenge for standards bodies will be how to best combine both 
approaches, i.e., LSA for Europe and SAS for the US, into a single 

  Scenario I 
Railway 

Scenario II 
Macro-Cell 

Scenario III 
Small-Cell 

 Suggested 
LSA band 

2300-2400 MHz 2300-2400MHz 2300-2400MHz,  
3500-3600MHz 

 LSA 
Application 

Backhaul link inside 
moving trains for mobile 
broadband connectivity  

Extra capacity for any 
service deployed by the 

operator 

Extra capacity for 
mobile broadband 

 Incumbent Aeronautical telemetry 
stations and military 

stations 

Aeronautical telemetry 
stations and military 

stations 

Wireless cameras, 
Fixed wireless 

broadband 
 Licensee Railway operator Mobile network 

operators 
Mobile network 

operators 
 

Table 1: LSA Reference scenarios and their corresponding parameters [5] 
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integrated framework. Thanks to its generic approach, the 
proposed LSA architecture can be considered as a unified 
framework for implementing different spectrum sharing 
approaches. The proposed architecture was the base for some 
documents (RRSWG1(17)040011 and RRSWG1(17)040012), 
presented and discussed at ETSI RRS WG1 meeting, held at 
Mainz, Germany in November 2017. That discussion started a 
stream of activities that are still ongoing, aiming at adding more 
dynamicity in time, to the way spectrum can be used in 5G and 
beyond deployments. 

V. NEW ENABLING TECHNOLOGIES 

Our ambition is to prove that LSA can be the 5G mobile 
broadband enabler, which makes it possible to benefit from higher 
spectral efficiency offered by spectrum sharing. To achieve this 
vision, we promote fundamental research in three constituent 
enabling technologies: a) collaborative sensing; b) radio-aware 
resource allocation; and, c) cooperative communication. The rest 
of this section presents the major scientific achievements in the 
mentioned relevant fields. 
A. Collaborative Sensing 

Collaborative sensing is a key enabling technology for dynamic 
spectrum sharing in LSA. In order to reliably identify available 
spectral resources and shared access opportunities, efficient 
spectrum sensing algorithms are of fundamental importance. 
Collaborative sensing, where multiple sensing devices exchange 
sensing information in a centralized or in a decentralized 
architecture, is known as a powerful remedy to overcome radio 
sensing problems, such as the hidden node problem that occurs 
when an active node is outside the coverage area of the sensing 
node. Collaborative spectrum sensing for opportunistic authorized 
access needs to deal with several trade-offs that should be 
addressed to enable coexistence of the incumbent and licensee 
networks. 

Sensing time vs. communication time: In high mobility 
scenarios, such as Scenario II, ultra-fast decisions on the 
availability of spectral resources are required to allow secondary 
transmissions, increasing the overall spectral efficiency. However, 
fast sensing can lead to errors and unintended disturbance of the 
incumbent network, due to false detection of spectral holes.  

Collaboration vs. communication overhead: Collaboration 
among the sensing nodes enhances the reliability of spectrum 
sensing by exploiting the spatial dimension. The degree of 

collaboration in the sensing network and the resulting overall 
spectral efficiency of the LSA network is however fundamentally 
limited by the associated communication overhead, which is 
required for collaboration.  

Prior information vs. generic sensing: Collaborative sensing 
can greatly benefit from the use of prior information regarding the 
incumbent network. Prior knowledge can exist in form of specific 
known signal characteristics, such as frame and reference 
structures, knowledge of the geographic location of the incumbent 
network transceivers, and/or the channel characteristics. This 
information can be exploited by the sensing process to enhance the 
overall network performance.  

All the technical challenges mentioned above are addressed 
with the development of novel distributed sensing schemes that 
use three distinctive features to enhance the sensitivity and 
reliability of the sensing: i) the massive cooperation between 
sensing devices; ii) the exploration of the spatial domain through 
directional multi-antenna processing; and, iii) the incorporation of 
contextual-side information using database aided sensing 
technologies.  

In this context, compressed sensing (CS) and sparse modelling 
techniques, that rely on parametric measurement models 
characterized by only a few parameters, have been identified as 
particularly useful for this application, due to their ability to 
produce high resolution multidimensional spectral and spatial 
sensing information from low sample size measurements. 
Therefore, we developed a novel optimization framework based 
on successive convex function approximation, with application in 
CS that can be efficiently implemented on highly parallel modern 
hardware architectures [8].  

In the case that the radio access technology, e.g., the precise 
frame, signal or reference structures, used by the incumbent 
network is known, this information can be exploited to further 
enhance the sensing performance. Such prior information can be 
used in a preprocessing step to simplify the sensing procedure. 
Interference from competing LSA network that coexists with the 
incumbent network may e.g., be suppressed based on a known 
reference signal structure with the objective to enhance the signal 
quality and to reduce the data dimension of the sensing problem.    

We 
that uses the spectral and spatial sensing information obtained 
from the collaborative sensing algorithms to maintain dedicated 
sensing maps, similar to a standard radio coverage map. However, 

 
Figure 1: A proposed LSA system architecture 

 

LSA
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this module also controls several sensing networks and control 
functions, including the detection of faulty measurements and the 
request of additional measurements for specific zones. The 
information obtained by this module, together with incumbent-
specific information, forms the radio resource map that is used by 
the central LSA controller. 

B. Radio-aware Resource Allocation 

1) Random Access Protocols 
In standard frequency allocation schemes, different cells may 

use the same channel only if all User Equipment (UE) of each cell 
do not interfere with any UE of the other ones, hence reducing the 
spatial reuse possibilities of the spectrum. Moreover, sharing all 
available LSA bands is more efficient than dedicating an LSA 
band to each cell, since it is more robust against fluctuation of their 
availability and against changes in the network topology. A 
distributed channel access scheme, on UE level, is then preferable 
as per-node based frequency reuse is less constrained than per-cell 
based frequency reuse. This solution is also in line with the 
objective of having Device to Device (D2D) communications 
capability, on dedicated or shared spectrum, in the 5G standards. 

The IEEE802.11 Distributed Coordination Function (DCF) 
protocol is the most popular distributed access scheme. It operates 
on single channel, performs well in single-hop topologies, but 
suffers from severe performance degradation in multi-hop ones. 
The new distributed Medium Access Control (MAC) protocol 
introduced in [9], called Synchronized Acknowledgment Random 
Access MAC (SARA MAC), solves efficiently, in its single 
channel version, the hidden node problem without introducing the 
masked node problem.  

In its multichannel version, the protocol also solves the exposed 
node problem and allows a complete channel reuse. The protocol 
operates on synchronous networks and defines dedicated slots for 
Clear To Send (CTS) messages in a frame basis. Communications 
may be established at any slot of the frame, but they last, at 
maximum, until the end of the frame. Hence, preventing nodes that 
detect transmission on CTS slots from accessing the channel until 
the end of the frame is enough for resolving the hidden node 
problem even in masked situations.  In Fig. 2, much superior 
performance of the new distributed MAC protocol in comparison 

with the IEEE802.11 DCF protocol for different network sizes in 
multi-hop topologies is demonstrated [9]. 

2) Spectrum Allocation 
In most of the LSA literature, spectrum allocation is based on 

some auction mechanism, where the spectrum is allocated (when 
available) to the MNOs on a long term-basis. This has the 
drawback that the spectrum is wasted if the operator owning the 
spectrum does not require it due to low network demand at a 
particular instant. In [10], we have assumed that at the time of 
spectrum allocation, no formal bidding process is considered and 
that the MNOs consent in advance on a fair use of shared spectrum 
resources such that each MNO pays the same price and receives a 
fair share of the accessible LSA spectrum. The proposed spectrum 
allocation algorithm operates in a proportionally fair manner and 
assigns spectrum to the operators that have spectrum demand, 
based on their allocation history.  

It is shown in [10] that the proposed algorithm provides fair 
spectrum allocation to all the MNOs, regardless of their demand, 
i.e., spectrum hungry MNOs do not get more spectrum in the long 
run as all the MNOs have paid the same price. It is worth noting 
that the proposed algorithm promises to meet the temporal 
spectrum demand of the MNO when it is scheduled to access 
spectrum, but its priority index will be large as a result, and the 
corresponding probability to get spectrum access in next time slot 
will decrease, following the principle of proportional fairness. 
Resource allocation schemes that consider user misbehavior and 
penalization are also developed in [11, [15]. 
C. Cooperative Communication 

 The operation of LSA systems must be designed in a way that 
QoS, in the form of spectral, energy, and cost efficiency, is 
guaranteed for both incumbent and licensee systems, while 
accessing the shared spectrum. However, in order to achieve a 
joint, requested QoS objective, cooperation needs to characterize 
the operation between licensee operators/devices, as well as the 
concurrent transmissions of incumbent and licensee systems.  

We have developed, in reference to the investigated scenarios, 
several algorithms and schemes that facilitate cooperative 
communication between entities belonging to an LSA network. 
Focusing on the small-cell scenario (Scenario III), the case where 

 
 

 
Figure 2: Channel user rate vs. network size for IEEE802.11 DCF and SA-RA. 
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several users require wireless service from a Virtual Mobile 
Network Operator (VMNO), is studied. Motivated by the above 
situation, a cost efficiency metric is proposed [12], and then, based 
on that and on the Zero-Forcing (ZF) distributed Multiple-Input-
Multiple-Output (MIMO) precoding technique, the optimal 
solution is evaluated in terms of cost efficiency, in comparison to 
an arbitrary, uncoordinated strategy. It is interestingly shown that 
the optimal scheme achieves a gain in cost efficiency, for several 
system scenarios. 

Furthermore, a multi-antenna spatial coexistence scenario is 
considered, in which beamforming (BF) allows to control the 
mutual interference. The Time Division Duplex (TDD) mode, 
which is coincidentally the main mode envisaged for Massive 
MIMO and cellular 5G, largely facilitates this coexistence due to 
the possible exploitation of channel reciprocity [13]. LSA 
cooperation allows synchronization, estimation of direct and cross 
link channels, and hence implements optimal coordinated BF 
(such as Zero-Forcing (ZF) at high SNR). We have also explored 
intermediate solutions, e.g., with instantaneous Channel State 
Information at the Transmitter (CSIT) for the intra-system links, 
but only covariance CSIT for the inter-system links.   

VI. EXPERIMENTATION AND SIMULATIONS 

Our contribution to the usage of LSA goes beyond conservative 
ways of using the spectrum. We show that spectrum can be utilized 
more efficiently and without a compromise in performance 
guarantees. This section is devoted to the presentation of results of 
over-the-air experimentations based on some of the above-
mentioned enabling technologies. 

1) Collaborative Sensing 
The goal is to validate that collaborative spectrum sensing 
techniques can enable spectrum sharing between incumbent and 
licensee operators in a more dynamic way, thus increasing the 
spectral efficiency. We aim at identifying spectrum holes within 
the shared frequency band for better utilization of the spectrum. 

Our setup includes an incumbent link (transmitter and UE), 
licensee UEs (LU) distributed in the entire area and a sensing 
network. The sensing network consists of two sensing nodes. Each 
node comprises six printed parasitic antenna arrays. Each antenna 
is separated by thin copper plate for extra sectorial isolation. Both 

Software Radio Peripheral (USRP). The incumbent transmitter 
(Tx) transmits OFDM symbols at a bandwidth of 5 MHz over 52 
subcarriers (out of 64-split in 4 channels of 13 subcarriers). The 
objective is to detect its activity in the spectral and spatial domain 

by applying efficient spectrum sensing techniques. Based on the 
channel occupancy, transmission is performed by the licensees in 
idle channels or in sectors that do not interfere with the incumbent.  
   The sensing network collects data and processes them according 
to one of the following collaborative schemes: i) each observation 
(from each one of the twelve sectors) is processed separately, ii) 
observations are combined according to a distributed scheme that 
sums the energy of sectors pointing at the same direction. Finally, 
an energy detector performs the classification of the channel (idle 
vs. occupied), based on the OR rule. It is observed that the 
proposed collaborative (distributed) approach reduces 
misdetection occurrences significantly. 

2) Spatial LSA Proof-of-Concept 
The spatial LSA shows that multiple antennas can permit 
incumbent and licensee systems to coexist simultaneously, thanks 
to coordinated BF. Fig. 3 shows an image of the Massive MIMO 
demo setup and the demo scenario. The Massive MIMO array is 
built with 12 microstrip antenna cards for practical validation. 
Each microstrip antenna card has 4 antennas, leading to 48 overall 
antennas. These antennas are steered by 12 ExpressMIMO2 radio 
cards with each radio card having 4 transceivers. The design of 
beamformer is applied on every frequency subcarrier individually 
for 5MHz LTE transmission which uses 300 occupied subcarriers 
[14].  

The proof of concept also shows that various levels of LSA 
cooperation are possible with respect to knowledge of the cross-
link channels. In particular, semi-blind techniques, which require 
only intra-cell channel estimation, have shown great potential. The 
performance of ZF, which needs complete knowledge of direct 
and cross-link channels, is compared with that of semi-blind 
techniques that only use statistical information for the cross-link. 
It is shown that with careful design, even semi-blind techniques 
can perform close to non-blind techniques. The experiments have 
also shown that independent and identically distributed (i.i.d) 
channel models may not be applicable and that the resulting 
channel hardening may depend on the environment. Nevertheless, 
Massive MIMO with appropriate transmission techniques shows 
great potential for substantial increase in throughput and other 
performance indicators. 

3) System-Level Simulation and Misbehavior Detection 
We propose a System-Level Simulator (SLS) for LSA systems, 

i.e., a simulation platform that implements the key components of 
an LSA network, such as, the incumbents, the LBM and 
repository, several MNOs, as well as a Dedicated Sensing 
Network (DSN). The implemented framework in the SLS, 
comprises of a) misbehavior detection performed by means of a 
DSN, b) penalization of misbehaving MNOs, and c) penalty-
driven resource allocation [15). We have shown that this proposed 
framework enhances the compliance of MNOs to the LSA sharing 
policy, as it provides them an incentive not to misbehave.  

Finally, we have also investigated the Area Spectral Efficiency 
(ASE) gain of the proposed LSA architecture, which we define as 
the ratio between the ASE of the LSA system (including 
incumbents and MNOs) and that of a standard non-LSA system, 
where only the incumbents operate. This gain is obtained due to 
an enhanced exploitation of the spectrum over space, which is 
achieved by activating macro-cells on a per-sector basis, in a way 
that guarantees the incumbents a targeted Signal-to-Interference-
plus-Noise-Ratio (SINR). Depending on the activity of the 
incumbent, we observe that the LSA gain in terms of ASE ranges 
from an order of 10 to an order of 100 as shown in Fig. 4. The 

Figure 3: Demo Test bed and scenario for Spatial LSA. 
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ASA gain is higher when the number of incumbents is small, due 
to the more efficient usage of the available spectrum, which is 
allowed by the introduction of the LSA system.  

VII. CONCLUSIONS 

 In this article, we provide a survey of some key enabling 
technologies for an effective deployment of upcoming spectrum 
sharing setups, i.e., LSA, DSA and SAS. We start by hinting at 
regulatory and standardization aspects, then we introduce some 
exemplary scenarios that would benefit from the introduction of 
LSA systems. Finally, we summarize a few novel results in 
sensing, dynamic and radio-aware resource allocation, and 
advanced cooperative communication techniques that were 
developed to further the potential of LSA-type spectrum sharing 
for future wireless networks, i.e., 5G and beyond systems. 
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