107 research outputs found

    A Marketplace-based Approach to Cloud Network Slice Composition Across Multiple Domains

    Get PDF
    Cloud network slicing can be defined as the process that enables isolated end-to-end and on-demand networking abstractions, which: (a) contain both cloud and network resources, and (b) are independently controlled, managed and orchestrated. This paper contributes to the vision of the NECOS project and relevant platform, that aim to address the limitations of current cloud computing infrastructures to accomplish the challenging requirements of the slicing approach. The NECOS platform implements the Slice-as-a-Service model, enabling the dynamic creation of end-to-end (E2E) slices from a set of constituent slice parts contributed from multiple domains. A challenging issue is to define the facility that implements dynamic slice resource discovery, aligned to the requirements of the slice owner or tenant, over different infrastructure providers. Here, we propose a Marketplace-based approach implementing relevant federated interactions for the resource discovery and we detail its architecture, workflows, and information model. We also present its initial implementation details and provide both quantitative and qualitative experimental results validating its main operation

    Application of transmitarray antennas for indoor mapping at millimeter-waves

    Get PDF
    Millimeter-waves are expected to play a key role in next 5G scenario due to the availability of a large clean unlicensed bandwidth at 60 GHz and the possibility to realize packed antenna arrays, with a consequent increase of the communication capacity and the introduction of new functionalities, such as high-definition localization and personal radar for automatic environment mapping. In this paper we propose the adoption of millimeter-wave transmitarrays for personal radar applications and we investigate the impact of the radiation pattern characteristics on the map reconstruction accuracy, by analysing how the number of array elements, of quantization bits and the focal distance affect the environment reconstruction performance

    The METIS 5G System Concept: Meeting the 5G Requirements

    Full text link
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.[EN] The development of every new generation of wireless communication systems starts with bold, high-level requirements and predictions of its capabilities. The 5G system will not only have to surpass previous generations with respect to rate and capacity, but also address new usage scenarios with very diverse requirements, including various kinds of machine-type communication. Following this, the METIS project has developed a 5G system concept consisting of three generic 5G services: extreme mobile broadband, massive machine-type communication, and ultra-reliable MTC, supported by four main enablers: a lean system control plane, a dynamic radio access network, localized contents and traffic flows, and a spectrum toolbox. This article describes the most important system-level 5G features, enabled by the concept, necessary to meet the very diverse 5G requirements. System-level evaluation results of the METIS 5G system concept are presented, and we conclude that the 5G requirements can be met with the proposed system concept.This work was supported in part by the European Commission under FP7, grant number ICT-317669 METIS.Tullberg, H.; Popovski, P.; Li, Z.; Uusitalo, MA.; Hoglund, A.; Bulakci, O.; Fallgren, M.... (2016). The METIS 5G System Concept: Meeting the 5G Requirements. IEEE Communications Magazine. 54(12):132-139. https://doi.org/10.1109/MCOM.2016.1500799CMS132139541

    Characterizing the UAV-to-Machine UWB Radio Channel in Smart Factories

    Get PDF
    In this work, the results of Ultra-Wideband air-to-ground measurements carried out in a real-world factory environment are presented and discussed. With intelligent industrial deployments in mind, we envision a scenario where the Unmanned Aerial Vehicle can be used as a supplementary tool for factory operation, optimization and control. Measurements address narrow band and wide band characterization of the wireless radio channel, and can be used for link budget calculation, interference studies and time dispersion assessment in real factories, without the usual limitation for both radio terminals to be close to ground. The measurements are performed at different locations and different heights over the 3.1-5.3 GHz band. Some fundamental propagation parameters values are determined vs. distance, height and propagation conditions. The measurements are complemented with, and compared to, conventional ground-to-ground measurements with the same setup. The conducted measurement campaign gives an insight for realizing wireless applications in smart connected factories, including UAV-assisted applications

    Software-based fast failure recovery in load balanced SDN-based datacenter networks

    Get PDF
    Load balancing is currently considered as a candidate solution to tackle the emerging problem of increasing bandwidth demand in intra-datacenter networks. Furthermore, because a short disruption of data transfer would corrupt the result of a long procedure of computation, fast failure management mechanisms are considered as integral part of current datacenters. In this paper, we propose a method which uses active probing to detect and manage failures in an OpenFlow based datacenter network exploiting load balancing among equal cost multiple paths. The proposed method is scalable and effective based on the actions it takes without involving the controller in the fast failure recovery procedure

    The Need of Multidisciplinary Approaches and Engineering Tools for the Development and Implementation of the Smart City Paradigm

    Get PDF
    This paper is motivated by the concept that the successful, effective, and sustainable implementation of the smart city paradigm requires a close cooperation among researchers with different, complementary interests and, in most cases, a multidisciplinary approach. It first briefly discusses how such a multidisciplinary methodology, transversal to various disciplines such as architecture, computer science, civil engineering, electrical, electronic and telecommunication engineering, social science and behavioral science, etc., can be successfully employed for the development of suitable modeling tools and real solutions of such sociotechnical systems. Then, the paper presents some pilot projects accomplished by the authors within the framework of some major European Union (EU) and national research programs, also involving the Bologna municipality and some of the key players of the smart city industry. Each project, characterized by different and complementary approaches/modeling tools, is illustrated along with the relevant contextualization and the advancements with respect to the state of the art

    Study and overview on WBAN under IEEE 802.15.6

    Get PDF
    WBAN (wireless body area networks) is an upcoming technology which stands to be a base for wearable and implantable sensors. The IEEE 802.15.6 formulates the physical and medium access for body area networks. The Body area networks can be implemented in several applications like health monitoring, ambient living environments and consumer electronics. This paper gives a clear overview about the functions of WBAN. The medium access layers and the physical layers of IEEE 802.15.6 are deeply examined and studied in this work. The access mechanisms of the protocol are explained in this paper. A clear literature review has also been stated to know the current state of art of this technology. The future possibilities and area to be explored also has been defined in this work

    D13.2 Techniques and performance analysis on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.2 del projecte europeu NEWCOM#The report presents the status of the research work of the various Joint Research Activities (JRA) in WP1.3 and the results that were developed up to the second year of the project. For each activity there is a description, an illustration of the adherence to and relevance with the identified fundamental open issues, a short presentation of the main results, and a roadmap for the future joint research. In the Annex, for each JRA, the main technical details on specific scientific activities are described in detail.Peer ReviewedPostprint (published version

    Electromagnetic field assessment as a smart city service: The SmartSantander use-case

    Get PDF
    Despite the increasing presence of wireless communications in everyday life, there exist some voices raising concerns about their adverse effects. One particularly relevant example is the potential impact of the electromagnetic field they induce on the population's health. Traditionally, very specialized methods and devices (dosimetry) have been used to assess the strength of the E-field, with the main objective of checking whether it respects the corresponding regulations. In this paper, we propose a complete novel approach, which exploits the functionality leveraged by a smart city platform. We deploy a number of measuring probes, integrated as sensing devices, to carry out a characterization embracing large areas, as well as long periods of time. This unique platform has been active for more than one year, generating a vast amount of information. We process such information, and the obtained results validate the whole methodology. In addition, we discuss the variation of the E-field caused by cellular networks, considering additional information, such as usage statistics. Finally, we establish the exposure that can be attributed to the base stations within the scenario under analysis.This work has been supported by the Spanish Government (Ministerio de Economía y Competitividad, Fondo Europeo de Desarrollo Regional, FEDER) by means of the project ADVICE: Dynamic provisioning of connectivity in high density 5G wireless scenarios (TEC2015-71329-C2-1-R)

    Towards Personal Virtual Traffic Lights

    Get PDF
    Traffic control management at intersections, a challenging and complex field of study, aims to strike a balance between safety and efficient traffic control. Nowadays, traffic control at intersections is typically done by traffic light systems which are not optimal and exhibit several drawbacks, such as poor efficiency and real-time adaptability. With the advent of Intelligent Transportation Systems (ITS), vehicles are being equipped with state-of-the-art technology, enabling cooperative decision-making which will certainly overwhelm the available traffic control systems. This solution strongly penalizes users without such capabilities, namely pedestrians, cyclists, and other legacy vehicles. Therefore, in this work, a prototype based on an alternative technology to the standard vehicular communications, Bluetooth Low Energy (BLE), is presented. The proposed framework aims to integrate legacy and modern vehicular communication systems into a cohesive management system. In this framework, the movements of users at intersections are managed by a centralized controller which, through the use of networked retransmitters deployed at intersections, broadcasts alerts and virtual light signalization orders. Users receive the aforementioned information on their own smart devices, discarding the need for dedicated light signalization infrastructures. Field tests, carried out with a real-world implementation, validate the correct operation of the proposed framework. Document type: Articl
    corecore