194 research outputs found

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    VisGuided: A Community-driven Approach for Education in Visualization

    Full text link
    We propose a novel educational approach for teaching visualization, using a community-driven and participatory methodology that extends the traditional course boundaries from the classroom to the broader visualization community.We use a visualization community project, VisGuides, as the main platform to support our educational approach. We evaluate our new methodology by means of three use cases from two different universities. Our contributions include the proposed methodology, the discussion on the outcome of the use cases, the benefits and limitations of our current approach, and a reflection on the open problems and noteworthy gaps to improve the current pedagogical techniques to teach visualization and promote critical thinking. Our findings show extensive benefits from the use of our approach in terms of the number of transferable skills to students, educational resources for educators, and additional feedback for research opportunities to the visualization community

    Digital 3D Technologies for Humanities Research and Education: An Overview

    Get PDF
    Digital 3D modelling and visualization technologies have been widely applied to support research in the humanities since the 1980s. Since technological backgrounds, project opportunities, and methodological considerations for application are widely discussed in the literature, one of the next tasks is to validate these techniques within a wider scientific community and establish them in the culture of academic disciplines. This article resulted from a postdoctoral thesis and is intended to provide a comprehensive overview on the use of digital 3D technologies in the humanities with regards to (1) scenarios, user communities, and epistemic challenges; (2) technologies, UX design, and workflows; and (3) framework conditions as legislation, infrastructures, and teaching programs. Although the results are of relevance for 3D modelling in all humanities disciplines, the focus of our studies is on modelling of past architectural and cultural landscape objects via interpretative 3D reconstruction methods

    Parallel Rendering and Large Data Visualization

    Full text link
    We are living in the big data age: An ever increasing amount of data is being produced through data acquisition and computer simulations. While large scale analysis and simulations have received significant attention for cloud and high-performance computing, software to efficiently visualise large data sets is struggling to keep up. Visualization has proven to be an efficient tool for understanding data, in particular visual analysis is a powerful tool to gain intuitive insight into the spatial structure and relations of 3D data sets. Large-scale visualization setups are becoming ever more affordable, and high-resolution tiled display walls are in reach even for small institutions. Virtual reality has arrived in the consumer space, making it accessible to a large audience. This thesis addresses these developments by advancing the field of parallel rendering. We formalise the design of system software for large data visualization through parallel rendering, provide a reference implementation of a parallel rendering framework, introduce novel algorithms to accelerate the rendering of large amounts of data, and validate this research and development with new applications for large data visualization. Applications built using our framework enable domain scientists and large data engineers to better extract meaning from their data, making it feasible to explore more data and enabling the use of high-fidelity visualization installations to see more detail of the data.Comment: PhD thesi

    Storytelling and Visualization: An Extended Survey

    Get PDF
    Throughout history, storytelling has been an effective way of conveying information and knowledge. In the field of visualization, storytelling is rapidly gaining momentum and evolving cutting-edge techniques that enhance understanding. Many communities have commented on the importance of storytelling in data visualization. Storytellers tend to be integrating complex visualizations into their narratives in growing numbers. In this paper, we present a survey of storytelling literature in visualization and present an overview of the common and important elements in storytelling visualization. We also describe the challenges in this field as well as a novel classification of the literature on storytelling in visualization. Our classification scheme highlights the open and unsolved problems in this field as well as the more mature storytelling sub-fields. The benefits offer a concise overview and a starting point into this rapidly evolving research trend and provide a deeper understanding of this topic

    From social simulation to integrative system design

    Get PDF
    Abstract.: The purpose of this White Paper of the EU Support Action "Visioneer” (see www.visioneer.ethz.ch) is to address the following goals: 1.Develop strategies to build up social simulation capacities.2.Suggest ways to build up an "artificial societies” community that aims at simulating real and alternative societies by means of supercomputers, grid or cloud computing.3.Derive proposals to establish centers for integrative systems desig

    Modeling of erosion impact on geometric objects

    Get PDF
    Simulace eroze je důležitým problémem v oblasti počítačové grafiky. Nejvýznamnějšími erozními procesy v přírodě jsou zvětrávání a hydraulická eroze. Mnoho metod se těmito problémy zabývá, ale většinou jsou tyto metody založeny na výškových mapách nebo volumetrických datech. Výškové mapy neumožňují simulaci složitých plně trojrozměrných scén, zatímco volumetrická data mají vysoké paměťové nároky. Tato disertační práce zkoumá výhody reprezentace erodovaných objektů pomocí trojúhelníkových sítí a navrhuje řešení problémů, které vznikají v důsledku použití této datové struktury. Trojúhelníkové sítě se ukázaly být vhodnou datovou strukturou pro použití při simulaci eroze díky jejich adaptivitě a možnosti modelovat složité konkávní prvky scény. Použití trojúhelníkových sítí však přináší nové problémy, například problém vzniku nekonzistence sítě v důsledku silné eroze nebo problém simulace složitých scén složených z více materiálů. Tato práce zkoumá zmíněné problémy a navrhuje jejich možná řešení.ObhájenoErosion simulation is an important problem in the field of computer graphics. The most prominent erosion processes in nature are weathering and hydraulic erosion. Many methods address these problems but they are mostly based on height fields or volumetric data. Height fields do not allow the simulation of complex fully 3D scenes while the volumetric data have high memory requirements. This thesis explores the advantages of representing the eroded objects as triangular meshes and proposes solutions to problems that arise due to the use of this data structure. Triangular meshes prove to be an advantageous data structure for erosion simulations due to their adaptivity and the possibility to model complex concave features. However, the use of the triangular meshes brings new problems to the erosion simulation, such as the problem of creation of an inconsistency in the mesh due to heavy erosion or the problem of simulation of complex scenes composed of multiple materials. This thesis explores these problems and suggests possible solutions
    corecore