188 research outputs found

    TSFEDL: A python library for time series spatio-temporal feature extraction and prediction using deep learning

    Get PDF
    The combination of convolutional and recurrent neural networks is a promising framework. This arrangement allows the extraction of high-quality spatio-temporal features together with their temporal dependencies. This fact is key for time series prediction problems such as forecasting, classification or anomaly detection, amongst others. In this paper, the TSFEDL library is introduced. It compiles 22 state-of-the-art methods for both time series feature extraction and prediction, employing convolutional and recurrent deep neural networks for its use in several data mining tasks. The library is built upon a set of Tensorflow + Keras and PyTorch modules under the AGPLv3 license. The performance validation of the architectures included in this proposal confirms the usefulness of this Python package.This work has been partially supported by the Contract UGRAM OTRI-4260 and the Regional Government of Andalusia, under the program ‘‘Personal Investigador Doctor”, reference DOC_00235. This work was also supported by project PID2020-119478 GB-I00 granted by Ministerio de Ciencia, Innovación y Universidades, and projects P18-FR-4961 and P18-FR-4262 by Proyectos I + D+i Junta de Andalucia 2018

    An Overview of BRDF Models

    Get PDF
    This paper is focused on the Bidirectional Reflectance Distribution Function (BRDF) in the context of algorithms for computational production of realistic synthetic images. We provide a review of most relevant analytical BRDF models proposed in the literature which have been used for realistic rendering. We also show different approaches used for obtaining efficient models from acquired reflectance data, and the related function fitting techniques, suitable for using that data in efficient rendering algorithms. We consider algorithms for computation of BRDF integrals, by using Monte-Carlo based numerical integration. In this context, we review known techniques to design efficient BRDF sampling schemes for both analytical and measured BRDF models.The authors have been partially supported by the Spanish Research Program under project TIN2004-07672-C03-02 and the Andalusian Research Program under project P08-TIC-03717

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Integrated and interactive 4D system for archaeological stratigraphy

    Get PDF
    The digitization of some of the processes carried out in an archaeological excavation is changing the way of working at the site. Today, new technologies coexist with traditional methodologies. The study of stratigraphy can combine drawings of profiles and plans, the Harris Matrix diagram, as well as digitized files that perform a complete record of the stratigraphic sequence. However, this information is usually unaggregated from the rest of the information system that makes up the archaeological record. In this paper, we present an integrated software tool and the associated methodology to record, store, visualize and analyze the 3D stratigraphy of a site. The implementation uses spatial databases to store information of a heterogeneous nature and game engines for the visualization and interaction with this information. During the excavation process, the strata are scanned using the Tof technology, which is available in many smartphones. The resulting 3D model of the stratum, once uploaded to the software system, allows us to visualize the sequence of strata incorporating the findings into their original arrangement. Some additional tools, such as the scrollbar, help to perform a temporal analysis of the site. The result is a 4D interactive stratigraphy tool, which together with the Harris Matrix, complements the archaeological record and facilitates the work to archaeologists. This methodology also allows to speed up the on-site work and the subsequent analysis, while improving the user experience with the 3D archaeological site replica.CRUE-CSICSpringer NatureSpanish GovernmentEuropean Commission TIN2017-84968-

    Digital 3D Technologies for Humanities Research and Education: An Overview

    Get PDF
    Digital 3D modelling and visualization technologies have been widely applied to support research in the humanities since the 1980s. Since technological backgrounds, project opportunities, and methodological considerations for application are widely discussed in the literature, one of the next tasks is to validate these techniques within a wider scientific community and establish them in the culture of academic disciplines. This article resulted from a postdoctoral thesis and is intended to provide a comprehensive overview on the use of digital 3D technologies in the humanities with regards to (1) scenarios, user communities, and epistemic challenges; (2) technologies, UX design, and workflows; and (3) framework conditions as legislation, infrastructures, and teaching programs. Although the results are of relevance for 3D modelling in all humanities disciplines, the focus of our studies is on modelling of past architectural and cultural landscape objects via interpretative 3D reconstruction methods

    Automatic 3D facial modelling with deformable models.

    Get PDF
    Facial modelling and animation has been an active research subject in computer graphics since the 1970s. Due to extremely complex biomechanical structures of human faces and peoples visual familiarity with human faces, modelling and animating realistic human faces is still one of greatest challenges in computer graphics. Since we are so familiar with human faces and very sensitive to unnatural subtle changes in human faces, it usually requires a tremendous amount of artistry and manual work to create a convincing facial model and animation. There is a clear need of developing automatic techniques for facial modelling in order to reduce manual labouring. In order to obtain a realistic facial model of an individual, it is now common to make use of 3D scanners to capture range scans from the individual and then fit a template to the range scans. However, most existing template-fitting methods require manually selected landmarks to warp the template to the range scans. It would be tedious to select landmarks by hand over a large set of range scans. Another way to reduce repeated work is synthesis by reusing existing data. One example is expression cloning, which copies facial expression from one face to another instead of creating them from scratch. This aim of this study is to develop a fully automatic framework for template-based facial modelling, facial expression transferring and facial expression tracking from range scans. In this thesis, the author developed an extension of the iterative closest points (ICP) algorithm, which is able to match a template with range scans in different scales, and a deformable model, which can be used to recover the shapes of range scans and to establish correspondences between facial models. With the registration method and the deformable model, the author proposed a fully automatic approach to reconstructing facial models and textures from range scans without re-quiring any manual interventions. In order to reuse existing data for facial modelling, the author formulated and solved the problem of facial expression transferring in the framework of discrete differential geometry. The author also applied his methods to face tracking for 4D range scans. The results demonstrated the robustness of the registration method and the capabilities of the deformable model. A number of possible directions for future work were pointed out

    Three-dimensional reconstruction of Roman coins from photometric image sets

    Get PDF
    A method is presented for increasing the spatial resolution of the three-dimensional (3-D) digital representation of coins by combining fine photometric detail derived from a set of photographic images with accurate geometric data from a 3-D laser scanner. 3-D reconstructions were made of the obverse and reverse sides of two ancient Roman denarii by processing sets of images captured under directional lighting in an illumination dome. Surface normal vectors were calculated by a “bounded regression” technique, excluding both shadow and specular components of reflection from the metallic surface. Because of the known difficulty in achieving geometric accuracy when integrating photometric normals to produce a digital elevation model, the low spatial frequencies were replaced by those derived from the point cloud produced by a 3-D laser scanner. The two datasets were scaled and registered by matching the outlines and correlating the surface gradients. The final result was a realistic rendering of the coins at a spatial resolution of 75  pixels/mm (13-ÎŒm spacing), in which the fine detail modulated the underlying geometric form of the surface relief. The method opens the way to obtain high quality 3-D representations of coins in collections to enable interactive online viewing

    Sixth Biennial Report : August 2001 - May 2003

    No full text

    A 3D Digital Approach to the Stylistic and Typo-Technological Study of Small Figurines from Ayia Irini, Cyprus

    Get PDF
    The thesis aims to develop a 3D digital approach to the stylistic and typo-technological study of coroplastic, focusing on small figurines. The case study to test the method is a sample of terracotta statuettes from an assemblage of approximately 2000 statues and figurines found at the beginning of the 20th century in a rural open-air sanctuary at Ayia Irini (Cyprus) by the archaeologists of the Swedish Cyprus Expedition. The excavators identified continuity of worship at the sanctuary from the Late Cypriot III (circa 1200 BC) to the end of the Cypro-Archaic II period (ca. 475 BC). They attributed the small figurines to the Cypro-Archaic I-II. Although the excavation was one of the first performed through the newly established stratigraphic method, the archaeologists studied the site and its material following a traditional, merely qualitative approach. Theanalysis of the published results identified a classification of the material with no-clear-cut criteria, and their overlap between types highlights ambiguities in creating groups and classes. Similarly, stratigraphic arguments and different opinions among archaeologists highlight the need for revising. Moreover, pastlegislation allowed the excavators to export half of the excavated antiquities, creating a dispersion of the assemblage. Today, the assemblage is still partly exhibited at the Cyprus Museum in Nicosia and in four different museums in Sweden. Such a setting prevents to study, analyse and interpret the assemblageholistically. This research proposes a 3D chaĂźne opĂ©ratoire methodology to study the collection’s small terracotta figurines, aiming to understand the context’s function and social role as reflected by the classification obtained with the 3D digital approach. The integration proposed in this research of traditional archaeological studies, and computer-assisted investigation based on quantitative criteria, identified and defined with 3D measurements and analytical investigations, is adopted as a solution to the biases of a solely qualitative approach. The 3D geometric analysis of the figurines focuses on the objects’ shape and components, mode of manufacture, level of expertise, specialisation or skills of the craftsman and production techniques. The analysis leads to the creation of classes of artefacts which allow archaeologists to formulate hypotheses on the production process, identify a common production (e.g., same hand, same workshop) and establish a relative chronological sequence. 3D reconstruction of the excavation’s area contributes to the virtual re-unification of the assemblage for its holistic study, the relative chronological dating of the figurines and the interpretation of their social and ritual purposes. The results obtained from the selected sample prove the efficacy of the proposed 3D approach and support the expansion of the analysis to the whole assemblage, and possibly initiate quantitative and systematic studies on Cypriot coroplastic production

    Parameterizing Deformable Surfaces for Monocular 3--D Tracking

    Get PDF
    e propose a deformable surface parameterization that is generic and lets us automatically build registered shape databases. This allows us to directly derive low-dimensional shape models using a simple dimensionality reduction technique. This addresses one of the biggest difficulties in example-based shape modeling: Building the required database, which is often a difficult and painstaking process. We incorporate the resulting models into a monocular tracking system that we use to capture the complex deformations of objects such as sheets of papers or expanding balloons from single video sequences
    • 

    corecore