
Parameterizing Deformable Surfaces for
Monocular 3–D Tracking

Mathieu Salzmann, Slobodan Ilic, Pascal Fua
Computer Vision Laboratory

Ecole Polytechnique Federale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland

Mathieu.Salzmann,Slobodan.Ilic,Pascal.Fua@epfl.ch

http://cvlab.epfl.ch

Technical Report ID: IC/2005/020

Abstract

We propose a deformable surface parameterization that is generic and lets us
automatically build registered shape databases. This allows us to directly de-
rive low-dimensional shape models using a simple dimensionality reduction
technique. This addresses one of the biggest difficulties in example-based
shape modeling: Building the required database, which is often a difficult
and painstaking process.

We incorporate the resulting models into a monocular tracking system
that we use to capture the complex deformations of objects such as sheets of
papers or expanding balloons from single video sequences.

1 Introduction
While reconstruction and tracking of rigid and articulated objects from video have been
widely studied, modeling 3–D deformable surfaces such as those of Fig. 1 remains a
challenging problem, especially with a single camera. The problem would be totally
under-constrained without an appropriate deformation model, that is one flexible enough
to account for all possible configurations of the deformable objects while being controlled
by sufficiently few parameters for effective optimization.

Many physically-based models have been proposed, but they seldom incorporate all
the required physical knowledge. Even a simple sheet of paper is a complex dynamic
system and the models that are popular [9, 10, 11, 12, 5, 7] tend to be oversimplified. They
often rely on linear approximations that are poor in the presence of large displacements
and deformations such as those the objects shown in Fig. 1 undergo. More realistic non-
linear models have been investigated [16, 13]. But, to the best of our knowledge, they are
complex enough never to have been tried for monocular shape recovery.

An alternative to physically-based modeling is to create a database of valid shapes
as was done for faces [4, 3] or human motion [14] and use a dimensionality reduction
technique to derive models with relatively few degrees of freedom. This approach has
proved very effective if the database can be obtained, which is not a given. For example,
in the case of faces [4, 3], its construction was a painstaking process that required precise
registration of individual vertices of a generic face model to laser scans.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


To alleviate the database generation problem in the case of generic deformable sur-
faces, we propose a parameterization that lets us automatically generate a wide range
of physically valid configurations. We represent surfaces as triangulated meshes whose
shape is controlled by a small subset of the angles between the facets. Varying these
angles results in the database we need, which contains surfaces of different shapes but
identical topologies. We then perform a Principal Component Analysis and approximate
surfaces as linear combinations of a small number of principal components. The resulting
deformation model has relatively few parameters and, yet, is accurate enough to effec-
tively track deformations.

The contribution of this paper is therefore a surface parameterization that lets us sam-
ple the space of valid shapes to build a representative database, which can then be used to
derive low-dimensional shape models using a simple dimensionality reduction technique.
We will show that these models are effective to capture the deformations of objects such
as sheets of papers or expanding balloons from monocular video sequences.

2 Related Work
Capturing surface deformations from a single video stream is acknowledged to be a mas-
sively under-constrained problem if one does not limit the range of possible configura-
tions. Existing approaches can be classified into two broad categories: Physically-based
methods seek to parameterize the surfaces in terms of the variables of a dynamic system
that approximates the real physics, while example-based techniques rely on creating a
database of possible shapes from which a low-dimensional model can be learned. We
briefly review these two classes of approaches below.

The original snake paper [9] probably is the one that contributed most to popularize
physically-based models in the Computer Vision community. The approach was initially
strictly 2–D, but was soon extended to 3–D surface modeling, by using deformable su-
perquadrics [15, 6], triangulated meshes [1], or thin-plate splines [10]. Unfortunately,
these modeling techniques tend to produce models with too many degrees of freedom for
reliable fitting to monocular sequences. An approach to reducing the number of degrees of
freedom is to perform modal analysis [12, 5, 7]. The object’s behavior is then described
by superposing its natural strain and vibration modes. However, this implies linear as-
sumptions that do not hold when the deformations become large. The use of non-linear
finite elements has been investigated in the medical imaging and animation communities
for volumetric reconstruction and simulation [8, 13]. However, for 3–D surface fitting
purposes, such methods have only been demonstrated for recovering relatively simple de-
formations from range data [16] and require precise knowledge of the object’s material
properties, which may be hard to obtain.

Because accurately modeling the physics of deformable surfaces is difficult, example-
based methods are an attractive alternative. They involve creating a database of represen-
tative shapes and using them in conjunction with a statistical dimension reduction tech-
nique to learn a model with comparatively few degrees of freedom. For example, the work
of Blanz and Vetter on facial shape recovery [4] and animation [3] relies on a deformable
face model built in this way. The database is made of 3–D meshes that were fitted to laser
scans and aligned so that specific vertices always correspond to the same facial features.
The shape model is learned by performing Principal Component Analysis on the vectors



(a)

(b)

(c)

(d)

Figure 1: Tracking deforming surfaces in monocular videos. (a, b, c) On each row, we
show one image of the original sequence, the deformed mesh projected on the sequence,
and a shaded side view. (d) The shape of a deflating balloon is tracked throughout a
sequence. Note that the mesh shrinks along with the balloon.

formed by concatenating the 3–D coordinates of the mesh vertices and only retaining the
most significant components. Similar approaches were successfully used to derive artic-
ulated motion models [2, 14]. However, gathering and registering enough examples to
build a meaningful database again represented a very significant amount of work.

The difficulties involved in creating the databases have limited the spread of these



example-based approaches to other applications. This is the issue we address here in the
case of generic deformable surfaces.

3 Creating the Deformation Model
Our approach is built on one key insight: A surface that deforms and stretches can always
be resampled so that it can be represented by a triangulated mesh whose vertices are
equidistant. In other words, with no loss of generality, we can learn all the possible
shapes from a set of inextensible meshes. These are meshes whose edges are constrained
to retain their length and whose only degrees of freedom are the angles between the facets.

In this section, we show that only a small subset of these angles need be specified
to fully constrain the shape. As a result, we can represent the whole set of valid shapes
using these parameters and therefore produce a representative set of shapes by randomly
sampling them. We exploit this to create a database of meshes that are naturally registered
to one another and are therefore directly amenable to dimensionality reduction using a
simple technique such as PCA.

3.1 Parameterizing Inextensible Meshes
We represent surfaces as triangulated meshes whose vertices lay on an M×N rectangular
grid, such as the one depicted by Fig. 2. If we constrain the lengths l0 and l1 to be the
same for all horizontal and vertical edges, such a mesh has far fewer degrees of freedom
than the 3×M×N ones required to individually specify the vertex coordinates.

l_1

l_0

l_1

l_0

(a) (b)
Figure 2: Building a model. (a) The bottom row of the mesh is first built from left to right
by setting the angle between a facet and its neighbor. (b) For each consecutive row, only
two angles need be set, one for the first facet and one for the last one.

More specifically, as shown in Fig. 2 (a), we can specify their 3–D shape starting from
the bottom row. The 3–D orientation of the bottom left facet is given by two rotations
around the x and y axes. The position of each successive facet is then recursively defined
by the rotation angle around the edge it shares with the previous one. Once the first row
has been specified in this manner, it can be shown that there are only two degrees of
freedom left for each successive row. We therefore proceed row by row and fix those
degrees of freedom by specifying the rotation angles of the two facets drawn in bold in
Fig. 2 (b), around the edge it shares with the facet below for the lower-left one and around
its neighbor to the left for the upper-right one. The 3–D coordinates of all vertices in the
row can then be recursively computed as the intersection of three spheres of radii l0, l1,
and

√
l2
0 + l2

1 centered at vertices whose coordinates have already been computed.
In short, given the horizontal and vertical lengths l0 and l1, an inextensible surface can

be parameterized in terms of four sets of angles:



• αi , 0≤ i<M−1: Orientation of the left triangle of column i in the first row.

• βi , 0≤ i<M−1: Orientation of the right triangle of column i in the first row.

• γ j , 1≤ j < N−1: Orientation of the left triangle of row j in the first column.

• δ j , 1≤ j < N−1: Orientation of the right triangle of row j in the last column.

The tow row of Fig. 3 illustrates the effect of varying these angles individually.

α 
i 

j

i=0 
j=0 

β 

i 

j 

i =0
j=0 

γ i j 

i=0 j=0 

δ 

i 

j 

i=0 
j=0 

(a) (b) (c) (d)

Figure 3: Top row: Setting a single angle to a non zero value for one of the αi, βi, γ j, δ j.
Bottom row: Setting all the angles to non zero values independantly for the αi, βi, γ j, δ j.

3.2 Building the Shape Database
We create a database of randomly deformed meshes by letting the angles discussed above
vary randomly between two fixed bounds. To cover the whole range of shapes, we could
sample the space spanned by the {α0, . . . ,αM−2,β0, . . . ,βM−2,γ1, . . . ,γN−2, . . . ,δ1, . . . ,δN−2}.
As this would still require a huge number of samples, we chose instead to sample each
one of the four sets of angles independently to produce shapes such as those of the bottom
row of Fig. 3. As will be shown in Section 3.3, this does not reduce the generality of the
approach.

In practice, we use M = 30, N = 20, and choose angles in the range [−π/6,π/6].
These values yield surfaces with potentially large global curvature but that remain locally
smooth, such as the ones of Fig. 5. We generate 50 random meshes for each set of angles.
As will be discussed in the next section, these meshes are to be used to perform Principal
Component Analysis. To guarantee that the resulting components are as symmetric as
possible, we symmetrize our 50 samples as follows. When sampling the {βi} and {δ j}
angles, we also include the symmetrical counterparts to our samples with respect to the x
and y coordinates, which results in a total of 200 meshes being added to the database for
each of these sets of angles. In the case of the {αi} and {γ j} angles, a single symmetry
suffices, resulting in a total of 100 meshes being added to the database for each of these
sets of angles. Finally, we end up with a database containing 600 mesh examples for a
total of 2× (M−1) + 2× (N−2) + 1 = 95 degrees of freedom.



3.3 Principal Component Analysis
To further reduce the number of parameters required to represent our deformable surfaces,
we use Principal Component Analysis (PCA). Since all database meshes have the same
topology, we form a 3×M×N vector for each one by concatenating the coordinates of
its vertices. By running PCA on these vectors and retaining only the first Nc << 3MN
principal components, we can approximate the vector of coordinates of any mesh as

S = S̄ +
Nc

∑
k=1

wkSk , (1)

where S̄ is the vector corresponding to an undeformed mesh, the Sk are the principal
components or modes, and the wk are weights that specify the surface shape. In other
words, the shape of a mesh can now be expressed as a function of the state vector Θ =
{w1, ...,wNc}. In practice, 3MN = 1800 and we take Nc to be at most 50.

Fig. 4 depicts the influence of two of the most significant components. Changing the
weight associated to the first produces bending and, to the second, extension. This is an
important feature of our approach: Even though the database contains only inextensible
meshes, the resulting components allow the modeling of shrinkage and extension, a fact
that we will exploit in Section 5.2.

(a) (b)

Figure 4: Modal behavior. In both figures, S̄, the average mesh, is shown in red. The other
two are obtained by taking a single wk to be non zero. A positive value of that wk yields
the green mesh and a negative one the mesh shown in blue. (a) Bending for k = 9. (b)
Extension for k = 5.

Recall from Section 3.2 that we created the database by independently, as opposed to
simultaneously, varying the four sets of α , β , γ , and δ angles. Arguably, this could fail
to cover all possible deformations and result in principal components unable to describe
some configurations. To disprove this, we generated a number of synthetic meshes such
as the ones of Fig. 5 by simultaneously randomizing all the angles and verified that we
can use our Nc = 50 principal components to accurately fit the resulting shapes.

Figure 5: Fitting surfaces created by varying all sets of angles simultaneously. The origi-
nal shapes are shown as shaded, while the fitted ones are displayed as wireframes.



4 Optimization Framework
As discussed in Section 3.3, the shape of the mesh is controlled by a state vector Θ of
weights associated to the principal components. We use the image data to write nobs
observation equations of the form

Obstypei(xi,Θ) = εi , 1≤ i≤ nobs , (2)

where Obstypei is a differentiable objective function associated to a particular type of
image data, xi a data point, and εi is an error term. Here we consider the functions Obscorr

and Obsedge derived from point correspondences and edge information respectively:

• Correspondences. We find interest points in the first of consecutive pairs of images
and compute correspondences in the second. Given a couple ui = (p1

i , p
2
i ) of corre-

sponding points found in this manner , we define an Obscorr(ui,Θ) as follows: We
back-project p1

i to the 3–D surface and reproject it to the second image. We then
take Obscorr(ui,Θ) to be the Euclidean distance in the image plane between this
reprojection and p2

i .

• Boundary and occluding contours. We project the target object boundaries into the
image. We then sample the projections and look for the closest image edge-pixel
in the normal direction. We take Obsedge to be the Euclidean distance between
the projection and an edge-pixel. We handle occluding contours similarly. We
use OpenGL visibility computation and hidden surface removal techniques to find
mesh edges that correspond to occluding contours. We then sample these edges and
evaluate Obsedge as discussed above.

We will show in the results section that this combination suffices to fully constrain the
surface’s shape.

As we saw in Section 3.3, a linear combination of principal components can result in
a mesh that expands or shrinks. To model surfaces that do not stretch, such as a piece of
paper, we force edge lengths to remain constant by introducing a penalty term

ED =
Nvert

∑
i=1

∑
v j∈N(vi)

(
∥∥vi− v j

∥∥−Li, j)
2 , (3)

where vi is a vertex of the mesh, N(vi) represents the set of all its neighbors, and Li, j is
the initial edge length. Finally, we take the global objective function E we minimize to be

E =
1
2

nobs

∑
i=0

wtypei

∥∥Obstypei(xi,Θ)
∥∥2

+ wextED , (4)

where the wtypei are weights associated to particular observation types and designed so
that the derivatives of all observations are of commensurate magnitude, and wext is a user
defined weight. A small, or zero, wext allows the mesh to stretch or shrink.

5 Results
Here we demonstrate the robustness of our approach for tracking objects undergoing large
deformations. We provide the corresponding videos as supplementary material.



5.1 Inextensible Surfaces
We first applied our method to tracking deformable but inextensible surfaces in monocular
sequences. Not only does the Θ state vector that controls the shape contain relatively few
parameters, but we do not need a regularization or smoothing term. Simply keeping the
number of principal components we use low is enough to enforce smoothnes. However,
we had to fix some coordinates of the meshes to avoid ambiguities due to the chosen
viewpoints.

Fig. 6 depicts the tracking of a piece of paper starting from an undeformed position.
Even though there is texture at only one place on the paper, the whole model deforms
correctly. This includes the back of the sheet that is not actually seen in the video. Another
deforming sheet of paper is shown in Fig.7. The chosen viewpoint makes it difficult to
clearly see the deformation in the first frames. Our algorithm nevertheless retrieves the
precise 3–D shape throughout the whole sequence. In both cases, we used 30 principal
components.

Figure 6: Deforming sheet of paper. Top row: Deformed mesh projected on the original
sequence as a wireframe. Bottom row: Deformed mesh shown as a wireframe model seen
from a different viewpoint. Note that even the back deforms correctly.

Figure 7: Another deforming sheet. Top row: Projected wireframe. Bottom row: De-
formed mesh shaded and seen from a different viewpoint.

Fig. 8 shows the behavior of our algorithm when applied to a more cloth-like material
that is more flexible and requires the use of 45 principal components instead of the 30
we used for paper. The deformation is mostly perpendicular to the image plane, which
again makes it challenging to track. As can be seen in the video we supply, the reprojected
shape closely matches the object in the images, except occasionally near the corners. This



can be attributed to the fact that, because the fabric is very textured, our simple approach
to detecting edges can become confused and should be replaced by a more sophisticated
one.

Figure 8: Deforming fabric. The results are displayed in the same manner as in Fig 6.
Since the fabric is highly textured, borders of the mesh are sometimes mismatched with
texture edges, resulting in small misalignments.

5.2 Stretchable Surfaces
We used an inflating and deflating balloon to test our algorithm’s behavior when the sur-
face can stretch or shrink. In all the balloon examples presented here, the initial mesh
shapes were obtained by scanning the balloons before starting inflation or deflation and
fitting our mesh models to the scans.

All the results shown above involved the use of the penalty term ED of Eq. 3 to force
the mesh edges to retain their original lengths. In Fig. 9, we allow the mesh to stretch by
setting the weight of this ED term to zero. Since we are not tracking the whole balloon,
but only its textured part, we only use correspondences and ignore edges. The mesh then
expands along with the balloon, which is made possible by principal components such as
the one depicted by Fig. 4(b). As shown in Fig. 1(d), the opposite behavior is observed
when the balloon deflates.

Figure 9: Tracking an inflating balloon with an extensible mesh. Notice the mesh keeps
on covering the same portion of the balloon. The last image shows the superposition of
the initial mesh in red and the much bigger final one in blue.



6 Conclusion
In this paper, we have presented an approach to parameterizing deformable surfaces of
planar topologies in terms of a small number of angles and producing a representative
set of shapes by randomly sampling these angles. We have exploited this to create a
database of meshes that are naturally registered to one another and are therefore directly
amenable to dimensionality reduction using PCA. The resulting low-dimensional models
have proved effective for monocular 3–D tracking of surfaces undergoing large deforma-
tions.

The set of shapes we produce is however far from linear and PCA may not be the
best possible approach to dimensionality reduction. In future work, we therefore intend
to explore the use of non-linear techniques to reduce the required number of parameters
even further.

References
[1] A. Bartoli and A. Zisserman. Direct Estimation of Non-Rigid Registration. In British Machine

Vision Conference, Kingston, UK, September 2004.

[2] Michael J. Black and Allan D. Jepson. Eigentracking: Robust matching and tracking of ar-
ticulated objects using a view-based representation. In European Conference on Computer
Vision, pages 329–342, 1996.

[3] V. Blanz, C. Basso, T. Poggio, and T. Vetter. Reanimating Faces in Images and Video. In
Eurographics, Granada, Spain, September 2003.

[4] V. Blanz and T. Vetter. A Morphable Model for The Synthesis of 3–D Faces. In Computer
Graphics, SIGGRAPH Proceedings, Los Angeles, CA, August 1999.

[5] L. Cohen, , and I. Cohen. Deformable models for 3-d medical images using finite elements
and balloons. In Conference on Computer Vision and Pattern Recognition, pages 592–598,
1992.

[6] D. Terzopoulos D. Metaxas. Constrained deformable superquadrics and nonrigid motion
tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(6):580–591,
1993.

[7] H. Delingette, M. Hebert, and K. Ikeuchi. Deformable surfaces: A free-form shape represen-
tation. In Proc. SPIE Geometric Methods in Computer Vision, volume 1570, pages 21–30,
1991.

[8] G. Irving, J. Teran, and R. Fedkiw. Invertible finite elements for robust simulation of large de-
formation. In SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium
on Computer animation, pages 131–140, New York, NY, USA, 2004. ACM Press.

[9] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. International
Journal of Computer Vision, 1(4):321–331, 1988.

[10] T. McInerney and D. Terzopoulos. A dynamic finite element surface model for segmenta-
tion and tracking in multidimensional medical images with application to cardiac 4d image
analysis. Computerized Medical Imaging and Graphics, 19(1):69–83, 1995.

[11] D. Metaxas and D. Terzopoulos. Shape and Nonrigid Motion Estimation through Physics-
Based Synthesis. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(6):580–591, 1991.

[12] A. Pentland. Automatic extraction of deformable part models. International Journal of Com-
puter Vision, 4(2):107–126, March 1990.



[13] G. Picinbono, H. Delingette, and N. Ayache. Real-time large displacement elasticity for
surgery simulation: Non-linear tensor-mass model. In In Third International Conference on
Medical Robotics, Imaging And Computer Assisted Surgery: MICCAI 2000, pages 643–652,
2000.

[14] H. Sidenbladh, M. J. Black, and D. J. Fleet. Stochastic tracking of 3D human figures using
2D image motion. In European Conference on Computer Vision, June 2000.

[15] D. Terzopoulos and D. Metaxas. Dynamic 3D models with local and global deformations:
Deformable superquadrics. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13:703–714, 1991.

[16] L.V. Tsap, D.B. Goldgof, S. Sarkar, and W.C. Huang. Efficient nonlinear finite element mod-
eling of nonrigid objects via optimization of mesh models. CVIU, 69(3):330–350, March
1998.


