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The combination of convolutional and recurrent neural networks is a promising framework. This arrange-
ment allows the extraction of high-quality spatio-temporal features together with their temporal depen-
dencies. This fact is key for time series prediction problems such as forecasting, classification or anomaly
detection, amongst others. In this paper, the TSFEDL library is introduced. It compiles 22 state-of-the-art
methods for both time series feature extraction and prediction, employing convolutional and recurrent
deep neural networks for its use in several data mining tasks. The library is built upon a set of
Tensorflow + Keras and PyTorch modules under the AGPLv3 license. The performance validation of
the architectures included in this proposal confirms the usefulness of this Python package.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction This neural network paradigm is providing interesting results in
The success of Machine Learning algorithms for time series pre-
diction problems depends on the quality of the spatio-temporal
features extracted. Deep Learning [1] models can produce non-
linear transformations on data, yielding more abstract and useful
spatio-temporal features and patterns than classical models for
better prediction. Among the different areas of Deep Learning,
the combination of Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) is an important novelty for
spatio-temporal feature extraction in time series [2–4]. Time series
are a type of data sequentially sampled along a certain time inter-
val. This structure implies the correlation of a sample with the pre-
vious time steps. The convolution operation enables the extraction
of abstract high-level features obtaining refined local information.
On the other hand, recurrent neural networks extract features that
define the progress of a longer sequence of data. The combination
of both is therefore fundamental to increase the performance and
unify the extracted knowledge [5].
several areas, focusing the initial application on arrhythmia detec-
tion [6–8], with applications in other medical areas [9], energy
forecasting [10,11] or remaining useful life prediction [12]. The
absence of a unified collection of neural networks for time series
generates the necessity of an easy-to-use and performant solution
for the practitioner. The Python package TSFE DL, presented in this
paper, supports this process by providing a wide variety of easily
customisable CNN-RNN Deep Learning models. All the available
architectures are implemented from scratch, unifying the pro-
gramming style and providing open source code for the included
networks, presenting the user accessible and useful Python code.

The rest of the paper is structured as follows: Section 2 explains
the software functionality and architecture. Section 3 gives instruc-
tions for the user to install the library and provides an example and
an experimental framework for validating the library. Section 4
describes the quality standards of the code developing process.
Finally, Section 5 summarises the conclusions of this paper and
future work.
2. Software description

The TSFE DL library is built on Python 3. The library follows the
programming style of the Tensorflow + Keras [13] functional
API for further integration into state-of-the-art Machine Learning
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pipelines and seamless modification of the provided models. More-
over, a PyTorch [14] implementation of the library that relies on
PyTorch-Lightning is provided to allow the user both to easily
scale-up model execution in multi-GPU clusters and to create
new architectures maximising code re-utilisation.

As can be seen in Fig. 1, the general architecture of the networks
presented in this library is divided into two parts: the spatio-
temporal embedding and the specialisation module. The former
is in charge of extracting the most relevant spatio-temporal fea-
tures and their bonds, whereas the specialisation module performs
user-specific operations with the extracted features. This architec-
ture allows the user to easily apply these networks to different
data mining tasks just by the modification of the specialisation
module. Similarly, the majority of spatio-temporal embeddings
are composed of a set of CNN layers followed by a set of RNN layers
such as LSTMs or GRUs. This structure enables the extraction of
high-level spatio-temporal features together with their temporal
dependencies. Additional details about the layers composition of
each network are depicted in Table 1. The full explanation of the
architectures can be found in Appendix A of the extended ArXiV
version.1

The Keras models are implemented as Python functions. Each
model has an assigned function which builds it and returns a Keras
Model object. These functions contain several parameters to cus-
tomise the architecture, returning either a model with no output
layers configured or a classification group of layers with a given
number of classes. After the model is returned from the function
the practitioner can easily add more layers using the functional
programming style of Keras.

The models implemented in Pytorch are structured as classes,
inheriting from the template class TSFEDL_BaseModule. The tem-
plate class implements the base methods to compose a PyTorch
trainable network whereas each of the particular classes include
the specific parameters to customise the module. These parame-
ters include the top_module parameter, a PyTorch nn.Module

object for the specialisation layers for the output of the model.
The goal of this library is to provide an easy source of models

and code for the practitioners to use, gathering state-of-the art pro-
posals for time series feature extraction. In order to achieve this,
the models are programmed as reusable and customisable as pos-
sible, allowing the user to configure the output layers of the model
to suit any type of problem such as classification, regression or
forecasting. This feature is materialised by means of the in-

put_shape and top_module parameters which control the input
tensor shape and the output layers of the network.

In Table 1 the layers comprising each model are shown. A green
tick represents the usage of that layer whereas a red cross indicates
that it is not used. The five types of layers used are: one-
dimensional convolution, long short-term memory recurrent layer,
gated recurrent unit recurrent layer, bidirectional LSTM and bidi-
rectional GRU.
3 https://s-tsfe-dl.readthedocs.io/en/latest/.
4 Aguilera-Martos et al. ( https://arxiv.org/abs/2206.03179 Appendix B)
5 IGN Data under contact https://www.ign.es/web/ign/portal/sis-area-sismicidad
3. Installation and quality standards

The TSFE DL library can be installed using PyPi using pip

install TSFEDL. It is also available by cloning the repository
from GitHub2 and executing, from the root directory, the command
python setup.py install. After that, the package will be available
for its usage within the name TSFEDL.

The library code follows the PEP8 style standard for Python.
Travis-CI service is enabled in the repository of the project for
continuous integration, ensuring back-compatibility and a proper
1 Aguilera-Martos et al. ( https://arxiv.org/abs/2206.03179 Appendix A).
2 https://github.com/ari-dasci/S-TSFE-DL.
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operation of the architectures. Semantic Versioning and Keep a
Changelog standards are integrated into the repository as well,
making it easier for the users to notice the changes in the version
progression. An extensive documentation is provided, following
the numpydoc style of comments and using sphinx to generate
it. The documentation is hosted in the Read the Docs

3 platform.
4. Cases of study

An experimental framework is proposed to study the perfor-
mance of the networks and the capabilities of the library. In this
section, a new model leveraging the characteristics of TSFE DL is
created, remarking the customisation capability for any given task.
The objective of the custom model is to extract new spatio-
temporal features to outperform the included architectures in the
library on several kinds of problems. The problems analysed are
briefly described below (the extended explanation can be found
in Appendix B of the extended ArXiV version 4): (See Fig. 2).

1. Forecasting. The aim is to predict the following n ¼ 50 time-
steps of a time series from the Spanish Digital Seismic Network
(IGN) [31] to identify future earthquakes.5

2. Classification. The objective is to classify segments of ECG sig-
nals from the MIT-BIH dataset [32] to identify different types
of cardiac arrhythmia.6

3. Anomaly Detection. The goal is to identify malicious attacks
from network traffic using the KDD Cup ’99 dataset [33].7

The network shown in Fig. 3 is a modification of the HuangMeiLing

model which includes a new LSTM layer. Next, the spatio-temporal
features extracted by this model will be further processed using a
specialisation module to fulfill the requirements of each task. In
Fig. 3, an example for the forecasting task is shown. Additional
details about these experiments and their characteristics can be
found in the library repository.8 We must highlight that this special-
isation module is employed on all the networks of the library as
shown in Fig. 3 to perform a fair comparison between methods.

The results obtained from each method on each task are shown
in Table A.1. These results led us to the conclusion that the models
in this library can be applied to different tasks successfully, even if
they have not been initially designed for them. In fact, no method
outperforms all the rest for all of the problems.

From the results we can see that there are some common char-
acteristics among the best performing networks for each problem.
For the prediction problem the three best networks are Huang-
MeiLing, ShiHaotian and ZhengZhenyu. These networks are charac-
terized by having a high number of convolutions but not having
more than one recurrent layer or even none at all. For the classifi-
cation problem the best performing networks are HtetMyetLynn,
WeiXiaoyan and YiboGao. These networks include attention mech-
anisms, bidirectional recurrent layers or simply more than one
recurrent layer. No common pattern is found for all of them but
we can observe that long-term temporal dependencies are more
important than in the prediction problem. Finally, for the anomaly
detection problem, we can see that the best performing networks
are YiboGao, OhShuLih and ChenChen. From these results it can
be seen that this problem requires a treatment halfway between
the classification problem and the prediction problem. These net-
works have either attention mechanisms or a large number of con-
6 MIT-BIH data https://physionet.org/content/mitdb/1.0.0/
7 KDDCup99 data http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
8 https://github.com/ari-dasci/S-TSFE-DL/tree/main/examples.
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Fig. 1. General scheme of the models presented in the TSFE DL library.

Table 1
TSFEDL models and architecture type.

Model names CNN LSTM GRU Bid. LSTM Bid. GRU

CaiWenjuan [15] U X X X X
ChenChen [8] U U X X X
FuJiangmeng [16] U U X X X
GaoJunli [7] X U X X X
GenMinxing [17] X X X U X
HongTan [18] U U X X X
HtetMyetLynn [19] U X X U U

HuangMeiLing [20] U X X X X
KhanZulfiqar [10] U X U X X
KimTaeYoung [11] U U X X X
KongZhengmin [12] U U X X X
LihOhShu [21] U U X X X
OhShuLih [6] U U X X X
ShiHaotian [22] U U X X X
WangKejun [23] U U X X X
WeiXiaoyan [9] U U X X X
YaoQihang [24] U U X X X
YiboGao [25] U X X X X
YildirimOzal [26] U U X X X
ZhangJin [27] U X X X U

ZhengZhenyu [28] U U X X X
SharPar [29] U U X X X
DaiXiLi [30] U X X X X
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volutional and recurrent layers, to model local features and long-
term dependencies.

The custom model created in Fig. 3 outperforms the rest of the
networks in the forecasting task, confirming that the customisation
capability can enhance the performance of the networks. This
means that the library’s variety of models, together with its cus-
tomisation, gives great flexibility concerning the target application.
Fig. 2. Installation procedur
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5. Concluding remarks

The Python library TSFE DL gathers 22 Deep Learning state-of-
the-art methods combining both convolutional and recurrent lay-
ers. The implementation relies on the Keras functional API and
PyTorch-Lightning to easily integrate the algorithms into
state-of-the-art Machine Learning pipelines. This fact, together
with the architecture of the library, allows us to easily create and
customise Deep Learning models for different data mining tasks.

The library provides performant, expandable and customisable
neural networks being proved the usefulness of the provided piece
of software. The results confirm that the included models can be
successfully applied to different tasks. Therefore, the application
scope of this type of models can be significantly extended. This
Pythonmodule stands as a convenient solution for the practitioner.

As future work, this library is under constant development,
including recently published architectures of relevance. In addi-
tion, it is planned to expand the functionality of this library by add-
ing pre-trained models as well as visualisation modules.
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Fig. 3. Creation of a new CNN-RNN model for time series forecasting using TSFE DL .

Table A.1
Results extracted from the TSFE DL models for the three tasks analysed.
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Model Classification
(Accuracy)
MIT-BIH
arrythmia

Time series
forecasting
(MAE)
IGN

Anomaly
detection
(AUC)
KDD Cup99

CaiWenjuan [15] 0.6845 3.8784 0.5945
ChenChen [8] 0.9233 151.3446 0.7402
DaiXiLi [30] 0.9563 151.3807 0.6330
FuJiangmeng [16] 0.5612 12.0492 0.5135
GaoJunLi [7] 0.4996 45.9238 0.4821
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GenMinxing [17] 0.9569 6.8440 0.5186
HongTan [18] 0.8412 9.1740 0.6069
HtetMyetLynn [19] 0.9709 12.1476 0.4866
HuangMeiLing [20] 0.9633 1.4135 0.5180
KhanZulfiqar [10] 0.9400 29.9031 0.6272
KimTaeYoung [11] 0.6378 3.1309 0.5586
KongZhengmin [12] 0.6515 2.0443 0.5535
LihOhShu [21] 0.8196 3.0234 0.5302
OhShuLih [6] 0.7224 2.2590 0.7103
SharPar [29] 0.9545 118.1454 0.5304
ShiHaotian [22] 0.9581 1.9449 0.6071
WangKejun [23] 0.9539 3.0436 0.4897
WeiXiaoyan [9] 0.9703 2.9720 0.6462
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YaoQihang [24] 0.9681 2.7898 0.5939
YiboGao [25] 0.9718 149.2162 0.7356
YildirimOzal [26] 0.9075 44.5272 0.6988
ZhangJin [27] 0.9575 30.6660 0.5605
ZhengZhenyu [28] 0.9196 2.0847 0.5374
Model of the example

(Fig. 3)
0.9248 1.1402 0.5089
Appendix A. Cases of study experimental results

See Table A.1.
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Appendix B. Required metadata

.

Appendix C. Current code version

See Table A.2.
Table A.2
Code metadata (mandatory).

Nr. Code metadata description Please fill in this column

C1 Current code version v1.0.3
C2 Permanent link to code/

repository used of this code
version

https://github.com/ari-dasci/S-TSFE-
DL

C3 Legal Code License GNU Affero General Public License
v3.0

C4 Code versioning system used Git
C5 Software code languages, tools,

and services used
Python 3, Keras, Tensorflow, PyTorch
and PyTorch-Lightning

C6 Compilation requirements,
operating environments &
dependencies

OS-X, Unix-like or Microsoft
Windows, a Python interpreter (3.7)
and the following Python packages:
pytorch-lightning, scikit-learn,
tensorflow-gpu/tensorflow,
torchmetrics, wfdb, obspy

C7 If available Link to developer
documentation/manual

https://s-tsfe-dl.readthedocs.io/en/
latest/

C8 Support email for questions nacheteam@ugr.es
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