146 research outputs found

    Wavelength Selection Method Based on Partial Least Square from Hyperspectral Unmanned Aerial Vehicle Orthomosaic of Irrigated Olive Orchards

    Get PDF
    Identifying and mapping irrigated areas is essential for a variety of applications such as agricultural planning and water resource management. Irrigated plots are mainly identified using supervised classification of multispectral images from satellite or manned aerial platforms. Recently, hyperspectral sensors on-board Unmanned Aerial Vehicles (UAV) have proven to be useful analytical tools in agriculture due to their high spectral resolution. However, few efforts have been made to identify which wavelengths could be applied to provide relevant information in specific scenarios. In this study, hyperspectral reflectance data from UAV were used to compare the performance of several wavelength selection methods based on Partial Least Square (PLS) regression with the purpose of discriminating two systems of irrigation commonly used in olive orchards. The tested PLS methods include filter methods (Loading Weights, Regression Coefficient and Variable Importance in Projection); Wrapper methods (Genetic Algorithm-PLS, Uninformative Variable Elimination-PLS, Backward Variable Elimination-PLS, Sub-window Permutation Analysis-PLS, Iterative Predictive Weighting-PLS, Regularized Elimination Procedure-PLS, Backward Interval-PLS, Forward Interval-PLS and Competitive Adaptive Reweighted Sampling-PLS); and an Embedded method (Sparse-PLS). In addition, two non-PLS based methods, Lasso and Boruta, were also used. Linear Discriminant Analysis and nonlinear K-Nearest Neighbors techniques were established for identification and assessment. The results indicate that wavelength selection methods, commonly used in other disciplines, provide utility in remote sensing for agronomical purposes, the identification of irrigation techniques being one such example. In addition to the aforementioned, these PLS and non-PLS based methods can play an important role in multivariate analysis, which can be used for subsequent model analysis. Of all the methods evaluated, Genetic Algorithm-PLS and Boruta eliminated nearly 90% of the original spectral wavelengths acquired from a hyperspectral sensor onboard a UAV while increasing the identification accuracy of the classification

    Doctor of Philosophy

    Get PDF
    dissertationWildfire is a multifaceted, global phenomenon with ecological, environmental, climatic and socioeconomic impacts. Live fuel moisture content (LFMC) is a critical fuel property for determining fire danger. Previous research has used meteorological data and remote sensing to estimate LFMC with the goal of extending direct ground measurement. A fundemental understanding of plant physiology and spectral response toLFMC variation is needed to advance use of LFMC for fire risk management and remote sensing applications. This study integrates field samples of three species, lab measurements, remote sensing dataand statistical analysis to construct a more complete knowledge of the physical foundations of LFMC seasonalityfrom three perspectives: 1)relationships between soil moisture and LFMC; 2) spectroscopic analysis of seasonal changes in LFMC and leaf dry mass; 3) relationships between LFMC and leaf net heat content, and between leaf net heat content and remotely sensed indices. This study is the first to demonstrate a relationship between in situ soil moisture and LFMC. It also challengesthe current asumption of changing water content and stable dry matter content over time in remote sensing esimation of LFMC, showing the dominant contribution of dry matter in LFMC variation in some conifer species. The resultsdemonstrate the combination of spectroscopic data and partial least squares regression can improve modeling accuray for LFMC temporal variation, but the spectral response to changing LFMC and dry mass is difficult to seperate from broader spectral trends due to temporal change in chlorophyll, leaf structure, water and covaried biochemical components. Lastly it introducesa new vegetation variable, leaf net heat content, and demostrates its relationship with LFMC and potential for remote sensing estimation.This study will improve present capabilities of remote sensing for monitoring vegetation water stress and physiological properties. It will also advance understanding of seasonal changes in LFMC to better estimate fire danger and potential impacts of fire on ecosystems and the carbon cycle

    Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging

    Get PDF
    Photosynthesis is currently measured using time-laborious and/or destructive methods which slows research and breeding efforts to identify crop germplasm with higher photosynthetic capacities. We present a plot-level screening tool for quantification of photosynthetic parameters and pigment contents that utilizes hyperspectral reflectance from sunlit leaf pixels collected from a plot (∼2 m×2 m) in c,max, R2=0.79) maximum electron transport rate in given conditions (J1800, R2=0.59), maximal light-saturated photosynthesis (Pmax, R2=0.54), chlorophyll content (R2=0.87), the Chl a/b ratio (R2=0.63), carbon content (R2=0.47), and nitrogen content (R2=0.49). Model predictions did not improve when using two cameras spanning 400-1800 nm, suggesting a robust, widely applicable and more 'cost-effective' pipeline requiring only a single VNIR camera. The analysis pipeline and methods can be used in any cropping system with modified species-specific PLSR analysis to offer a high-throughput field phenotyping screening for germplasm with improved photosynthetic performance in field trials.</p

    High‑throughput analysis of leaf physiological and chemical traits with VIS–NIR–SWIR spectroscopy: a case study with a maize diversity panel

    Get PDF
    Hyperspectral reflectance data in the visible, near infrared and shortwave infrared range (VIS–NIR– SWIR, 400–2500 nm) are commonly used to nondestructively measure plant leaf properties. We investigated the usefulness of VIS–NIR–SWIR as a high-throughput tool to measure six leaf properties of maize plants including chlorophyll content (CHL), leaf water content (LWC), specific leaf area (SLA), nitrogen (N), phosphorus (P), and potassium (K). This assessment was performed using the lines of the maize diversity panel. Data were collected from plants grown in greenhouse condition, as well as in the field under two nitrogen application regimes. Leaf-level hyperspectral data were collected with a VIS–NIR–SWIR spectroradiometer at tasseling. Two multivariate modeling approaches, partial least squares regression (PLSR) and support vector regression (SVR), were employed to estimate the leaf properties from hyperspectral data. Several common vegetation indices (VIs: GNDVI, RENDVI, and NDWI), which were calculated from hyperspectral data, were also assessed to estimate these leaf properties

    Remote Sensing of Plant Biodiversity

    Get PDF
    This Open Access volume aims to methodologically improve our understanding of biodiversity by linking disciplines that incorporate remote sensing, and uniting data and perspectives in the fields of biology, landscape ecology, and geography. The book provides a framework for how biodiversity can be detected and evaluated—focusing particularly on plants—using proximal and remotely sensed hyperspectral data and other tools such as LiDAR. The volume, whose chapters bring together a large cross-section of the biodiversity community engaged in these methods, attempts to establish a common language across disciplines for understanding and implementing remote sensing of biodiversity across scales. The first part of the book offers a potential basis for remote detection of biodiversity. An overview of the nature of biodiversity is described, along with ways for determining traits of plant biodiversity through spectral analyses across spatial scales and linking spectral data to the tree of life. The second part details what can be detected spectrally and remotely. Specific instrumentation and technologies are described, as well as the technical challenges of detection and data synthesis, collection and processing. The third part discusses spatial resolution and integration across scales and ends with a vision for developing a global biodiversity monitoring system. Topics include spectral and functional variation across habitats and biomes, biodiversity variables for global scale assessment, and the prospects and pitfalls in remote sensing of biodiversity at the global scale

    Decomposing reflectance spectra to track gross primary production in a subalpine evergreen forest

    Get PDF
    Photosynthesis by terrestrial plants represents the majority of CO₂ uptake on Earth, yet it is difficult to measure directly from space. Estimation of gross primary production (GPP) from remote sensing indices represents a primary source of uncertainty, in particular for observing seasonal variations in evergreen forests. Recent vegetation remote sensing techniques have highlighted spectral regions sensitive to dynamic changes in leaf/needle carotenoid composition, showing promise for tracking seasonal changes in photosynthesis of evergreen forests. However, these have mostly been investigated with intermittent field campaigns or with narrow-band spectrometers in these ecosystems. To investigate this potential, we continuously measured vegetation reflectance (400–900 nm) using a canopy spectrometer system, PhotoSpec, mounted on top of an eddy-covariance flux tower in a subalpine evergreen forest at Niwot Ridge, Colorado, USA. We analyzed driving spectral components in the measured canopy reflectance using both statistical and process-based approaches. The decomposed spectral components co-varied with carotenoid content and GPP, supporting the interpretation of the photochemical reflectance index (PRI) and the chlorophyll/carotenoid index (CCI). Although the entire 400–900 nm range showed additional spectral changes near the red edge, it did not provide significant improvements in GPP predictions. We found little seasonal variation in both normalized difference vegetation index (NDVI) and the near-infrared vegetation index (NIRv) in this ecosystem. In addition, we quantitatively determined needle-scale chlorophyll-to-carotenoid ratios as well as anthocyanin contents using full-spectrum inversions, both of which were tightly correlated with seasonal GPP changes. Reconstructing GPP from vegetation reflectance using partial least-squares regression (PLSR) explained approximately 87 % of the variability in observed GPP. Our results linked the seasonal variation in reflectance to the pool size of photoprotective pigments, highlighting all spectral locations within 400–900 nm associated with GPP seasonality in evergreen forests

    光学特性が複雑な水域における超多波長反射率データを使った新しい水質推定手法の構築

    Get PDF
    広島大学(Hiroshima University)博士(工学)Doctor of Engineeringdoctora

    Remote Sensing of Plant Biodiversity

    Get PDF
    At last, here it is. For some time now, the world has needed a text providing both a new theoretical foundation and practical guidance on how to approach the challenge of biodiversity decline in the Anthropocene. This is a global challenge demanding global approaches to understand its scope and implications. Until recently, we have simply lacked the tools to do so. We are now entering an era in which we can realistically begin to understand and monitor the multidimensional phenomenon of biodiversity at a planetary scale. This era builds upon three centuries of scientific research on biodiversity at site to landscape levels, augmented over the past two decades by airborne research platforms carrying spectrometers, lidars, and radars for larger-scale observations. Emerging international networks of fine-grain in-situ biodiversity observations complemented by space-based sensors offering coarser-grain imagery—but global coverage—of ecosystem composition, function, and structure together provide the information necessary to monitor and track change in biodiversity globally. This book is a road map on how to observe and interpret terrestrial biodiversity across scales through plants—primary producers and the foundation of the trophic pyramid. It honors the fact that biodiversity exists across different dimensions, including both phylogenetic and functional. Then, it relates these aspects of biodiversity to another dimension, the spectral diversity captured by remote sensing instruments operating at scales from leaf to canopy to biome. The biodiversity community has needed a Rosetta Stone to translate between the language of satellite remote sensing and its resulting spectral diversity and the languages of those exploring the phylogenetic diversity and functional trait diversity of life on Earth. By assembling the vital translation, this volume has globalized our ability to track biodiversity state and change. Thus, a global problem meets a key component of the global solution. The editors have cleverly built the book in three parts. Part 1 addresses the theory behind the remote sensing of terrestrial plant biodiversity: why spectral diversity relates to plant functional traits and phylogenetic diversity. Starting with first principles, it connects plant biochemistry, physiology, and macroecology to remotely sensed spectra and explores the processes behind the patterns we observe. Examples from the field demonstrate the rising synthesis of multiple disciplines to create a new cross-spatial and spectral science of biodiversity. Part 2 discusses how to implement this evolving science. It focuses on the plethora of novel in-situ, airborne, and spaceborne Earth observation tools currently and soon to be available while also incorporating the ways of actually making biodiversity measurements with these tools. It includes instructions for organizing and conducting a field campaign. Throughout, there is a focus on the burgeoning field of imaging spectroscopy, which is revolutionizing our ability to characterize life remotely. Part 3 takes on an overarching issue for any effort to globalize biodiversity observations, the issue of scale. It addresses scale from two perspectives. The first is that of combining observations across varying spatial, temporal, and spectral resolutions for better understanding—that is, what scales and how. This is an area of ongoing research driven by a confluence of innovations in observation systems and rising computational capacity. The second is the organizational side of the scaling challenge. It explores existing frameworks for integrating multi-scale observations within global networks. The focus here is on what practical steps can be taken to organize multi-scale data and what is already happening in this regard. These frameworks include essential biodiversity variables and the Group on Earth Observations Biodiversity Observation Network (GEO BON). This book constitutes an end-to-end guide uniting the latest in research and techniques to cover the theory and practice of the remote sensing of plant biodiversity. In putting it together, the editors and their coauthors, all preeminent in their fields, have done a great service for those seeking to understand and conserve life on Earth—just when we need it most. For if the world is ever to construct a coordinated response to the planetwide crisis of biodiversity loss, it must first assemble adequate—and global—measures of what we are losing

    Pembangunan indek biokimia bagi spesies tumbuh-tumbuhan hutan hujan tropika menggunakan spektroradiometer lapangan

    Get PDF
    Biochemical elements such plant pigment chlorophyll, carbon, nitrogen and water can affect the physiology and penology development of the plants. However, the traditional method of foliar analysis is no longer able to meet the growing need for biochemical element information. Consequently, this research aims to use vegetation index (VI) model as an alternative method for the production of biochemical element information. During this research, spectrum bands selected either using spectrum transformation divergence (TD) or genetic algorithms-spectrum angle mapper (GA-SAM) method were tested on the three main groups of VI involved of (i) simple ratio (ii) different ratio, and (iii) double ratio. Strong correlation at R value more than 0.8 (at p-value<0.001) between VI model and the field biochemical elements is proficient to estimate biochemical elements of plants. From this study, we can see that the strong correlation formed through the spectrum band selection method of GA-SAM applied in WIGA-SAM for six types of dipterocarp species namely neobalanocarpus heimii sp. (NEOBHE sp.), shorea acuminate sp. (SHORAC sp.), shorea leprosula sp. (SHORL1 sp.), shorea lepidota sp. (SHORL2 sp.), shorea pauciflora sp. (SHORP2 sp.) and shorea maxwelliana sp. (SHORM2 sp.). This findings show that WIGA-SAM capable to help us in determining water content in the leaf tissue. In future, this WIGA-SAM method is very useful in determining water content of the six similar types of dipterocarp species found in a tropical rainforest environment
    corecore