124 research outputs found

    Estimation of Speech Intelligibility Using Perceptual Speech Quality Scores

    Get PDF

    Sensory Communication

    Get PDF
    Contains table of contents on Section 2, an introduction, reports on eleven research projects and a list of publications.National Institutes of Health Grant 5 R01 DC00117National Institutes of Health Grant 5 R01 DC00270National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Grant 5 R01 DC00100National Institutes of Health Contract 7 R29 DC00428National Institutes of Health Grant 2 R01 DC00126U.S. Air Force - Office of Scientific Research Grant AFOSR 90-0200U.S. Navy - Office of Naval Research Grant N00014-90-J-1935National Institutes of Health Grant 5 R29 DC00625U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-181

    Subspace Gaussian Mixture Models for Language Identification and Dysarthric Speech Intelligibility Assessment

    Get PDF
    En esta Tesis se ha investigado la aplicación de técnicas de modelado de subespacios de mezclas de Gaussianas en dos problemas relacionados con las tecnologías del habla, como son la identificación automática de idioma (LID, por sus siglas en inglés) y la evaluación automática de inteligibilidad en el habla de personas con disartria. Una de las técnicas más importantes estudiadas es el análisis factorial conjunto (JFA, por sus siglas en inglés). JFA es, en esencia, un modelo de mezclas de Gaussianas en el que la media de cada componente se expresa como una suma de factores de dimensión reducida, y donde cada factor representa una contribución diferente a la señal de audio. Esta factorización nos permite compensar nuestros modelos frente a contribuciones indeseadas presentes en la señal, como la información de canal. JFA se ha investigado como clasficador y como extractor de parámetros. En esta última aproximación se modela un solo factor que representa todas las contribuciones presentes en la señal. Los puntos en este subespacio se denominan i-Vectors. Así, un i-Vector es un vector de baja dimensión que representa una grabación de audio. Los i-Vectors han resultado ser muy útiles como vector de características para representar señales en diferentes problemas relacionados con el aprendizaje de máquinas. En relación al problema de LID, se han investigado dos sistemas diferentes de acuerdo al tipo de información extraída de la señal. En el primero, la señal se parametriza en vectores acústicos con información espectral a corto plazo. En este caso, observamos mejoras de hasta un 50% con el sistema basado en i-Vectors respecto al sistema que utilizaba JFA como clasificador. Se comprobó que el subespacio de canal del modelo JFA también contenía información del idioma, mientras que con los i-Vectors no se descarta ningún tipo de información, y además, son útiles para mitigar diferencias entre los datos de entrenamiento y de evaluación. En la fase de clasificación, los i-Vectors de cada idioma se modelaron con una distribución Gaussiana en la que la matriz de covarianza era común para todos. Este método es simple y rápido, y no requiere de ningún post-procesado de los i-Vectors. En el segundo sistema, se introdujo el uso de información prosódica y formántica en un sistema de LID basado en i-Vectors. La precisión de éste estaba por debajo de la del sistema acústico. Sin embargo, los dos sistemas son complementarios, y se obtuvo hasta un 20% de mejora con la fusión de los dos respecto al sistema acústico solo. Tras los buenos resultados obtenidos para LID, y dado que, teóricamente, los i-Vectors capturan toda la información presente en la señal, decidimos usarlos para la evaluar de manera automática la inteligibilidad en el habla de personas con disartria. Los logopedas están muy interesados en esta tecnología porque permitiría evaluar a sus pacientes de una manera objetiva y consistente. En este caso, los i-Vectors se obtuvieron a partir de información espectral a corto plazo de la señal, y la inteligibilidad se calculó a partir de los i-Vectors obtenidos para un conjunto de palabras dichas por el locutor evaluado. Comprobamos que los resultados eran mucho mejores si en el entrenamiento del sistema se incorporaban datos de la persona que iba a ser evaluada. No obstante, esta limitación podría aliviarse utilizando una mayor cantidad de datos para entrenar el sistema.In this Thesis, we investigated how to effciently apply subspace Gaussian mixture modeling techniques onto two speech technology problems, namely automatic spoken language identification (LID) and automatic intelligibility assessment of dysarthric speech. One of the most important of such techniques in this Thesis was joint factor analysis (JFA). JFA is essentially a Gaussian mixture model where the mean of the components is expressed as a sum of low-dimension factors that represent different contributions to the speech signal. This factorization makes it possible to compensate for undesired sources of variability, like the channel. JFA was investigated as final classiffer and as feature extractor. In the latter approach, a single subspace including all sources of variability is trained, and points in this subspace are known as i-Vectors. Thus, one i-Vector is defined as a low-dimension representation of a single utterance, and they are a very powerful feature for different machine learning problems. We have investigated two different LID systems according to the type of features extracted from speech. First, we extracted acoustic features representing short-time spectral information. In this case, we observed relative improvements with i-Vectors with respect to JFA of up to 50%. We realized that the channel subspace in a JFA model also contains language information whereas i-Vectors do not discard any language information, and moreover, they help to reduce mismatches between training and testing data. For classification, we modeled the i-Vectors of each language with a Gaussian distribution with covariance matrix shared among languages. This method is simple and fast, and it worked well without any post-processing. Second, we introduced the use of prosodic and formant information with the i-Vectors system. The performance was below the acoustic system but both were found to be complementary and we obtained up to a 20% relative improvement with the fusion with respect to the acoustic system alone. Given the success in LID and the fact that i-Vectors capture all the information that is present in the data, we decided to use i-Vectors for other tasks, specifically, the assessment of speech intelligibility in speakers with different types of dysarthria. Speech therapists are very interested in this technology because it would allow them to objectively and consistently rate the intelligibility of their patients. In this case, the input features were extracted from short-term spectral information, and the intelligibility was assessed from the i-Vectors calculated from a set of words uttered by the tested speaker. We found that the performance was clearly much better if we had available data for training of the person that would use the application. We think that this limitation could be relaxed if we had larger databases for training. However, the recording process is not easy for people with disabilities, and it is difficult to obtain large datasets of dysarthric speakers open to the research community. Finally, the same system architecture for intelligibility assessment based on i-Vectors was used for predicting the accuracy that an automatic speech recognizer (ASR) system would obtain with dysarthric speakers. The only difference between both was the ground truth label set used for training. Predicting the performance response of an ASR system would increase the confidence of speech therapists in these systems and would diminish health related costs. The results were not as satisfactory as in the previous case, probably because an ASR is a complex system whose accuracy can be very difficult to be predicted only with acoustic information. Nonetheless, we think that we opened a door to an interesting research direction for the two problems

    Study to determine potential flight applications and human factors design guidelines for voice recognition and synthesis systems

    Get PDF
    A study was conducted to determine potential commercial aircraft flight deck applications and implementation guidelines for voice recognition and synthesis. At first, a survey of voice recognition and synthesis technology was undertaken to develop a working knowledge base. Then, numerous potential aircraft and simulator flight deck voice applications were identified and each proposed application was rated on a number of criteria in order to achieve an overall payoff rating. The potential voice recognition applications fell into five general categories: programming, interrogation, data entry, switch and mode selection, and continuous/time-critical action control. The ratings of the first three categories showed the most promise of being beneficial to flight deck operations. Possible applications of voice synthesis systems were categorized as automatic or pilot selectable and many were rated as being potentially beneficial. In addition, voice system implementation guidelines and pertinent performance criteria are proposed. Finally, the findings of this study are compared with those made in a recent NASA study of a 1995 transport concept

    Audio-Visual Speech Enhancement Based on Deep Learning

    Get PDF

    Identifying, Evaluating and Applying Importance Maps for Speech

    Full text link
    Like many machine learning systems, speech models often perform well when employed on data in the same domain as their training data. However, when the inference is on out-of-domain data, performance suffers. With a fast-growing number of applications of speech models in healthcare, education, automotive, automation, etc., it is essential to ensure that speech models can generalize to out-of-domain data, especially to noisy environments in real-world scenarios. In contrast, human listeners are quite robust to noisy environments. Thus, a thorough understanding of the differences between human listeners and speech models is urgently required to enhance speech model performance in noise. These differences exist presumably because the speech model does not use the same information as humans for recognizing the speech. A possible solution is encouraging the speech model to attend to the same time-frequency regions as human listeners. In this way, speech model generalization in noise may be improved. We define those time-frequency regions that humans or machines focus on to recognize the speech as importance maps (IMs). In this research, first, we investigate how to identify speech importance maps. Second, we compare human and machine importance maps to understand how they differ and how the speech model can learn from humans to improve its performance in noise. Third, we develop a structured saliency benchmark (SSBM), a metric for evaluating IMs. Finally, we propose a new application of IMs as data augmentation for speech models, enhancing their performance and enabling them to better generalize to out-of-domain noise. Overall, our work demonstrates that we can improve speech models and achieve out-of-domain generalization to different noise environments with importance maps. In the future, we will expand our work with large-scale speech models and deploy different methods to identify IMs and use them to augment the speech data, such as those based on human responses. We can also extend the technique to computer vision tasks, such as image recognition by predicting importance maps for images and use IMs to enhance model performance to out-of-domain data

    Modelo acústico de língua inglesa falada por portugueses

    Get PDF
    Trabalho de projecto de mestrado em Engenharia Informática, apresentado à Universidade de Lisboa, através da Faculdade de Ciências, 2007No contexto do reconhecimento robusto de fala baseado em modelos de Markov não observáveis (do inglês Hidden Markov Models - HMMs) este trabalho descreve algumas metodologias e experiências tendo em vista o reconhecimento de oradores estrangeiros. Quando falamos em Reconhecimento de Fala falamos obrigatoriamente em Modelos Acústicos também. Os modelos acústicos reflectem a maneira como pronunciamos/articulamos uma língua, modelando a sequência de sons emitidos aquando da fala. Essa modelação assenta em segmentos de fala mínimos, os fones, para os quais existe um conjunto de símbolos/alfabetos que representam a sua pronunciação. É no campo da fonética articulatória e acústica que se estuda a representação desses símbolos, sua articulação e pronunciação. Conseguimos descrever palavras analisando as unidades que as constituem, os fones. Um reconhecedor de fala interpreta o sinal de entrada, a fala, como uma sequência de símbolos codificados. Para isso, o sinal é fragmentado em observações de sensivelmente 10 milissegundos cada, reduzindo assim o factor de análise ao intervalo de tempo onde as características de um segmento de som não variam. Os modelos acústicos dão-nos uma noção sobre a probabilidade de uma determinada observação corresponder a uma determinada entidade. É, portanto, através de modelos sobre as entidades do vocabulário a reconhecer que é possível voltar a juntar esses fragmentos de som. Os modelos desenvolvidos neste trabalho são baseados em HMMs. Chamam-se assim por se fundamentarem nas cadeias de Markov (1856 - 1922): sequências de estados onde cada estado é condicionado pelo seu anterior. Localizando esta abordagem no nosso domínio, há que construir um conjunto de modelos - um para cada classe de sons a reconhecer - que serão treinados por dados de treino. Os dados são ficheiros áudio e respectivas transcrições (ao nível da palavra) de modo a que seja possível decompor essa transcrição em fones e alinhá-la a cada som do ficheiro áudio correspondente. Usando um modelo de estados, onde cada estado representa uma observação ou segmento de fala descrita, os dados vão-se reagrupando de maneira a criar modelos estatísticos, cada vez mais fidedignos, que consistam em representações das entidades da fala de uma determinada língua. O reconhecimento por parte de oradores estrangeiros com pronuncias diferentes da língua para qual o reconhecedor foi concebido, pode ser um grande problema para precisão de um reconhecedor. Esta variação pode ser ainda mais problemática que a variação dialectal de uma determinada língua, isto porque depende do conhecimento que cada orador têm relativamente à língua estrangeira. Usando para uma pequena quantidade áudio de oradores estrangeiros para o treino de novos modelos acústicos, foram efectuadas diversas experiências usando corpora de Portugueses a falar Inglês, de Português Europeu e de Inglês. Inicialmente foi explorado o comportamento, separadamente, dos modelos de Ingleses nativos e Portugueses nativos, quando testados com os corpora de teste (teste com nativos e teste com não nativos). De seguida foi treinado um outro modelo usando em simultâneo como corpus de treino, o áudio de Portugueses a falar Inglês e o de Ingleses nativos. Uma outra experiência levada a cabo teve em conta o uso de técnicas de adaptação, tal como a técnica MLLR, do inglês Maximum Likelihood Linear Regression. Esta última permite a adaptação de uma determinada característica do orador, neste caso o sotaque estrangeiro, a um determinado modelo inicial. Com uma pequena quantidade de dados representando a característica que se quer modelar, esta técnica calcula um conjunto de transformações que serão aplicadas ao modelo que se quer adaptar. Foi também explorado o campo da modelação fonética onde estudou-se como é que o orador estrangeiro pronuncia a língua estrangeira, neste caso um Português a falar Inglês. Este estudo foi feito com a ajuda de um linguista, o qual definiu um conjunto de fones, resultado do mapeamento do inventário de fones do Inglês para o Português, que representam o Inglês falado por Portugueses de um determinado grupo de prestígio. Dada a grande variabilidade de pronúncias teve de se definir este grupo tendo em conta o nível de literacia dos oradores. Este estudo foi posteriormente usado na criação de um novo modelo treinado com os corpora de Portugueses a falar Inglês e de Portugueses nativos. Desta forma representamos um reconhecedor de Português nativo onde o reconhecimento de termos ingleses é possível. Tendo em conta a temática do reconhecimento de fala este projecto focou também a recolha de corpora para português europeu e a compilação de um léxico de Português europeu. Na área de aquisição de corpora o autor esteve envolvido na extracção e preparação dos dados de fala telefónica, para posterior treino de novos modelos acústicos de português europeu. Para compilação do léxico de português europeu usou-se um método incremental semi-automático. Este método consistiu em gerar automaticamente a pronunciação de grupos de 10 mil palavras, sendo cada grupo revisto e corrigido por um linguista. Cada grupo de palavras revistas era posteriormente usado para melhorar as regras de geração automática de pronunciações.The tremendous growth of technology has increased the need of integration of spoken language technologies into our daily applications, providing an easy and natural access to information. These applications are of different nature with different user’s interfaces. Besides voice enabled Internet portals or tourist information systems, automatic speech recognition systems can be used in home user’s experiences where TV and other appliances could be voice controlled, discarding keyboards or mouse interfaces, or in mobile phones and palm-sized computers for a hands-free and eyes-free manipulation. The development of these systems causes several known difficulties. One of them concerns the recognizer accuracy on dealing with non-native speakers with different phonetic pronunciations of a given language. The non-native accent can be more problematic than a dialect variation on the language. This mismatch depends on the individual speaking proficiency and speaker’s mother tongue. Consequently, when the speaker’s native language is not the same as the one that was used to train the recognizer, there is a considerable loss in recognition performance. In this thesis, we examine the problem of non-native speech in a speaker-independent and large-vocabulary recognizer in which a small amount of non-native data was used for training. Several experiments were performed using Hidden Markov models, trained with speech corpora containing European Portuguese native speakers, English native speakers and English spoken by European Portuguese native speakers. Initially it was explored the behaviour of an English native model and non-native English speakers’ model. Then using different corpus weights for the English native speakers and English spoken by Portuguese speakers it was trained a model as a pool of accents. Through adaptation techniques it was used the Maximum Likelihood Linear Regression method. It was also explored how European Portuguese speakers pronounce English language studying the correspondences between the phone sets of the foreign and target languages. The result was a new phone set, consequence of the mapping between the English and the Portuguese phone sets. Then a new model was trained with English Spoken by Portuguese speakers’ data and Portuguese native data. Concerning the speech recognition subject this work has other two purposes: collecting Portuguese corpora and supporting the compilation of a Portuguese lexicon, adopting some methods and algorithms to generate automatic phonetic pronunciations. The collected corpora was processed in order to train acoustic models to be used in the Exchange 2007 domain, namely in Outlook Voice Access

    Deep Learning for Distant Speech Recognition

    Full text link
    Deep learning is an emerging technology that is considered one of the most promising directions for reaching higher levels of artificial intelligence. Among the other achievements, building computers that understand speech represents a crucial leap towards intelligent machines. Despite the great efforts of the past decades, however, a natural and robust human-machine speech interaction still appears to be out of reach, especially when users interact with a distant microphone in noisy and reverberant environments. The latter disturbances severely hamper the intelligibility of a speech signal, making Distant Speech Recognition (DSR) one of the major open challenges in the field. This thesis addresses the latter scenario and proposes some novel techniques, architectures, and algorithms to improve the robustness of distant-talking acoustic models. We first elaborate on methodologies for realistic data contamination, with a particular emphasis on DNN training with simulated data. We then investigate on approaches for better exploiting speech contexts, proposing some original methodologies for both feed-forward and recurrent neural networks. Lastly, inspired by the idea that cooperation across different DNNs could be the key for counteracting the harmful effects of noise and reverberation, we propose a novel deep learning paradigm called network of deep neural networks. The analysis of the original concepts were based on extensive experimental validations conducted on both real and simulated data, considering different corpora, microphone configurations, environments, noisy conditions, and ASR tasks.Comment: PhD Thesis Unitn, 201
    corecore