220 research outputs found

    Investigation Of Agricultural Damages Caused By Air Pollution Over Europe By Using Wrf/cmaq Modelling System 

    Get PDF
    Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, Yüksek LisansM.Sc. (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, YAŞAR BURAK ÖZTANERThe population of Europe, including non-EU countries located in continental Europe, is estimated to be around 740 million, which corresponds to 10% of the world's population (United Nations-UN, 2015). Wheat production in between 1996-2014 in Europe is 133.9 million tons (Mt). This corresponds to 21% of world's wheat production (FAO, 2015). In addition, because of Industrial Revolution in Europe an increasing trend in air pollution and pollutants that persists up to present day can be observed. This increase in air pollution is the cause of critical environmental impacts. Even though there are various studies in Europe about impacts of ozone on human health, not many studies exist to investigate ozone's impact on agriculture. Besides the negative impact on human health, exposure to high concentrations of ozone is a threat to food security and agricultural activities. Elevated O3 concentrations and changes in the concentrations affect plant life functions such as photosynthesis, transpiration, and gas exchanges. It has been found by many scientific studies that ground-level ozone exposure reduces photosynthesis of crops since it damages substomatals apoplast, cell membranes and walls. Decreased photosynthesis result in low growth rates in terms of volume or biomass. In Europe and United States of America (USA), various observational and experimental studies conducted on this subject. These studies resulted in different empirical ozone exposure equations for different parts of the world. Agricultural production losses can be calculated because of these equations. In Europe, AOT40 (cumulative summation of differences in high ozone concentrations over 40 ppb) is a widely used method which is a product of experimental studies conducted in Europe. However, in USA, W126 method (summation of weighted ozone concentrations in day light time by using sigmoidal distribution equation) is being widely used. Other than these two methods there are many other methods used around the world to calculate agricultural production loss due to ozone impacts. Some of these methods are daily summation of difference of threshold values (SUM-X method) or daily mean calculation (M-X method). There are several studies from different parts of the world that were conducted on the impacts of ozone on agricultural crops (i.e., wheat, soybean, rice, potato), their yield losses, and relative yield losses. In a study by USEPA, a 10% crop loss due to ozone was observed in agricultural production in USA. A similar study for the Europe found that the loss was around 5% in Europe. Tropospheric ozone as a regional and global threat to plants threatens our current and future food security. In literature, there are studies conducted on impacts of ozone on agricultural productions for different regions in the world. Even though these studies can show the local loss, they fail to perform well for regional impacts. For this reason, some scientific studies focused on quantifying the impact of ozone pollution on crops using regional or global atmospheric models. Low spatial resolution of global models affects the level of representation of results. Spatial resolution is better in regional studies compared to global ones, however, there are studies utilizing this higher resolution to calculate agricultural production losses. In a study, in India, conducted on impacts of ozone on wheat production loss using WRF/Chem regional chemical transportation model it was found that wheat production loss was 5 Mt for 2005. In a similar study, Eta-CMAQ regional chemical transport model was used to estimate the soybean loss in USA (2005), and found that amount of loss was in range of 1.7-14.2 %. Due to regional changes in ozone concentrations, working with a regional chemistry model yields better results for the calculation of agricultural production loss. In global models, there are many uncertainties due to low resolutions. In this study, WRF/CMAQ modeling system with three different ozone crop exposure indices (AOT40, W126, and M7) was used to estimate wheat production loss in Europe. Growing season was selected as May – July for wheat in Europe. European Environmental Agency (EEA) AirBase database ozone observations were used to calculate mean ozone values for growing season of years 2008 to 2012. The highest growing season average (45.6 ppb) was found in 2009. Averages for other years are as follows, 33.28 ppb for 2008, 29.29 ppb for 2010, 39.12 ppb for 2011, and 30.42 for 2012. This is the reason behind the selected study period growing season (May-July) of 2009. Country based total wheat production data for 2009 were obtained from Food and Agriculture Organizations (FAO). Spatial distribution of country based total wheat production data was performed by using gridded global wheat production map (for year 2000) from studies of Monfreda et al. (2008) and Ramankutty et al. (2008). For each grid cell countries contain a total value was found. These totals then divided by number of grid cells countries contain and grid cell ratios were calculated. These ratios were multiplied with total wheat production data of FAO 2009 and spatially distributed. This created map then remapped according to model area and resolution. In this study, modeling method is WRF / CMAQ modeling system with 30 km spatial resolution. As Meso-scale Atmosphere Circulation Model, WRF-ARW 3.6 (Weather Research and Forecast-Advanced Research WRF) was used with 35 horizontal levels, and with 191 cells in east-west and 159 cells in north-south direction. Also, 0.75 degree ECWMF Era-Interim Reanalysis data was used to prepare initial and boundary conditions of the model. For land-use, MODIS-30 20-class data was prepared. DUMANv2.0 emission model (developed by Istanbul Technical University, Eurasia Institute of Earth Science) was used for emission modeling. Inputs of emission model were anthropogenic, biogenic, and fire emissions. Anthropogenic emissions are created from TNO-2009 database by using DUMANv2.0 with CB05-AERO5 chemical mechanism. MEGAN v2.10 biogenic emission model was used for biogenic emissions. Fire emissions were calculated by data obtained from GFASv1.0 satellite dataset. CMAQv4.7.1 model with CB05-AERO5 chemical mechanism was used for chemical transportation modeling. WRF outputs were converted into M3MODEL structure by using MCIP (Meteorology-Chemistry Interface Processor). ICON (Initial Cond.) and BCON (Boundary Cond.) were used to create initial and boundary conditions. Inputs for these modules were obtained from ECMWF – MACC 3-hour model output with spatial resolution of 80-100 km. Open sky photolysis data were prepared with JPROC (Photolysis Rate Processor). Ozone variable was obtained from CMAQv4.7.1 model and applied to three ozone exposure indices. Gridded map of wheat production map of 2009 were multiplied with these values, thus calculated the wheat loss in each cell. Total economic loss was calculated by multiplication of calculated production loss and FAO 2009 country based wheat production price index. In order to calculate economic loss between countries, each country's 2009 GDP was normalized. The highest wheat loss was found in Russia (7.14 Mt - 11.6% and 17.3 Mt – 28%) by AOT40 and M7 methods while W126 method found the highest loss in Italy (1.54 Mt-24%). Following countries generally have higher wheat loss in every method, Turkey (6.8 Mt), France (3.47 Mt), Germany (2.45 Mt), and Egypt (5.54 Mt). According to the regional results the highest loss was found in South (8.3 Mt – 61%) and East (12.8 Mt – 37%) Europe, the lowest loss was found in Northern European countries (2.2%- 0.65Mt). Greatest losses were found in M7 method while W126 method has the lowest loss values. This provides a range (min-max) for ozone caused wheat loss in Europe. The highest economic loss was in Russia with 2.23 billion American Dollar (USD). Turkey (2.24bn),Italy(2.24 bn), Italy (1.64 bn), and Egypt (1.59bn)wereothercountrieswithhigheconomicloss,rightafterRussia.EasternEuropehasthehighestregionaleconomiclosseswith( 1.59 bn) were other countries with high economic loss, right after Russia. Eastern Europe has the highest regional economic losses with (1.6 bn) USD and Southern Europe (2.8bn).ThelowesteconomiclosswasinNorthernEurope(2.8 bn). The lowest economic loss was in Northern Europe (0.01 bn). Reason behind the high wheat loss values in Southern and Eastern Europe region is due to ozone precursor transport from Middle – Western European region via southerly – easterly meteorological systems. This causes higher ozone concentrations in Southern and Eastern Europe and affect wheat loss. Emission regulations should be more focused and applied in Middle – Western European countries.Avrupa nüfusu – Avrupa Birliği üyesi olmayana ama kıtasal Avrupa'da yer alan ülkelerle birlikte – 740 milyon civarındadır. Bu dünya nüfusunun %10'una denk gelmektedir (United Nations-UN, 2015). Ayrıca, Avrupa'nın 1996 – 2014 yılları arası toplam buğday üretim miktarı ortalaması 133.9 milyon metrik ton olduğu görülmektedir. Dünya buğday üretiminin %21'ne karşılık gelmektedir (FAO,2015). Buna ek olarak, Endüstri Devrimi'nin Avrupa'da gerçekleşmesinin bir sonucu olarak, bölgenin hava kirliliğinde ve kirletici emisyonlarında günümüze kadar bir artış gözlemlenmiştir. Bu artış beraberinde ciddi çevresel etkileri getirmektedir. Avrupa'da insan sağlığı üzerine yapılan çeşitli çalışmalar ile ozon etkisi tespit edilse de,tarım üzerine odaklanmış çok fazla çalışma bulunmamaktadır. Yüksek Ozon konsantrasyonuna maruziyet, insan sağlığına olan zararlı etkilerinin yanı sıra gıda güvenliğine ve tarımsal aktivitelere ciddi etkileri gözlemlenmiştir. Yüksek ozon konsantrasyonu ve ozon konsantrasyonundaki değişimler, fotosentez, terleme ve gaz alışverişi gibi bitki yaşam fonksiyonlarını ciddi şekilde etkilemektedir. Literatürde birçok çalışma, yüksek ozon konsantrasyonundan dolayı bitkilerin alt stoama çeperinin, hücre zarı ve duvarlarının zarar gördüğünü göstermiştir. Bu zarar fotosentez hızını düşürmektedir. Bu durum bitki büyümesi hacim ve kütle olarak azalmasına neden olmaktadır. Avrupa'da ve Amerika Birleşik Devletleri'nde (USA) bir çok farklı deneysel ve gözlemsel çalışmalar yapılmıştır. Bu çalışmalar sayesinde dünyanın farklı bölgelerinde daha iyi çalıştığı düşünülen ampirik ozon maruziyet denklemleri üretilmiştir. Tarımsal üretim kayıpları bu ve bunun gibi denklemler sayesinde hesaplanabilmektedir. Avrupa'da yapılan deneysel çalışmalar neticesinde AOT40 – 40 ppb'den yüksek ozon konsantrasyonlarınının farkının kümülatif toplamları – yöntemi yaygın olarak kullanılmaktadır. USA'da ise W126 yöntemi USEPA tarafından önerilmektedir. W126 yöntemi sigmoidal dağılım fonksiyonunu kullanarak ozon konsantrasyonlarına ağırlık ataması yapıp gün ışığı süresince olan toplamı almaktadır. Bu iki yöntem dışında belirli eşik değerlerinin farkının günlük toplam şeklinde hesaplanması (SUM-X yöntemi) veya günlük ortalama şeklinde hesaplanması (M-X yöntemi) gibi bir çok yöntemde ozondan kaynaklı tarımsal üretim kaybının hesaplanmasında dünya çapında kullanılmaktadır. Dünyanın çeşitli yerlerinde yapılan çalışmalar ozonun buğday, soya fasulyesi, pirinç patates gibi tarım ürünlerinin üretiminde ve veriminde kayıplar olduğu söylemiştir. USEPA tarafından 1996 yılında USA için yapılan bir çalışmada yüksek ozon konsantrasyonuna maruz kalması sebebiyle tarımsal üretimde %10 için kayıp olduğu tespit edilmiştir. Benzer bir çalışma bu kaybın Avrupa %5 civarında olduğu göstermektedir. Küresel ve bölgesel bir problem olarak ozon, bitkiler üzerindeki bu etkisi sebebiyle günümüzdeki ve gelecekteki gıda güvenliğini tehdit etmektedir. Literatürde dünyanın çeşitli bölgelerinde ozonun çeşitli tarım ürünleri üzerindeki etkisini ölçümler ile inceleyen çalışmalar mevcuttur. Bu çalışmalar lokal kaybı gösterse de bölgesel etkiyi göstermekte zayıftır. Bu yüzden bölgesel veya küresel olarak modelleme yöntemi ile üretim kaybı hesaplayan bilimsel çalışmalar literatürde bulunmaktadır. Küresel model yaklaşımı yapılan çalışmaların yersel çözünürlüklerinin düşük olması, elde edilen sonuçların temsiliyetini etkilemektedir. Bölgesel çalışmalarda ise çözünürlük iyi olmasına rağmen, tarım üretim kaybı hesabı hemen hemen hiç bir çalışma da hesaplanmamıştır. WRF/Chem bölgesel kimyasal taşınım modeli ile Hindistan için yapılan bir çalışmada 2005 yılında ozondan kaynaklı buğday üretim kaybı 5 milyon metrik ton olarak hesaplanmıştır. Yine benzer bir çalışmada Eta-CMAQ modeli ile USA'daki soya fasulyesi üretim kaybı 1.7 – 14.2 % olarak hesaplanmıştır. Ozonun bölgesel değişimi sebebiyle bölgesel kimyasal model ile çalışmak hesaplanan tarımsal üretim kaybındaki belirsizliği azalmaktadır. Küresel modellerde yüzeyin tanımlanması, yersel çözünürlüğün düşük olması gibi birden çok belirsizlik söz konusudur. Bu çalışmada WRF/CMAQ model sistemi ile Avrupa'daki Buğday üretim kaybının üç farklı ozon maruziyet denklemi (AOT40, W126 ve M7) kullanılarak belirlenmiştir. Bunu için öncelikle buğday bitkisini büyüme mevsimi (Avrupa için Mayıs – Temmuz ) literatüre göre tespit edilmiştir. Avrupa Çevre Ajansı (Europen Enviromental Agency - EEA) AirBase veri tabanı ozon gözlemleri 2008 -2012 yılları büyüme mevsimleri ortalamaları hesaplanmış ve incelenmiştir. En yüksek buğday büyüme mevsimi ortalaması (45.6 ppb) 2009 yılında bulunmuştur. Bu değer 2008 yılında 33.28 ppb, 2010 yılında 29.29 ppb, 2011 yılında 39.12 ve 2012 yılında 30.42 ppb olarak hesaplanmıştır. Bu yüzden çalışma dönemi olarak 2009 büyüme mevsimi (Mayıs - Temmuz) seçilmiştir. Çalışmada Food and Agriculture Organizations (FAO)'dan seçilen yıl 2009 için ülke bazlı toplam buğday üretim verisi temin edilmiştir. Ülke bazlı toplam buğday üretim verilerinin yersel dağılımı ise Monfreda vd. (2008) ve Ramankutty vd. (2008) çalışmalarında yayınlanan küresel ve gridlenmiş 2000 yılı için buğday üretim haritası kullanılarak yapılmıştır. Bunun için ülkelere düşen her grid hücresinin ülke bazlı toplamı alınmıştır. Hesaplanan toplamlar, grid hücrelerindeki değerlere bölünerek her bir hücrenin oranı belirlenmiştir. Bu oranlar FAO 2009'dan temin edilen toplam buğday üretim verisi ile çarpılarak 2009 yılı FAO buğday üretim verileri yersel olarak dağıtılmıştır. Hazırlanan harita, model alanı ve çözünürlüğüne göre yeniden haritalandırılmıştır. Çalışmada modelleme yöntemi olarak WRF / CMAQ model sistemi 30 km yersel çözünürlükle kurgulanmıştır. Mezo-ölçek Atmosfer Sirkülasyon Modeli olarak WRF-ARW 3.6 (Weather Research and Forecast-Advanced Research WRF) modeli, düşeyde 35 seviye, doğu-batı yönünde 191 ve kuzey-güney yönünde 159 hücre ile çalıştırılmıştır. Ayrıca 0.75 derece ECWMF Era-Interim Reanalysis verisi modelin başlangıç ve sınır koşullarının hazırlanması için kullanılmıştır. Yüzey kullanımı için MODIS-30s 20-Sınıf verisi hazırlanmıştır. Emisyon modellemesi, İTÜ Avrasya Yer Bilimleri Enstitüsü tarafından geliştirilen DUMANv2.0 modeli kullanılarak yapılmıştır. Emisyon modeline insan kaynaklı, biyojenik ve yangın emisyonları girdi olarak verilmiştir. İnsan kaynaklı emisyonlar, TNO-2009 veri tabanından elde edilmiş ve DUMANv2.0 tarafından CB05-AERO5 kimyasal mekanizmasına göre işlenmiştir. Biyojenik emisyonlar için MEGAN v2.10 kullanılmıştır. Yangın emisyonları ise literatürde yer alan ve GFASv1.0 uydu veri setinden elde edilen bilgilerle hesaplanmıştır. Kimyasal Taşınım modeli olarak CMAQv4.7.1 modeli CB05-AERO5 kimyasal mekanizmasına göre çalıştırılmıştır. İlk olarak WRF çıktıları MCIP (Meteorology-Chemistry Interface Processor) kullanılarak M3MODELs yapısına çevrilmiştir. ICON (Initial Cond.) ve BCON (Boundary Cond.) modülleri kimyasal başlangıç ve sınır koşullarını oluşturmak için çalıştırılmıştır. Bu modüllere girdi bilgisi ECMWF – MACC 3 saatlik model (yersel çözünürlüğü 80-100 km) çıktılarından sağlanmıştır. JPROC (Photolysis Rate Processor) ile açık gökyüzü şartlarındaki fotoliz bilgisi hazırlanmıştır. CMAQv4.7.1 modelinden ozon değişkeni temin edilmiş ve belirlenen üç ozon maruziyet denklemlerine uygulanmıştır. Hazırlanan 2009 yılı için gridlenmiş buğday üretim haritası ile çarpılarak her hücredeki buğday kaybı hesaplanmıştır. Bu kayıplar ile FAO'dan 2009 yılı için alınan ülke bazlı buğday üretici fiyat indeksi çarpılarak her bir ülkenin toplam ekonomik kaybı hesaplanmıştır. Ülkeler arası ekonomik kaybı hesaplayabilmek için her ülkenin 2009 yılı için GDP'si ile normalize edilerek yorumlanmıştır. Buna göre, en yüksek buğday kaybı AOT40 ve M7 yöntemleri ile Rusya'da (7.14 Mt - %11.6 ve 17.3 Mt %28), W126 yöntemi ile İtalya'da (1.54 Mt-%24) hesaplanmıştır. Genel olarak kaybın tüm yöntemlerde yüksek görüldüğü diğer ülkeler, Türkiye (6.8 Mt), Fransa (3.47 Mt), Almanya (2.45 Mt) ve Mısır (5.54 Mt)'dır. Bölgesel olarak kayıplar incelendiğinde ise tüm yöntemler içinde en yüksek Güney (8.3 Mt - %61) ve Doğu (12.8 Mt – %37 ) Avrupa'da, en düşük bölge ise kuzey Avrupa ülkeleri (%2.2- 0.65Mt) olduğu belirlenmiştir. En yüksek hesaplanan kayıplar M7 yönteminde, en düşük kayıplar ise W126 yöntemi ile yapılan hesaplamada bulunmuştur. Bu sonuç Avrupa'da ozondan kaynaklı buğday kaybı hakkında bir aralık (minimum - maksimum) sunmaktadır. En yüksek ekonomik kayıp Rusya'da 2.23 Milyar Amerikan Doları (USD) olarak hesaplanmıştır. Turkiye (2.24Milyar),Italya(2.24 Milyar), Italya (1.64 Milyar), Mısır (1.59Milyar)Rusyayıtakipetmektedir.Hesaplananekonomikkayıplarago¨re,enyu¨ksekkayıplarDog˘u( 1.59 Milyar) Rusya'yı takip etmektedir. Hesaplanan ekonomik kayıplara göre, en yüksek kayıplar Doğu (1.6 Milyar) ve Güney (2.8Milyar)Avrupau¨lkelerinde,endu¨s\cu¨kekonomikzararyineKuzeyAvrupau¨lkelerinde(2.8 Milyar) Avrupa ülkelerinde, en düşük ekonomik zarar yine Kuzey Avrupa ülkelerinde (0.01 Milyar) görülmüştür. Güney ve Doğu Avrupa'da bu derece yüksek kayıpların çıkması, Merkez ve Batı Avrupa ülkelerindeki endüstriden kaynaklı ozon öncül kirleticilerin güney ve doğu yönlü meteorolojik sistemlerle taşınmasıdır. Bu sebeple Avrupa'nın güneyinde ve doğusunda ozon yüksektir ve buğday kaybı bundan dolayı daha yüksek hesaplanmıştır. Emisyon kontrolleri Batı ve Merkez Avrupa ülkelerinde daha yoğun şekilde uygulanmalıdır.M.Sc.Yüksek Lisan

    Air pollution: deposition to and impacts on vegetation in (South-)East Europe, Caucasus, Central Asia (EECCA/SEE) and South-East Asia

    Get PDF
    Increased ratification of the Protocols of the Convention on Long-range Transboundary Air Pollution (LRTAP) was identified as a high priority in the new long-term strategy of the Convention. Increased ratification and full implementation of air pollution abatement policies is particularly desirable for countries of Eastern Europe, the Caucasus and Central Asia (EECCA) and South-Eastern Europe (SEE). Hence, scientific activities within the Convention will need to involve these countries. In the current report, the ICP Vegetation has reviewed current knowledge on the deposition of air pollutants to and their impacts on vegetation in EECCA (Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Moldova, Russian Federation, Tajikistan, Turkmenistan, Ukraine and Uzbekistan) and SEE countries (Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Greece, Macedonia, Montenegro, Romania, Serbia, Slovenia and Turkey). As an outreach activity to Asia we have also reviewed current knowledge on this subject for the Malé Declaration countries in South-East Asia (SEA; Bangladesh, Bhutan, India, Iran, Maldives, Nepal, Pakistan and Sri Lanka). Air pollution is a main concern in Asia due to enhanced industrialisation, which is directly linked to continued strong economic growth in recent decades. In these regions, there is generally a lack of an extensive network of monitoring stations to assess the magnitude of air concentrations and depositions of pollutants. In addition, emission inventories are often incomplete or not reported at all for some pollutants, which makes it difficult to validate atmospheric transport models for these regions. Furthermore, there is often a lack of coordinated monitoring networks to assess the impacts of air pollution on vegetation. Hence, the risk of adverse impacts on vegetation often has to be assessed using atmospheric transport models in conjunction with metrics developed to compute the risk of air pollution impacts on vegetation, such as critical loads and levels. Here we have focussed on the following air pollutants: nitrogen, ozone, heavy metals, POPs (EECCA/SEE countries) and aerosols, including black carbon as a component (South-East Asia)

    Air pollution and vegetation: ICP Vegetation annual report 2013/2014

    Get PDF
    The International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops (ICP Vegetation) was established in 1987. It is led by the UK and has its Programme Coordination Centre at the Centre for Ecology and Hydrology (CEH) in Bangor. It is one of seven ICPs and Task Forces that report to the Working Group on Effects (WGE) of the Convention on Long-range Transboundary Air Pollution (LRTAP Convention) on the effects of atmospheric pollutants on different components of the environment (e.g. forests, fresh waters, materials) and health in Europe and North-America. Today, the ICP Vegetation comprises an enthusiastic group of over 200 scientists from 42 countries, including scientists from outside the UNECE region. An overview of contributions to the WGE workplan and other research activities in the year 2013/14 is provided in this report

    A Regional Nuclear Conflict Would Compromise Global Food Security

    Get PDF
    A limited nuclear war between India and Pakistan could ignite fires large enough to emit more than 5 Tg of soot into the stratosphere. Climate model simulations have shown severe resulting climate perturbations with declines in global mean temperature by 1.8 C and precipitation by 8%, for at least 5 y. Here we evaluate impacts for the global food system. Six harmonized state-of-the-art crop models show that global caloric production from maize, wheat, rice, and soybean falls by 13 (1)%, 11 (8)%, 3 (5)%, and 17 (2)% over 5 y. Total single-year losses of 12 (4)% quadruple the largest observed historical anomaly and exceed impacts caused by historic droughts and volcanic eruptions. Colder temperatures drive losses more than changes in precipitation and solar radiation, leading to strongest impacts in temperate regions poleward of 30N, including the United States, Europe, and China for 10 to 15 y. Integrated food trade network analyses show that domestic reserves and global trade can largely buffer the production anomaly in the first year. Persistent multiyear losses, however, would constrain domestic food availability and propagate to the Global South, especially to food-insecure countries. By year 5, maize and wheat availability would decrease by 13% globally and by more than 20% in 71 countries with a cumulative population of 1.3 billion people. In view of increasing instability in South Asia, this study shows that a regional conflict using <1% of the worldwide nuclear arsenal could have adverse consequences for global food security unmatched in modern history

    Influence of abiotic stress factors on VOCs emission from Portuguese rice paddy fields: relation with increased climate change

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente Perfil de Gestão de Sistemas AmbientaisPlants are emitting chemical-signals to the atmosphere in response to stress factors - Volatile Organic Compounds (VOCs). VOCs have higher influence on atmosphere chemistry: they are acting as photochemical precursors in tropospheric ozone formation. Present work studies VOCs emission released by rice (Oryza sativa L cv. Aríete) cycle in paddy fields, in aleatory schemes with three replicates, in two separate soil plots with different textures (silty clay and loamy sand), studying open field conditions and open top chambers (OTCs) under influence of treatments with induced abiotic stress (increase temperature and simultaneously temperature and CO2 atmospheric concentration enhancement). VOCs were extracted from plant by solid phase micro extraction (SPME) and stem distillation extraction (SDE), and analyzed by gas chromatography coupled to mass spectrometry (GC/MS) using two GC capillary columns with different polarities, one non-polar (DB-5) and other polar (DB-WAX). A total of 33 VOCs using a non-polar column and 22 VOCs using a polar column, in both set of results were identified the three main classes of compounds: green leaf volatiles (GLV), monoterpenes and sesquiterpenes. Between rice cycle VOCs vary their trend and on vegetative stage were observed more VOCs, followed by ripening and lesser on reproductive. Silty clay soil demonstrated higher amount of VOCs released if compared with loamy sand texture. Between OTCs, more compounds were released by increasing temperature than simultaneously temperature and CO2. In Intergovernmental Panel for Climate Change (IPCC) scenarios with emergent trend of increasing temperature and CO2 atmospheric concentration, two effects are inherent to rice VOCs emission, one negative with higher emission related with temperature and other positive with less emission associated CO2. Field data measurements addictions in air quality models will help achievements of realistic previsions and better understand the effect of climate change in air quality on a global scale.Portuguese Foundation for Science and Technology; FCT-UNL and partners from INIAV and UTAD, on a project named PTDC/AGR-AAM/102529/200

    The Extension of the RAINS Model to Greenhouse Gases

    Get PDF
    Many of the traditional air pollutants and greenhouse gases have common sources, offering a cost-effective potential for simultaneous improvements for both traditional air pollution problems as well as climate change. A methodology has been developed to extend the RAINS integrated assessment model to explore synergies and trade-offs between the control of greenhouse gases and air pollution. With this extension, the RAINS model allows now the assessment of emission control costs for the six greenhouse gases covered under the Kyoto Protocol (CO2, CH4, N2O and the three F-gases) together with the emissions of air pollutants SO2, NOX, VOC, NH3 AND PM. In the first phase of the study, emissions, costs and control potentials for the six greenhouse gases covered in the Kyoto Protocol have been estimated and implemented in the RAINS model. Emission estimates are based on methodologies and emission factors proposed by the IPCC emission reporting guidelines. The large number of control options for greenhouse gases have been grouped into approximately 150 packages of measures and implemented in the RAINS model for the European countries. These control options span a wide range of cost-effectiveness. There a re certain advanced technical measures with moderate costs, and certain measures exist for which the economic assessment suggests even negative costs, if major side impacts (cost savings) are calculated. Illustrative example calculations clearly demonstrate that conclusions on the cost-effectiveness of emission reduction strategies are crucially depending on the boundaries of the analysis. The net cost of greenhouse gas control strategies are significantly lower if the immediate cost-savings from avoided air pollution control costs are taken into consideration. For a 15 percent reduction of the CO2 emissions from the power sector in the EU, avoided pollution control costs could compensate two third of the CO2 control costs. Depending on the design of the control strategy, net costs of greenhouse gas mitigation could even be negative, which is in stark contrast to conclusions for a CO2 only strategy. However, there are certain greenhouse gas mitigation measures, such as increased use of biomass that could deteriorate the negative impacts of air pollution, while yielding very little economic synergies. A combined approach towards greenhouse gas mitigation and air pollution control would not only reveal economic synergies, but also harness additional environmental benefits. Even in a situation with stringent emission control requirements for air pollution as it is required by the EU legislation, modifications in fuel use geared towards reductions of greenhouse gases could lead as a side impact to significant reductions in the residual emissions of air pollutants. The economic benefits of such "windfall emission reductions" could be substantial. The extended RAINS model framework will offer a tool to systematically investigate such economic and environmental synergies between greenhouse gas mitigation and air pollution control while avoiding negative side impacts
    corecore