590 research outputs found

    LOW SNR TRESHOLD IN RAPID ESTIMATORS OF COMPLEX SINUSOIDALS

    Get PDF
    A task of estimation of complex sinusoid frequency is considered. A particular but practically important case of low signal-to-noise ratio (SNR) is studied. The low SNR threshold, commonly overlooked in development of the rapid estimator of complex sinusoidals, is addressed. Signals of different length are considered and SNR is varied in wide limits. It is demonstrated that a simple interpolation with factor 2 lowers the SNR threshold by 1.5dB for the most complicated practical situations. Further interpolation does not bring any improvement. This allows proposing a compromise practical algorithm that provides accuracy close to the limit and is still very simple and fast

    Least-Squares Wavelet Analysis and Its Applications in Geodesy and Geophysics

    Get PDF
    The Least-Squares Spectral Analysis (LSSA) is a robust method of analyzing unequally spaced and non-stationary data/time series. Although this method takes into account the correlation among the sinusoidal basis functions of irregularly spaced series, its spectrum still shows spectral leakage: power/energy leaks from one spectral peak into another. An iterative method called AntiLeakage Least-Squares Spectral Analysis (ALLSSA) is developed to attenuate the spectral leakages in the spectrum and consequently is used to regularize data series. In this study, the ALLSSA is applied to regularize and attenuate random noise in seismic data down to a certain desired level. The ALLSSA is subsequently extended to multichannel, heterogeneous and coarsely sampled seismic and related gradient measurements intended for geophysical exploration applications that require regularized (equally spaced) data free from aliasing effects. A new and robust method of analyzing unequally spaced and non-stationary time/data series is rigorously developed. This method, namely, the Least-Squares Wavelet Analysis (LSWA), is a natural extension of the LSSA that decomposes a time series into the time-frequency domain and obtains its spectrogram. It is shown through many synthetic and experimental time/data series that the LSWA supersedes all state-of-the-art spectral analyses methods currently available, without making any assumptions about or preprocessing (editing) the time series, or even applying any empirical methods that aim to adapt a time series to the analysis method. The LSWA can analyze any non-stationary and unequally spaced time series with components of low or high amplitude and frequency variability over time, including datum shifts (offsets), trends, and constituents of known forms, and by taking into account the covariance matrix associated with the time series. The stochastic confidence level surface for the spectrogram is rigorously derived that identifies statistically significant peaks in the spectrogram at a certain confidence level; this supersedes the empirical cone of influence used in the most popular continuous wavelet transform. All current state-of-the-art cross-wavelet transforms and wavelet coherence analyses methods impose many stringent constraints on the properties of the time series under investigation, requiring, more often than not, preprocessing of the raw measurements that may distort their content. These methods cannot generally be used to analyze unequally spaced and non-stationary time series or even two equally spaced time series of different sampling rates, with trends and/or datum shifts, and with associated covariance matrices. To overcome the stringent requirements of these methods, a new method is developed, namely, the Least-Squares Cross-Wavelet Analysis (LSCWA), along with its statistical distribution that requires no assumptions on the series under investigation. Numerous synthetic and geoscience examples establish the LSCWA as the method of methods for rigorous coherence analysis of any experimental series

    Deep learning-based music source separation

    Get PDF
    Diese Dissertation befasst sich mit dem Problem der Trennung von Musikquellen durch den Einsatz von deep learning Methoden. Die auf deep learning basierende Trennung von Musikquellen wird unter drei Gesichtspunkten untersucht. Diese Perspektiven sind: die Signalverarbeitung, die neuronale Architektur und die Signaldarstellung. Aus der ersten Perspektive, soll verstanden werden, welche deep learning Modelle, die auf DNNs basieren, für die Aufgabe der Musikquellentrennung lernen, und ob es einen analogen Signalverarbeitungsoperator gibt, der die Funktionalität dieser Modelle charakterisiert. Zu diesem Zweck wird ein neuartiger Algorithmus vorgestellt. Der Algorithmus wird als NCA bezeichnet und destilliert ein optimiertes Trennungsmodell, das aus nicht-linearen Operatoren besteht, in einen einzigen linearen Operator, der leicht zu interpretieren ist. Aus der zweiten Perspektive, soll eine neuronale Netzarchitektur vorgeschlagen werden, die das zuvor erwähnte Konzept der Filterberechnung und -optimierung beinhaltet. Zu diesem Zweck wird die als Masker and Denoiser (MaD) bezeichnete neuronale Netzarchitektur vorgestellt. Die vorgeschlagene Architektur realisiert die Filteroperation unter Verwendung skip-filtering connections Verbindungen. Zusätzlich werden einige Inferenzstrategien und Optimierungsziele vorgeschlagen und diskutiert. Die Leistungsfähigkeit von MaD bei der Musikquellentrennung wird durch eine Reihe von Experimenten bewertet, die sowohl objektive als auch subjektive Bewertungsverfahren umfassen. Abschließend, der Schwerpunkt der dritten Perspektive liegt auf dem Einsatz von DNNs zum Erlernen von solchen Signaldarstellungen, für die Trennung von Musikquellen hilfreich sind. Zu diesem Zweck wird eine neue Methode vorgeschlagen. Die vorgeschlagene Methode verwendet ein neuartiges Umparametrisierungsschema und eine Kombination von Optimierungszielen. Die Umparametrisierung basiert sich auf sinusförmigen Funktionen, die interpretierbare DNN-Darstellungen fördern. Der durchgeführten Experimente deuten an, dass die vorgeschlagene Methode beim Erlernen interpretierbarer Darstellungen effizient eingesetzt werden kann, wobei der Filterprozess noch auf separate Musikquellen angewendet werden kann. Die Ergebnisse der durchgeführten Experimente deuten an, dass die vorgeschlagene Methode beim Erlernen interpretierbarer Darstellungen effizient eingesetzt werden kann, wobei der Filterprozess noch auf separate Musikquellen angewendet werden kann. Darüber hinaus der Einsatz von optimal transport (OT) Entfernungen als Optimierungsziele sind für die Berechnung additiver und klar strukturierter Signaldarstellungen.This thesis addresses the problem of music source separation using deep learning methods. The deep learning-based separation of music sources is examined from three angles. These angles are: the signal processing, the neural architecture, and the signal representation. From the first angle, it is aimed to understand what deep learning models, using deep neural networks (DNNs), learn for the task of music source separation, and if there is an analogous signal processing operator that characterizes the functionality of these models. To do so, a novel algorithm is presented. The algorithm, referred to as the neural couplings algorithm (NCA), distills an optimized separation model consisting of non-linear operators into a single linear operator that is easy to interpret. Using the NCA, it is shown that DNNs learn data-driven filters for singing voice separation, that can be assessed using signal processing. Moreover, by enabling DNNs to learn how to predict filters for source separation, DNNs capture the structure of the target source and learn robust filters. From the second angle, it is aimed to propose a neural network architecture that incorporates the aforementioned concept of filter prediction and optimization. For this purpose, the neural network architecture referred to as the Masker-and-Denoiser (MaD) is presented. The proposed architecture realizes the filtering operation using skip-filtering connections. Additionally, a few inference strategies and optimization objectives are proposed and discussed. The performance of MaD in music source separation is assessed by conducting a series of experiments that include both objective and subjective evaluation processes. Experimental results suggest that the MaD architecture, with some of the studied strategies, is applicable to realistic music recordings, and the MaD architecture has been considered one of the state-of-the-art approaches in the Signal Separation and Evaluation Campaign (SiSEC) 2018. Finally, the focus of the third angle is to employ DNNs for learning signal representations that are helpful for separating music sources. To that end, a new method is proposed using a novel re-parameterization scheme and a combination of optimization objectives. The re-parameterization is based on sinusoidal functions that promote interpretable DNN representations. Results from the conducted experimental procedure suggest that the proposed method can be efficiently employed in learning interpretable representations, where the filtering process can still be applied to separate music sources. Furthermore, the usage of optimal transport (OT) distances as optimization objectives is useful for computing additive and distinctly structured signal representations for various types of music sources

    New feature extraction approach for epileptic EEG signal detection using time-frequency distributions

    Get PDF
    10 pages, 6 figures.-- PMID: 20217264.This paper describes a new method to identify seizures in electroencephalogram (EEG) signals using feature extraction in time–frequency distributions (TFDs). Particularly, the method extracts features from the Smoothed Pseudo Wigner-Ville distribution using tracks estimated from the McAulay-Quatieri sinusoidal model. The proposed features are the length, frequency, and energy of the principal track. We evaluate the proposed scheme using several datasets and we compute sensitivity, specificity, F-score, receiver operating characteristics (ROC) curve, and percentile bootstrap confidence to conclude that the proposed scheme generalizes well and is a suitable approach for automatic seizure detection at a moderate cost, also opening the possibility of formulating new criteria to detect, classify or analyze abnormal EEGs.This work has been funded by the Spain CICYT grant TEC2008-02473.Publicad
    corecore