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Abstract

The Least-Squares Spectral Analysis (LSSA) is a robust method of analyzing unequally spaced and non-

stationary data/time series. Although this method takes into account the correlation among the sinusoidal

basis functions of irregularly spaced series, its spectrum still shows spectral leakage: power/energy leaks from

one spectral peak into another. An iterative method called AntiLeakage Least-Squares Spectral Analysis

(ALLSSA) is developed to attenuate the spectral leakages in the spectrum and consequently is used to

regularize data series. In this study, the ALLSSA is applied to regularize and attenuate random noise

in seismic data down to a certain desired level. The ALLSSA is subsequently extended to multichannel,

heterogeneous and coarsely sampled seismic and related gradient measurements intended for geophysical

exploration applications that require regularized (equally spaced) data free from aliasing effects.

A new and robust method of analyzing unequally spaced and non-stationary time/data series is rigor-

ously developed. This method, namely, the Least-Squares Wavelet Analysis (LSWA), is a natural extension

of the LSSA that decomposes a time series into the time-frequency domain and obtains its spectrogram. It is

shown through many synthetic and experimental time/data series that the LSWA supersedes all state-of-the-

art spectral analyses methods currently available, without making any assumptions about or preprocessing

(editing) the time series, or even applying any empirical methods that aim to adapt a time series to the

analysis method. The LSWA can analyze any non-stationary and unequally spaced time series with compo-

nents of low or high amplitude and frequency variability over time, including datum shifts (offsets), trends,

and constituents of known forms, and by taking into account the covariance matrix associated with the

time series. The stochastic confidence level surface for the spectrogram is rigorously derived that identifies

statistically significant peaks in the spectrogram at a certain confidence level; this supersedes the empirical

cone of influence used in the most popular continuous wavelet transform.

All current state-of-the-art cross-wavelet transforms and wavelet coherence analyses methods impose

many stringent constraints on the properties of the time series under investigation, requiring, more often

than not, preprocessing of the raw measurements that may distort their content. These methods cannot

generally be used to analyze unequally spaced and non-stationary time series or even two equally spaced

time series of different sampling rates, with trends and/or datum shifts, and with associated covariance

matrices. To overcome the stringent requirements of these methods, a new method is developed, namely,
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the Least-Squares Cross-Wavelet Analysis (LSCWA), along with its statistical distribution that requires no

assumptions on the series under investigation. Numerous synthetic and geoscience examples establish the

LSCWA as the method of methods for rigorous coherence analysis of any experimental series.
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1 Introduction

1.1 Motivation

Creatures intuitively process signals in various ways. For instance, human eyes can analyze various

visible colours (may be described by electromagnetic waves), or human ears can identify various sounds.

In speech communication, a listener may have a challenging time understanding the main message of a

speaker due to environmental noise contaminating the speech signals. The brain intuitively concentrates and

focuses (zooms) more to extract the important message from noisy environments. The more power (higher

amplitude) the constituent of interest has, the better it can be heard by ears and vise versa. If the noise is

dominant (very low signal-to-noise ratio), then the important message may be buried and not be heard.

A periodic oscillation can be described by a smooth sinusoidal function. It may be a function of time or

distance. Consider the sinusoidal waves f1(t) = A sin(2πωt+ θ) and f2(t) = A cos(2πωt+ θ), where f1 and

f2 are functions of time t. The parameters A, ω and θ are called the amplitude, cyclic frequency1 (number

of cycles per unit time) and phase of the sinusoid, respectively. These functions are periodic with period

T = 1/ω (Mallat, 1999; Brown and Hwang, 2012). An aperiodic signal is a signal that does not repeat its

pattern over a period. If time t is replaced by distance x, then ω is called wavenumber (number of cycles

per unit distance). The sampling rate is the number of samples measured per unit time (unit distance).

In many areas of research, such as geodesy, geophysics, geodynamics, astronomy and speech communi-

cations, researchers deal with series of data points measured over time or distance to study the periodicity

and/or power of certain constituents. For example, in a speech record, one may be interested in certain

constituents (signals) in the record, such as voice of a person obscured by other simultaneously recorded con-

stituents, noise from musical instruments and the environment. It is often difficult to study these constituents

by direct analysis of the data series; however, decomposing the data into another domain (frequency) results

in detecting the constituents of interest much easier.

Furthermore, the physical series of data are usually a combination of various sinusoidal waves, such as

light emitted from a star, sound waves, ocean waves, and thus certain phenomena may be studied more

1In literature, symbol ω is often used for angular frequency, and f is used for cyclic frequency. However, in this dissertation,
ω represents cyclic frequency or just frequency, and f is used for function or time series values.
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accurately by decomposing the data into a new domain (e.g., frequency or time-frequency domains). For

instance, the decomposition of a series of data points into sinusoidal waves of various frequencies may be

imagined as dispersing sunlight to waves of different frequencies (different colours - like a rainbow) when

it passes through a triangular prism. In other words, a triangular prism separates the sunlight to different

wavelengths (the longer wavelength is red, and the shorter wavelength is blue). The word “spectrum” was

first referred to the range of colours observed when white light was dispersed through a prism. Objects,

such as eyes, ears and prisms may be viewed as decomposition operators that are somewhat similar to the

decomposition operators introduced in this dissertation.

A “time series” is a sequence of data points measured at discrete time intervals that may not be equally

spaced or it may contain data gaps, and so the time series is unequally spaced (irregularly or unevenly spaced).

In certain experiments, measurements may also have uncertainties (variances) introduced by random noise

and thus may also be unequally weighted. Similarly, a “data series” is a sequence of data points sampled

along spatial directions, such as in seismic data applications.

In certain areas, such as seismology, researchers deal with data sets that are unequally (irregularly)

sampled and want to reconstruct the data sets on any desired equally spaced series (or grids) because it

is a requirement for other purposes. In Chapters 3, 4, and 5, I shall propose two new methods that can

aid researchers in these areas to achieve this goal. Researchers are usually interested in studying certain

periodic or aperiodic signals in time/data series that are usually obscured by noise. In Chapter 6, I shall

introduce a new method that can help researchers to discover such signals in any time series. In many

applications, researchers want to investigate the correlation or coherency between two time series, so that

they can search for common constituents at different time segments. For instance, in geodesy, researchers

may want to investigate the effect of atmospheric temperature on deformation of geodetic antennas; or in

finance, a banker may like to investigate the coherency between two financial time series containing daily

interest rates; or in medical sciences, physicians may want to study the effect of heart activities on brain

function by analyzing their corresponding time series. In Chapter 7, I shall introduce a new method that

can help researchers to rigorously investigate the coherency and phase differences between the components

of two or more time/data series.

1.2 Fundamental Definitions and Concepts

Aliasing is an effect that causes different signals to be indistinguishable when sampled. In seismic data

applications, aliasing in spatially sampled data series is called spatial aliasing. To understand the aliasing

better, assume that a sinusoid is sampled at equally spaced intervals. If another sinusoid has the same

amplitude and phase as the original and its frequency/wavenumber differs from the first one by a multiple

of the sampling rate, then these two sinusoids will have exactly the same samples over the equally spaced
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Figure 1.1: (a) Two aliased sinusoids with identical values at sample positions (32 samples/km), and (b) their
gradients with different values at sample positions that can be used to identify the true signal.

intervals (Vassallo et al., 2010a). In other words, signals with different frequencies or wavenumbers may

have the same samples over the equally spaced intervals. Aliasing occurs whenever a signal is sampled at

a rate below its Nyquist rate, and so when decomposing a time/data series to the frequency/wavenumber

domain, two or more different sinusoids identically fit the same set of samples (Craymer, 1998). Figure 1.1a

shows an example of two aliased sinusoids that are indistinguishable from the samples (black diamonds).

The two sinusoids are a sine wave of wavenumber 4 cycles per kilometre (c/km), shown in red, and a sine

wave of wavenumber 36 c/km, shown in blue, that differs from the first sine wave by the sampling rate (32

samples/km).

For interpolation of time/data series, an incorrect selection of a signal may cause significant errors in the

final interpolation result. Mitigating aliasing effect is crucial in many areas of research, such as interpolation

of seismic data that are coarsely sampled (Vassallo et al., 2010a). Additional information or assumption

must be provided to overcome the aliasing effect and identify the true signals. For instance, the gradients

in Figure 1.1b (the derivative of the sinusoids) have different values at sample positions and can be used to

identify the true sinusoid for interpolation purposes (Vassallo et al., 2010a). In down sampling (decimation),

depending on the purpose of specific experiments, researchers may intentionally define a variable sampling

rate to avoid aliasing (Shapiro and Silverman, 1960; Pagiatakis et al., 2007b).
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If all statistical properties of a time series (i.e., the mean, variance, all higher order statistical moments

and auto-correlation function) do not change in time, then the time series is called stationary. A time series is

called non-stationary if it violates at least one of the assumptions of stationarity (Brown and Hwang, 2012).

A non-stationary time series may contain systematic noise, such as trends (linear or exponential or others)

and/or datum shifts (offsets) indicating that its mean value is not constant in time. The second moments

(central and mixed moments) of the time series values form a symmetric matrix called the covariance matrix

(Vańıček and Krakiwsky, 1986). In certain fields, such as geodesy, geophysics, and astronomy, a time series is

usually associated with a covariance matrix which means that the time series is stationary or non-stationary

in its second statistical moments. In geodynamics applications, seismic noise may contaminate the time

series of interest or certain components of the time series may exhibit variable frequency, such as linear,

quadratic, exponential or hyperbolic chirps. For more details, the reader is referred to Mallat (1999); Kay

and Marple (1981); Brown and Hwang (2012).

To solve problems regarding heat transfer and vibrations, Fourier (1822) introduced the Fourier series

and showed that any (periodic) function could be written as an infinite sum of harmonics (sinusoids). The

Fourier transform and Fourier’s law are also named after him. The Fourier transform basically decomposes

a time series (usually aperiodic) into the frequency domain using sinusoidal basis functions (Mallat, 1999).

The amplitudes of the sinusoids for a set of frequencies generate a spectrum similar to the light spectrum.

The Fourier transform is defined for equally spaced time series without any data gaps (Appendix A).

Time series analyses have almost exclusively been performed using the classical Fourier method and its

modifications, often incorrectly postulating that the time series under consideration is stationary, resulting

in erratic results. It is not unusual to see that many researchers even attempt to modify the original raw

measurements by interpolation, editing or offset removal, often using empirical and questionable approaches,

simply to satisfy the stringent requirements of the Fourier transform (Kay and Marple, 1981; Stein and

Shakarchi, 2003).

The Least-Squares Spectral Analysis (LSSA) was introduced by Vańıček (1969, 1971) for the purpose

of analyzing non-stationary (in the first and second statistical moments) and unequally spaced time series.

Conceptually, this method estimates a spectrum based on the least-squares fit of sinusoids to the entire time

series similar to Fourier transform, but it is also defined for unequally spaced time series. The statistical

properties of the least-squares spectrum were discussed later by Lomb (1976); Craymer (1998); Pagiatakis

(1999). When analyzing unequally spaced data (time) series, the least-squares spectrum shows spectral

leakages that is leaking power/energy from one spectral peak into another. These leakages are caused by

non-orthogonality of the sinusoidal basis functions over unequally spaced series because the LSSA examines

wavenumbers or frequencies one at a time (out-of-context), ignoring the correlations between the sinusoidal

basis functions of different wavenumbers or frequencies (Craymer, 1998). For interpolation purposes, these
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leakages cause error in the final interpolation results.

Furthermore, in the LSSA, although trends, datum shifts and the covariance matrix associated with a

time series are parameterized and consequently estimated simultaneously (in-context) with the calculation

of the spectrum (Wells et al., 1985), it cannot generally be used for time series whose components change

amplitude (e.g., transient signals) and frequency (e.g., doppler-shifted signals) over time because the LSSA

decomposes a time series into the frequency domain rather than into the time-frequency domain (similar to

Fourier analysis). Craymer (1998) compared the LSSA to Fourier analysis (discrete) and showed that the

Fourier analysis is a special case of the LSSA when the time series is strictly stationary, equally spaced,

equally weighted, and with no gaps.

In order to measure the frequency variation of sounds, Gabor (1946) introduced the Short-Time Fourier

Transform (STFT) to analyze piece-wise stationary and equally spaced time series. He endeavoured to obtain

the spectrum of a time series, in short-time intervals (or within a window which translates through the entire

time series) rather than considering the entire time series at once (Mallat, 1999). In the STFT, the window

length is fixed during translation in time, which is not appropriate for analyzing time series with components

of high frequency variability over time, presenting sudden changes in amplitude (jumps). Decomposing a

non-stationary time series into time-frequency domain has many advantages over the decomposition into

only frequency domain. These advantages include searching for the short duration hidden components in

the time series or detecting constituents with variability of amplitude and/or frequency over time.

A wavelet is a wave-like function whose values start from zero and end at zero after a number of os-

cillations. A wavelet can be visualized as a short oscillation like one recorded by a seismograph or heart

monitor. Wavelets are useful functions in signal and image processing. The Continuous Wavelet Transform

(CWT) is a well-established method originated by Morlet (1983); Grossmann et al. (1985, 1986). The CWT

computes a “scalogram” based on the dilations and translations of a (mother) wavelet. The scalogram is a

three-dimensional analogue of the wavelet transform representation in which the x-axis, y-axis, and z-axis

represent time, scale, and absolute value of Fourier coefficients at particular times, respectively. One may

also convert the “scalogram” to a “spectrogram” using different approaches that each has its own advantages

and disadvantages (Hlawatsch and Boudreaux-Bartels, 1992; Sinha et al., 2005). The spectrogram is slightly

different from the scalogram in that its y-axis values represent frequencies rather than scales, and thus is

more appropriate to study the periodicity of various components in the time series.

The CWT spectrogram has high-frequency resolution at low frequencies and high-time resolution at high

frequencies and vice versa (Mallat, 1999; Sinha et al., 2005). There are many different types of wavelets

introduced and used for particular applications (Mallat, 1999). In the CWT, if one uses an inappropriate

wavelet, then the CWT spectrogram may give misleading and physically meaningless results (Qian, 2002).

The CWT and its discrete version are not defined for unequally spaced time series, and so it cannot be used
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to analyze unequally spaced and/or unequally weighted time series that may also have trends. Foster (1996)

proposed a new method of time-frequency analysis, namely, the Weighted Wavelet Z-transform (WWZ), to

analyze astronomical time series that are often unequally spaced and non-stationary. The WWZ basically

obtains a signal-to-noise ratio spectrogram based on the least-squares principle and has several advantages

over the CWT, yet it has its own shortcomings. The WWZ is described in detail in Chapter 2 and compared

to the least-squares wavelet analysis developed in Chapter 6.

An underlying Probability Distribution Function (PDF) can be obtained for the spectrum or spectrogram

of a time series by assuming that the time series has been derived from a population of random variables2

following the multi-dimensional normal distribution. In other words, one can view each data point of a

time series as a random variable following the normal distribution, and so the entire time series follows an

n-dimensional normal distribution associated with a covariance matrix, showing the statistical dependency

between the data points. It was shown that the least-squares spectrum (Pagiatakis, 1999) follows the beta

distribution, and similarly the spectrogram follows the beta distribution (Ghaderpour and Pagiatakis, 2017).

Using this distribution, one can identify the stochastic significance of the spectral peaks in the spectrum or

spectrogram at certain confidence level. The critical value at certain confidence level is a straight horizontal

line to frequency axis of the spectrum, and it is a 2D surface (stochastic surface) in the spectrogram in which

its values increase when frequency increases.

In physics and signal processing, power is energy per unit time. In other words, energy is the time integral

of power. If the time integral (or summation in discrete case) over the square of the absolute value of the

signal values is finite, the signal is an energy signal, where for real signals (not complex), the absolute value

can be omitted. The average power of the signal is defined as this integral (summation) divided by the time

interval (from minus infinity to infinity). A power signal has infinite energy but finite average power. There

are three types of signals: energy signals, power signals, or none of the two. A signal cannot be both energy

and power signal. A signal that decays exponentially or a transient signal has finite energy, so it is an energy

signal. The power of an energy signal is zero, because of dividing finite energy by infinite time (or length).

On the other hand, a power signal is not limited in time. It always exists from beginning to end, and it

never ends.

A stationary sine wave with infinite length and constant amplitude is a power signal. Since the energy

of a power signal is infinite, it has no meaning. Therefore, one may use power for power signal, because the

power of such signal is finite. The concept of energy and power sometimes is used loosely in the literature.

A time series may contain both power and energy signals. Depending on the purpose of study, one may

compute a power or energy spectral density (spectrum or spectrogram). In seismic signal processing, the

2A random variable is a variable that can take multiple different values, each with an associated probability. In practice,
random variables are usually measurements.
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seismic data contain energy signals and geophysicists usually compute an energy spectrum. In geodesy,

geodesists are usually interested in studying the periodicities of certain power signals and usually compute

a power spectrum.

In this dissertation, interpolation/extrapolation means filling missing data or gaps in a data series and is

required in seismology for various purposes. Regularization is a process of introducing additional information

in order to solve an ill-posed problem or to prevent overfitting. This process usually uses the spectrum of

an equally/unequally spaced data series in an inverse mode to produce an equally spaced data series that

will have the same spectrum as the original data series but with attenuated random noise. In other words,

regularization places a data series onto any desired equally spaced series. The verb “regularize” means to

reconstruct a data series on any desired equally spaced series.

To summarize this section, I should highlight the fact that the Fourier transform, STFT, and CWT have

been extensively studied and used by researchers dealing with equally spaced time series (the state-of-the-

art methods). However, in many applications, time/data series are not usually equally spaced and present

trends and/or datum shifts. They are often non-stationary and have uncertainties. Many researchers propose

Fourier based methods to analyze such time/data series that arise many questions and come up with several

shortcomings and assumptions at the end. The Lomb method (Lomb, 1976), LSSA (Vańıček, 1969), and

WWZ (Foster, 1996) are other robust methods considered the state-of-the-art methods for computing the

spectrum/spectrogram of unequally spaced time/data series, yet they have some shortcomings (considerably

less than the Fourier based methods) that I shall show analytically and by plethora of comparative examples.

1.3 Main Contributions

The main contributions of this dissertation are:

÷ Development of robust methods of regularization using the least-squares spectral analysis for data

series that are irregularly spaced or coarsely sampled. Two methods, namely, the Antileakage Least-Squares

Spectral Analysis (ALLSSA) and Multichannel Antileakage Least-Squares Spectral Analysis (MALLSSA),

supersede the current methods of regularization in that they estimate the signal wavenumbers and amplitudes

more accurately and consequently can regularize data series better and faster.

÷ Development of a robust method of analyzing any type of time series (stationary, nonstationary, equally

spaced, unequally spaced, equally weighted, unequally weighted). This method, namely, the Least-Squares

Wavelet Analysis (LSWA), supersedes the state-of-the-art methods of analyses of time series by setting

no constraints on the type and characteristics of the series and can rigorously analyze any time series by

decomposing it into time-frequency domain to obtain a (normalized) spectrogram, considering trends and/or

datum shifts, and covariance matrix associated with the time series.
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÷ Development of a robust method of analyzing any type of two or more time series together (possessing

the same or different sampling rates, equally or unequally spaced, equally or unequally weighted, stationary

or non-stationary). This method, namely, the Least-Squares Cross-Wavelet Analysis (LSCWA), obtains a

(normalized) cross-spectrogram and can identify the statistically significant peaks in the cross-spectrogram

by rigorous statistical testing.

With a plethora of comparative examples, I shall show that the ALLSSA, MALLSSA, LSWA, and LSCWA

provide more accurate and more reliable results compared to the state-of-the-art methods. Note that in this

dissertation, the ALLSSA and MALLSSA are proposed mainly for regularization purposes; whereas, the

LSWA and LSCWA are proposed to study the periodicity of certain components and hidden signatures

in time/data series. The ALLSSA and MALLSSA are based on the LSSA that use a refined spectrum to

regularize data series, and the LSWA and LSCWA are extensions of the LSSA that decompose a time series

to time-frequency domain rather than frequency domain. The LSWA spectrogram may also be used for

regularization purposes that is subject to future work.

1.4 Outline

In this dissertation, several state-of-the-art methods of analyzing time series (data series) are reviewed in

detail. Their advantages and shortcomings are studied, and new methods are proposed that can be applied

to analyze any time series (data series) for various purposes without any need for editing. The outline of

this dissertation is as follows.

In Chapter 2, many traditional and state-of-the-art methods of data series analysis are reviewed, and their

advantages and shortcomings are discussed as well as the need for more sophisticated methods is emphasized,

without the requirement of editing the data sets before analysis.

In Chapter 3, an antileakage method is proposed based on the LSSA which mitigates the spectral leakages

in the spectrum significantly. Therefore, the estimated amplitudes and wavenumbers can be used to regularize

data series, in certain applications. Two Fourier-based methods, namely, the AntiLeakage Fourier Transform

(ALFT) (Xu et al., 2005) and Arbitrarily Sampled Fourier Transform (ASFT) (Guo et al., 2015) are revisited

and compared to this method called the AntiLeakage Least-Squares Spectral Analysis (ALLSSA). Özbek

et al. (2009) proposed an iterative algorithm called Interpolation by MAtching Pursuit (IMAP) to regularize

irregularly sampled seismic data. The IMAP improves the original Lomb spectrum (least-squares spectrum)

result (Lomb, 1976) and is compared to the ALLSSA. A synthetic data series example is given with its

regularization results using the ALFT, ASFT, IMAP, and ALLSSA.

In Chapter 4, the ALLSSA is applied to a synthetic seismic data example to show its advantages in

regularization and random noise attenuation. Since seismic data are often non-stationary and contain many

nonlinear events (Crawley, 2000), a few windowing techniques with fixed window length are used to make
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the ALLSSA adaptable to non-stationary data series. The ALLSSA is applied to regularize a marine 2D

seismic data set, and its results are compared to the ALFT and nonlinear shaping regularization.

In Chapter 5, the Multichannel Interpolation by MAtching Pursuit (MIMAP), the generalization of

the IMAP, is revisited. The MIMAP is conceived to interpolate a few irregularly spaced multicomponent

measurements (Vassallo et al., 2010a). Then a new method, namely, Multichannel Antileakage Least-Squares

Spectral Analysis (MALLSSA), is introduced that uses the spatial gradients of a data series (like the MIMAP)

by extending the model of the ALLSSA to aid interpolation of the data series presenting severe aliasing.

The MALLSSA is compared to MIMAP, and its outstanding performance is shown with synthetic and field

seismic data examples.

In Chapter 6, a new method is proposed to analyze non-stationary time series in the first and second

statistical moments that are also unequally spaced and comprise constituents of low/high amplitude and

frequency variability over time. This method, namely, the Least-Squares Wavelet Analysis (LSWA), is a

natural extension of the LSSA and can analyze rigorously any type of time series without any modifications

or editing. The practical implementation steps of the LSWA for equally and unequally spaced time series are

also demonstrated. The stochastic surfaces (confidence level surfaces) are obtained above which the peaks

in the least-squares wavelet spectrograms are statistically significant at certain confidence level (usually 95%

or 99%). Several advantages of the LSWA over the CWT are shown on two synthetic equally spaced time

series. The WWZ is also compared to the LSWA on two synthetic examples, and as an application of the

LSWA, a Very Long Baseline Interferometry (VLBI) baseline length time series is analyzed using both the

LSWA and WWZ.

In Chapter 7, the Least-Squares Cross-Wavelet Analysis (LSCWA) is introduced, and the stochastic

surfaces (confidence level surfaces) for the Least-Squares Cross-Wavelet Spectrogram (LSCWS) are derived,

showing statistically significant peaks at a certain confidence level. A special case of the LSCWA, the

Least-Squares Cross-Spectral Analysis (LSCSA), along with its Least-Squares Cross-Spectrum (LSCS)

are studied as well as the phase differences in the LSCWS and LSCS. These methods are appropriate

methods of analyzing two (or more) unequally spaced series together. The performances of the LSCWA and

LSCSA are investigated on two synthetic time series. These methods are also applied to Gravity field and

steady-state Ocean Circulation Explorer (GOCE) electrostatic gradiometer measurement disturbances to

determine their coherence with the Poynting energy flux in the ionosphere along two successive ascending

satellite tracks during a magnetic storm (Ince and Pagiatakis, 2016) to show their superior performances on

the time series of different sampling rates. In another application, the coherency between the VLBI baseline

length series from Westford to Wettzell with the temperature series (recorded since 1984) is investigated to

show the effect of the temperature variation on the baseline length.
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In Chapter 8, the proposed methods (ALLSSA, MALLSSA, LSWA, LSCWA) along with their advantages

and limitations are briefly reviewed, and a table with their applications is provided. The future directions

and next steps for processing time/data series and other applications are also discussed.
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2 Preliminaries and Literature Review

In this chapter, several methods of analyzing time series (data series) are briefly reviewed in short sections,

and their advantages and weaknesses are discussed. The review has the purpose of focusing on the most

popular and state-of-the-art spectral analyses methods applied in almost every field of science, using spectral

methods that require a number of assumptions and approximations. In the following chapters, a series of

optimal statistical and mathematical approaches as well as a plethora of comparative synthetic and real time

series analyses are used to show the robustness and effectiveness of the new proposed methods that do not

require any assumptions or editing of the original data sets.

2.1 Fourier Transform

If f is an absolutely integrable function3 on R, then the Fourier transform of f for cyclic frequency ω,

denoted f̂(ω) is defined as

f̂(ω) =

∫ ∞
−∞

f(t)e−2πiωt dt, (2.1)

where “e” is the Euler’s number, and “i” stands for the imaginary number4. The spectrum of f is defined

as s(ω) = |f̂(ω)|2 which measures how much oscillations of cyclic frequency ω contribute to f , where for a

complex number z, |z| denotes its absolute value5 (Abs or abs in short) (Mallat, 1999; Stein and Shakarchi,

2003; Brown and Hwang, 2012). If f is also a square-integrable function6 on R (e.g., an energy signal), then

the Parseval’s theorem (Mallat, 1999, Chapter 2) states that∫ ∞
−∞
|f(t)|2 dt =

∫ ∞
−∞
|f̂(ω)|2 dω. (2.2)

3An absolutely integrable function f on R is a real- or complex-valued function such that
∫∞
−∞ |f(t)| dt <∞.

4The imaginary number i is a solution of x2 = −1.

5The absolute value of a complex number z = a+ ib is |z| =
√
a2 + b2.

6A square-integrable function f on R is a real- or complex-valued function such that
∫∞
−∞ |f(t)|2 dt <∞.
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Equation (2.2) implies that the total energy may be determined either by integrating |f(t)|2 over all time or

by integrating |f̂(ω)|2 over all cyclic frequencies. Therefore, |f̂(ω)|2 is interpreted as energy spectral density

(ESD) of f . For inverse of the Fourier transform to exist, function f̂ should be absolutely integrable on R

(Mallat, 1999, Chapter 2).

The average power P of f over all time is given by P = limτ→∞(1/τ)
∫ τ

0
|f(t)|2 dt. For many signals of

interest, the Fourier transform does not formally exist. Therefore, one may use a truncated Fourier transform

where the signal is integrated only over a finite interval:

f̂(ω) =
1√
τ

∫ τ

0

f(t)e−2πiωt dt, (2.3)

that is the amplitude spectral density. Then the Power Spectral Density (PSD) can be defined as

limτ→∞ E
[
|f̂(ω)|2

]
, where E[X] is the expected value of X (Miller and Childers, 2012, Chapter 10). The

PSD describes how power of a signal or time series is distributed over cyclic frequency.

In the Discrete-Time Fourier Transform (DTFT), the integral in Equation (2.1) may be replaced with

the summation multiplied by a factor, see Equation (2.4) (Xu et al., 2005). More precisely, suppose that

f =
[
f(t1), . . . , f(tn)

]
is a time series of size n. Define ∆t` = 1

2 (t`+1 − t`−1) for 1 < ` < n. For the two

special cases ` = 1 and ` = n, define ∆t1 = t2 − t1 and ∆tn = tn − tn−1, respectively. Let ∆t =
∑n
`=1 ∆t`.

The forward discrete summation of the Fourier integral (after dividing by the summation range) for cyclic

frequency ω is defined as

f̂(ω) =
1

∆t

n∑
`=1

∆t`f(t`)e
−2πiωt` . (2.4)

When t`’s are equally spaced, ∆t` is independent of `, and ∆t`/∆t = 1/n. The Discrete Fourier Transform

(DFT) can be seen as the sampled version (in frequency-domain) of the DTFT output because computers can

only handle a finite number of values, i.e., in the DFT the frequencies are also discretized. The complexity

of computing the DFT is in the order of n2 floating operations for a time (data) series of n data points. The

Fast Fourier Transform (FFT) is an optimized algorithm that computes the DFT (for equally spaced time

series) but has an order of n log(n) floating operations instead of n2 (Mallat, 1999). The DFT spectrum may

be obtained by taking the absolute value of the Fourier coefficients in Equation (2.4).

The Fourier transform is not defined for unequally spaced time series. Even the DFT is not an appropriate

method of estimating the signal frequencies and amplitudes of unequally spaced time series (Craymer, 1998;

Xu et al., 2005). The Fourier transform and its modifications do not consider trends and/or datum shifts

present in time series, and they are not appropriate for analyzing nonstationary time series. Moreover, there

is no rigorous statistical testing for assessing the Fourier transform results.
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2.2 Some Parametric Statistical Distributions

In this section, some of the most important underlying Probability Distribution Functions (PDFs) are

briefly reviewed that will be used in this dissertation. They will play crucial roles in assessing the significance

of spectral peaks in the least-squares spectrum and spectrogram. The statistical tests used in this dissertation

are parametric, meaning that they assume underlying statistical distributions in the data. All the definitions

and formulas in this section are taken from Craig et al. (2013). Before going into introducing the PDFs, it

is worth mentioning some basic statistical definitions as follows.

The null hypothesis, denoted by H0, is a hypothesis that researcher usually tries to reject; whereas, the

alternative hypothesis is what the researcher really thinks is the cause of a phenomenon. In hypothesis testing,

a critical value is a point on the test distribution that is compared to the test statistic7 to determine whether

to reject the null hypothesis. The significance level α is the probability of rejecting the null hypothesis given

that it is true (a type I error). The common values of the significance level are 0.1, 0.05, and 0.01. For

instance, α = 0.05 implies that the null hypothesis is rejected 5% of the time when it is in fact true. The

confidence level is the probability that the value of a parameter falls within a specified range of values.

In the following definitions, uppercase letters, such as X is used for a random variable of continuous

type that can take infinitely many values (denoted by lowercase letters, such as x)8, such that each value is

associated with probability fX(x).

2.2.1 Normal distribution (one dimension and multi-dimensions)

A random variable X of continuous type has a normal distribution, denoted by N (µ, σ2), if its PDF has

a Gaussian distribution as follows

fX(x) =
1√
2πσ

e−
1
2 ( x−µσ )2 , −∞ < x <∞, (2.5)

where µ and σ2 are the mean and variance of random variable X, respectively. Normal distributions are

crucial in statistics and are often used in the natural and social sciences to represent real-valued random

variables whose distributions are not known. Many physical quantities, such as random errors in measure-

ments often have distributions that are nearly normal. The underlying PDF of many test statistics can be

analytically derived, assuming that the random errors in measurements are normally distributed. Therefore,

the theoretical distribution can be compared to the actual distribution of random errors (sample distribution)

to make a decision about the validity of the H0 using a certain level of confidence.

7A test statistic is a quantity derived from the sample used in statistical hypothesis testing. It is a function of one or more
random variables.

8As a side note, P (X ≤ x) refers to the probability that random variable X is less than or equal to x (cumulative probability).
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In multidimensional case, suppose that X = [X1, . . . , Xn]T, where T denotes the transpose9, is a random

vector of continuous type with mean µ = [µ1, . . . , µn]T and covariance matrix CX that is symmetric10 and

positive definite. Note that the covariance matrix is always required to be positive semi-definite (that is the

quadratic form ATCXA is greater than or equal to zero for all real column vector A of dimension n). For

simplicity, it is assumed that the covariance matrix is positive definite, i.e., the quadratic form is greater

than zero that is usually the case, and so its inverse exists. The random vector X has a multidimensional

normal distribution, denoted by N (µ,CX), if its underlying PDF is

fX(x) =
1

(2π)n/2|CX|1/2
e−

1
2 (x−µ)TC−1

X (x−µ), for x in Rn, (2.6)

where |.| is the determinant of a square matrix, and Rn is the real coordinate space of n dimensions.

2.2.2 Chi-squared distribution

A random variable X of continuous type has a chi-squared distribution with r degrees of freedom, denoted

by χ2
r, if its PDF is

fX(x) =


1

Γ(r/2)2r/2
xr/2−1e−x/2 0 < x <∞,

0 otherwise,
(2.7)

where Γ is the gamma function11. Now suppose that X has a multidimensional normal distribution with

a positive definite covariance matrix CX, and A is a symmetric matrix of rank r with the same dimension

as CX. It is shown that Q = XTAX is chi-squared distributed, χ2
r, if and only if ACXA = A (Craig

et al., 2013, Chapter 9). This is a crucial statement used to derive the underlying PDF of the least-squares

spectrum and spectrogram (Appendix C).

2.2.3 F -distribution

Assume thatX and Y are two independent random variables that each follows the chi-squared distribution

with r1 and r2 degrees of freedom, respectively. Then the distribution of random variable Z = (r2/r1)X/Y

is called the F -distribution that is

fZ(z) =


Γ
(
(r1 + r2)/2

)
(r1/r2)r1/2

Γ(r1/2)Γ(r2/2)

zr1/2−1

(1 + r1z/r2)(r1+r2)/2
0 < z <∞,

0 otherwise.

(2.8)

9The transpose of a matrix is a new matrix whose rows are the columns of the original matrix which also makes the columns
of the new matrix the rows of the original matrix.

10A symmetric matrix C is a square matrix such that C = CT.

11The gamma function is defined as Γ(r) =
∫∞
0 yr−1e−ydy. If r is a positive integer, then it can be verified that Γ(r) = (r−1)!

and Γ(1 + r/2)/Γ(r/2) = r/2, where “!” is the factorial.
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2.2.4 Beta distribution

A random variable X in (0, 1) has the beta distribution with shape parameters p1 > 0 and p2 > 0,

denoted by βp1,p2 , if its PDF has the form

fX(x) = Γ(p1 + p2)/
(
Γ(p1)Γ(p2)

)
xp1−1(1− x)p2−1. (2.9)

It is shown (Craig et al., 2013, Chapter 3) that if Z has an F -distribution with degrees of freedom r1 and r2,

then the random variable X =
(
1 + (r1/r2)Z

)−1
has a beta distribution. In Appendix C, it is shown that

when a time series has been derived from a population of random variables following the multidimensional

normal distribution, the least-squares spectrum and spectrogram follow the beta distribution.

2.3 Least-Squares Spectral Analysis (Simple Case)

The Least-Squares Spectral Analysis (LSSA) is an appropriate method of analyzing unequally spaced

time series that comprises trends and/or datum shifts (Vańıček, 1969, 1971). The LSSA has been described

in detail in many publications (Lomb, 1976; Wells et al., 1985; Craymer, 1998; Pagiatakis, 1999) and applied

in many experiments (Scargle, 1982; Wu et al., 1995; Hui and Pagiatakis, 2004; El-Gelil et al., 2008; Psimoulis

et al., 2008). Its basic definition for time series is described below.

Suppose that f is a real times series of n data points, f =
[
f(t1), f(t2), . . . , f(tn)

]T
, where tj ’s may not

be equally spaced. Also, suppose that Cf is the covariance matrix of dimension n associated with the time

series. Note that each data point f(tj) can be generally assumed to be a random variable with mean µj and

variance σ2
j , and so the covariance between any two data points may be calculated. The reader is referred

to Chapter 3 and Craig et al. (2013) for more detail on the covariance matrix. Let P = C−1
f , and Ω be a

set of cyclic frequencies (positive real numbers) that may be chosen based on the scope of analysis.

The LSSA seeks to find a vector c = [c1, . . . , cm]T to represent f as f = Φc. Matrix Φ of dimension

n × m, which models the physical relationship between the time series (the vector of measurements) and

the unknown vector c, is called the “design matrix” (Vańıček and Krakiwsky, 1986). If the dimension of

f is larger than m, then the system f = Φc is overdetermined, i.e., the system has more equations than

unknowns. In order to solve the system, one can recall the least-squares principle to minimize quadratic

form Ψ = (f −Φc)TP(f −Φc). This results in the well-known expression

ĉ = (ΦTPΦ)−1ΦTPf , (2.10)

where ĉ = [ĉ1, . . . , ĉm]T (Wells et al., 1985; Pagiatakis, 1999). By the covariance law12, the covariance of ĉ

12If Y = BX, then by the covariance law, CY = BCXBT (Wells and Krakiwsky, 1971, Chapter 2).
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can be obtained as

Cĉ = (ΦTPΦ)−1. (2.11)

Design matrix Φ comprises sine and cosine basis functions of various cyclic frequencies ωk ∈ Ω as well as

other basis functions that characterize systematic noise (e.g., trends and offsets). The simplest case (out-of-

context) is when c = [c1, c2]T, and Φ is a n×2 matrix whose columns are the cosine and sine basis functions

of a cyclic frequency ωk. In this case, the least-squares spectrum (LSS) of f for ωk is defined as

s(ωk) =
fTPΦĉ

fTPf
, (2.12)

which estimates how much of the wave of cyclic frequency ωk contributes to f , s(ωk) ∈ (0, 1). Aliasing will

not occur in time series that are inherently unequally spaced (Shapiro and Silverman, 1960) underlining yet

another important advantage of the LSSA when applied to unequally spaced time series. The LSSA can

also consider constituents of known forms, such as trends, datum shifts, and sinusoidal basis functions of

particular frequencies. The number of these constituents is denoted by “q” in this dissertation. Simultaneous

consideration of these constituents, when estimating the amplitudes of the sinusoidal basis functions, are

described in detail in Chapter 3.

In order to find the underlying PDF of the LSS, suppose that f is a random vector of dimension n

following the multidimensional normal distribution N (0,Cf ), where Cf may be singular. Note that f can

also have any arbitrary mean that may be modeled by constituents of known forms (Steeves, 1981). In

Appendix C, it is shown that the LSS follows the beta distribution. The critical value at (1− α) confidence

level (α is the significance level) for the LSS given by Equation (2.12), without considering the constituents

of known forms (q = 0), is 1 − α2/(n−2) (see Appendix C). Therefore, the spectral peaks in the LSS whose

values are greater than the critical value are statistically significant at (1− α) confidence level.

It is worth mentioning that the least-squares minimization has many applications in wireless networking

and telecommunications. For instance, Seberry et al. (2005) showed that if Φ is a weighing design whose

entries are ±1, and the associated covariance matrix to f is Cf = σ2I, then Φ is optimal if ΦTΦ = nI,

and so from Equation (2.11), Cĉ = (σ2/n)I. That means Φ is optimal (the variances of the elements

of ĉ are minimum) if it is a ±1 matrix whose columns are orthogonal and are taken from a Hadamard

matrix13. The existence of Hadamard matrices and their generalizations (orthogonal designs) were discussed

comprehensively in the author’s first PhD dissertation (Ghaderpour, 2013).

Craymer (1998) showed that the Fourier analysis is a special case of the LSSA when the time series is

strictly stationary, equally spaced, equally weighted, and with no gaps (see also Appendix A). The Fourier

transform of a function f for cyclic frequency ω is obtained by considering the entire domain of f similar to

13A Hadamard matrix is a square matrix H of order n with ±1 entries such that HHT = nI.
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the LSSA that obtains the spectrum of a time series by fitting sinusoidal functions of cyclic frequency ω to

the entire time series; this is not a satisfactory approach for analyzing non-stationary time series comprising

constituents with variability of amplitude and frequency over time.

2.4 Spectral Leakages in Spectrum of Unequally Spaced Time/Data Series

Regularization is a crucial problem in many areas, such as seismology. Geophysicists often use the

recorded seismic data created by sources (vibrators) and receivers to study the geologic structures beneath

the Earth’s surface or sea floor for several purposes, such as discovering oil and gas before drilling. Marine

seismic data sets are usually irregularly sampled along spatial directions due to several reasons, such as

editing bad data sets and economy. Regularly sampled seismic data are required for various purposes

including wave equation migration, seismic inversion, amplitude versus azimuth or offset14 analyses and

surface-related multiple elimination (Scales, 1997; Crawley, 2000).

Since the sinusoidal basis functions in the Fourier transform are not orthogonal over irregularly spaced

series, spectral leakages appear in the Fourier spectrum that is, power/energy leaks from one spectral peak

into another (Xu et al., 2005, 2010). In the LSSA, since the selected frequencies are examined one by

one (out-of-context), spectral leakages still appear which result in interpolation inaccuracy, although the

non-orthogonality between the sine and cosine basis functions is taken into account for each frequency.

Example: To visualize the spectral leakages, a synthetic unequally spaced time series is generated as

described below that may represent a geophysical time series obtained in one month (mo). Suppose that

f =
[
f(t1), . . . , f(t70)

]
, where f(t`) = 1.5 sin(2π · 6t`) + sin(2π · 15t`) and t`’s (` = 1, ..., 70) are random

numbers in [0, 1] generated by the MATLAB command ‘rand’ and sorted in ascending order (Figure 2.1a).

The time series contains two sine waves of cyclic frequencies 6 and 15 cycles per month (c/mo) with

amplitudes 1.5 and 1, respectively. The ideal spectrum in terms of amplitudes is shown in Figure 2.1b that

clearly shows the spectral peaks corresponding to the two sine waves. The LSS of this time series calculated

by Equation (2.12) (suppose P = I, the identity matrix) at 99% confidence level is illustrated in Figure 2.1c.

It can be seen that the spectral peaks corresponding to the two constituents are significant, and the other

peaks are not statistically significant to mislead the identification of the dominant spectral frequencies.

In the LSSA, the estimated amplitudes of this time series is obtained by Equation (2.10), then the square

root of ĉTĉ is calculated, and its corresponding spectrum is illustrated in Figure 2.1d. Alternatively, the

absolute values of the Fourier coefficients obtained from Equation (2.4) is also shown in Figure 2.1e, showing

severe spectral leakages (see arrows). The absolute value of Fourier coefficients are approximately half of

amplitudes shown in Figure 2.1d but with severe spectral leakages (see also Appendix A). Note that the

14In geophysics and reflection seismology, amplitude versus offset or amplitude variation with offset is the general term for
referring to the dependency of the seismic attribute, amplitude, with the distance between the source and receiver (the offset).
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Figure 2.1: Spectral leakages in the DFT and LSSA for unequally spaced time series. Arrows show many of
the leakages.

DFT of a real time series has identical response to both positive and negative frequencies.

The LSS peaks are cleaner and sharper in the percentage variance mode (Figure 2.1c) than amplitude

mode (Figure 2.1d), and also the statistics of the significant peaks is on the percentage variance and not

on the amplitude. This is a fundamental and crucial approach in the development of the antileakage LSSA

algorithm for the purpose of accurate regularization (Ghaderpour et al., 2018b). Moreover, the identification

of signal frequencies in the DFT is more difficult and challenging compare to the LSSA because the DFT

does not consider the correlations among the sine and cosine basis functions (Pagiatakis, 1999).

Seismic data are well sampled in time (regularly sampled), but usually are poorly sampled along the

spatial directions (irregularly spaced). Note that the LSSA and its applications are mainly discussed on

unequally spaced time series in literature; however, its concept can concurrently be applied to the spatial

direction that is based on wavenumber (cycles per unit distance) rather than frequency (cycles per unit time).

Therefore, the term “data series” used in Chapters 3, 4 and 5 indicates a series of data points sampled along

spatial direction.

2.5 Recent Methods of Mitigating Spectral Leakages in Spectrum

The AntiLeakage Fourier Transform (ALFT) (Xu et al., 2005, 2010, 2011) and Arbitrarily Sampled Fourier

Transform (ASFT) (Guo et al., 2015) are two Fourier-based methods that try to mitigate the spectral
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leakages in the Fourier spectrum of unequally spaced time series. The ALFT and ASFT estimate the

Fourier coefficients of a data series, first by searching for the peak of maximum energy and subtracting its

component from the data series and then repeating the procedure again on the residual data series until

all the significant Fourier coefficients are estimated. This way the spectral leakages of Fourier coefficients

emerging from the non-orthogonality of the global Fourier basis functions will be attenuated. However,

these methods usually cannot find the correct location of a peak of maximum energy from a preselected set

of wavenumbers because of the correlation between the sinusoids, and so these methods do not effectively

reduce the leakage. This shortcoming becomes more severe when a data series has more spectral components.

Moreover, the constituents of known forms, such as datum shifts and trends, are not explicitly considered

in these algorithms. Therefore, if the trends or datum shifts are present in a data series, then the ALFT

and ASFT implicitly approximate them by sinusoids of various wavenumbers (Xu et al., 2010). Hollander

et al. (2012) proposed a method that uses an Orthogonal Matching Pursuit (OMP) to improve the ALFT

results. In the OMP approach, the coefficients of all previously selected Fourier components are re-optimized,

producing better interpolation results compare to the ALFT results.

The Interpolation by MAtching Pursuit (IMAP) is a least-squares based method proposed to mitigate

the spectral leakages in the least-squares spectrum and consequently can be used to regularize seismic data

(Özbek et al., 2009). In the IMAP, a wavenumber k1 corresponding to the largest peak in the Lomb spectrum

(Lomb, 1976) is selected, i.e., a wavenumber k1 such that (2.12) (or just its numerator) is maximized. Then

the contribution of the sinusoidal basis functions of wavenumber k1 to the data series is subtracted from it

to obtain the residual data series. In the next step, the residual data series is treated as a new input data

series to choose a wavenumber k2 corresponding to the largest peak in the new residual Lomb spectrum, and

this procedure continues until the desired wavenumbers are estimated. This iterative method mitigates the

spectral leakages in the Lomb spectrum and results in a faster convergence.

Unlike the ALFT, the IMAP has the ability to match the basis functions to the data rather than the data

being mapped to the basis-function domain (Vassallo et al., 2010a). Since the correlation between the sine

and cosine basis functions are considered in the IMAP, its spectrum generally shows much less leakages than

the ALFT and ASFT, and so it performs better for regularization. Although the IMAP improves the spectral

leakages in the Lomb spectrum, it does not explicitly account for the correlations among the sinusoids of

different wavenumbers, and so its spectrum contains many wavenumbers due to leakages that increase the

computational cost and reduce the accuracy of the regularization results. Vassallo et al. (2010b) have also

studied estimating many wavenumbers per iteration and have documented several dealiasing schemes. The

ALFT and ASFT will be mathematically described in Chapter 3 and will be compared to the new method,

the AntiLeakage Least-Squares Spectral Analysis (ALLSSA).

19



2.6 Short-Time Fourier Transform

In order to measure the frequency variation of sounds, Gabor (1946) introduced a windowing technique

called the Short-Time Fourier Transform (STFT), which is one way of analyzing piece-wise stationary and

equally spaced time series. He basically endeavoured to obtain the spectrum of a time series in short-time

intervals (or within a window which translates through the whole time series) rather than considering the

entire time series at once. Mathematically, let f be a square-integrable function on R (e.g., an energy signal),

and w be a normalized (‖w‖2 =
∫∞
−∞ |w(t)|2 dt = 1) real and symmetric (w(t) = w(−t)) window function

(e.g., Hann or Gaussian). The continuous STFT is defined as

f̂(τ, ω) =

∫ ∞
−∞

f(t)w(t− τ)e−2πiωt dt, (2.13)

where w is centred at time τ , the translation parameter. The STFT energy density of f (spectrogram)

is |f̂(τ, ω)|2, which measures the energy of f in the time-frequency neighbourhood of (τ, ω) (Mallat, 1999,

Chapter 4). For a time series, a spectrogram can be obtained by calculating |f̂(τ, ω)|2 (in the summation

form) for all pairs (τ, ω).

The rectangular boxes centred at (τ, ω) with side lengths στ and σω (standard deviation) are illustrated

in Figure 2.2, and they are called the Heisenberg boxes (Mallat, 1999). The word “resolution” is referred to

the side lengths of the Heisenberg boxes in the time-frequency domain (or time or frequency support). In

other words, resolution means ability to resolve frequencies or times in a spectrogram. It is shown that στ

and σω are independent from τ and ω, and so the STFT has the same resolution across the time-frequency

domain, i.e., the area and the side lengths of the Heisenberg boxes do not change across the time-frequency

domain, and the Heisenberg boxes do not rotate across the time-frequency domain (Mallat, 1999). If the

selected window is wider, then στ is larger and σω is smaller, meaning that the spectrogram has poorer time

resolution but better frequency resolution across the time-frequency domain (Figure 2.2a). Similarly, if the

selected window is narrower, then στ is smaller and σω is larger, meaning that the spectrogram has better

time resolution but poorer frequency resolution across the time-frequency domain (Figure 2.2b).

Since in the STFT the sinusoidal functions that do not complete an integer number of cycles within a

window are not orthogonal, the segment of the time series within such window cannot be represented as

linear combination of these sinusoids properly, resulting in spectral leakages. Note that the STFT does not

consider the correlation between the sinusoidal functions when they are not orthogonal within a window

(Mallat, 1999). Using an appropriate window function, the segment of the time series within the window can

be tapered to zero at both ends to prevent leakages. It is shown (Weyl, 1931) that if w is Gaussian, then the

area of the Heisenberg box is minimum, a property that is similar to the least-squares principle and highly

desirable (optimal). In the STFT, the window length is fixed during translation in time, inappropriate for

analyzing time series with components of high amplitude and frequency variability over time.
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Figure 2.2: A few adjacent Heisenberg boxes of the STFT (a and b), and CWT (c).

2.7 Continuous Wavelet Transform

The Continuous Wavelet Transform (CWT) divides an equally spaced time series into wavelets to con-

struct a time-frequency representation of the time series, providing a good time and frequency determination.

In the CWT, the window length decreases as frequency increases allowing the detection of short-time (short

duration) components of high frequencies, and vice versa: the window length increases as frequency decreases

allowing the detection of the low frequency components in the time series.

In the CWT, the dilation (change in length) of a (mother) wavelet defines a window, and a scalogram

(time-scale) is calculated instead of a spectrogram (time-frequency). However, one may convert the scalogram

to a spectrogram using several approaches, such as conversion based on the centre frequencies of the scales

(Hlawatsch and Boudreaux-Bartels, 1992). Mathematically, assume that the functions

ψτ,s(t) =
1√
s
ψ
( t− τ

s

)
, (2.14)

are a family of (daughter) wavelets that are generated by dilating ψ (mother wavelet) with a scale parameter

s > 0 and translating it by τ (time or position or location, etc.). For theoretical reasons, one may choose a

special wavelet ψ (mother wavelet) from the space of all square-integrable functions over R such that it is

normalized (‖ψ‖2 =
∫∞
−∞ |ψ(η)|2 dη = 1) and integrates to zero (

∫∞
−∞ ψ(η)dη = 0). The reader is referred to

Daubechies (1990) and Farge (1992) for more details. The wavelet transform of a square-integrable function

f on R (e.g., an energy signal) at time τ and scale s is then defined as

f̂ψ(τ, s) =
〈
f, ψτ,s

〉
=

1√
s

∫ ∞
−∞

f(t)ψ∗
( t− τ

s

)
dt, (2.15)

where ψ∗ is the complex conjugate of ψ (Mallat, 1999, Chapter 4). Therefore, the values of time τ and scale

s as well as the choice of wavelet affect the values of the coefficients f̂ψ(τ, s). An analytic wavelet transform

defines a local time-frequency energy density |f̂ψ(τ, s)|2, which measures the energy of f in the Heisenberg

box of each wavelet ψτ,s. This energy density is called a scalogram (Mallat, 1999, Chapter 4). Note that the
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Fourier transform in Equation (2.1) is a special case of the CWT in Equation (2.15) when ψτ,s(t) = e2πiωt

and f is absolutely integrable, ignoring scale s.

The CWT in MATLAB operates on discrete time series, where the integral in Equation (2.15) is im-

plemented by a simple summation over the elements (Misiti et al., 2015). More precisely, suppose that

f =
[
f(t1), . . . , f(tn)

]
is an equally spaced time series of n data points, where t` = `/n (` = 1, . . . , n). The

CWT coefficients are calculated as

f̂ψ(tj , s) =
1√
ns

n∑
`=1

f(t`)ψ
∗
( t` − tj

s

)
, (2.16)

where ψ∗ is the complex conjugate of ψ, and the wavelet is stretched in time by varying its scale (s) and

normalizing it to have unit energy (Torrence and Compo, 1998; Grinsted et al., 2004). For a time series, a

scalogram can be obtained by calculating wavelet power |f̂ψ(tj , s)|2 for all pairs (tj , s).

The time and frequency resolutions of the CWT depend on the scale s. It can be seen from Figure 2.2c

that the CWT spectrogram has high-frequency resolution at low frequencies and high-time resolution at high

frequencies (Mallat, 1999). The CWT is more useful for feature extraction and time series analysis due to

its fine resolution; whereas, the discrete wavelet transform is a fast transform that represents a time series

in a more redundant form and often used for data compression and noise attenuation of two dimensional

signals, such as images (Mallat, 1999; Grinsted et al., 2004). Note that the discrete wavelet transform of

a time series is calculated by passing it through a series of filters, calculated differently from the CWT for

different purposes (Daubechies, 1990; Mallat, 1999) and is not in the scope of this dissertation.

Note that unequally spaced wavelets are not defined, so the CWT and discrete wavelet transform are

not defined for an unequally spaced time series unless one interpolates to fill in the missing data or shrinks

the wavelet (Hall and Turlach, 1997; Sardy et al., 1999). However, the interpolation is not appropriate as

it damages the time series and results in erratic spectrograms in the time-frequency domain, especially for

non-stationary time series. Moreover, the first two statistical moments of the time series are not considered

in the STFT and CWT from their definitions.

There are a bewildering variety of wavelets to use in the CWT, and if one uses an inappropriate wavelet to

correlate with a time series, then the CWT spectrogram may give misleading and nonphysical results (Qian,

2002). In order to study the periodicity of the constituents and to detect the periodic fluctuations in a time

series, one may choose a (mother) wavelet which fluctuates based on the periodic sinusoidal basis functions

(Grossmann et al., 1985; Foster, 1996). A simple and commonly used wavelet possessing this property is the

Morlet wavelet that is defined as

ψ(η) = π−1/4e−η
2/2e2πiω0η, (2.17)

where the cyclic frequency ω0 is chosen to be 6/(2π) cycles per unit time (s) to satisfy the wavelet admissibility
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condition15 of the mother wavelet and provide a good balance between time and frequency resolution (Farge,

1992; Torrence and Compo, 1998; Grinsted et al., 2004). For this choice of ω0, the Fourier period of the

Morlet wavelet (T = 1/ω0) is almost equal to 1.03 s.

To match the inverse of scale factor s exactly to frequency, Foster (1996) applied a simple transformation

to define the Morlet wavelet as

ψ(z) = e−cz
2

eiz = e−c(2πω(t−τ))2e2πiω(t−τ), (2.18)

where ω is the cyclic frequency and z = 2πω0η, so c = 1/(8π2ω2
0), disregarding coefficient π−1/4 (cf., Equation

(2.17)) because it does not affect the results of the least-squares methods. For MATLAB users, the command

“scal2frq” may be used to convert the scales to frequencies in the CWT (Misiti et al., 2015). However, the

Morlet wavelet given by Equation (2.18), used in the least-squares methods in Chapter 6, directly computes

a spectrogram instead of a scalogram. Note that when ω0 = 6/(2π), c = 1/72 that is approximately close

to c = 0.0125 used in Foster (1996). Figure 2.3 shows the construction and analyses of a Morlet wavelet

given by Equation (2.18) for cyclic frequency ω = 10 cycles per second (Hertz or Hz). Figure 2.3a and c

are generated using e2πiω(t−τ) and e−c(2πω(t−τ))2 , respectively, that are the two components of the Morlet

wavelet shown in Figure 2.3e. Comparing Figure 2.3b to 2.3f, one can see that the bandwidth16 of the Morlet

wavelet is larger (poor frequency resolution) than the pure sinusoids.

2.8 Cross-Wavelet Transform

In order to examine two equally spaced time series together (with the same sampling rates) and study

the coherency and phase differences between their corresponding constituents, Torrence and Compo (1998)

proposed a method called the Cross-Wavelet Transform (XWT). Briefly, suppose that f1 and f2 are two

equally spaced time series of size n. For each pair (tj , s), let f̂1ψ(tj , s) and f̂2ψ(tj , s) be their corresponding

CWT coefficients calculated by Equation (2.16). The XWT is defined as

Xψ(tj , s) =
(
f̂1ψ(tj , s)

)(
f̂∗2ψ(tj , s)

)
, (2.19)

where f̂∗2ψ(tj , s) is the complex conjugate of f̂2ψ(tj , s), and the XWT power is defined as |Xψ(tj , s)| (Torrence

and Compo, 1998; Grinsted et al., 2004). The argument17 arg[Xψ(tj , s)] defines the phase differences (local

15The condition
∫∞
0 (|Ψ(ω)|2/ω) dω < ∞ is called the wavelet admissibility condition, where Ψ(ω) is the Fourier transform

of ψ. This condition is a necessary condition for the inverse of the CWT (Mallat, 1999).

16There are several definitions for bandwidth in the literature. The bandwidth is typically understood as the frequency
interval in the spectrum where the main part (95% or 99%) of its power is located. Others use 50% to be compatible with the
definition of the cutoff frequency of a filter when its power drops to −3 decibel (dB) (Mallat, 1999; Valkenburg, 2006).

17The argument of a complex number z = a+ ib is tan−1(b/a).

23



Figure 2.3: Morlet wavelet of frequency 10 Hz and its analyses (1000 samples per second). (a) Sinusoids of
frequency 10 Hz, (b) DFT spectrum of panel a, (c) a Gaussian function, (d) DFT spectrum of panel c, (e) a
Morlet wavelet, and (f) DFT spectrum of panel e.

relative phase or coherence phase) between the corresponding constituents of the two time series (Torrence

and Compo, 1998; Grinsted et al., 2004).

Torrence and Compo (1998) showed that if a time series is derived from a population of random variables

following the multidimensional normal distribution, then the real and imaginary parts of the Fourier coeffi-

cients and so the CWT coefficients are also normally distributed. Therefore, the continuous wavelet power,

that is the sum of squares of two normally distributed random variables, follows χ2
2 (chi-squared distribution

with two degrees of freedom). Now if both time series are independently derived from populations of ran-

dom variables following the multidimensional normal distribution, then the underlying PDF of the squared

absolute value of XWT, i.e., |Xψ(tj , s)|2 = |f̂1ψ(tj , s)|2|f̂2ψ(tj , s)|2, is in fact the product of two chi-squared

distributions (each with 2 degrees of freedom). Ge (2008) following Torrence and Compo (1998) showed that

24



the underlying PDF of the XWT power (|Xψ(tj , s)|) is f(z) = zK0(z), where K0(z) is the modified Bessel

function of order zero18.

Since in the locations toward the edges of the CWT spectrogram the wavelet is not completely localized,

edge artifacts occur in those locations. Torrence and Compo (1998) introduce the cone of influence (COI),

outside which the edge effects can be neglected. Grinsted et al. (2004) take the COI as the area in which

the wavelet power caused by a discontinuity at the edge has decreased to e−2 of the value at the edge. The

COI may be applied to the CWT or XWT spectrograms.

Although the CWT and XWT are well-established methods of time-frequency analysis, they cannot be

used for analyzing unequally spaced series with associated covariance matrices. These methods cannot also

handle the constituents of known forms, such as trends and/or datum shifts, and so are not appropriate for

analyzing many time series in geophysical applications.

2.9 Weighted Wavelet Z-Transform

Foster (1996) proposed a robust method of analyzing astronomical time series that are non-stationary

and unequally spaced, namely, the Weighted Wavelet Z-transform (WWZ). In this section, the same notation

is used as in Foster (1996) to define the WWZ. Suppose that f =
[
f(tj)

]
is a time series of n data points.

For each τ (the window location; can be the tj ’s or equally spaced times) and each ωk ∈ Ω, let Φ1 = [1]

Φ2 =
[

cos
(
2πωk(t1 − τ)

)
, . . . , cos

(
2πωk(tn − τ)

)]
, (2.20)

Φ3 =
[

sin
(
2πωk(t1 − τ)

)
, . . . , sin

(
2πωk(tn − τ)

)]
, (2.21)

where [1] is the all-ones vector of dimension n. The inner product of two vectors u = [u(t1), . . . , u(tn)] and

v = [v(t1), . . . , v(tn)] is defined as

〈u|v〉 =

∑n
i=1 wiu(ti)v(ti)∑n

i=1 wi
, (2.22)

where wi is the statistical weight chosen as wi = e−c(2πωk(ti−τ))2 , and c is a window constant which may be

selected to be c = 0.0125 as described in Section 2.7, see Equation (2.18). The constant c determines how

rapidly the analyzing wavelet decays (Foster, 1996). Let S be the square matrix of order 3 whose ab entry

is 〈Φa|Φb〉 (1 ≤ a, b ≤ 3). The Weighted Wavelet Z-transform (WWZ) (power) is defined as

Z =
(Neff − 3)Vy
2(Vx − Vy)

, (2.23)

where Neff = (
∑n
i=1 wi)

2/(
∑n
i=1 w

2
i ) is the effective number of data points, Vx = 〈f |f〉−〈1|f〉2 is the weighted

variation of the data, and Vy =
∑
a,b S−1

ab 〈Φa|f〉〈Φb|f〉−〈1|f〉2 is the weighted variation of the model function

obtained by the least-squares method (Foster, 1996).

18The modified Bessel function of order zero is K0(z) =
∫∞
0 cos (z sinh t) dt =

∫∞
0 cos (xt)/

√
t2 + 1 dt (Abramowitz and

Stegun, 1972, Chapter 9).
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The WWZ is based on the least-squares optimization that is a robust method of analyzing non-stationary

and unequally spaced time series; however, the WWZ is a poor estimator of amplitude (Foster, 1996), and

the spectral peaks in the WWZ lose their power toward higher frequencies similar to the CWT. Therefore, it

may not detect possible hidden signatures in time series. Furthermore, accounting for constituents of known

forms and covariance matrices associated with the time series are not discussed in Foster (1996) that may

potentially alter the results. With several examples in Chapter 6, the CWT and WWZ are compared to

my proposed method, namely, the Least-Squares Wavelet Analysis (LSWA) to show the advantages of the

LSWA over the CWT and WWZ.

2.10 Hilbert-Huang Transform

The Hilbert-Huang Transform (HHT) is an alternative method of analyzing non-stationary time series

with or without trends (Huang et al., 1998; Huang and Wu, 2008; Barnhart, 2011). The HHT is the result of

the Empirical Mode Decomposition (EMD) and the Hilbert Spectral Analysis (HSA). The EMD decomposes

the time series into Intrinsic Mode Functions (IMFs) with a trend via a procedure called sifting, and then

HSA applies the IMFs to obtain instantaneous frequency data.

An IMF is a function whose number of extrema and zero-crossings are either equal or differ by at most

one. Moreover, the mean value of the envelope defined by the local maxima and the envelope defined by the

local minima is zero at any point (Huang and Wu, 2008). The sifting process identifies all the local extrema

in time series f , then it connects all the local maxima by a cubic spline as the upper envelope and does the

same for all the local minima to produce the lower envelope. Therefore, the upper and lower envelopes with

mean µ(t) should cover all the data points between them (this generally may not occur). Then the difference

between the time series values and µ(t) is ideally an IMF. Otherwise, the same process on the difference may

be repeated; this is one the weaknesses of the HHT (Huang and Wu, 2008).

Denote this IMF by c1. The sifting process now will continue on r1 = f−c1 (residual) to obtain c2 (IMF),

and so r2 = r1−c2. The sifting process stops when residual rn becomes a monotonic function from which no

more IMF can be extracted (Huang et al., 1998). Therefore, the time series is decomposed into IMFs, i.e.,

f =
∑n
j=1 cj + rn. After obtaining the IMFs, cj ’s, the instantaneous frequencies, ωj(t)’s, and instantaneous

amplitudes, aj(t)’s, of the IMFs can be obtained using the Hilbert transform, the convolution integral of cj

with 1/t (Huang et al., 1998; Huang and Wu, 2008; Barnhart, 2011). The distribution of amplitude aj(t)

in the time-frequency domain, H(t, ω), can be regarded as a skeleton form of that in the CWT (Huang and

Wu, 2008).

Although the HHT is an empirical method based on the physical meaning of non-stationary time series,

it has several weaknesses, such as limitation of the EMD in distinguishing different components in narrow-

band time series, end effect, and mode mixing problem occurring in the EMD process (Guang et al., 2014;
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Chen et al., 2015). D̈atig and Schlurmann (2004) comprehensively investigated the performance and limita-

tions of the HHT with particular applications to irregular water waves. They showed that an appropriate

interpolation technique is needed to determine better envelopes for this method.

2.11 Constrained Least-Squares Spectral Analysis

Puryear et al. (2012) introduced the Constrained Least-Squares Spectral Analysis (CLSSA) as a seismic

spectral decomposition method and showed that it has spectral resolution advantages over the conventional

methods, such as the CWT. Suppose that Φw is a design matrix consisting of the sinusoidal functions

truncated by the end points of a window in the time domain. More precisely, let

Φw =


e2πiω1(t1−τ) e2πiω2(t1−τ) · · · e2πiωn(t1−τ)

e2πiω1(t2−τ) e2πiω2(t2−τ) · · · e2πiωn(t2−τ)

...
... · · ·

...

e2πiω1(tm−τ) e2πiω2(tm−τ) · · · e2πiωn(tm−τ)

, (2.24)

be a m × n matrix, where m is the number of data points within the time window, n is the number of

frequencies (equal to the size of the entire data series according to the DFT), and τ is the centre of the

window (the translating parameter). Now consider system (model) Φwu = y, where y is the windowed

seismic data series (complex segment) of size m and u is the column vector of unknown Fourier coefficients.

Since m is less than n, this system is underdetermined19, and specific constraints are needed to estimate the

unknowns and achieve a unique solution.

The CLSSA uses two diagonal matrices Wu and Wy that are the model and data weights, respectively,

to constrain the underdetermined system. Matrix Wu changes in iteration (starts with I), and Wy is

constant throughout the iteration. Applying these two matrices, the underdetermined system becomes

WyΦwWuW−1
u u = Wyy. Let Φw = WyΦwWu and uw = W−1

u u. The CLSSA minimizes the following

cost function

Υ = ‖Φwuw −Wyy‖2 + α‖uw‖2, (2.25)

where ‖.‖ is the L2 norm20 and parameter α is selected empirically and varies at each iteration step. The

solution of Equation (2.25) is

ûw = Φ∗w(ΦwΦ∗w + αI)−1Wyy, (2.26)

where “∗” is the conjugate transpose. So, the estimated Fourier coefficients are û = Wuûw.

19An underdetermined system is a system that has more unknowns than equations.

20For n-dimensional complex vector z = [z1, · · · , zn], the L2 norm of z is ‖z‖ =
√
|z1|2 + · · ·+ |zn|2 =

√
z1z̄1 + · · ·+ znz̄n.

27



Although the CLSSA results in a time-frequency analysis with improved frequency resolution compared

to the STFT and CWT, no detailed discussion and analyses are provided for analyzing unequally spaced

time series by Puryear (2012). Also, this method may not be able to handle the constituents of known forms,

such as trends and/or datum shifts, and so it is not appropriate for detection of hidden signatures in the

data (time) series. Furthermore, no discussion is made for incorporating the covariance matrix in the model

as well as the rigorous statistical analyses for possible test on the significance of spectral peaks.

2.12 Other Methods

For seismic data regularization, several effective algorithms are proposed by researchers that have their

own advantages and weaknesses, such as the f-x and t-x Prediction Error Filters (PEF) (Spitz, 1991; Crawley,

2000; Fomel, 2002; Wang, 2002), generalized frequency-wavenumber interpolation (Gülünay, 2003), Projec-

tion Onto Convex Sets (POCS) and its modifications (Abma and Kabir, 2006; Yang et al., 2012; Wang et al.,

2016), Minimum Weighted Norm Interpolation (MWNI) (Liu and Sacchi, 2004; Trad, 2009), and nonlinear

shaping regularization (Fomel, 2007; Chen et al., 2015).

In the PEF theory, the data must be in wide-sense stationary and regular. The f-x PEFs represent a

spectral approach that uses the available samples to predict the linear events and is suitable for aliased

seismic data. For seismic data, windowing is required to approximately fulfill the stationarity condition of

the PEFs. Seismic waves would travel a straight path to the other side of the Earth if there were no changes

with depth, i.e., seismic events would be linear. In reality, seismic waves travel a curving path through the

Earth due to changes in composition, pressure, and temperature within the layers of the Earth, i.e., seismic

events are curved. When the seismic waves encounter boundaries between different media, the waves will

react according to the Snell’s law, and the angle of refraction across a boundary will depend on the velocity

of the second medium relative to the first medium. Nonstationary PEF has also been used in seismic data

interpolation to solve the interpolation of curved events (Crawley, 2000; Liu and Chen, 2017).

The POCS method is based on the Gerchberg-Saxton iterative algorithm (Gerchberg and Saxton, 1972)

widely used in seismic data processing. Its performance on noisy data and its computational efficiency have

been recently improved (Ge et al., 2015; Wang et al., 2016). Abma and Kabir (2006) used a linear threshold

in the iterations of the POCS method and pointed out that the threshold is the key parameter in this

method. Thereafter, other works have been done on an appropriate selection of a threshold value to improve

the result of POCS method (Gao et al., 2013).

The MWNI method solves an underdetermined system of equations subject to suitable prior information

for the purpose of regularization. The linear shaping regularization is another approach for regularizing

underdetermined geophysical inverse problem that uses a linear shaping operator. Fomel (2007) started the

idea of shaping regularization by recognizing smoothing as a fundamental operation. In a more general sense,
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smoothing implies mapping of the input model to the space of admissible functions. He called this mapping

operator “shaping”. The nonlinear shaping regularization allows the shaping operator to be nonlinear making

the iterative framework more flexible.

There are a number of methods proposed and applied to non-stationary time series, such as Wigner-

Ville distribution (Classen and Mecklenbrauker, 1980; Baydar and Ball, 2001), empirical wavelet transform

(Gilles, 2013), tunable-Q wavelet transform (Selesnick, 2011), and ensemble empirical mode decomposition

(Huang and Wu, 2009; Ren et al., 2014). Each of them has its own advantages and weaknesses (Huang et al.,

1998; Chen and Feng, 2003; Guang et al., 2014), and they are not generally appropriate for analyzing non-

stationary time series that are unequally spaced and unequally weighted. Foster (1996) proposed an effective

method of analyzing astronomical time series that are non-stationary and unequally spaced. His method is

described in detail in Chapter 6. Amato et al. (2006) used a wavelet-based Hilbert space reproducing kernel

technique and showed that their technique is superior in terms of the mean squared error. Mathias et al.

(2004) proposed a method that is based on the least-squares method to deal with the undesirable side effects

of nonuniform sampling in the presence of constant offsets.

There are also several other methods for analyzing two time series together, such as the least-squares

self-coherency analysis (Pagiatakis et al., 2007a; El-Gelil et al., 2008; El-Gelil and Pagiatakis, 2009) that

splits the series into shorter and independent segments depending on the study to be conducted. Each of the

segments is analyzed via the LSSA, and the resulting spectra are multiplied to derive the product spectrum

that strengthens common spectral peaks, particularly if the phenomenon under study contains signals with

signal-to-noise ratio in the vicinity of −40 dB. The least-squares self-coherency method may be considered

the precursor of the least-squares wavelet analysis and the least-squares cross-wavelet analysis developed in

this research.

2.13 Conclusions

We reviewed a number of time/data series analyses methods. Many of them are Fourier-based meth-

ods (widely used) and mainly designed for analyzing equally spaced time/data series but require certain

assumptions and have several limitations. Table 2.1 shows many of the popular state-of-the-art methods of

time/data series analysis with some of their advantages and weaknesses reviewed in this chapter. The new

methods that I shall introduce in the next chapters are based on the least-squares optimization. They are

fairly easy to implement and interpret and can consider trends and/or datum shifts, constituents of known

forms, and covariance matrices associated with the time/data series. Comparing to the state-of-the-art meth-

ods, they can estimate the amplitudes and frequencies (wavenumber) of constituents in any the time/data

series more accurately by decomposing them into either frequency (wavenumber) domain or time-frequency

domain without any assumption or need for editing the original series.
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Table 2.1: State-of-the-art-methods of time/data series analysis with some of their advantages and weaknesses.

Methods Advantages Shortcomings

FFT

Fast method of obtaining a spectrum of an
equally spaced time series, and the order
of its complexity is O(n log n)

Not defined for unequally spaced time se-
ries, and not appropriate for analyzing
non-stationary time series

ALFT

Mitigates the spectral leakages in the
Fourier spectrum of an unequally spaced
time series, used for seismic data regular-
ization

Not appropriate for analyzing non-
stationary time series, and generally is a
slow method, usually O(n3)

ASFT

Like the ALFT used for regularization, but
converges faster than the ALFT and also
performs better in regularization compared
to the ALFT

Not appropriate for analyzing non-
stationary time series

LSSA

Can rigorously analyze both equally and
unequally spaced time series, and it also
considers constituents of known forms and
covariance matrices

Not appropriate for analyzing non-
stationary time series, and is slower than
the FFT, yet its complexity depends on
the desired set of frequencies

IMAP

Mitigates the spectral leakages in the least-
squares spectrum of unequally spaced time
series, used for seismic data regulariza-
tion. It performs better and faster than
the ALFT and ASFT

Not appropriate for analyzing non-
stationary time series

CWT

A popular time-frequency analysis and
used for feature extraction. It obtains a
scalogram of an equally spaced and non-
stationary time series. Its fast method
achieves O(n) complexity per scale

Does not consider constituents of known
forms, and not defined for unequally
spaced time series. Its spectral peaks loss
power toward higher frequencies, and not
appropriate to detect hidden signatures

WWZ

A robust time-frequency analysis and used
for feature extraction. It obtains a
least-squares spectrogram of an unequally
spaced and non-stationary time series. Its
spectral peaks have higher resolutions than
the ones in the CWT

It is generally slower than the CWT. It is
a poor measure of amplitude, and it is not
appropriate to detect hidden signatures

HHT

A popular time-frequency analysis that is
an empirical method based on the physi-
cal meaning of non-stationary and equally
spaced time series. It has finer frequency
resolution than the CWT

Not appropriate for analyzing unequally
spaced time series, and it is limited in dis-
tinguishing different components in narrow
band time series. It has end effect and
mode mixing problem

CLSSA

A time-frequency analysis based on the
least-squares optimization. Its spectro-
gram has finer frequency resolution than
the CWT spectrogram

Not appropriate for analyzing unequally
spaced time series with gaps, trends,
and/or datum shifts, and does not consider
covariance matrices
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3 Antileakage Least-Squares Spectral Analysis

In the analyses of irregularly spaced data series, the Discrete Fourier Transform (DFT) and the Least-

Squares Spectral Analysis (LSSA) examine wavenumbers independently (out-of-context), and thus their

spectrum shows spectral leakages that is, leakage of power/energy from one spectral peak into another. These

leakages are caused by the non-orthogonality of the sinusoidal basis functions over unequally spaced series (see

Appendix A). In this chapter, the AntiLeakage Fourier Transform (ALFT) and Arbitrary Sampled Fourier

Transform (ASFT) are mathematically described in detail. The least-squares spectral analysis is revisited

and slightly revised for data series rather than time series, and the AntiLeakage Least-Squares Spectral

Analysis (ALLSSA) is introduced and compared with the Interpolation by MAtching Pursuit (IMAP). A

synthetic data series example is provided to show the advantages of the ALLSSA over the ALFT, ASFT, and

IMAP. This chapter is an unabridged version of sections “METHODS” and “SYNTHETIC DATA SERIES

EXAMPLE” in Ghaderpour et al. (2018b).

3.1 Antileakage Fourier Transform

Suppose that f = [f(x`)], ` = 1, . . . , n is a data series of size n, where the x`’s may be irregularly

sampled. Assume that x` is a real number in the closed interval [0, 1], where ‘1’ is the unit distance (e.g., one

kilometre). Define ∆x` = 1
2 (x`+1 − x`−1) for 1 < ` < n. For the two special cases ` = 1 and ` = n, define

∆x1 = x2 − x1 and ∆xn = xn − xn−1, respectively. Let ∆x =
∑n
`=1 ∆x`. If x` =

(
`
n

)
d for ` = 1, . . . , n,

then ∆x` = d
n for ` = 1, . . . , n, where d is the distance between the first and last samples of the data series.

Note that ∆x = d, and for simplicity, one may consider d = 1. Let K = {−n2 , . . . ,
n
2 − 1} if n is even and

K = {−n−1
2 , . . . , n−1

2 } if n is odd. The forward discrete summation of Fourier integral (after dividing by the

summation range) for wavenumber ωk ∈ K is defined as

f̂(ωk) =
1

∆x

n∑
`=1

∆x`f(x`)e
−2πiωkx` , (3.1)

and the contribution of ωk to the inverse is defined as

fk(x`) = f̂(ωk)e2πiωkx` . (3.2)
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The wavenumber ωk means ωk cycles of sinusoids per unit distance. The (spatial) sampling rate is de-

fined as the number of samples per unit distance. Note that for regularly sampled data series the Nyquist

wavenumber21 is half of the (spatial) sampling rate; however, the Nyquist wavenumber does not explicitly

exist for inherently unequally spaced data series. Therefore, the maximum wavenumber for the analysis may

be implicitly chosen to be less than half of the sampling rate (the aliasing may not occur for the wavenumber

beyond this selection). If a data series is assumed to be regularly spaced with certain samples missing, then

the Nyquist wavenumber may be half of the sampling rate for the regularly spaced data series (Craymer,

1998).

If the x`’s are regularly spaced, then the estimation of the Fourier coefficient f̂(ωk) has no effect on the

estimations of other Fourier coefficients because the sinusoids are orthogonal, i.e., the dot product between

the sinusoids is zero (see Appendix A). However, the orthogonality condition fails for irregularly sampled

data series resulting in spectral leakages. To mitigate these leakages Xu et al. (2005) proposed the ALFT

that has the following three steps:

1. Compute all Fourier coefficients of the input data series using Equation (3.1).

2. Select the Fourier coefficient with the maximum energy.

3. Subtract the contribution of this coefficient (Equation (3.2)) from the input data series to obtain the

residual data series. Use this residual data series as the new input and go to Step 1. Repeat this until

the L2 norm of the residual data series becomes approximately zero (below a threshold ϑ).

Although the ALFT is fairly efficient and effective in practical applications, it has several shortcomings.

The main shortcoming of the ALFT is that it only uses wavenumbers in a preselected set of wavenumbers

(e.g., set K) and does not search for the actual wavenumbers (real numbers) of components in a data series

that may not be in the preselected set of wavenumbers. In other words, the wavenumber context of the data

may not fall on one of the wavenumber samples used in set K. Therefore, for a better regularization result, a

denser set of wavenumbers may be selected in the ALFT (Xu et al., 2011). For a data series of size n with N

wavenumbers, the ALFT requires the computation of N Fourier coefficients for each iteration, which has an

order of nN floating operations, and it usually takes N iterations to converge. Thus, the total computational

cost in the ALFT is in an order of nN2 (Xu et al., 2005, 2010). Therefore, a denser set of wavenumbers

will greatly increase the computational cost, and the actual wavenumbers of the components cannot still be

accurately estimated. In practice, however, one may need fewer iterations when dealing with data that have

by nature only a few different spectral components. Figure 3.1 shows a flowchart of the ALFT algorithm for

data series regularization, where |.| and ‖.‖ denote the absolute value and L2 norm, respectively.

21The maximum wavenumber beyond which aliasing will occur is called the Nyquist wavenumber.
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ALFT

Enter data series:

x = [x`], f = [f(x`)], ` = 1, 2, . . . , n

Enter set of wavenumbers K

Enter threshold ϑ

For each ωk in K compute

f̂(ωk) = 1
∆x

∑n
`=1 ∆x`f(x`)e

−2πiωkx`

Find ωu = arg maxωk∈K

{
|f̂(ωk)|

} Store ωu and f̂(ωu)

for regularization

For ` from 1 to n compute

f(x`) ←− f(x`) − f̂(ωu)e2πiωux`
‖f‖ ≤ ϑ?

Stop

no

yes

Figure 3.1: Flowchart of the ALFT algorithm.

3.2 Arbitrary Sampled Fourier Transform

Guo et al. (2015) proposed a method that is similar to the ALFT, but it can estimate the wavenumbers

of the components in a data series more accurately. Their method, namely, the Arbitrary Sampled Fourier

Transform (ASFT), is described in this section. Consider the following cost function,

Λ(ωk) =

n∑
`=1

∣∣f(x`)− f̂(ωk)e2πiωkx`
∣∣2, (3.3)

where f̂(ωk) is given by Equation (3.1), and |.| denotes the absolute value. The ASFT has the following

three steps (cf., Figure 3.2):

1. For each ωk ∈ K, compute f̂(ωk) and find the wavenumber ωu such that Λ(ωu) is minimum.

2. Find wavenumber h in I = [ωu − b, ωu + b] such that Λ(h) is minimum. Since the wavenumbers in K

are integer, one may choose b = 0.5.

3. Subtract the contribution f̂(h)e2πihx` from the input data series to obtain the residual data series. Use

this residual data series as the new input and go to Step 1. Continue this process until the L2 norm of

the residual data series becomes approximately zero (below a threshold ϑ).
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ASFT

Enter data series:

x = [x`], f = [f(x`)], ` = 1, 2, . . . , n

Enter set of wavenumbers K

Enter threshold ϑ

For each ωk in K compute

f̂(ωk) = 1
∆x

∑n
`=1 ∆x`f(x`)e

−2πiωkx`

Λ(ωk) =
∑n
`=1 |f(x`) − f̂(ωk)e2πiωkx` |2

Then find ωu = arg minωk∈K

{
Λ(ωk)

}

Find h = arg minω∈I=[ωu−b, ωu+b]

{
Λ(ω)

}
(b depends on K)

Store h and f̂(h)

for regularization

For ` from 1 to n compute

f(x`) ←− f(x`) − f̂(h)e2πihx`
‖f‖ ≤ ϑ?

Stop

no

yes

Figure 3.2: Flowchart of the ASFT algorithm.

Estimating h up to a chosen decimal place in Step 2 may simply be done by an appropriate partitioning

of interval I as follows: For b = 0.5, choose wavenumber h1 in set
{
ωu − 0.5 + 0.1j; j = 1, . . . , 9

}
such that

Λ(h1) is minimum. Note that wavenumber h1 is estimated up to one decimal place. Next choose wavenumber

h2 in set
{
h1 − 0.1 + 0.01j; j = 1, . . . 19

}
such that Λ(h2) is minimum. Note that wavenumber h2 is now

estimated up to two decimal places. One may continue this process to estimate the wavenumber h up to any

chosen decimal place. Estimating h up to four decimal places by using this technique requires 9+3(19) = 66

times the use of Equation (3.3) that is computationally much faster than 9999 (equally spaced numbers

in interval I) times the use of Equation (3.3), and it is also practically acceptable. For a fair comparison

between the ASFT and ALLSSA, this partitioning technique is used in both methods. One may also apply

other techniques, such as the conjugate gradient or the Broyden-Fletcher-Goldfarb-Shanno algorithm for

Step 2 (Guo et al., 2015) or other robust minimizers, such as simulated annealing (Chen and Luk, 1999).

34



Note that wavenumbers estimated in the ASFT are real numbers obtained directly from the cost function

minimization that is easier to interpret (Guo et al., 2015). One of the advantages of the ASFT over the

ALFT is that the wavenumbers are estimated more accurately in each step. Therefore, if a threshold is

defined for the L2 norm of the residual data series, then the ASFT is able to arrive at that threshold in a

smaller number of iterations compared to the ALFT, resulting in more accuracy and less computational cost.

In other words, for a data series of size n with n preselected wavenumbers, the number of ASFT floating

operations is of the order of n2m, where m is the number of iterations that is usually smaller than n by

selecting an appropriate threshold. For an irregularly sampled data series with several components, although

the ASFT can estimate the wavenumbers of the components more accurately than the ALFT, its spectrum

still shows spectral leakages caused by the correlations between the sinusoids. Therefore, the wavenumbers

of the data components cannot be estimated very accurately, and its spectrum contains many wavenumbers.

3.3 Least-Squares Spectral Analysis Revisited

Let f = [f(x`)] be the column vector of n data points. Note that x` ∈ [0, 1], where ‘1’ is the maximum

distance. Let Φk =
[

cos (2πωkx`), sin (2πωkx`)
]
, ` = 1, . . . , n, be the n × 2 matrix of a fixed wavenumber

ωk ∈ Ω, where Ω can be any set of real numbers. When a data series is regularly spaced, for the simultaneous

estimation of the amplitudes and phases, Ω may be selected as the set of all positive integers less than the

Nyquist wavenumber (see Appendix A). Suppose that f has been derived from a population of (complex)

random variables, and Cf is the (invertible and Hermitian) covariance matrix associated with f defined as

Cf =


σ2
f(x1) σf(x1)f(x2) · · · σf(x1)f(xn)

σf(x2)f(x1) σ2
f(x2) · · · σf(x2)f(xn)

...
...

...

σf(xn)f(x1) σf(xn)f(x2) · · · σ2
f(xn)

, (3.4)

where σ2
f(x`)

is the variance of (complex) random variable f(x`), and σf(xu)f(xv) is the covariance between

two (complex) random variables f(xu) and f(xv). The covariance σf(xu)f(xv) is a measure of the joint

variability between random variables f(xu) and f(xv) defined as

σf(xu)f(xv) =E
[(
f(xu)− E

[
f(xu)

])(
f(xv)− E

[
f(xv)

])]
= E

[
f(xu)f(xv)

]
− E

[
f(xu)

]
E
[
f(xv)

]
, (3.5)

where f(x) is the conjugate of f(x), and E[X] is the expected value of (complex) random variable X (Eriksson

et al., 2009).

Let P = Cf
−1. In many practical applications, Cf is approximately a diagonal matrix (the corre-

lations between the data points are negligible), so one may treat P as a vector for computational effi-
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ciency (Pagiatakis, 1999; Ghaderpour and Pagiatakis, 2017). In the LSSA, the cost function Ψ(ck) =

(f −Φk ck)TP(f −Φk ck) is minimized to estimate ck, so one obtains ĉk = (ΦT
kPΦk)−1ΦT

kPf , where ‘T’

indicates transpose and conjugate transpose when f is complex. Note that ĉk is a 2 × 1 matrix (a column

vector) whose elements are real or complex depending on f . The (normalized) Least-Squares Spectrum (LSS)

for ωk ∈ Ω is defined as

s0(ωk) =
fTPΦkĉk

fTPf
. (3.6)

Note that s0(ωk) ∈ (0, 1), and it shows how much the sinusoids of wavenumber ωk contribute to the entire

data series. Since there is a very close relationship between the LSSA (simple case) and IMAP, a flowchart

for the IMAP algorithm in matrix form is illustrated in Figure 3.3, that is an iterative algorithm to mitigate

the spectral leakages in the LSS or Lomb spectrum (described in Chapter 2).

Now if there are constituents of known forms in the data series, then they may first be estimated and

removed from the data series and then the residual data series may be studied. More precisely, let Φ =[
Φ1, . . . ,Φq

]
be the n × q matrix of constituents of known forms. The constituents can be represented by

the column vector of all ones [1] and/or the column vector [x] containing the distances to explicitly account

for any linear trend and/or the column vectors of the sinusoids of particular wavenumbers.

First minimize the cost function Ψ1(c) = (f −Φ c)TP(f −Φ c) to estimate c as

ĉ = N−1ΦTPf , (3.7)

where N = ΦTPΦ, and obtain the residual data series

ĝ = f −Φ ĉ. (3.8)

Next, minimize the cost function Ψ2(c, ck) = (f −Φ c−Φk ck)TP(f −Φ c−Φk ck) to estimate ck. Similar

to Equation (6.10) (see also Appendix B), it can be seen that

ĉk =
(
ΦT
kPΦk −ΦT

kPΦ N−1ΦTPΦk

)−1
ΦT
kPĝ. (3.9)

The term within the parentheses in Equation (3.9) is called the matrix of normal equations that is a real

square matrix of order two (Craymer, 1998). If f is real, then ĉk is a real column vector of order two whose

elements are the estimated amplitudes for cosine and sine basis functions. If f is complex, then ĉk is a

complex column vector whose real and imaginary parts correspond to the estimated amplitudes for cosine

and sine basis functions of the real and imaginary parts of f , respectively. The normalized LSS of the residual

data series for ωk ∈ Ω is then defined by

s(ωk) =
ĝTPΦkĉk

ĝTPĝ
. (3.10)
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IMAP

Enter data series:

x = [x`], f = [f(x`)], ` = 1, 2, . . . , n

Enter set of wavenumbers Ω

Enter threshold ϑ

For each ωk in Ω compute

Φk =
[

cos(2πωkx), sin(2πωkx)
]

ĉk =
(
ΦT
kΦk

)−1
ΦT
k f

s0(ωk) = fTΦkĉk (can be normalized)

Then find ωu = arg maxωk∈Ω

{
s0(ωk)

}

Find h = arg maxω∈I=[ωu−b, ωu+b]

{
s0(ω)

}
(b depends on Ω)

Store h and ĉh

for regularization

f ←− f − Φh ĉh‖f‖ ≤ ϑ?

Stop

no

yes

Figure 3.3: Flowchart of the IMAP algorithm in matrix form.

Note that s(ωk) ∈ (0, 1) (“percentage variance” when multiplied by 100), and it shows how much the sinusoids

of wavenumber ωk contributes to the residual data series. Ideally, if Φ is an invertible square matrix of order

n, then ĝ = 0 (Craymer, 1998).

In order to demonstrate the estimated amplitude and phases simultaneously, the LSS is expressed in

terms of wavenumber-amplitude by ĉk in Equation (3.9). In other words, for each ωk ∈ Ω, the square root of

the sum of squares of the first and second elements of ĉk is calculated (separately for the real and imaginary

parts of ĉk if f is complex). This way, the LSS can be compared with the Fourier spectrum expressed in

terms of absolute values of the Fourier coefficients, described in a synthetic example in the next Chapter.

It is shown (Pagiatakis, 1999) that if f has been derived from a population of random variables following

the multidimensional normal distribution, then the spectrum given by Equation (3.10) follows the beta
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distribution with parameter values 1 and (n − q − 2)/2, where q is the number of constituents of known

forms, and n is the number of data points (see Appendix C). The critical value at (1 − α) confidence level

for the spectrum is then equal to 1 − α2/(n−q−2), where α is the significance level (usually 0.05 or 0.01).

The critical value is independent of the weight matrix and wavenumbers (Pagiatakis, 1999; Ghaderpour and

Pagiatakis, 2017). Note that the ‘critical value’ in Ghaderpour et al. (2018b) is mistyped and should be

‘significance level’.

3.4 Antileakage Least-Squares Spectral Analysis

One may apply the idea of maximum energy in the algorithm of the ALFT to develop a new algorithm

for the LSSA that reduces the spectral leakages and consequently regularizes the irregularly sampled data

series very accurately. Assume that Ω = {1, 2, . . . , η}, where η may be chosen as the largest positive integer

less than half of the sampling rate. Beginning with an initial Φ that may be selected as Φ = [1,x], the

algorithm for the ALLSSA has the following four steps:

1. Given Φ, compute ĉ and ĝ (Equations (3.7) and (3.8)).

2. For all ωk ∈ Ω, calculate ĉk (Equation (3.9)) and find ωu in Ω such that s(ωu) (Equation (3.10)) is

maximum.

3. Eliminate the cosine and sine basis functions of a wavenumber h in Φ such that |h−ωu| < b (if it exists).

Assuming that the difference between any two consecutive actual wavenumbers of the components in

the data series is greater than one, one may choose b = 0.5 to resolve the peaks and avoid singularity

of the matrix of normal equations.

4. Find h in I = [ωu − b, ωu + b] such that s(h) (Equation (3.10)) is maximum. Concatenate (add) the

cosine and sine column vectors of wavenumber h to Φ and then go to Step 1. Finding h up to a chosen

decimal place can be done by an appropriate partitioning of I. Terminate the process if s(h) is no

longer significant at certain confidence level (usually 95% or 99%).

Note that in the LSSA, set Ω does not need to contain only integers, and so b in Step 3 can be variable.

Therefore, at the computational step (practical step), one can define set Ω to include as many wavenumbers

as the length of the series allows so that there is no singularity. In other words, the user can have a very high

resolution spectrum with b as small as possible, and therefore the peak(s) with the highest power/energy

can be easily identified in the spectrum. Since there is no attempt to estimate two waves with very close

wavenumbers, there is no danger of reaching any singularity. However, in this chapter and the next chapter,

set Ω contains only positive wavenumbers to compare the result of the ALLSSA directly to the results of

the ALFT and ASFT.
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When considering the weight matrix P, the method is called the weighted ALLSSA. Removing the

constituent of a particular wavenumber with maximum percentage variance (power/energy) from the data

series reduces the spectral leakages in the residual spectrum. On the other hand, the elimination of the basis

functions of a wavenumber h in Step 3 is crucial in the ALLSSA because considering the correlation between

the sinusoids of different wavenumbers results in a more accurate h in the next step. This correlation will

be taken into account as the column dimension of Φ increases in the process. The L2 norm of residual data

series ĝ approaches zero rapidly because the wavenumbers are accurately estimated recursively that also

prevents increasing the column dimension of Φ in many practical applications especially when applying the

confidence level. The AntiLeakage Least-Squares Spectrum (ALLSS) in terms of wavenumber-amplitude is

defined by ĉ in Step 1 after the process is terminated.

Similar to the discussion in the previous section, ĉ is a real or complex column vector (depending on

f) whose elements are the estimated intercept and slope of the linear trend (if the initial Φ is [1,x]) and

the estimated amplitudes for the sine and cosine basis functions of the estimated wavenumbers. This ĉ is

used for the regularization of a stationary data series (reconstruction of the data over any given regularly

spaced series) that will also result in attenuating the random noise present in the data series down to certain

confidence level (all the statistically significant peaks at certain confidence level are used for regularization).

For non-stationary data series, one may also treat the final residual data series as a new input data series then

perform the ALLSSA again (by applying the confidence level) and repeat this procedure until the L2 norm

of the final residual data series approaches zero22 (below a threshold). Note that the actual wavenumbers

of the data series will be better approximated if the initial Φ at least contains the column vector of all ones

(Foster, 1996; Ghaderpour and Pagiatakis, 2017). Figure 3.4 shows the flowchart of ALLSSA algorithm.

The computational complexity of the ALLSSA depends on the estimation of ĉ and the matrix of normal

equations in each iteration. For a data series of size n with η wavenumbers (e.g., η = n
2 − 1 if n is even and

η = n−1
2 if n is odd), the process has an order of nηm floating operations, and m mainly depends on the

number of significant spectral peaks. When applying the confidence level, the total number of the significant

peaks is usually small, making m small, so the computational efficiency can be much better than the ALFT

and ASFT for stationary data series.

In the ALLSSA, the sinusoidal basis functions of different wavenumbers, corresponding to the largest

statistically significant peaks in the spectrum, are added to the columns of design matrix Φ in an iterative

manner. Therefore, the wavenumbers will be more accurately estimated in the next step by considering the

correlation among the columns. The accuracy of estimated wavenumbers significantly reduces the number

of iterations and results in more accurate regularization compared to the IMAP (see example below).

22It is recommended that the researcher continues the analysis until the end, when the residual series has a white spectrum
and the normality test shows that the residual series is random.
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ALLSSA

Enter data series:

x = [x`], f = [f(x`)], ` = 1, 2, . . . , n

Enter P = Cf
−1 (if available)

Enter set of wavenumbers Ω

Enter Φ, e.g., Φ = [1,x]

Enter significance level α

ĉ =
(
ΦTPΦ

)−1
ΦTPf

ĝ = f − J f , where J f = Φ ĉ

Ω ←− wavenumbers of sinusoids in Φ

For each ωk in Ω compute

Φk =
[

cos(2πωkx), sin(2πωkx)
]

ĉk =
(
ΦT
kPΦk − ΦT

kPJΦk

)−1
ΦT
kPĝ
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)
Then find ωu = arg maxωk∈Ω

{
s(ωk)

}
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Figure 3.4: Flowchart of the ALLSSA algorithm.
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3.5 Synthetic Data Series Example

In this example, the ALFT, ASFT, and ALLSSA are used to regularize the data series of size 128 given

by Equation (13) in Xu et al. (2005) with an additional sine wave and a linear trend

f(x`) = 5 sin (25.6x`) + 2.5 sin (128x` + 1) +
√

3 sin (140x`) +
√

2 + πx`, (3.11)

' 5 sin (2π · 4.0744 x`) + 2.5 sin (2π · 20.3718 x` + 1) +
√

3 sin (2π · 22.2817 x`) +
√

2 + πx`,

where x` (l = 1, 2, 3, . . . , 128) is a random number in [0, 1] generated by the MATLAB command ‘rand’. All

the x`’s are sorted in ascending order (see Table 3.1).

The data series obtained from the values in Table 3.1 is shown in Figure 3.5a. The goal is to reconstruct

the data series on a series with regular spacing 1/128 (see the ideal reconstruction in Figure 3.5b). This data

Figure 3.5: (a) The irregularly sampled data series (red diamonds) given by Equation (3.11), and (b) the ideal
reconstructed data series on a series with regular spacing 1/128. Note that this is a deterministic series with no
noise.
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Table 3.1: The values of the data series given by Equation (3.11).

` x` f(x`) ` x` f(x`) ` x` f(x`) ` x` f(x`)

1 0.0012 4.1459 33 0.2554 3.7746 65 0.5114 5.4213 97 0.7257 2.9864

2 0.0098 6.3235 34 0.2568 3.5381 66 0.5246 3.206 98 0.7269 3.6399

3 0.011 6.2455 35 0.2699 3.2506 67 0.5294 4.7075 99 0.7466 5.59

4 0.0249 1.733 36 0.2732 3.9738 68 0.5323 6.158 100 0.7477 5.3266

5 0.0569 10.5501 37 0.2789 5.6463 69 0.5431 11.4665 101 0.7522 4.2909

6 0.0577 10.4264 38 0.2794 5.8081 70 0.5566 9.1851 102 0.7615 4.2617

7 0.0606 9.5492 39 0.2848 7.3645 71 0.5694 3.6382 103 0.7624 4.4445

8 0.061 9.38 40 0.2851 7.4331 72 0.5733 3.663 104 0.789 10.4141

9 0.0614 9.2229 41 0.2874 7.9229 73 0.5761 4.2949 105 0.7897 10.3048

10 0.0887 4.7172 42 0.2915 8.4397 74 0.5761 4.2957 106 0.8106 7.1337

11 0.09 5.3539 43 0.3119 6.6108 75 0.5816 6.5607 107 0.8277 8.5478

12 0.0903 5.5206 44 0.3164 6.2615 76 0.5825 6.9787 108 0.83 8.5057

13 0.0915 6.0724 45 0.3178 6.2017 77 0.5846 7.9723 109 0.8371 7.7299

14 0.0921 6.3641 46 0.3209 6.1423 78 0.5847 8.0061 110 0.8372 7.7104

15 0.1097 5.5084 47 0.3416 6.203 79 0.595 9.7637 111 0.8383 7.5168

16 0.1099 5.4367 48 0.3473 5.8137 80 0.6003 7.8217 112 0.8464 5.7735

17 0.1161 1.33 49 0.3738 0.9117 81 0.6146 -0.6803 113 0.8504 4.899

18 0.1232 -2.1801 50 0.3747 0.75 82 0.6203 -1.4524 114 0.8586 3.415

19 0.1311 -2.2501 51 0.3907 -0.06 83 0.6253 -0.323 115 0.8588 3.3873

20 0.1478 2.7437 52 0.3927 0.0796 84 0.6393 4.3755 116 0.9064 -0.5541

21 0.1519 2.1289 53 0.3971 0.3735 85 0.6423 4.1792 117 0.9111 -1.3885

22 0.1726 -6.4868 54 0.4038 0.3453 86 0.6455 3.2762 118 0.9116 -1.4815

23 0.1858 -2.5312 55 0.4315 -4.1425 87 0.65 1.0609 119 0.9329 0.0564

24 0.1888 -1.2075 56 0.435 -3.4527 88 0.6714 -4.0102 120 0.9462 2.2945

25 0.191 -0.4057 57 0.439 -2.2456 89 0.6723 -3.6663 121 0.9481 2.2368

26 0.193 0.1571 58 0.448 0.6196 90 0.6866 2.4392 122 0.9573 0.8809

27 0.1982 0.5938 59 0.4503 1.0558 91 0.6944 1.8507 123 0.9622 0.1906

28 0.2213 -3.6923 60 0.4522 1.2574 92 0.6996 -0.0216 124 0.9711 0.906

29 0.2299 -0.6893 61 0.4963 6.7645 93 0.6996 -0.0283 125 0.9715 1.0231

30 0.2354 1.8974 62 0.5017 7.6344 94 0.7104 -2.7925 126 0.9727 1.3772

31 0.2369 2.5595 63 0.5044 7.421 95 0.7194 -0.3853 127 0.9798 4.4223

32 0.2553 3.7928 64 0.506 7.1136 96 0.7252 2.71 128 0.9884 8.0317

42



Figure 3.6: The spectra of the irregularly sampled data series given by Equation (3.11). (a) The ALFT (green)
and ASFT (blue) spectra, and (b) the LSS (black) and ALLSS (red). Note that the wavenumbers in the ALFT
spectrum (green) and LSS (black) are integers in this figure, and they are used as preselected wavenumbers in
the ASFT and ALLSSA. The spectral leakages can be observed in the LSS, ALFT and ASFT spectra, resulting
in more number of iterations and less accuracy.

series is inherently unequally spaced, and so the Nyquist wavenumber does not explicitly exist. Therefore,

there is no restriction for the selection of maximum wavenumber in this example. However, since the goal is

to regularize this data series to a series with regular spacing 1/128 (the Nyquist wavenumber of this regular

series is 64), the initial set of wavenumbers is chosen as Ω = {1, 2, 3, . . . , 63} for the LSSA and ALLSSA,

and the wavenumbers are estimated up to 4 decimal places. Note that the data series has three wavenumber

components with wavenumbers 25.6/2π ' 4.0743665, 128/2π ' 20.3718327, and 140/2π ' 22.2816920,

rounded to 7 decimal places.

For the ALFT and ASFT, the initial set of wavenumbers is chosen as K = {−64,−63, . . . , 63}. Their

spectra are illustrated with green and blue dots in Figure 3.6a, respectively. In the ALFT and ASFT, the

fitting of sinusoids of various wavenumbers (including zero) to the data series can implicitly account for the

linear trend. Figure 3.6a clearly shows the presence of the spectral leakages in both the ALFT and ASFT
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Table 3.2: The result of wavenumber estimation of the ALLSSA algorithm on the irregularly sampled data
series given by Equation (3.11) after each iteration.

Iteration number 1st wavenumber 2nd wavenumber 3rd wavenumber Norm of residual
First 4.0384 23.5040

Second 4.0384 20.3057 13.3170
Third 4.0384 20.3057 22.2947 3.5079
Fourth 4.0748 20.3057 22.2947 2.2501
Fifth 4.0748 20.3708 22.2947 0.3068
Sixth 4.0748 20.3708 22.2818 0.0468

Seventh 4.0748 20.3718 22.2818 0.0319
Eighth (final) 4.0744 20.3718 22.2818 0.0036

(with threshold ϑ = 0.5 for the L2 norm of residuals). However, the actual wavenumbers of the data series

in the ASFT are estimated more accurately than the ALFT (see the numbers shown in blue).

For the LSSA and ALLSSA, the initial Φ is selected as Φ = [1,x] to explicitly account for the linear

trend present in the data series, where ‘1’ and ‘x’ are the column vectors of all ones and the position vector,

respectively. Since there is no covariance matrix associated with the data series, the square weight matrix

P is not considered in the calculation. The LSS (black) and the ALLSS (red) in terms of wavenumber-

amplitude are illustrated in Figure 3.6b. The LSS shows one strong peak at wavenumber 4 that is the closest

value to the actual value 4.0743665; however, the other two signal peaks are buried in the leakage spectrum.

On the other hand, it can be seen from the ALLSS that only the actual signal peaks are estimated very

accurately. Note that the signal peaks are estimated up to only four decimal places, and this accuracy is

chosen for the synthetic and field data examples in the next chapter.

The preselected wavenumbers are all integers, and the LSS accurately detects the peak at the lowest

wavenumber. Note that the resolution of the LSS spectrum is not enough to resolve the other two peaks at

higher wavenumbers. A denser set of wavenumbers can estimate the signal wavenumbers more accurately.

Typically, in the LSSA, for higher wavenumbers, one may select denser wavenumbers, so the peaks at higher

wavenumbers that are naturally of much smaller bandwidth can be selected nicely (Pagiatakis, 1999).

Table 3.2 shows the result of the ALLSSA. In the first iteration, the wavenumber 4.0384 is estimated

that is approximately 0.036 different from its actual value 4.0743665. This is a shortcoming of the LSSA

(out-of-context) caused by the presence of other constituents in the data series. In the second and third

iterations, the other two wavenumbers are estimated that by removing their corresponding components from

the data series simultaneously, the first wavenumber is better approximated and so forth (see the highlighted

numbers in Table 3.2).

After all the signal wavenumbers with their amplitudes are estimated as well as the estimated slope

and intercept for the linear trend in the ALLSSA, they can be used to reconstruct the data series on any

desired regular series (regularize). In this example, the desired series is regular with 1/128 spacing, and
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Figure 3.7: (a) The irregularly sampled data series (black) given by Equation (3.11) and its regularizations
using the ALFT (green), ASFT (blue), ALLSSA (red), and (b) the difference between the ideal data series values
and the regularized results (residual).

the ideal data series and the regularization results using the three methods are illustrated in Figure 3.7a.

The differences between each ideal data point and the estimated one for the three methods are also shown

in Figure 3.7b. The L2 norm of the ideal regularized data series is 57.382. The L2 norm of the difference

between the ideal data series and the regularized data series for the ALFT, ASFT, and ALLSSA are 9.864,

1.26, and 0.004, respectively. For the ALLSSA, the estimated slope and intercept of the linear trend and the

estimated amplitudes and phases of the three wavenumbers, shown in the last row of Table 3.2, are used for

the regularization. The result of the ALLSSA regularization for the data series without the linear trend is

also more accurate than the one for the ALFT and ASFT regularization (not shown here). Note that when a

smaller threshold is selected for the ASFT, the computational time significantly increases, and its spectrum
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will have much more wavenumbers with very low amplitudes (absolute value of Fourier coefficients), and it

still cannot reach the accuracy of the ALLSSA.

To compare the results of the ALLSSA with the IMAP, the same data series is used for regularization

as illustrated in Figure 3.5a, and the results are shown in Figure 3.8. To consider the linear trend using

IMAP, the position vector and column vector of all ones are fitted to the data series and after estimating its

slope and intercept, it is removed from the data series. It is interesting to note that the estimated slope and

intercept are −0.7737 and 4.011, respectively, after this process (see the blue line in Figure 3.8b). However,

when the slope and intercept are being estimated simultaneously with other constituents using the ALLSSA,

the result is 3.1415 for the slope and 1.4143 for the intercept, approximately the same as the actual slope

and intercept in Equation (3.11) (see the red line in Figure 3.8b). In the LSS, the slope and intercept are

estimated simultaneously with sinusoids of a particular wavenumber (one at a time). The IMAP after several

iterations tries to compensate for the error in estimating the linear trend by using wavenumbers sufficiently

close to zero (see the IMAP peaks close to zero wavenumber in Figure 3.8a).

Since the correlations between the constituents are not simultaneously considered in the IMAP, its spec-

trum still shows leakages that increase the number of iterations and cause regularization inaccuracy (Figure

3.8c). However, the leakages in the IMAP spectrum are less than the ones in the ALFT and ASFT spectra

shown in Figure 3.6a because the correlations between the sine and cosine basis functions are considered in

the IMAP for each wavenumber. The L2 norm of the residual series in the IMAP is 0.83, indicating better

regularization result compared to the ALFT (9.864) and ASFT (1.26).
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Figure 3.8: (a) The IMAP spectrum (blue squares) and the LSS and ALLSS (same as the ones in Figure 3.6b),
(b) the regularization results using the IMAP and ALLSSA, and (c) the difference between the ideal data series
and the regularized data series using the IMAP and ALLSSA.
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3.6 Summary

I have proposed an antileakage method, the ALLSSA, to mitigate the spectral leakages in the least-

square spectrum. I have shown the outstanding performance of the ALLSSA and compared it with the

ALFT, ASFT, and the IMAP. The ALLSSA is a robust method that performs very well for analyzing data

series and can be applied to non-stationary data series with more complex structure by an appropriate

segmentation of the data series. The antileakage spectrum can estimate the exact location of the significant

spectral peaks and consequently can be used to regularize unequally spaced data series. The ALLSSA is

applied to analyze data series; however, it can be applied to analyze and regularize unequally spaced time

series as well, where the spectrum is in term of frequency rather than wavenumber.

Simultaneous estimation of wavenumbers and amplitudes with constituents of known forms significantly

reduces the number of iterations and improves the regularization results compared to the ALFT, ASFT, and

the IMAP. Note that when the constituents of known forms and weight matrices are not considered in the

iterative process, the ALLSSA is in fact the IMAP.
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4 Applications of the Antileakage Least-Squares Spectral

Analysis in Seismology

In this chapter, the ALLSSA is applied to regularize irregularly spaced synthetic 2D seismic data and

2D field seismic data given in time-distance (t-x ) domain that could be a crossline (inline) section of a 3D

seismic data or a 2D seismic data acquired from a 2D seismic survey. The results are compared with the

ALFT, ASFT, and nonlinear shaping regularization. Sections 4.2 and 4.3 are unabridged versions of sections

“SYNTHETIC DATA EXAMPLE” and “FIELD DATA APPLICATIONS” in Ghaderpour et al. (2018b),

respectively.

4.1 Introduction to Marine Seismic Data Processing

In seismology, the seismic refraction23 method uses the refraction of seismic waves on geologic layer

and rock/soil to characterize the geologic structure. This method is frequently used in engineering geology,

exploration geophysics, etc. For instance, geophysicists apply this method to find oil associated with salt

domes. Seismic waves generated by a vibrator or air gun (source) travel through the Earth, and their energies

partially reflect and partially refract through the interface. Geophysicists reconstruct the pathways of the

waves by measuring the traveling time from the source to several receivers and the velocity of seismic waves

depending on the medium in which they are traveling. In marine seismic data acquisition, the receivers are

hydrophones24 that convert sound waves25 (pressure waves) into electrical signals and record the pressure

amplitude. In other words, hydrophone sensors measure the pressure wave field26. The response of each

receiver to a single shot from the source is known as a “trace”, and it is recorded onto a data storage

(generating a time series). As the vessel travels the shot location moves, and the process will be repeated.

23Seismic refraction is a geological principle based on the law of refraction (Snell’s law).

24A hydrophone is a type of microphone designed to measure the underwater sound.

25Sound waves tend to travel faster in denser media. The speed of sound in the air is about 344 m/s (20 degrees Celsius) and
in the sea water is about 1531 m/s (20 degrees Celsius).

26The voltage generated by the hydrophone is proportional to the amplitude of the pressure wave as it passes by the hy-
drophone (Hurrell, 2004).
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Figure 4.1: 2D visualization of seismic survey.

Depending on the area of interest, the seismic images may contain many linear and/or curved events27.

In traditional marine seismic survey, a vessel carries one or more cables (streamers) containing a series of

hydrophones separated by a constant distance. The cables are deployed beneath the surface of the water and

are positioned at a set distance away from the vessel and can be as long as six to eight kilometres (Figure

4.1). The 2D surveys use only one cable and one source; whereas, the 3D surveys usually use six or eight

or more cables and sources. The inexpensive 2D surveys usually take place for general understanding of the

regional geologic structure before drilling or performing 3D surveys. In 3D surveys, the term “inline” refers

to the direction in which the receiver cables are deployed (the shooting direction), and the term “crossline”

refers to the direction that is perpendicular to the orientation of the receiver cables (parallel to the water

surface). In other words, the inline is the direction of the vessel movement (parallel to receivers), and the

crossline is perpendicular to vessel movement. The reader is referred to Scales (1997); Crawley (2000); Biondi

(2006) for more details on seismic data acquisition and processing.

27In seismology the term “dip” refers to a slop angle of the foot-wall block measured clockwise from horizontal (0 to 90
degrees). A linear event is an event whose dip is constant. A curved event is an event whose dip gradually changes when
observed at different times and offsets. A strongly curved event is an event whose dip changes over short ranges of offset (see
also Chapter 2 for more detail).
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Marine seismic data sets are usually irregularly sampled along spatial directions because of cable feath-

ering28, editing bad traces, economy (acquiring more data is expensive and difficult because of current

marine-acquisition technology), etc. They are more coarsely sampled along the crossline direction than the

inline direction. Regularly sampled seismic data are required for various purposes including wave equation

migration, seismic inversion, amplitude versus azimuth or offset analyses and surface-related multiple elim-

ination (Weglein et al., 1997; Dragoset et al., 2010). An ideal way of obtaining regularly sampled data is

to acquire more data. In 3D seismic surveys, acquiring more data may be done by increasing the num-

ber of streamers with a wider azimuth range, but this is expensive and difficult to achieve, and so data

regularization (reconstruction of data over any desired regular grids) becomes an important task.

The area spanned by a 3D seismic image is subdivided into small grids called stacking bins. Each trace in

a 3D seismic data is positioned so that it passes vertically through the midpoint of each bin. The 3D seismic

data can be viewed in terms of time-crossline-inline (t-x-y). The simplest 3D data regularization29 is to bin

the data and disregard the true data acquisition locations in the bin. This binning technique may cause

artifacts that contaminate the final migrated images (Xu et al., 2005). Similar to the ALFT and ASFT, the

true locations of the acquired data (using their latitudes and longitudes) may be used in the extension of the

ALLSSA for regularization of 3D seismic data or higher orders (5D, inline-crossline-azimuth-offset-frequency)

seismic data (Trad, 2009; Xu et al., 2010) that is subject to future work.

It is customary to transform each trace from the time domain to the frequency domain using the Fast

Fourier Transform (FFT) (Spitz, 1991; Abma and Claerbout, 1995; Xu et al., 2010; Guo et al., 2015). Then

for each frequency, generate a data series30 whose data points, located at the trace locations, are the Fourier

coefficients of that frequency (a temporal frequency slice). For irregularly spaced seismic data, each temporal

frequency slice is an irregularly sampled data series, and the ALFT or ASFT or IMAP or ALLSSA method

may be used to regularize the data series, and then each trace can be transformed back from the frequency

domain to the time domain by taking the inverse FFT. Note that in this chapter and also the next chapter,

all the analyses are performed on the temporal frequency slices.

In order to visualize the aliasing effects, the seismic data may be transformed from the t-x domain to

frequency-wavenumber31 (f-k) domain using the two-dimensional discrete Fourier transform (DFT). More

precisely, suppose that {f(tj , x`) : 1 ≤ j ≤ m, 1 ≤ ` ≤ n} contains the values of the seismic data in the

28The lateral displacement of the cables is often called cable feathering. In the 3D surveys, due to sideways drift, the cables
are not parallel to each other, and so the hydrophones are not regularly spaced.

29A popular method of 3D data regularization is using the least-squares collocation that is computationally slow for typical
seismic data applications (Fomel, 2001, Chapter 2).

30In this chapter, the data series is obtained from 2D seismic images. In 3D seismic images, an irregular set of data points
over irregular grids may be obtained.

31Frequency is the number of cycles per unit time, and wavenumber is the number of cycles per unit distance.
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t-x domain, where tj = j/m and x` = `/n. The two-dimensional DFT for each pair (k1, k2) ∈ K1 ×K2 is

defined as

f̂(k1, k2) =

m∑
j=1

n∑
`=1

f(tj , x`)e
−2πik2x`e−2πik1tj , (4.1)

where K1 = {−m2 , . . . ,
m
2 − 1} and K2 = {−n2 , . . . ,

n
2 − 1} if m and n are even and K1 = {−m−1

2 , . . . , m−1
2 }

and K2 = {−n−1
2 , . . . , n−1

2 } if m and n are odd. Since the two dimensional DFT is defined for data sampled

in regular grids, in the following examples, when a trace at spatial location x` is removed from the seismic

image, the value of f(tj , x`) in Equation (4.1) is set to zero for all j’s. The f-k spectrum is defined by

calculating the absolute values of f̂(k1, k2) for all k1 ∈ K1 and k2 ∈ K2.

4.2 Synthetic Seismic Data Example

Four linear seismic events are simulated by using an Ormsby wavelet that is a common type of synthetic

wavelet in reflection seismology. The wavelet is defined by the sinc function as

A(t) =
f2

4 sinc2(f4t)− f2
3 sinc2(f3t)

f4 − f3
− f2

2 sinc2(f2t)− f2
1 sinc2(f1t)

f2 − f1
. (4.2)

Ormsby wavelets have several sidelobes (see Figure 4.2a), unlike Ricker wavelets which only have two, one

on either side. Let f1 = 5π, f2 = 10π, f3 = 20π, and f4 = 30π Hz. The wavelet defines a trapezoidal shape

in the frequency spectrum with low-cut, low-pass, high-pass, and high-cut frequencies f1, f2, f3, and f4,

respectively (see Figure 4.2b). The wavelet shown in Figure 4.2a may be considered as a pressure wave with

the unit of kiloPascal (kPa).

Figure 4.2: (a) An Ormsby wavelet given by Equation (4.2) multiplied by factor 0.01 with low-cut, low-pass,
high-pass, and high-cut frequencies f1 = 5π, f2 = 10π, f3 = 20π, and f4 = 30π Hz, respectively, and (b) the
spectrum of panel a. The time sampling rate is 1000 samples per second.
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Figure 4.3: A synthetic seismic data containing 4 linear events. (a) Original data with 100 traces, (b) the f-k
spectrum of panel a, (c) 40 traces are randomly removed, and (d) the f-k spectrum of panel c (the removed traces
are set to zero to generate the f-k spectrum). In the f-k spectra (right panels), the vertical axes (in Hz) correspond
to the vertical axes (in second) in the left panels (one sample per millisecond). Similarly, the horizontal axes (in
c/km) in the right panels correspond to the horizontal axes in the left panels (10 m trace spacing), so for example,
the vertical reddish lines in the f-k spectra at wavenumber zero correspond to the horizontal event. The spectral
peaks corresponding to the linear events are shown with numbers 1 to 4 in panels a and b.

The linear events are designed to have different amplitudes and dips. There are 100 traces that are

regularly spaced, out of which 40 traces are randomly removed (see Figure 4.3). The time sampling rate is

1000 samples per second, and assuming that the unit distance is in kilometre, the distance sampling rate is

100 samples per kilometre (10m trace spacing). Therefore, the Nyquist frequency is 500 Hz, and the Nyquist

wavenumber is 50 cycles per kilometre (c/km) (40 traces are removed). The frequency-wavenumber (f-k)

spectra of Figure 4.3a and c are shown in Figure 4.3b and d, respectively.

The ALFT, ASFT, and ALLSSA are applied to the edited data shown in Figure 4.3c (with the 40 traces

removed) and to regularize the temporal frequency slices. For a fair comparison, the same threshold (ϑ = 0.05
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Figure 4.4: The regularization results using the ALFT with (a) 100 wavenumbers, (b) a denser set of wavenum-
bers (200 wavenumbers), and (c and d) the residuals of panels a and b, respectively (amplified 30 times). Arrows
show places with significant difference, and panel d shows less difference compared to panel c.

kPa) for the ALFT, ASFT, and ALLSSA is used. The difference between the original synthetic data and

the regularized data (the residual) is amplified by a factor of 30, and so the f-k spectra of the residuals will

correspond to the amplified residuals for all the methods. The same partitioning for wavenumbers is used

for both the ASFT and ALLSSA to estimate the wavenumbers to a resolution of 4 decimal places. All the

methods are programmed in MATLAB language and run on a computer with two cores (processors). The

sum of L2 norms of differences between the original and interpolated traces are denoted by ‘ε’. The sum

of the L2 norms of all traces in Figure 4.3a is 650.86. To have a better measure for the total residual, a

percentage residual is also calculated, that is ε/6.5086 %.

First, K = {−50,−49, . . . , 48, 49} is chosen for the ALFT, and its regularization result and residual

(ripples) are shown in Figure 4.4a and c, respectively. The computational time is 7s and ε = 37.29 (5.73%).
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Figure 4.5: The f-k spectra corresponding to (a) Figure 4.4a, (b) Figure 4.4b, (c) Figure 4.4c, and (d) Figure 4.4d.

Figure 4.4a and c show that the missing traces are not very well constructed especially for the extrapolation

(the traces toward the edges). This is mainly due to the lack of adequate resolution of the wavenumbers.

Next the number of wavenumbers is doubled, i.e., K = {−50,−49.5,−49, . . . , 48.5, 49, 49.5}, and the ALFT

regularization result and residual are shown in Figure 4.4b and d, respectively. The computational time

increased to 14s, but ε = 6.76 (1.04%). One can observe that the traces are constructed more accurately

than the previous choice for K. The f-k spectra corresponding to Figure 4.4 are shown in Figure 4.5.

Comparing Figure 4.5c to 4.5d, one can observe that the fuzziness of the spectrum is reduced when a denser

set of wavenumbers is selected for the ALFT. Next, the preselected set of wavenumbers in the ASFT is chosen

as K = {−50,−49, . . . , 48, 49} and its regularization result and residual are illustrated in Figure 4.6a and c,

respectively. The computational time is 13s, and ε = 2.6 (0.4%), that is more accurate and computationally

faster than the ALFT with a denser set of wavenumbers.

For the ALLSSA, the preselected set of wavenumbers is chosen as Ω = {1, 2, . . . , 49}. To ensure that all

the real wavenumbers are considered up to the Nyquist wavenumber 50, the partitioning for wavenumber 49

is adjusted to cover the range [49, 50), and we choose Φ = [1,x] to explicitly account for any linear trend.
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Figure 4.6: The regularization results using the (a) ASFT, (b) ALLSSA, and (c and d) the ASFT and ALLSSA
residuals, respectively (amplified 30 times). Arrows in panel c show places with residual that are less than the
ALFT residual. Panel d shows almost zero residual.

If one chooses Φ = [1], then the partitioning for wavenumber 1 should be adjusted to cover the range (0, 1],

so the sinusoids of lower wavenumbers can approximate the trends. The ALLSSA regularization result and

residual are shown in Figure 4.6b and d, respectively. The computational time is 3s, and ε = 0.3 (0.05%).

Figure 4.6b and d show that the ALLSSA is able to fill in the missing traces much more accurately (0.05%

vs 1.04% and 0.4%) and computationally faster than the ALFT and ASFT. The f-k spectra corresponding

to Figure 4.6 are shown in Figure 4.7.

In order to show how the ALLSSA statistically attenuates the random noise, a distinct Gaussian random

noise is added to each trace in Figure 4.3b. Therefore, approximately 20% of the synthetic data is random

noise. For display purposes, only trace 1 for the extrapolation, trace 15 for the interpolation, and trace

92 for noise attenuation are illustrated in Figure 4.8. The set K = {−50,−49, . . . , 48, 49} is selected for
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Figure 4.7: The f-k spectra corresponding to (a) Figure 4.6a, (b) Figure 4.6b, (c) Figure 4.6c, and (d) Figure 4.6d.

both the ALFT and ASFT. Comparing the ALLSSA with the ALFT and ASFT, one can observe that the

ALLSSA performs much better in reconstructing the signals (the events) and attenuates the random noise

down to a certain confidence level. The result of the ALFT and ASFT for trace 1 and 15 looks noisier

because aside from the accuracy of the actual wavenumbers, more noise is interpolated in the traces. In the

ALLSSA, when the 99% confidence level is used, the noise attenuated slightly more than when the 95% level

is used; however, it is recommended using the 95% confidence level for real seismic data because of their

non-stationarity behaviour so that more wavenumbers will be estimated simultaneously at each round of

iterations that may correspond to short duration signals. Note that there is no rigorous statistical property

of choosing a confidence level for both the ALFT and ASFT, so a threshold was selected based on the

magnitude of random noise for these methods.

In order to see the sensitivity of the ALLSSA to spatially aliased events, the traces of odd numbers are

removed except for a few of them (e.g., trace numbers 5, 21, 83, 91) and show the result in Figure 4.9a. A

dense set of wavenumbers K = {−50,−49.9, . . . , 49.8, 49.9} (1000 wavenumbers) is selected for the ALFT.

In this case, the ALFT and ASFT have approximately the same computational time (57s) with ε = 109.3
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Figure 4.8: The comparison of three regularized traces using the ALFT, ASFT, and ALLSSA. Original traces
without random noise in black, with random noise in blue, the ALLSSA results at 99% and 95% confidence levels
in green and pink, respectively, the ALFT result in yellow and the ASFT result in red. The left six traces are for
trace 1, the middle ones are for trace 15, and the right ones are for trace 92. Arrows show several positions in
time where the ALLSSA performed better in random noise attenuation.

(16.79%) and ε = 93.4 (14.35%), respectively. Only the ALFT result is illustrated because the ASFT result

is also very similar (cf., Figure 4.9). Note that the residual is amplified by a factor of 10 in Figure 4.9e.

To show aliasing, the f-k spectrum of this synthetic data is illustrated in Figure 4.9b. Since the dominant

trace spacing is 20m, all of the events are spatially aliased. The f-k spectra of the ALFT regularization

result and its residual are shown in Figure 4.9d and f, respectively. One can clearly observe the effect of the

alias events in the spectra (e.g., see the arrows in Figure 4.9f). The computational time for the ALLSSA is

2s, and ε = 0.9 (0.14%) which is significantly smaller than the ALFT and ASFT. The final regularization

result is almost the same as Figure 4.6b (not shown here). The reason for this accuracy is that the ALLSSA

very accurately estimates the positive wavenumbers, and these few extra traces (four traces) prevents the

matrix of normal equations to be singular. In the event that this matrix is singular, one may compute its

pseudo-inverse (Rao and Mitra, 1972). Note that if one removes the traces of odd numbers, the Nyquist

wavenumber will be 25 c/km, and the aliasing will occur for the wavenumbers beyond 25 c/km. In this

situation, an anti-alias technique similar to the technique in Schonewille et al. (2009) may be used.
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Figure 4.9: (a) The synthetic data in Figure 4.3a after setting the traces of odd numbers to zero except trace
numbers 5, 21, 83, 91, (b) the f-k spectrum of panel a, (c) the regularization result using the ALFT with a denser
set of wavenumbers (1000 wavenumbers), (d) the f-k spectrum of panel c, (e) the ALFT residual (amplified 10
times), and (f) the f-k spectrum of the ALFT residual. Arrows show the effect of aliased events in the ALFT
residual.
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4.3 Field Seismic Data Applications

The field data example is a marine 2D shot gather from a deep water of Gulf of Mexico (pressure data

set) that is the same as the one used by Crawley (2000); Fomel (2002); Chen et al. (2015). The shot gather

has long-period multiples and complicated diffraction events caused by a salt body. The time sampling rate

is 250 samples per second. To compare the ALLSSA with the nonlinear shaping regularization, the same

traces (30%) as in Chen et al. (2015) are removed (see Figure 4.10). Note that the normalized wavenumber

axis in the f-k spectra is obtained by considering ∆x = 1. The nonlinear shaping regularization result (as

described in Chapter 2) after 15 iterations and its residual are illustrated in Figure 4.11a and c, respectively.

Since stationarity of data series is the main assumption of the ALFT, ASFT, and ALLSSA (i.e., the seismic

events must be approximately linear), one may use the windowing strategy. The seismic data are divided to

six spatial non-overlapping windows (see blue windows in Figures 4.11b and 4.13a), and the same threshold

is applied for both the ALFT and ALLSSA. Within each window, K = {−15,−14.9, . . . , 14.8, 14.9} (300

Figure 4.10: (a) A marine 2D shot gather from a deep water of Gulf of Mexico, (b) the f-k spectrum of panel
a, (c) 30% of the traces are randomly removed, and (d) the f-k spectrum of panel c.
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Figure 4.11: (a) The result of the nonlinear shaping regularization after 15 iterations, (b) the ALFT result, (c)
the residual of panel a, and (d) the residual of panel b.

wavenumbers) for the ALFT, and Ω = {1, . . . , 14} and initial Φ = [1] for the ALLSSA. The regularization

result of the ALFT and its residual are illustrated in Figure 4.11b and d. The f-k spectra corresponding to

the nonlinear shaping regularization and ALFT are shown in Figure 4.12. The regularization result using

the ALLSSA and its residual are shown in Figure 4.13a and c, respectively. Figure 4.14a and c show the f-k

spectra corresponding to Figure 4.13a and c, respectively.

One can observe from these figures that the ALFT and ALLSSA performed well in interpolating the

missing traces as compared to the nonlinear shaping regularization; however, they still have small amount

of artifacts (e.g., compare the magnified sections in Figures 4.11b and 4.13a). The data are very poorly

sampled along the spatial direction within a few of the windows (e.g., half of the traces are missing within

the magnified section), and so the spatial aliasing mainly caused these artifacts. An anti-aliasing scheme

within the windows may further improve these results (Schonewille et al., 2009; Xu et al., 2010). An

alternative approach is now proposed for a better interpolation result.
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Figure 4.12: The f-k spectra corresponding to (a) Figure 4.11a, (b) Figure 4.11b, (c) Figure 4.11c, and (d)
Figure 4.11d.

In the weighted ALLSSA, the larger the values of the diagonal entries P are, the more the fitting process

is focused around the locations of those values and vice versa. For a faster computation, one may treat the

weight matrix in Equation (3.10) as a vector P = [w(`)] (1 ≤ ` ≤ n) whose entries are the values of the

following Gaussian function

w(`) = e−℘(x`−xi)2 , (4.3)

where ℘ determines the effective width of the Gaussian function (length of the window), and xi is the

location of a trace being approximated. By this selection of P, the sinusoidal basis functions will be adapted

to the Morlet wavelet in the least-squares sense, smoothing the seismic image (Foster, 1996; Ghaderpour

and Pagiatakis, 2017). This selection also allows us to incorporate more wavenumbers into the algorithm

resulting in a better interpolation result (Crawley, 2000). A similar discussion for selection of the weight

function in the ALFT is also given in Xu et al. (2010).
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Figure 4.13: (a) The ALLSSA result, (b) the weighted ALLSSA result, (c) the residual of panel a, and (d) the
residual of panel b. The events in panel b are constructed more smoothly than in panel a (e.g., the green arrows
and magnified sections).

One may apply the weighted ALLSSA to estimate each trace individually using the data within the

spatial window containing that trace which may not necessarily fall in the centre of the window. For existing

traces, one may still take advantage of the computational speed of the ALLSSA and apply it to attenuate

the random noise of the traces down to a certain confidence level and so smooth the entire seismic data

(Gaussian overlapping windows).

For better comparison between the ALLSSA and the weighted ALLSSA, ℘ in Equation (4.3) is selected in

such a way that the Gaussian bell curve is almost truncated to zero in the margins of the translating windows

whose lengths are the same as the window length used above. The result of the weighted ALLSSA and its

corresponding residual are shown in Figure 4.13b and d, respectively32. The f-k spectra corresponding to

Figure 4.13b and d are illustrated in Figure 4.14b and d, respectively. One can observe that the events are

smoothly constructed, and the random noise is also attenuated down to the 95% confidence level (e.g., green

32The basis functions in the weighted ALLSSA are still the sinusoidal basis functions, but the Gaussian weights given by
Equation (4.3) adapt the sinusoids to the morlet wavelet in the least-squares sense.
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Figure 4.14: The f-k spectra corresponding to (a) Figure 4.13a, (b) Figure 4.13b, (c) Figure 4.13c, and (d)
Figure 4.13d. The white arrows in panels a and b refer to the linear event shown in the magnified sections in
Figure 4.13a and b, respectively.

arrows in Figure 4.13). The almost linear event in the south-east part of the seismic data is clearly constructed

(compare the events within the magnified sections shown in Figure 4.13a and b and the corresponding f-k

spectra shown in Figure 4.14a and b, white arrows). All the methods show small artifacts above the water-

bottom reflections that are not significant. A mask is used to set the values of the north-east part of the

images shown in Figures 4.11 and 4.13 to zero after the interpolation.

Note that the traces within each of the six spatial windows are simultaneously estimated in the ALFT

and ALLSSA, and so the existing traces are almost fully constructed, resulting in error propagation to other

traces (Figures 4.11b and 4.13a). However, in the weighted ALLSSA, each trace is individually approximated

by applying 95% confidence level (the LSSA critical value at 95% confidence level is used to identify all the

statistically significant peaks in the spectrum), so the events are smoothly constructed, and random noise is

also attenuated down to 95% confidence level for the entire seismic data.
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Figure 4.15: (a) The noise attenuated result of Figure 4.10a using the ALLSSA, (b) the f-k spectrum of panel
a, (c) the ALLSSA residual, and (d) the f-k spectrum of panel c.

Finally, for each temporal frequency slice of the original seismic data (regularly spaced), one may repeat

the ALLSSA until the L2 norm of the residual series becomes less than approximately 10% of the total L2

norm of the data series and use the inverse FFT to reconstruct the traces. The result of this process, its

difference from the original seismic data, and their corresponding f-k spectra are shown in Figure 4.15. One

can observe that the geologic structures are clearly reconstructed, and the random noise is attenuated (A

95% confidence level is used in each iteration).
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4.4 Summary

Two windowing techniques, namely, the rectangular non-overlapping and Gaussian overlapping window-

ing techniques, are introduced and applied to regularize 2D non-stationary marine seismic data. Within each

translating window over distance, the (weighted) ALLSSA is applied to regularize segments of data series

within that window. In the field data example, I showed that applying the Gaussian window can regularize

the seismic data smoother and simultaneously can attenuate the random noise down to a certain confidence

level. In 3D seismic data regularization, the Gaussian window may be considered as the two-dimensional

Gaussian window for regularization and random noise attenuation. As demonstrated in Figures 4.8 and 4.14,

the ALLSSA is able to interpolate/extrapolate the seismic traces more accurately than the state-of-the-arts

methods while it also attenuates the random noise down to a certain confidence level that is a breakthrough

in signal processing.

There are several other sophisticated windows that may be used in the weighted ALLSSA, such as

Dolph-Chebyshev and Kaiser windows. The Dolph-Chebyshev window minimizes the Chebyshev norm of

the side-lobes for a given main-lobe (Dolph, 1946; Harris, 1978). In other words, it minimizes the L∞ norm

of the local maxima in the transform magnitude outside of the main-lobe (the central local maximum). The

Kaiser window also approximates a window that maximizes the energy concentration in the main-lobe (Kaiser

and Schafer, 1980). These windows are more difficult to compute and implement compared to the Gaussian

window. One of the advantages of the least-squares optimization in the LSSA, IMAP, and ALLSSA is that

it considers the correlation between the sinusoids, and so it performs much better with much less spectral

leakages compared to the Fourier based methods, such as the DFT, ALFT, and ASFT, when segmenting

data series. Therefore, no window, such as Gaussian or Dolph-Chebyshev or Kaiser window, is required in

the least-squares based methods developed in this dissertation. However, it may be interesting to investigate

the effect of using Dolph-Chebyshev and Kaiser windows on the regularization results, that is subject to

future work.
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5 Multichannel Antileakage Least-Squares Spectral Analysis

As was shown in Chapter 4, when seismic data present mild aliasing in the f-k spectrum, the ALLSSA

can regularize the aliased data effectively. However, certain assumption, such as linearity of seismic events

(Schonewille et al., 2009) or additional information, such as spatial gradients of the seismic data (Vassallo

et al., 2010a) is further needed to aid regularization beyond aliasing. For example, in the crossline direction,

only a few irregularly spaced samples are available, and the data series may be strongly aliased. Or, the

samples of a data series are regularly spaced, but the spectrum of the data series presents severe aliasing

when the maximum wavenumber is chosen as the Nyquist wavenumber of the desired regularly spaced series

having finer resolution. In both situations, the data series is referred to as “coarsely sampled”.

Recent marine vessels usually tow true multicomponent streamers that can measure the full particle

velocity vector in addition to the pressure. The particle velocity measurements can increase the effective

Nyquist wavenumber by a factor of two or three, depending on how they are used (Robertsson et al., 2008).

Because particle motion can easily be converted to a pressure gradient by using the equation of motion33,

such streamers would enable acquisition of both pressure and the gradient of pressure simultaneously. The

Multichannel Interpolation by MAtching Pursuit (MIMAP) is based on the IMAP that uses multicomponent

seismic measurements to reconstruct the seismic wavefield at any desired crossline position between towed

streamers (Vassallo et al., 2010a).

In this chapter, it is assumed that data series f(x) and its spatial gradient fx(x) are available and similar

techniques proposed by Vassallo et al. (2010a) are used to regularize coarsely sampled data series. The

new method developed in this chapter, namely, Multichannel AntiLeakage Least-Squares Spectral Analysis

(MALLSSA), incorporates the spatial gradients of seismic data into the ALLSSA to regularize the data series

beyond aliasing. The MALLSSA is able to estimate the wavenumbers of data series accurately, resulting in

smaller number of iterations and better regularization results. The outstanding performance of this method

is shown on synthetic data series, synthetic and marine seismic data sets.

33The equation of motion states that the particle acceleration vector a (measured by an accelerometer) is proportional to the
gradient of pressure P by equation ∇P = −ρa, where ρ is the density of the medium. In particular, in the crossline direction
(denoted by x here), Px = −ρV̇x, where the dot above Vx denotes the temporal derivative (Vassallo et al., 2010a).
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5.1 Multichannel Interpolation by Matching Pursuit

In this section, the Multichannel Interpolation by MAtching Pursuit (MIMAP) is briefly described in

matrix form, and the reader is referred to Vassallo et al. (2010a) for more details. Suppose that Ω is a set

of wavenumbers and let f = [f(x`)] be a column vector of n samples (` = 1, . . . , n), and fx = [fx(x`)] be its

spatial gradient, where the x`’s may be irregularly spaced. Note that f and fx do not need to have the same

size. For each wavenumber ωk ∈ Ω, let Φk and Φkx be design matrices of orders n× 2 defined as

Φk =
[

cos(2πωkx`), sin(2πωkx`)
]
, (5.1)

Φkx =
[
− 2πωk sin(2πωkx`), 2πωk cos(2πωkx`)

]
. (5.2)

Also, let ck = [ak bk]T, where T is the transpose, and ak and bk are the coefficients of the cosine and sine

basis functions being estimated, respectively. For each wavenumber ωk ∈ Ω, the MIMAP minimizes the

following cost function with respect to ck

Ψk(ck) = (f −Φk ck)T(f −Φk ck) + λ(fx −Φkx ck)T(fx −Φkx ck), (5.3)

where T is the transpose, and so it estimates ck as

ĉk =
(
ΦT
kΦk + λ ΦT

kxΦkx

)−1(
ΦT
k f + λ ΦT

kxfx

)
. (5.4)

The derivation of Equation (5.4) is shown in Appendix D in a more general case (i.e., for the MALLSSA).

The weighting parameter λ in Equation (5.3) adjusts the relative contributions of data and gradient residuals

to the cost function. The proper selection of λ should consider the expected energy difference between the

two signals and the signal-to-noise ratio of the respective multicomponent measurements (Vassallo et al.,

2010a). When λ = 0, the gradient measurements are discarded, and the MIMAP degenerates to the IMAP

as is briefly described in Chapter 2.

After substituting ĉk given in Equation (5.3), the optimization problem becomes estimating ωk that

maximizes the following cost function that corresponds to the extension of the Lomb spectrum to the case

of multichannel reconstruction (Vassallo et al., 2010a, Appendix A):

sλ(ωk) = fTΦkĉk + λ fx
TΦkx ĉk. (5.5)

After estimating ωk and ĉk, the MIMAP obtains the residual data series (f−Φk ĉk) and its residual gradient

(fx−Φkx ĉk) and treat them as new input data series and gradient and performs the entire process on these

residual series. When the energy of the overall residual is sufficiently reduced, the iterations are terminated,

and the estimated wavenumbers and amplitudes (ωk’s and ĉk’s) will be used to reconstruct the data series

on any desired equally spaced series.
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In the IMAP and MIMAP, the wavenumbers and corresponding amplitudes are estimated one at a time

(out-of-context), ignoring the correlations between the sinusoids of different wavenumbers (see Appendix A).

Therefore, the estimated wavenumbers and amplitudes are not very accurate, resulting in large number of

iterations and less accuracy compared to when these correlations are considered. In the next section, I show

how these correlations can be considered as well as the constituents of known forms and covariance matrices

associated with the data series.

5.2 Multichannel Antileakage Least-Squares Spectral Analysis

Suppose that Ω = {1, 2, . . . , η} is a preselected set of wavenumbers, where η is the Nyquist wavenumber

of the desired regular series. Let f = [f(x`)] be a column vector of n samples (` = 1, . . . , n), and fx = [fx(x`)]

be its spatial gradient, where the x`’s may be irregularly spaced. Suppose that Cf and Cfx are the covariance

matrices associated with f and fx, respectively (see Equation (3.4)). Let P = Cf
−1 and Px = Cfx

−1 that

can identify parameter λ in the MIMAP in a more general and rigorous way. Note that f and fx do not need

to have the same size; however, their sizes are assumed to be the same in this chapter. For each wavenumber

ωk ∈ Ω, the MALLSSA minimizes the following cost function

Ψk(c) =
(
f −Φ c

)T
P
(
f −Φ c

)
+
(
fx −Φx c

)T
Px

(
fx −Φx c

)
, (5.6)

where T is the (conjugate) transpose, and Φ and Φx are the design matrices of orders n× (q+ 2) defined as

Φ =
[
Φ, Φk

]
, Φx =

[
Φx, Φkx

]
(5.7)

such that Φ =
[
Φ1, . . . ,Φq

]
contains the constituents of known forms, Φx =

[
Φ1x , . . . ,Φqx

]
contains their

gradients, and Φk and Φkx are given by Equations (5.1) and (5.2), respectively. Minimizing the cost function

in Equation (5.6) with respect to c, it is shown in Appendix D that

ĉ =

 v

ĉk

=
(
Φ

T
PΦ + Φ

T

xPxΦx

)−1(
Φ

T
Pf + Φ

T

xPxfx

)
, (5.8)

where v is the estimated amplitudes of the constituent of known forms, and ĉk is the estimated amplitudes

of the sine and cosine basis functions of wavenumber ωk. Now in the process of estimating the wavenumbers,

at each step, a wavenumber ωk ∈ Ω will be selected such that the following normalized ratio (multichannel

spectrum) is maximum

smulti(ωk) =
ĝTPΦkĉk + ĝT

x PxΦkx ĉk
ĝTPĝ + ĝT

x Pxĝx
, (5.9)

where ĝ = f −Φ ĉ and ĝx = fx −Φx ĉ, and

ĉ =
(
ΦTPΦ + ΦT

xPxΦx

)−1(
ΦTPf + ΦT

xPxfx

)
. (5.10)
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Next, a wavenumber will be chosen in a small neighbourhood that maximizes Equation (5.9), and then the

sine and cosine basis functions of this wavenumber and their derivatives will be added to the design matrices

Φ and Φx in Equation (5.7), respectively (as additional constituents of known forms).

The sinusoidal basis functions and their derivatives may be eliminated from the design matrices to be

estimated more accurately in the next step like the ALLSSA. This process continues until smulti(ωk) given

by Equation (5.9) is no longer statistically significant at certain confidence level, and so ĉ, given by Equation

(5.10), will comprise the estimated amplitudes of the final constituents in the first round of iterations, and it

will produce a spectrum called the Multichannel Antileakage Least-Squares Spectrum (MALLSS). When the

data series is wide-sense stationary, one round of iterations will provide sufficient wavenumbers to regularize

the data series. However, one may repeat the entire process on the new residuals in the next round of

iterations and continue until the L2 norm of residuals goes below a threshold (the residuals are random).

The weight matrices P (associated with f) and Px (associated with fx) balance the relative importance

between the data series and its gradient (the noiser the gradient is, the less it will be considered). After

each round of iterations, these matrices may be updated using the covariance law. Note that when Px = 0,

Equation (5.9) will be the same as Equation (3.10), following the beta distribution. In Equation (5.7), the

x`’s in Φ do not need to be the same as the ones in Φx; however, in the following examples, they are

considered to be the same. A few of the constituents of known forms can be preselected, such as the column

vector of all ones or the distance vector. Other basis functions can be considered, such as the sinusoidal

basis functions, whose wavenumbers will be estimated in an iterative manner using the same partitioning of

the wavenumbers described in Chapter 3.

When a data series is coarsely sampled, several sinusoids of various wavenumbers may identically fit the

constituents of the data series; however, the amplitudes of their derivatives are different, resulting in selecting

the correct wavenumbers when minimizing Equation (5.6). In other words, the derivative measurements can

alter the sampling criteria (Vassallo et al., 2010a). Note that the MALLSSA is slightly different from the

MIMAP in that the wavenumbers are simultaneously being estimated in an iterative manner, resulting in

higher accuracy and a smaller number of iterations. If one does not consider Φ and Φx in Equation (5.7)

that contain the constituents of known forms and ignores the weight matrices P and Px (simply replace

them by parameter λ), then the MALLSSA is in fact the MIMAP.

In the following examples, it is shown that when Φ1 in Φ is selected as the column vector of ones, the

horizontal linear event will be well constructed. This selection is crucial in the regularization of seismic

data beyond aliasing because it also considers the trace averaging in the least-squares sense. Note that the

gradient of this vector is zero, and it cannot be useful for horizontal events whose spectra are vertical in the

f-k spectrum. This selection helps further in more accurate estimation of the wavenumbers.
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5.3 Synthetic data series regularization beyond aliasing

Consider the following data series and its gradient series

f(x`) = 5 sin(25.6x`) + 2.5 sin(128x` + 1) +
√

3 sin(140x`) + 4 cos(350x`), (5.11)

fx(x`) = 5(25.6) cos(25.6x`) + 2.5(128) cos(128x` + 1) +
√

3(140) cos(140x`)− 4(350) sin(350x`), (5.12)

where x` = `/32, ` = 1, . . . , 32. The data series is shown by black stars in Figure 5.1b. The goal is to

regularize the data series on a series with regular spacing 1/128 whose Nyquist wavenumber is 64. The

actual wavenumbers of the data series are real numbers: 25.6/(2π) = 4.0743665, 128/(2π) = 20.3718327,

140/(2π) = 22.2816920, 350/(2π) = 55.7042301. Since the distance between every two consecutive samples

is 1/32 and the goal is to reconstruct the data series on a series with regular spacing 1/128, the data

series presents three Nyquist wavenumbers at 16, 32, and 48 (cf., Figure 5.1a). The actual locations of two

wavenumbers are between 16 and 32, and one is after 48.

The LSSA amplitude spectrum (the square root of the sum of squares of estimated sine and cosine

coefficients of a wavenumber) is shown in Figure 5.1a. The estimated wavenumbers using the LSSA show

severe aliasing. For example, in the LSS (see black peaks in Figure 5.1a), the sinusoids of wavenumbers

4, 28, 36, and 60 fit the data series identically, and so the true signal that has wavenumber close to 4 is

indistinguishable from wavenumbers 28, 36, and 60. However, since the amplitude of the gradient series for

these wavenumbers are different, the MALLSSA is able to accurately estimate the true wavenumber that

is 4.0743 (see the red peak at wavenumber 4.07 in Figure 5.1a). The estimated wavenumbers using the

MALLSSA are shown by red in Figure 5.1a that are very accurately estimated up to four decimal places.

The MIMAP spectrum is also shown by blue in Figure 5.1a, showing spectral leakages and has many

wavenumbers in the spectrum that increase the computational cost (approximately 1 s for the MIMAP and

0.1 s for the MALLSSA in this example) and reduce the accuracy of the regularization. The L2 norm of

the ideal data series with 1/128 sample spacing is 56.2436, and the L2 norm of the MIMAP and MALLSSA

residuals are 1.863 and 0.006, respectively. The differences between the ideal and the regularized data series

using the MIMAP and MALLSSA are illustrated in Figure 5.1c. Note that since the amplitudes of the

components of the gradient series depend on the wavenumber, minimization of Equation (5.6) resulted in

picking the correct wavenumbers in the spectrum.
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Figure 5.1: A coarsely sampled data series (black stars in panel b) presenting severe aliasing (black circles in
panel a) and its regularization on series with spacing 1/128 using the MIMAP (blue squares in panel b obtained
from wavenumbers shown by blue squares in panel a) and MALLSSA (red diamonds in panel b obtained from
the four wavenumbers shown by red diamonds in panel a), and (c) the difference between the ideal data series
and the regularized data series using the MIMAP (blue squares) and MALLSSA (red diamonds). Note that the
MIMAP spectrum in panel a shows spectral leakages and has many wavenumbers in the spectrum that increase
the computational cost and reduce the accuracy of the regularization (see panel c).
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5.4 Simple synthetic stationary seismic data regularization

A synthetic seismic data (pressure) containing four linear events with different amplitudes and dips is

shown in Figure 5.2a. The events are generated using an Ormsby wavelet that is a common type of synthetic

wavelet in reflection seismology. The wavelet is the same as the one used in Chapter 4, and the time sampling

rate is 1000 samples per second. Suppose that the trace spacing is 10 metres, toward the crossline direction.

Assume that the unit distance is one kilometre in this and the next example, so the wavenumbers are the

number of cycles per kilometre (c/km). The f-k spectrum of this data is shown in Figure 5.2b. The vertical

peaks at zero wavenumber in the f-k spectrum correspond to the horizontal event in Figure 5.2a. The spatial

gradient data of the pressure data is shown in Figure 5.2c. The f-k spectrum of the spatial gradient data

is shown in Figure 5.2d. From Figure 5.2d, one can observe that the crossline gradient amplitude is very

low at low wavenumbers, and it linearly grows toward higher wavenumbers. Note that the horizontal linear

Figure 5.2: Simple synthetic seismic data set. (a) Pressure (10 m trace spacing), (b) the f-k spectrum of panel
a, (c) gradient, and (d) the f-k spectrum of panel c.
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Figure 5.3: (a) Random noise (1/f noise, where f is frequency), and (b) its Fourier spectrum. It is noisier at
lower frequencies than higher frequencies. The small panel on the right in red is generated by implementing the
MATLAB command ‘firls’ to create random noise.

event in the seismic data disappeared in its crossline gradients as seen in Figure 5.2c and d.

It is well known that in a real marine acquisition data sets, noise is expected to be higher at low frequencies

than at high frequencies (Vassallo et al., 2010a). The MATLAB command filtfilt(b, a, ns) is used to generate

1/f noise, where a and b are transfer function coefficients, ns is a vector containing normally distributed

random numbers (can be generated by MATLAB command ‘randn’), and f is frequency. Figure 5.3a shows

such noise when a = 1 and b is generated using the MATLAB command ‘firls’ that creates a series containing

the coefficients of the finite-duration impulse response filter34 closely matching the 1/f passband (cf., the

red graph in Figure 5.3). To see the performance of the MALLSSA in higher frequencies, random noise (cf.,

Figure 5.3b) is generated in such a way that it is more noisier in higher frequencies than the random noise

used in Vassallo et al. (2010a). The mean of random noise is approximately zero, and its relative amplitude

is about 30% of the signals used in the synthetic seismic data examples in this chapter.

In this example, 75 traces are removed such that the remaining traces are equally spaced with 40 metres

spacing, and random noise as shown in Figure 5.3 is introduced to each trace and illustrated with its f-

k spectrum in Figure 5.4a and b, respectively. Note that the crossline gradients are kept in the samples

34A finite-duration impulse response (FIR) filter is a filter whose impulse response (or response to any finite length input) is
of finite duration since it goes to zero in finite time.
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Figure 5.4: (a) The noisy seismic data with 40 metres trace spacing, (b) the f-k spectrum of panel a, (c) the
MALLSSA result with 10 metres trace spacing, and (d) the f-k spectrum of panel c.

positions in the analysis and are not shown here. Also, note that the removed traces are set to zero only to

generate the f-k spectra. It can be seen from Figure 5.4b that the events are spatially aliased.

The frequency slices (data series) for both pressure and gradient data are obtained, and then the

MALLSSA is applied to regularize the frequency slices. Finally, the regularized pressure series from the

f-x domain are transformed back to the t-x domain using the inverse FFT. The real and imaginary parts

of the frequency slices can be regularized individually or simultaneously in the MALLSSA. The MALLSSA

regularization result is obtained without windowing after one round of iterations, and its f-k spectrum are

shown in Figure 5.4c and d, respectively. The MALLSSA regularization result clearly constructed all the

events in 10 metres trace spacing, and its f-k spectrum is approximately the same as the ideal (noise-free)

spectrum shown in Figure 5.2b. The MALLSSA regularization result without the random noise is almost

the same as Figure 5.2a and b, and so there is no need to illustrate it again.

75



5.5 Simple synthetic non-stationary seismic data regularization

A synthetic seismic data (pressure) containing three curved and two linear events with different amplitudes

and dips is shown in Figure 5.5a. The events are generated using the same Ormsby wavelet as the previous

example, and the time sampling rate is 1000 samples per second. Also, random noise is introduced to each

trace, and it is assumed that the trace spacing is 10 metres. The f-k spectrum of this data is shown in Figure

5.5b. In the f-k spectrum, the vertical peaks at zero wavenumber correspond to the horizontal event, and the

slanted peaks correspond to the other linear event in Figure 5.5a. The spatial gradient data of the pressure

data is shown in Figure 5.5c. The f-k spectrum of the spatial gradient data is also shown in Figure 5.5d.

All the traces of even numbers are removed so that the trace spacing is 20 metres (cf., Figure 5.6a). The

f-k spectrum of the result is shown in Figure 5.6b. Figure 5.6b shows all the events are spatially aliased (e.g.,

Figure 5.5: Simple synthetic seismic data set. (a) Pressure, (b) the f-k spectrum of panel a, (c) gradient, and
(d) the f-k spectrum of panel c. Note that the vertical peaks at zero wavenumber (reddish peaks) in panel b,
corresponding to the horizontal event, disappeared in panel d.
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Figure 5.6: (a) The noisy seismic data with 20 metres trace spacing, (b) the f-k spectrum of panel a, (c) the
MALLSSA result after first iteration with 10 metres trace spacing (the linear events are constructed), (d) the f-k
spectrum of panel c, (e) the MALLSSA result after a few more iterations with 10 metres trace spacing, and (f)
the f-k spectrum of panel e. Panel b shows that all the events are spatially aliased (the red and white arrows in
panel b show some of the aliasing effects of the linear and curved events, respectively). Arrow in panel c shows
some artifacts from the linear event that will be mitigated after a few more iterations (cf., panel e).
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the red and white arrows show some of the aliasing effects of the linear and curved events, respectively).

Note that the crossline gradients are kept in the samples positions in the analysis and are not shown here.

The linear events can be well constructed by the first round of iterations in the MALLSSA (cf., Figure 5.6c

and d), yet the curved events cannot be properly constructed and produce artifacts in the traces along with

random noise. Arrow in Figure 5.6c shows some artifacts from the linear event that is due to the non-

stationary behaviour of the event. However, after a few rounds of iterations the curved events can also be

well constructed and interpolated (cf., Figure 5.6e). The f-k spectrum of the regularization result is shown

in Figure 5.6f that is approximately the same as the one shown in Figure 5.5b. Note that no windowing

technique is used in this example.

5.6 A marine seismic data regularization

The field data example is the marine 2D shot gather from a deep water of Gulf of Mexico used in Chapter

4 (Figure 5.7a). The f-k spectrum of this data is shown in Figure 5.7b. The spatial gradient data of the

marine data is estimated using the ALLSSA as would be approximately acquired in multicomponent seismic

acquisition, and it is shown in Figure 5.7c. The f-k spectrum of the spatial gradient data is also shown in

Figure 5.7d. Note that the normalized wavenumber axis in the f-k spectra is obtained by considering the

offset of the far offset trace equal to one.

All the traces of even numbers are removed from the marine seismic data and its gradient data. Only

the result of marine seismic data and its f-k spectrum are illustrated in Figure 5.8a and b, respectively. The

effect of aliased events can be clearly seen from the f-k spectrum. For better performance, the marine seismic

data is divided into two spatial non-overlapping windows of the same size. The MALLSSA regularization

result and its f-k spectrum are shown in Figure 5.8c and d, respectively. For better comparison between

the original marine seismic data and its regularization result, their difference is calculated and illustrated

it along with its f-k spectrum in Figure 5.8e and f, respectively. A mask is used to set the values (minor

artifacts) of the north-east part of the images shown in Figure 5.8c and e to zero after the interpolation. As

it can be seen, the final regularization result is pleasant and acceptable for practical applications.

Note that in this example, the traces were equally spaced and removing the traces of even numbers also

makes the remaining traces equally spaced with a Nyquist wavenumber that is half of the original Nyquist

wavenumber. When the distance between traces varies, the ALLSSA and MALLSSA perform better because

these methods consider the correlations among the sinusoidal basis functions of various wavenumbers.
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Figure 5.7: (a) A 2D marine seismic data obtained from a deep water of Gulf of Mexico, (b) the f-k spectrum
of panel a, (c) the estimated gradient data, and (d) the f-k spectrum of panel c.
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Figure 5.8: (a) The traces of even numbers in Figure 5.7a are removed, (b) the f-k spectrum of panel a, (c)
the MALLSSA regularization result, (d) the f-k spectrum of panel c, (e) the difference (residual) between panel
c and Figure 5.7a, and (f) the f-k spectrum of panel e.
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5.7 Summary

The ALLSSA is a robust method of regularizing seismic data presenting mild aliasing in the f-k spectrum.

However, when the seismic data is coarsely sampled, additional information is needed to aid regularization.

This is crucial in regularization because incorrect selection of the spectral peaks results in inaccurate regu-

larization. I discovered that the spectral peaks of the wide-sense stationary seismic data can be accurately

estimated by incorporating the spatial gradients of the seismic data into the ALLSSA model and showed its

robustness on synthetic data series and seismic data. The MALLSSA is designed for wide-sense stationary

data series; however, an appropriate windowing technique can be used to adapt it to seismic data with more

complex geologic structure.

The ALLSSA and MALLSSA consider the correlations between the sinusoids of different wavenumbers

simultaneously along with the constituents of known forms and covariance matrices associated with data

series. Therefore, the ALLSSA and MALLSSA estimate the signal wavenumbers and amplitudes more

accurately than the IMAP and MIMAP. The ALLSSA and MALLSSA may be considered as extensions of

the IMAP and MIMAP, respectively.
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6 Least-Squares Wavelet Analysis and Its Applications

Analyzing unequally spaced and non-stationary time series is a challenging problem in many areas, such

as geodesy and geophysics. Many time series present datum shifts and/or have trends and have uncertainties

(variances, covariances) associated with them. The current methods of time series analyses, such as the FFT,

DFT, STFT, CWT, CLSSA, HHT, and WWZ, have several limitations and cannot explicitly consider the

constituents of known forms and covariance matrices associated with time series. In this chapter, a novel

method is developed that can analyze any time/data series (to study the periodicity of the components and

detect hidden signatures) without any assumptions and preprocessing of the original time/data series.

Conceptually, this method, namely, the Least-Squares Wavelet Analysis (LSWA), decomposes a time

series into the time-frequency domain by an appropriate segmentation of the series and calculates spectral

peaks based on the least-squares fit of sinusoids (other functions may be chosen as well) to each segment. The

segmentation is similar to the one in the CWT, and computing the spectral peaks is similar to the LSSA, so

the approach is a combination of the CWT and the LSSA. The LSWA explicitly considers the constituents of

known forms, such as trends and/or datum shifts, as well as the covariance matrices associated with the time

series and obtains reliable spectrograms that can be statistically assessed by stochastic surfaces (confidence

level surfaces) defined for spectrograms. This chapter is an unabridged version of a paper published in

Mathematical Geosciences (Ghaderpour and Pagiatakis, 2017).

6.1 Theoretical Part of the Least-Squares Wavelet Analysis

Suppose that f =
[
f(tj)

]
, 1 ≤ j ≤ n, is a discrete time series of n data points; here the tj ’s are not

necessarily equally spaced. Let Ω = {ωk; k = 1, . . . , κ} be a set of spectral frequencies, and let y be an

arbitrary segment of the time series that contains L(ωk) samples such that ωk can be resolved within it

Φ =
[

cos
(
2πωkti+j− 1

2 (L(ωk)+1)

)
, sin

(
2πωkti+j− 1

2 (L(ωk)+1)

)]
(6.1)

y =
[
f
(
ti+j− 1

2 (L(ωk)+1)

)]
; (6.2)
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where 1 ≤ i ≤ L(ωk) and

L(ωk) :=



⌊L1M

ωk

⌋
+ L0 if

⌊L1M

ωk

⌋
+ L0 is odd,

⌊L1M

ωk

⌋
+ L0 + 1 otherwise,

(6.3)

where symbol b∗c indicates the floor function that gives the largest integer no greater than ∗, L0 is a fixed

number of data points, L1 is a selected number of cycles of the sinusoidal base functions, M is the average

number of data points per unit time, and ωk is the number of cycles per unit time (ωk ∈ Ω). For instance,

for an equally spaced time series recorded at a rate of one sample per millisecond, if frequency is in Hertz,

then M = 1000 (data points per second), and if L1 = 2, then two cycles of sinusoidal base functions of cyclic

frequency ωk will be fitted to a segment of the time series with L(ωk) data points. Also, L0 is the selected

number of additional samples considered in the least-squares fit to achieve the desired time and frequency

resolution in the spectrogram (see Section 6.2 for more details).

For simplicity of notations, L is used instead of L(ωk) from now on. For each k, 1 ≤ k ≤ κ, and each j,

1 ≤ j ≤ n, if 1 ≤ i+ j− (L+ 1)/2 ≤ n, then the size of y in Equation (6.2) which is the same as the number

of rows in Φ given by Equation (6.1) is

R(j, k) :=


(L− 1)/2 + j if 1 ≤ j < (L+ 1)/2,

L if (L+ 1)/2 ≤ j ≤ n− (L− 1)/2,

(L+ 1)/2 + n− j if n− (L− 1)/2 < j ≤ n.

(6.4)

Note that when L1 = 0, R(j, k) is independent from the choice of ωk. Assume that P = Cf
−1 is the

associated weight matrix of f , and Py is the principal submatrix of P of dimension R(j, k) (see below for

more details).

If f contains constituents of known forms (φ1, . . . , φq) but of unknown amplitudes (e.g., trends or sinusoids

of constant frequencies), then for each (tj , ωk), let

Φ =
[
φ1(ti+j− 1

2 (L+1)), . . . , φq(ti+j− 1
2 (L+1))

]
, (6.5)

Φ =
[

Φ Φ
]
, (6.6)

where Φ is given by Equation (6.1). Model y = Φ c is used to determine ĉ using the least-squares method,

so

ĉ = N
−1

Φ
T
Pyy, (6.7)

where T signifies transpose and N = Φ
T
PyΦ (matrix of normal equations). Let J = Φ N

−1
Φ

T
Py. Define

the weighted Least-Squares Wavelet Spectrogram (LSWS) as

s(tj , ωk) =
yTPyJy

yTPyy
, (6.8)
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where 1 ≤ j ≤ n, 1 ≤ k ≤ κ, and s(tj , ωk) ∈ (0, 1). The justification of the name comes from the fact that

when L1 6= 0, the size of y decreases as frequency increases in the calculation of the spectrogram using the

least-squares method similar to the CWT. Notice that if f is equally spaced, equally weighted and Φ = Φ,

then ĉ
T
ĉ has similar properties to the STFT with a rectangular window when L1 = 0, and it has similar

properties to the CWT when L1 6= 0. However, Equation (6.8) shows how much of Φ ĉ is contained in y.

A more practical approach used in this contribution is to first remove (suppress) the known constituents

from each segment y, and then analyze the residual segment ĝ. More precisely, first use the model y = Φ c

to estimate c as

ĉ = N−1ΦTPyy, (6.9)

where N = ΦTPyΦ, and so ĝ = y −Φ ĉ. Then use the model y = Φ c = Φ c + Φ c to estimate c as

ĉ = N−1ΦTPyĝ. (6.10)

where N = ΦTPyΦ−ΦTPyΦ N−1ΦTPyΦ (see Appendix B). Let J = ΦN−1ΦTPy. Define the weighted

LSWS as

s(tj , ωk) =
ĝTPyJĝ

ĝTPyĝ
, (6.11)

where 1 ≤ j ≤ n and 1 ≤ k ≤ κ. Note that s(tj , ωk) ∈ (0, 1). This spectrogram shows how much the

sinusoids of cyclic frequency ωk contributes to each residual segment of f and called percentage variance

when multiplied by 100. This definition is very useful in searching for hidden signals (short duration signals

with very low amplitude with respect to the total amplitude of the data points) in a time series. The ordinary

LSWS does not consider the weight matrix Py in the calculation of spectrogram.

To better understand how to determine the weight matrix Py for each segment y, a simple example is

provided. Let P be of order n = 10, and M = 10, ω1 = 2, L1 = 1 and L0 = 0. It is easy to see that L(ω1) = 5,

and so for j = 1 and j = 10, the top left and the bottom right principal submatrices of P (margins) have

dimension 3 (green matrices in Figure 6.1), and the submatrices shown by blue have dimension 5. Note that

the correlations between data points in the entire time series are considered in each Py due to the inversion

of the entire Cf . In practice, P is usually diagonal that means the correlations of the time series values are

not given. Note that Py is a positive definite matrix because P is positive definite (Harville, 2008), and so

Equations (6.7), (6.9) and (6.10) are optimal.

The known constituents contaminate the spectrogram given by Equation (6.8), but they do not con-

taminate the spectrogram given by Equation (6.11) because they are removed from the segments of the

time series. However, Equation (6.8) shows how much the constituents of known forms and the sinusoids

of a particular frequency simultaneously contribute to the segments. Note that the Least-Squares Spectrum
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Figure 6.1: The weight matrix P with a few of its principal submatrices.

(LSS) is a special case of the LSWS that is independent of time and has only one segment (the entire time

series). The reader is referred to Wells et al. (1985); Pagiatakis (1999) for more details.

6.2 Practical Implementation of the Least-squares Wavelet Algorithm

To visualize the concept of the segmentation of a time series better, the term window is used. In this

contribution, two different characteristics for the window are used, namely, its size and its length. For a time

series of n data points, a window of size R(j, k) given by Equation (6.4) located at tj , 1 ≤ j ≤ n, is a window

that contains R(j, k) data points comprising (L− 1)/2 data points on either side of tj . If 1 ≤ j < (L+ 1)/2,

then a window of size R(j, k) located at tj is a window that contains (L−1)/2 data points on the right hand

side and j− 1 data points on the left hand side of tj ; this window is referred to as the left marginal window.

Similarly, one can identify the number of data points for the right marginal windows. From Equation (6.1),

when j runs from j0 to j1, a window of size R(j0, k) located at tj0 translates to a window of size R(j1, k)

located at tj1 . In the LSWA, at each step, the sinusoids and the constituents of known forms simultaneously

are fitted to each segment of the time series within a window of size R(j, k) located at tj to estimate their

amplitudes and phases in the segment.

The length of a window located at tj , denoted by `(tj), can be calculated as follows. If (L+ 1)/2 ≤ j ≤

n− (L− 1)/2, then

`(tj) = tj+(L−1)/2 − tj−(L−1)/2. (6.12)

If 1 ≤ j < (L+ 1)/2 (the left marginal windows), then

`(tj) = tj+(L−1)/2 − t1, (6.13)
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Figure 6.2: (a) An unequally spaced and (b) an equally spaced time series (blue diamonds) along with sinusoids
(cosine with red circles and sine with green circles) and several windows.

and if n− (L− 1)/2 < j ≤ n (the right marginal windows), then

`(tj) = tn − tj−(L−1)/2. (6.14)

From Equations (6.12), (6.13) and (6.14), it is clear that the length of the window located at tj depends on

the distribution of the ti’s.

In order to illustrate these concepts, an unequally spaced and an equally spaced times series along with

the sine and cosine base functions of cyclic frequency ωk are illustrated in Figure 6.2a and b, respectively. In

Figure 6.2a, the red window is of size 5 (includes 5 data points) located at t7, the median time mark within

the window. Similarly, the blue window is of size 5 located at t8 which is again the median of the window.

The length of the red window is `(t7) = t9 − t5, and the length of the blue window is `(t8) = t10 − t6. In

this case `(t7) > `(t8). For the equally spaced time series (Figure 6.2b), it is clear that the red and blue
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windows have the same size and length. The left and right marginal windows with the green windows and

the translations are shown in these figures.

For an unequally spaced time series, the window length varies but the window size remains constant

during translation except for the marginal windows. For unequally spaced time series, if the length of the

window is fixed during translation rather than its size, then there may not exist enough data points within

the window located at tj to calculate s(tj , ωk). Thus, it is more appropriate to fix the size of the translating

window. Since in Equation (6.1), j runs from 1 to n, one unit at a time, the window located at tj overlaps

with the window located at tj+1 by L − 1 data points when (L + 1)/2 ≤ j ≤ n − (L − 1)/2 (red and blue

windows in Figure 6.2a and b). The overlaps for the marginal windows are also shown in Figure 6.2a and b

(green windows).

Figure 6.3a and b show the changes in the window size for an equally spaced time series when L1 = 1

cycle with a fixed L0. The window size decreases when the frequency increases allowing the detection of

short duration waves (signal, transients, etc.), and L0 (a constant number of samples) increases the size of

the window so that the resolution may be adjusted based on the specific scope of analysis.

For a time series (equally or unequally spaced), the sinusoidal functions (and the constituents of known

forms) are generally not orthogonal within a window of size R(j, k) or length `(tj) located at tj . The LSWA

considers their correlations by the off-diagonal elements of the matrix of normal equations (similar to the

LSSA). For each tj , Equation (6.11) shows how much the sinusoids of cyclic frequency ωk contribute to the

residual segment of the time series within a window of size R(j, k) or length `(tj) located at tj .

Puryear et al. (2012) simultaneously include the sinusoidal functions with different frequencies in the

columns of design matrix Φ, which makes the system y = Φc underdetermined, and then they use constraints

to calculate the spectrogram (see the CLSSA described in Chapter 2). However, the LSWS is calculated by

trying each cyclic frequency ωk one at a time, so the system is highly overdetermined, and the matrix of

normal equations remains invertible by selecting appropriate L0 and L1, window size parameters.

When analyzing an unequally spaced time series, spectral leakages (peaks that do not correspond to

signals) appear in the LSS and LSWS. However, the leakages are far less than the leakages in the Fourier

transform because the correlation among the sinusoids is considered for each frequency in the calculation of

the LSS and LSWS. Since the frequencies are examined one at a time (out-of-context), the leakages appear

in the LSS and LSWS. By considering the correlation among the sinusoids of different frequencies (the

frequencies of the constituents of known forms), the spectral leakages will be mitigated (Craymer, 1998),

and this can be achieved by simultaneously removing the constituents of known forms from the segments.

The selection of parameters L0 and L1 for the analysis of a time series mainly depends on whether the

time series is weakly or strongly non-stationary. In addition, it depends on the time and frequency resolution

as well as the number of constituents being estimated within the window whose size should be adequate to
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Figure 6.3: Window translation of an equally spaced time series (blue) for (a) sin(x) and cos(x), and (b) sin(2x)
and cos(2x).

avoid singularity of the matrix of normal equations in a desired frequency band. In many applications, for

time series with series more than 50 data points per unit time, it is recommended that L0 be 20 to 30

samples, and L1 be 3 or 4 cycles to avoid the singularity of N and N when removing the constituents of

known forms (usually less than 10). In practical applications, especially for unequally spaced time series,

choosing Φ = [1, t] makes the mean values of the segments approximately zero because even if there is no

systematic trend present in an unequally spaced time series, the sine and cosine functions no longer have

zero mean causing an error in determining the zero point of the signals and reducing the percentage variance

of the signal peaks in the spectrogram.
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6.3 Comparison Between the Least-Squares Wavelet Spectrogram and

the Weighted Wavelet Z-Transform

The least-squares method used in the LSWS and WWZ is a great tool that estimates the exact amplitude

of a physical fluctuation much more accurately than the traditional Fourier transform. The amplitude of

signals in the LSWA can be estimated using Equation (6.10) after finding the frequency or period of the

signals using the LSWS that is similar to the Weighted Wavelet Amplitude (WWA) (Foster, 1996). Both

the LSWS and WWZ are excellent in frequency determination of the signals; however, the WWZ is a poor

estimator of amplitude (Foster, 1996), and the spectral peaks in the WWZ lose their power toward higher

frequencies similar to the CWT. The latter shortcoming is caused mainly by the effective number of data

points that decreases when the frequency increases, making the numerator of Equation (2.23) smaller. Note

that the term Vy/(Vx − Vy) in Equation (2.23) is the estimated signal-to-noise ratio (Foster, 1996), and

the numerator of Equation (6.11) is the estimated signal and its denominator is the sum of the estimated

signal and noise (Pagiatakis, 1999). Subtracting Vy from Vx in the denominator of Equation (2.23) alters

significantly the true power of the signals that may not allow one to see the behaviour of the time series,

especially when searching for possible hidden signals with low power in a time series.

In both the LSWS and WWZ, the locations of the windows can be equally spaced; however, the locations

are chosen to be at the times corresponding to the time series values simply because there might be signatures

in the time series gaps that cannot be detected using the available data points. An unequally spaced pure

sine wave of cyclic frequency 10 cycles per annum (c/a) and amplitude 3 is generated by randomly selecting

100 data points per year (M = 100) and demonstrated in Figure 6.4a. The ordinary LSWS is shown in

Figure 6.4b with L1 = 4, L0 = 10 and Φ1 = [1]. The percentage variance of the peak at 10 (c/a) is 100% at

all times. Note that the spectral leakages in the spectrogram are not significant at certain confidence level

defined for the distribution of the LSWS (Section 6.4). Figure 6.4c shows the WWZ with c = 0.0125. The

peaks at the cyclic frequency 10 (c/a) have variable power over time, but the spectral leakages are mitigated

(they exist but with lower power) because of the subtraction in the denominator of Equation (2.23).

The LSWA can detect and suppress significant peaks (that takes into account the correlations among

the sinusoids of different frequencies), and so it can be used to search for the possible hidden signals in

a time series. Suppressing the significant peaks simultaneously mitigates the spectral leakages in the LSS

and LSWS of the unequally spaced residual series and results in strengthening the peaks of possible hidden

signals. Another advantage of using the ordinary LSWS is the computational efficiency that is much better

than the WWZ because the weights are not involved in the computation. Moreover, the window size in the

LSWS decreases when frequency increases; whereas, the window size in the WWZ is the same at all times

and frequencies (Equations (2.20) and (2.21)), fact that significantly increases the computational cost.
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Figure 6.4: An unequally spaced pure sine wave of cyclic frequency 10 (c/a) and its analyses.

6.4 Stochastic Surfaces in the Least-Squares Wavelet Spectrograms

In this section, a similar methodology is used as in Pagiatakis (1999) to determine stochastic surfaces for

the Least-Squares Wavelet Spectrogram (LSWS) that define confidence levels (usually 95% or 99%) above

which spectral peaks in the LSWS are statistically significant. It is also shown that the stochastic surfaces of

the LSWS are independent of the a-priori variance factor σ2
0 , that is, the stochastic surfaces are independent

of any scale defect of the covariance matrix associated with the time series. The reader is referred to Vańıček

and Krakiwsky (1986) for more details on the variance factor.

A remarkable property of the least-squares wavelet spectrogram defined by Equations (6.8) and (6.11) is

that it provides the percent of a specific component(s) (as defined by Φ) contained in f . This ratio includes

the weight matrix in both numerator and denominator and as such, any scale defect in the covariance

matrix cancels out. This leads to the conclusion that the Probability Distribution Function (PDF) of the

spectrogram does not depend on either the a-priori or a-posteriori variance factors. Therefore, the derivation

of the PDF of the spectrogram will be based on previous work by Pagiatakis (1999) considering only the

case of a-priori variance factor being known since the treatment of the case of unknown a-priori variance

factor (a-posteriori variance factor used) was in error.

Suppose that f has been derived from a population of random variables following the multidimensional

normal distribution N (0,Cf ), where Cf may be singular. It is shown in Appendix C that the LSWS given
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by Equation (6.11) follows the beta distribution with parameters 1 and </2, where < = R(j, k)− q− 2, and

so the stochastic confidence level surface at significance level α is ζ(tj , ωk) = 1− α2/<.

Following similar techniques in Pagiatakis (1999), it is not difficult to see that the spectrogram given by

Equation (6.8) follows β(q+2)/2,</2 with the mean (q + 2)/(< + q + 2) and variance 2(q + 2)</
(
(< + q +

2)2(< + q + 4)
)
; however, in practice, the spectrogram given by Equation (6.11), following β1,</2 with the

mean 2/(<+2) and variance 4</
(
(<+2)2(<+4)

)
, provides better results. The reader is referred to Johnson

et al. (1995) for more details on the mean and variance of random variables following the beta distribution.

In the following sections, whenever the CWT is applied for analysis, the MATLAB command cwt(f , scales,

wname) is used, where f is time series values, scales is vector of positive scales for the CWT scalogram, and

wname is name of a wavelet (e.g., morl for Morlet wavelet). One may convert the scales to frequencies

using centre frequencies of scales by calling MATLAB command scal2frq(scales, wname, DELTA) to obtain

a spectrogram, where DELTA is sampling period. This is not a correct approach of analyzing unequally

spaced time series. One of the advantages of the LSWA over the CWT is that the LSWA does not convert any

scale to frequency to obtain a spectrogram, and it directly decomposes a time series into the time-frequency

domain.

6.5 Synthetic Equally Spaced Time Series

In this example, the sensitivity of the LSWS for different window size parameters is examined. Consider

the following hyperbolic chirp signal (Mallat, 1999)

f(tj) = cos
( 230

2.3− tj

)
, (6.15)

where tj = (0.001j)s, and j runs from 1 to 2000 (Figure 6.5a). Note that the instantaneous frequency of the

hyperbolic chirp is 230/
(
2π(2.3− tj)2

)
Hz. Since there are 1000 data points per second, M = 1000.

Figure 6.5b shows the ordinary LSWS with L0 = 201 and L1 = 0. It can be seen that the true peaks

at higher frequencies are not well resolved (the peaks lose their percentage variance in higher frequencies,

arrows). The reason is that the window size is fixed to 201 (except for the marginal windows), and the

time series is changing its frequency rapidly as time advances, so the sinusoidal base functions do not fit the

segments of the time series at higher frequencies as well as they do at lower frequencies.

The ordinary LSWS with L0 = 0 and L1 = 1 is shown in Figure 6.5c. Although the percentage variance

of the true peaks in the spectrogram does not change across the time-frequency domain, the spectrogram

has low-frequency resolution at high frequencies. Furthermore, the spikes appear in the spectrogram at the

times when the series has zero magnitude (arrows) because one cycle of sinusoids also fits those segments

that cross the horizontal axis. These spikes may also have applications as they show the behaviour of the

time series.
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Figure 6.5: The equally spaced chirp signal given by Equation (6.15) and its analyses.
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If one selects L0 = 20 and L1 = 2, then the percentage variance of the spikes reduces because two

cycles and many additional data points are incorporated in the fitting process resulting in a better resolution

(Figure 6.5d). In fact, the selection of the window size parameters is based on the purpose of analysis that is

similar to the selection of window size in the STFT. The magnitude of ĉ in Equation (6.10) is approximately

1 at the signal peaks.

Figure 6.5e shows the CWT after applying the MATLAB command cwt(f , scales, wname) with

wname=bior1.3, a biorthogonal wavelet that has similar structure to the sinusoids (Cohen et al., 1992).

Note that the scalogram is converted to spectrogram using the centre frequencies of scales. The colour bar

values represent the absolute values of the CWT coefficients (abs CWT coefficients). The higher frequencies

in the CWT spectrogram are not well resolved and lose power (indicating that the amplitude of the chirp

signal is decreasing over time) because the spectrogram is computed in terms of frequency bands (i.e., scales)

that overlap each other more when frequency increases (Sinha et al., 2005).

The spikes in the CWT spectrogram appear at the same positions as in the LSWS. However, since the

LSWS is normalized and the correlation among sinusoids is taken into account, the spikes in the LSWS are

sharper. Another advantage of the LSWS is that the true peaks are not scattered as the CWT spectrogram

because the least-squares minimization is used in translation. Note that the LSWS shows how much the

sinusoids of a particular frequency within a window contributes to the segment of the chirp signal within the

window.

Now consider the following equally spaced time series which is the sum of two hyperbolic chirp signals

f(tj) = cos
( 230

2.3− tj

)
+ cos

( 500

2.3− tj

)
, (6.16)

where tj = (0.001j)s, and j runs from 1 to 2000 (Figure 6.6a). Note that the instantaneous frequencies of

the hyperbolic chirps are 230/
(
2π(2.3− tj)2

)
Hz and 500/

(
2π(2.3− tj)2

)
Hz.

The CWT spectrogram with a Morlet wavelet (most commonly used; similar to a sine wave in attenuation)

is shown in Figure 6.6b. One can see that the CWT peaks lose power toward higher frequencies (white

arrows). This might be misinterpreted as the amplitudes of the hyperbolic chirps are decreasing over time

(attenuating) which is not true because the hyperbolic chirps constructed in this example have constant

amplitude over time. Comparing Figures 6.5e and 6.6b, one can observe that using the Morlet wavelet

mitigated the effect of the spikes in the spectrogram.

Figure 6.6c shows the ordinary LSWS of the time series given by Equation (6.16) for L0 = 20 and L1 = 2.

Using these window size parameters, the true signal peaks are very well resolved, and their percentage

variances do not change significantly across the time-frequency domain. The effect of the spikes (appears

toward the locations in time where the time series has zero magnitude) is also mitigated in the spectrogram

(white arrows).
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Figure 6.6: The time series given by Equation (6.16) and its analyses.
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The spikes can be mitigated further by defining an appropriate weight function, such as the Gaussian

function. For instance, let Py be the diagonal matrix of order R(j, k) given by Equation (6.4) for the window

located at τ (choose τ = tj) whose diagonal entries are given by the following Gaussian function

G(i) = e−c(2πωk(ti−τ))2 , (6.17)

where c is a window constant, and the ti’s are the times of the data points within the window of size R(j, k).

In astronomical applications, a popular choice for c would be 0.0125 (Foster, 1996). By this selection of Py,

the sinusoidal basis functions will be adapted to the Morlet wavelet in the least-squares sense for analysis.

The weighted LSWS is illustrated in Figure 6.6d by considering the weights defined by Equation (6.17). It

can be seen that the effect of the spikes are mitigated compared to Figure 6.6c, but the bandwidth of the

true spectral peaks increased (poor frequency resolution, inside the circles in Figure 6.6c and d). Defining

the weights using Equation (6.17) may also change the true peak locations (Foster, 1996). Thus, it is

recommended that the ordinary LSWS be used when there is no covariance matrix associated with a time

series.

Figure 6.6e shows the LSWS given by Equation (6.11) in terms of Power Spectral Density (PSD) in

deciBel (dB) defined by

PSDLSWA = 10 log10

(
s(tj , ωk)

1− s(tj , ωk)

)
. (6.18)

The values less than −40 dB are set to −40 dB. Note that the peaks shown by red arrows in Figure 6.6b to

e are the alias effect of the signal cos
(
500/(2.3− tj)

)
.

6.6 Synthetic Unequally Spaced Time Series

Consider the following inherently unequally spaced time series simulated for one month

f(tj) = 5 + 20tj + (8− 5tj) sin(2π · 60tj) + 2tj sin(2π · 5tj)

+ cos
( 150

1.3− tj

)
+ h(tj) + wgn(tj), (6.19)

where 1 ≤ j ≤ 720 (0 ≤ tj ≤ 1), wgn is white Gaussian noise generated by the MATLAB function wgn, and

h(tj) =

 (9− 0.03j) sin(2π · 120tj) if 200 ≤ j ≤ 300,

0 otherwise.
(6.20)

The linear trend, the two sine waves of variable amplitudes and constant cyclic frequencies 60 and 5

cycles per month (c/mo), the hyperbolic chirp, the short duration sine wave h given by Equation (6.20) of

variable amplitude and constant cyclic frequency 120 c/mo, the white Gaussian noise and the time series f

are illustrated in Figure 6.7a to g, respectively.
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Figure 6.7: The unequally spaced time series given by Equation (6.19) and its constituents. (a)-(f) The
constituents, and (g) the time series (the sum of the constituents).

In this example, it is intended to search for signals h, the hyperbolic chirp, and the sine wave of constant

cyclic frequency 5 c/mo. Note that the white Gaussian noise, the linear trend and the sine wave of constant

cyclic frequency 60 c/mo are considered noise in this example that highly contaminate the time series. A

notable advantage of the LSSA, LSWA and WWZ is that one may select any set of spectral frequencies

based on the purpose of analysis. The set of cyclic frequencies chosen for the analysis in this example is

Ω = {1, 2, 3, . . . , 200} c/mo.
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Figure 6.8: The analyses of the unequally spaced time series shown in Figure 6.7g.

Figure 6.7g shows that the time series has a trend. The LSS is illustrated in Figure 6.8a (white panel)

after removing the trend. The LSS detects one strong peak at 60 c/mo, but it does not explain the nature

of the constituent in f that creates this peak, in other words, the LSS does not show whether this peak is

for a wave of variable or constant amplitude over time, or whether the duration of the wave is short or long.

Since there are 720 samples per month, M = 720. Figure 6.8b shows the ordinary LSWS with L0 = 10 and

L1 = 4 after removing the trend (i.e., by setting Φ = [1, t]). The peaks corresponding to sine wave of constant

cyclic frequency 60 c/mo can be observed in Figure 6.8b (horizontal reddish band in the spectrogram). The

percentage variances of the spectral peaks in the spectrogram show how much each residual segment of f of

size R(j, k) contains a constituent of cyclic frequency ωk. For instance, the peaks shown by the left magnified

section have lower percentage variance than the peaks shown by the right magnified section indicating that

there might be other constituents in the residual segments approximately from time 0.3 to 0.4 month.

Figure 6.8c shows the WWZ of the time series after removing the linear trend estimated by the least-

squares method (approximately 5 + 20tj). Similar to the LSWS, the WWZ shows the peaks corresponding
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to the sine wave of constant cyclic frequency 60 c/mo, and the effect of the spectral leakages are mitigated.

Although the peaks from 0.3 to 0.4 month lose their power (arrow), it cannot ascertain that there might be

certain hidden components of different frequencies in that time period (see Figure 6.4c).

In the next step, one may suppress the peak at 60 c/mo (remove the sinusoidal wave of 60 c/mo) to search

for other possible signals. The LSS of the residual series after suppressing the peak is shown in Figure 6.8d.

The LSS now shows several significant peaks. Note that the sine wave of 60 c/mo has variable amplitude.

Since the sine wave of constant amplitude is used to fit the entire f , the wave will not fit well to f , and so

several peaks appear around 60 c/mo in the LSS for the residual series (red arrows). If researchers are not

aware of a phenomenon that causes variable amplitude waves in a time series, this can be misinterpreted.

Furthermore, the hyperbolic chirp and series h cannot be studied from the LSS, and the LSS does not show

the amplitude variation for the sine wave of 5 c/mo.

Selecting Φ = [1, t, cos(2π · 60t), sin(2π · 60t)] in the LSWA removes the trend and the constituent of

cyclic frequency 60 c/mo simultaneously from the segments of f (Figure 6.8e). From Figure 6.8e, one can

study the spectral peaks corresponding to signals h (inside the circle), the hyperbolic chirp with variable

frequency over time and the sine wave of variable amplitude and constant cyclic frequency 5 c/mo. Note

that the actual nature of these signals cannot be studied from Figure 6.8d. The spectral peaks corresponding

to the sine wave of variable amplitude and constant cyclic frequency 60 c/mo are completely removed from

the spectrogram shown in Figure 6.8e because sinusoids within the windows fit better to the segments of the

series, but this is not achieved in the LSS (arrows in Figure 6.8d).

Figure 6.8f shows the WWZ of the sum of series shown in Figure 6.7c to f. One can clearly see that signal

h is not completely detected (inside the circle). The reason is that the effective numbers of data points are

small in certain time periods of h that reduced the power significantly, and also the WWZ is defined in terms

of signal-to-noise ratio that reduced the power of false peaks (mitigated the spectral leakages). A stochastic

surface (to be defined in the next section) can, in fact, flag the peaks shown by arrows in Figure 6.8e and g

as noise at certain confidence level (usually 99%).

To see the sensitivity of the LSWS and WWZ to the window width, the window size parameters are

chosen as L1 = 2 and L0 = 20 with the same Φ as in Figure 6.8e, and the ordinary LSWS is shown in Figure

6.8g. In addition, the WWZ is shown in Figure 6.8h by selecting c = 0.1. The frequency resolution in both

spectrograms are now poor, but the WWZ shows the significant variability of power compare to Figure 6.8f,

and signal peaks are not well localized (arrows).

In Figure 6.8e to h, since the window size decreases when frequency increases, the spectral peaks cor-

responding to signal h with cyclic frequency 120 c/mo have higher time resolution but poorer frequency

resolution, and the spectral peaks corresponding to signal of cyclic frequency 5 c/mo have higher frequency

resolution but poorer time resolution.
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6.7 Analysis of a Very Long Baseline Interferometry Length Time Series

Very Long Baseline Interferometry (VLBI) is a geometric technique that collects signals from an as-

tronomical object, such as a quasar35 using many antennas (radio telescopes) mounted on the Earth. To

understand this technique better, two VLBI antennas (one in Westford in the USA and one in Wettzell in

Germany) with geometry are illustrated in Figure 6.9. Since a quasar is so far from the Earth, the spherical

wavefronts of the radio signals (shown by yellow curves) emitted from the quasar can be considered as flat

planes as they reach the Earth. Since the radio wavefronts from the quasar are planar, rays drawn perpen-

dicular to the arriving wavefronts are essentially parallel. Thus, the antennas, oriented to receive signals

from the quasar, are pointed in the same direction, indicated by the angle θ in Figure 6.9. The distance

between the two antennas is called baseline. The radio signal from the quasar is shown as wiggly lines. When

the signal arrives at the Westford antenna, the same signal is a distance L away from the Wettzell antenna.

The incoming signals are tagged with an atomic clock. The distance L can then be calculated as the time

35A quasar is a compact region at the centre of a galaxy with high amount of emitting energy per unit time.

Figure 6.9: The VLBI technique for two antennas in Westford and Wettzell.
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Figure 6.10: The main VLBI stations in the world. This image is downloaded from www.sinet.ad.jp.

difference between identical radio signals arriving at the two antennas multiplied by the speed of light36.

Therefore, the baseline length may be calculated as L/ cos(θ). Repeating this process over time generates a

time series that is often unequally spaced due to several reasons, but primarily due to experiment scheduling

among participating countries.

This technique is useful to define the celestial reference frame, to monitor the motion of the Earth’s

tectonic plates, to improve the atmospheric models, to verify the length-day, and to measure the fundamental

speed of gravity (Fomalont and Kopeikin, 2003). Measuring time differences between arrivals from many

quasars observed with a global network of antennas can identify the inertial reference frame defined by the

quasars and can estimate the relative positions of the antennas (Vańıček and Krakiwsky, 1986; Campbell,

2004). Since the antennas are fixed to the Earth, their locations track the instantaneous orientation of the

Earth in the inertial reference frame. In practice, it is often required to express positions on a flat surface

(map) in form of grid coordinates, considering the distortion in length, shape, and size of the area of interest

(Ghaderpour, 2016). Relative displacements of the locations of the antennas indicate tectonic plate motion,

antenna deformation, and local uplift or subsidence. Figure 6.10 shows the main VLBI stations in the world

used for many purposes, such as the ones mentioned above.

36The wavefront is moving at the speed of light that is 3× 108 metres per second.
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In this section, a VLBI length time series analysis is demonstrated as an application of the LSWA.

The VLBI length series is between stations Westford and Wettzell, and the length changes over longer

time due primarily to tectonic plate movement and other reasons, such as atmospheric temperature (due

to deformation of the antennas), tides, etc. (Titov, 2002; Campbell, 2004). The time series was obtained

from www.ccivs.bkg.bund.de. The series comprises 1733 unequally spaced and unequally weighted baseline

length estimates via the least-squares method, from January 9th 1984 at 19:12:00 Universal Time (UT) to

September 3rd 2014 at 16:48:00 UT (Figure 6.11a).

Since there are 1733 samples over 30.6 years (unit time is a year), there are approximately 57 samples

per annum (M = 57). The window size parameters chosen for the analyses are L1 = 4 cycles and L0 = 30

samples. The set of cyclic frequencies selected for this analysis is Ω = {0.1, 0.2, 0.3, . . . , 12} c/a. Note that

the linear trend expresses the lengthening of the baseline due to the relative tectonic plate movement on

which the two VLBI antennas are mounted.

Figure 6.11b shows the ordinary LSWS of the VLBI series and its stochastic surface at 99% confidence

level (gray surface) after removing the trend (by setting Φ = [1, t]). The two-dimensional representation

of Figure 6.11b is shown in Figure 6.11d. The constant annual cyclic frequency (1 c/a or ≈ 365 days,

white arrows) and the semiannual cyclic frequency (2 c/a or ≈ 182.5 days) are significant in certain years

(red arrows), where ≈ indicates approximation. The ordinary LSS also shows a significant peak of variance

4.5% at period of ≈ 365 days (Figure 6.11c). The linear trend estimated by the least-squares method as

5998325.356 + 0.017t is removed from the time series, and the result of the WWZ for the residual series is

shown in Figure 6.11e. Similar to the ordinary LSWS, the WWZ shows the annual and semiannual peaks

(arrows in Figure 6.11d and e).

The weighted LSS and LSWS after removing the trend are shown in Figure 6.11f and g. Many peaks that

are not significant in Figure 6.11d, are now significant at 99% confidence level (e.g., arrows). In the next

step, the annual peaks (having the highest percentage variance) are suppressed, and the spectrum and the

spectrogram of the residual series are shown in Figure 6.11h and i, respectively. It can be seen that peaks

shown by arrows from year 1993 to year 1997 are not significant anymore (the spectral leakages). The peaks

at cyclic frequency 1.6 c/a (≈ 228 days, red arrow) are suppressed, and the spectrum and spectrogram of the

new residual series are shown in Figure 6.11j and k, respectively. One can observe that the spectral peaks

shown by white arrows in Figure 6.11i are no longer significant in Figure 6.11k. However, the semiannual

peaks shown by red arrows and the peaks inside the circles remained significant after simultaneously removing

the linear trend and sinusoids of cyclic frequencies 1 and 1.6 c/a.

In order to investigate what phenomena could possibly be causing the significant peaks in the spectro-

gram, the atmospheric temperature records at both stations are also analyzed. They are obtained from

http://ggosatm.hg.tuwien.ac.at/DELAY/SITE/VLBI/ almost at the same time period of the VLBI series
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Figure 6.11: The VLBI time series and its analyses using the LSS, LSWS and WWZ. Note that WLSS, WLSWS,
SS, 3D and 2D are the short forms for the weighted LSS, weighted LSWS, stochastic surface, three-dimensional
and two-dimensional representations, respectively.
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Figure 6.12: The unequally spaced temperature records at the VLBI sites (a) Westford (d) Wettzell and their
LSSA (b) and (c) for Westford and (e) and (f) for Wettzell.

(Figure 6.12a and d). The least-squares spectra of the Westford and Wettzell temperature series after re-

moving the trend are shown in Figure 6.12b and e, respectively. The annual peaks in the spectra show that

the annual peaks in Figure 6.11d, e and g are mainly due to the temperature variation causing deformation

of the antennas.

The annual peak is suppressed for each time series, and the least-squares spectra of the residual tem-

perature series of Westford and Wettzell are shown in Figure 6.12c and f, respectively. The peak at 1.6 c/a

in Figure 6.12c shows that the Westford antenna is being deformed with a period of ≈ 228 days (unusual

atmospheric temperature variations), and the evidence of its effect was observed in both spectrograms in

Figure 6.11g and i from year 1997 to year 2001. The LSS of the Westford temperature series from year 1997

to year 2001 (not shown here) has a significant peak at 1.6 c/a (≈ 228 days). The semiannual peaks in the

spectrograms that are significant since 1997 could also be physically linked to the semiannual temperature

variation at the Wettzell station as observed in Figure 6.12f. Similarly, the peaks shown inside the circles

in Figure 6.11k at cyclic frequency of 9.5 c/a (≈ 38 days) could possibly be caused by unusual temperature

variation at the Wettzell station.

103



6.8 Summary

The LSWA is a natural extension of the LSSA that decomposes a time series from the time domain

into the time-frequency domain using an appropriate segmentation of the time series. This segmentation

is linked to a translating window (rectangular or Gaussian) whose size decreases as frequency increases

within a frequency band of interest. I mathematically showed how this segmentation results in detection

of constituents with amplitude and/or frequency variability over time as well as detection of short-duration

signatures buried in the spectrogram by simultaneously removing the constituents of known forms from the

original time series. The LSWA can statistically analyze any non-stationary and unequally spaced time series

without any need for editing of the original time series, that is indeed a breakthrough in signal processing

and time series analysis. The flowchart of the LSWA algorithm is illustrated in Figure 6.13. Note that the

locations of the translating windows may also be chosen to be equally spaced, and the translating windows

may also be set up in such a way that they do not overlap each other for the sake of faster computation.

I applied the LSWA to analyze synthetic and real time series. The spectrogram in the LSWA shows the

percentage variance of the spectral peaks corresponding to the segments of the time series, and unlike the

WWZ, it is not a poor measure of amplitude. In the synthetic examples, I showed that the percentage variance

of the constituents with frequency variability (but constant amplitude) over time remain constant relatively

in the spectrogram, using an appropriate selection of the window size parameters. Selection of the Gaussian

window (the weight matrix whose diagonal elements are the Gaussian values) generates smoother spectral

peaks with wider bandwidth in the spectrogram. Simultaneous estimating and removing the constituents of

known forms in the spectrogram allows one to search for any hidden signatures in the residual time series.

The spectral peaks in the spectrogram can be statistically estimated at certain confidence level. I have also

investigated and discovered several short-duration signatures in the VLBI baseline length series, many of

which are generated by deformation of the antennas due to temperature variations.
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LSWA

Enter time series t = [tj ], f = [f(tj)], j = 1, 2, . . . , n

Enter P = Cf
−1 (if available)

Enter set of frequencies Ω = {ωk; k = 1, 2, . . . , κ}

Enter constituents of known forms Φ1, . . . ,Φq

Enter window size parameters M , L1, and L0

Enter significance level α

k ←− 1 and j ←− 1

k ≤ κ?

L =
⌊L1M

ωk

⌋
+ L0

j ≤ n?

Calculate R = R(j, k) (R = L except for margins)

Extract segment [tR, y] from [t, f ] and

submatrix Py from P of dimension R located at tj

(Py may also be obtained from Gaussian values)

Φ = [Φ1tR , . . . ,ΦqtR ] (R × q matrix)

Φ =
[

cos (2πωktR), sin (2πωktR)
]

(R × 2 matrix)

ĉ =
(
ΦTPyΦ

)−1
ΦTPyy

ĝ = y − J y, where J y = Φ ĉ

ĉ =
(
ΦTPyΦ −ΦTPyJΦ

)−1
ΦTPyĝ

s(tj , ωk) = (ĝTPyΦ ĉ)/(ĝTPyĝ)

ζ(tj , ωk) = 1 − α2/(R−q−2)

j ←− j + 1

k ←− k + 1

j ←− 1

Output

s and ζ
Stop

yes

yes

no

no

Figure 6.13: Flowchart of the LSWA algorithm.
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7 Least-Squares Cross-Wavelet Analysis and Its Applications

In this chapter, cross-spectrogram of two time series (may be extended to more) with its stochastic surface

at a certain confidence level (usually 95% or 99%) is introduced as well as the phase differences of common

constituents of the two time series. To obtain the cross-spectrogram, the spectrogram of each time series

first needs to be calculated using the LSWA algorithm illustrated in Figure 6.13. I will show the outstanding

performance of my proposed method on synthetic and real time series. This chapter is an unabridged version

of a paper published in Journal of Geodesy (Ghaderpour et al., 2018a).

7.1 Cross-Spectrogram and Its Stochastic Surface

It is shown in Appendix C that the LSWS of time series f given by Equation (6.11) follows (∼) the beta

distribution, i.e., s ∼ β1,</2, where β stands for the beta distribution, and < = R(j, k) − q − 2. Suppose

that time series f1 and f2 have been derived from two statistically independent populations of random

variables following respectively the multidimensional normal distributions N (0,Cf1) and N (0,Cf2), where

the covariance matrices Cf1 and Cf2 may be singular. Let Ω = {ωk; k = 1, . . . , κ} be a set of common

spectral frequencies for the two time series under consideration.

Let s1 and s2 be the spectrograms corresponding to f1 and f2, respectively. By the assumption, s1 and s2

are statistically independent. For each pair (tj , ωk), the Least-Squares Cross-Wavelet Spectrogram (LSCWS)

of the two time series are defined as the product of their spectrograms:

Xs = s1s2. (7.1)

Note that 0 < Xs < 1 because 0 < s1, s2 < 1. Since the sampling rates and/or the times of the two time

series may not be the same, one may set the time vector in Xs as the union of the sets of times of the first

and second time series. If tj is a time in the first time series but not in the second (or vice-versa), then

s1(tj , ωk) is calculated within a window of size R1(j, k) located at tj , and s2(tj , ωk) is calculated within a

window of size R2(j, k) located at tj , emphasizing that the centre of the window does not have to be located

at a time in which there exists a sample. For a pair (tj , ωk), if the value of Xs is closer to one, then the two

segments of the two time series within the windows of sizes R1(j, k) and R2(j, k) are highly coherent, and

they are highly incoherent if the value of Xs is closer to zero.
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Suppose that q1 and q2 are the number of constituents of known forms being considered in the calculation

of the spectrograms for f1 and f2, respectively. Ghaderpour and Pagiatakis (2017) showed that s1 ∼ β1,<1/2

and s2 ∼ β1,<2/2, where <1 = R1(j, k)−q1−2 and <2 = R2(j, k)−q2−2. More precisely, from the definition

of the beta distribution, the Probability Distribution Functions (PDF) of the independent random variables

s1 and s2 are respectively as follows

fs1(u) =
<1

2
(1− u)<1/2−1, 0 < u < 1, (7.2)

fs2(v) =
<2

2
(1− v)<2/2−1, 0 < v < 1. (7.3)

Following similar methodologies in Glen et al. (2004), the PDF of random variable Xs can be obtained.

The following transformation is a one-to-one mapping from A =
{

(u, v); 0 < u < 1, 0 < v < 1
}

to

B =
{

(x, y); 0 < x < 1, 0 < y < 1
}

Xs = s1s2, Y = s2. (7.4)

Let T and K denote the transformation and the inverse transformation, respectively. Therefore,

x = T1(u, v) = uv, y = T2(u, v) = v,

u = K1(x, y) = x/y, v = K2(x, y) = y. (7.5)

The Jacobian of the transformation is

J =
∂(u, v)

∂(x, y)
=
(∂u
∂x

)(∂v
∂y

)
−
(∂u
∂y

)(∂v
∂x

)
=
(1

y

)
(1)−

(−x
y2

)
(0) =

1

y
. (7.6)

Using Equation (7.5) and the independency of s1 and s2,

fXs,Y (x, y) = |J |fs1,s2(u, v) =
1

y
fs1(x/y)fs2(y). (7.7)

Integration of Equation (7.7) with respect to y over the appropriate interval and using Equations (7.2) and

(7.3) yield the PDF of Xs

fXs(x) =

∫ 1

x

fXs,Y (x, y) dy =

∫ 1

x

1

y
fs1

(x
y

)
fs2(y) dy

=
<1<2

4

∫ 1

x

1

y

(
1− x

y

)<1/2−1

(1− y)<2/2−1 dy, (7.8)

where 0 < x < 1. One may numerically calculate this integral using the well-known methods, such as Simpson

quadrature and Gauss-Kronrod quadrature (Hazewinkel, 2001; Moler, 2008; Shampine, 2008). Figure 7.1

shows the PDF of Xs for selected values of <1 and <2.

107



Figure 7.1: Illustration of the PDF of Xs given by Equation (7.8) for several values of <1 and <2.

Table 7.1 shows the critical values (cv) corresponding to two significance levels α = 0.01 and α = 0.05

for selected values of <1 and <2. It can be seen that the critical values approach zero rapidly when <1 and

<2 increase. Note that the area under the density curve from its lower right tail to the left is computed to

find the critical value for a certain significance level because the PDF becomes singular when approaching

zero. Now let f1 and f2 be two time series of dimensions n1 and n2, respectively. For each ωk ∈ Ω, assume

that s1 and s2 are the least-squares spectra corresponding to f1 and f2, respectively. Analogous to the cross-

spectrogram, the Least-Squares Cross-Spectrum (LSCS) is defined as Xs = s1s2, where <1 = n1 − q1 − 2

and <2 = n2 − q2 − 2. The PDF of Xs is given by Equation (7.8). Note that the LSCS is independent

of the sampling rates because it decomposes the time series into the frequency domain and not into the

time-frequency domain.

Table 7.1: The critical values (cv) corresponding to the significance levels (α) and <i.

<1 <2 α = 0.01 α = 0.05

2 2 cv = 0.862 cv = 0.701

4 3 cv = 0.624 cv = 0.436

4 6 cv = 0.452 cv = 0.290

10 10 cv = 0.186 cv = 0.105

20 30 cv = 0.043 cv = 0.022

100 101 cv = 0.003 cv = 0.002
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7.2 Phase Differences in the Cross-Spectrogram

When analyzing two time series together, researchers are also interested in the phase differences between

any two constituents of interest of the same time-frequency spectral value. To find the phase differences,

note that

y = a sin (2πωt + θ) =
[

cos (2πωt), sin (2πωt)
]
c = Φc, (7.9)

where c = a
[

sin θ, cos θ
]T

and Φ is the design matrix given by Equation (6.1). Following the same

procedure in the LSWA, one can see that Equation (6.10) is the estimate for c. For each pair (tj , ωk), let ĉ1

and ĉ2 be the two elements of ĉ given by Equation (6.10). Therefore, â sin θ̂ = ĉ1 and â cos θ̂ = ĉ2, and so

â = (ĉ21 + ĉ22)0.5. Thus

θ̂ = 2 arctan

(
1− ĉ2/â
ĉ1/â

)
. (7.10)

Now for pair (tj , ωk), if θ̂1 and θ̂2 are the phase differences of the constituents of f1 and f2 calculated by

Equation (7.10), respectively, then define the phase difference corresponding to pair (tj , ωk) as ψ = θ̂2 − θ̂1,

where −2π < ψ < 2π. The phase difference for a common constituent of a particular frequency indicates how

much the constituent of the second time series lags (if −2π < ψ < −π or 0 ≤ ψ < π) or leads (if −π ≤ ψ < 0

or π ≤ ψ < 2π) the constituent of the first time series. Let σ2
1 and σ2

2 be the variances associated with θ̂1

and θ̂2, respectively, estimated from the least-squares estimation process. Applying the covariance law to

ψ = θ̂2 − θ̂1, one may calculate the standard deviation of ψ as σψ =
(
σ2

1 + σ2
2

)0.5
.

7.3 Analysis of Two Synthetic Unequally Spaced Time Series

The outstanding performance of the LSCSA and LSCWA on two synthetic and inherently unequally

spaced time series are demonstrated below. The time series are given by

f1(ti) = cos

(
30

1.2− ti

)
+ g(ti) + w1, 0 ≤ ti ≤ 1, 1 ≤ i ≤ 600, (7.11)

where g(ti) = cos
(
25 · 2πti

)
for 200 ≤ i ≤ 300 and g(ti) = 0, otherwise, and w1 is Gaussian white random

noise, and

f2(t′j) = cos
(
5 · 2πt′j

)
+ cos

(
25 · 2πt′j +

π

2

)
+ w2, 0 ≤ t′j ≤ 1, 1 ≤ j ≤ 400, (7.12)

where w2 is Gaussian white random noise. Note that in the LSSA, LSWA, LSCSA, and LSCWA, the time

series do not have to contain white noise. In this example, a white noise is considered to see the performance

of these analyses because measurements in practice typically contain white noise. Time series f1 = [f1(ti)]

and f2 = [f2(t′j)] are illustrated in Figure 7.2a with blue and red colours, respectively. Assume that the unit
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Figure 7.2: (a) Two unequally spaced series given by Equations (7.11) and (7.12) shown in blue and red,
respectively, (b) the LSCS of the two time series, and (c) the LSCS of the two residual time series after suppressing
the peak at 5 c/d.
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time for f1 and f2 is in days. The set of common frequencies chosen in the analyses of the two time series

is Ω = {1, 2, . . . , 49} cycles per day (c/d). The LSCS of the two time series detects two peaks at cyclic

frequencies 5 and 25 c/d (Figure 7.2b). Figure 7.2b also shows the phase differences of the constituents of

cyclic frequencies 5 and 25 c/d in f1 with respect to the ones in f2 which are approximately close to −50◦

and +90◦, respectively, as expected from the synthetic time series. In the next step, the peak at 5 c/d

is suppressed and the LSCS of the residual time series is shown in Figure 7.2c. It can be seen that the

percentage variance of the peak at 25 c/d increases, indicating more coherency in the residual time series.

Since there are 600 and 400 samples per day for f1 and f2, respectively, M1 = 600 and M2 = 400.

Note that since the time series are inherently unequally spaced, no aliasing is expected to occur at high

frequencies, however, if at least one of the time series was equally spaced, then it is recommended to choose

half of the sampling rate as the Nyquist frequency for the cross-spectrogram. The cross-spectrograms of

the two time series and their residuals along with many selected phase differences (arrows) are shown in

Figure 7.3 (L1 = 2 and L0 = 10 are selected for both time series). The angles of white arrows on the

cross-spectrogram with respect to the horizontal axis show the phase differences. Note that an arrow is in

the first or second quadrant of the trigonometric circle when 0◦ ≤ ψ < 180◦, and it is in the third or fourth

quadrant when −180◦ ≤ ψ < 0◦.

The coherency of the two original time series can be observed in more details in Figure 7.3a. The cross-

spectrogram shows that the hyperbolic chirp signal in Equation (7.11) is coherent with the cosine wave of

5 c/d in Equation (7.12) from 0 to 0.5 day interval. The percentage variance of the corresponding peaks

decreases as time increases because the frequency of the hyperbolic chirp in f1 increases rapidly over time,

showing less coherency with the cosine wave of 5 c/d in f2 as time increases. It can be seen from Figure 7.3a

that signal g(ti) in f1 and the cosine wave of 25 c/d in f2 are coherent in the time period of approximately

0.3−0.5 day. Part of the hyperbolic chirp at 25 c/d in f1 and the cosine wave of 25 c/d in f2 are also coherent

in the time period of approximately 0.7 − 0.8 day. Figure 7.3b is obtained by suppressing (removing) the

peaks at 5 c/d in the LSCWS that can be done by adding the sine and cosine base functions of 5 c/d as two

columns to Φ in Equation (6.5) for f2. The coherency between signal g(ti) in f1 and the cosine wave of 25

c/d in the residual f2 is significantly increased (compare the percentage variance of the peaks in Figure 7.3a

and b from time 0.3 to 0.5 day at 25 c/d).

The phase difference of almost 90◦ can be observed in the spectrogram from time 0.35 to 0.5 day at 25

c/d as expected. Note that the phase differences in the LSCS may not be accurate for non-stationary time

series as the sinusoids are being fitted to the entire time series. For instance, the phase difference in the

LSCWS corresponding to time 0.77 d and cyclic frequency 25 c/d is 43.2◦, but it cannot be detected as such

in the LSCS. Moreover, the coherency between signal g(ti) in f1 and cosine wave of cyclic frequency 25 c/d

in f2 is more localized and significant in Figure 7.3b.
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Figure 7.3: (a) The LSCWS of the time series shown in Figure 7.2a, and (b) the LSCWS of the residual time
series. The arrows in the spectrogram show the phase differences.
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As an application of the LSCWA, the Gravity field and steady-state Ocean Circulation Explorer (GOCE)

electrostatic gradiometer measurement disturbances are analyzed to determine their coherence with the

Poynting energy flux along two successive ascending satellite tracks during a magnetic storm (Ince and

Pagiatakis, 2016), and part of the results are compared to the XWT. The possible effect of the temperature

on the VLBI baseline length series was investigated in Chapter 6. As another application of the LSCWA, the

coherency between the VLBI baseline length series from Westford to Wettzell with the temperature series

(recorded since 1984) is investigated to show the effect of the temperature variation on the baseline length

more rigorously.

7.4 GOCE Electrostatic Gravity Gradiometer Measurements and Poynting En-

ergy Flux

Two different geophysical time series are analyzed to demonstrate the performance of LSCWA when is

applied to real, unequally spaced and unequally weighted time series. The first time series is composed of

gravitational gradient disturbances observed by GOCE satellite, whereas the second time series comprises

Poynting electromagnetic energy flux (plasma flow) in the ionosphere derived from equivalent horizontal

ionospheric currents and vertical currents. The hypothesis of this analysis is that the electromagnetic en-

ergy flux in the Earth’s thermosphere introduces undesirable disturbances in GOCE Electrostatic Gravity

Gradiometer (EGG) measurements as shown in Ince and Pagiatakis (2016); Ince (2017); Ince and Pagiatakis

(2017). The data sets are described and their analyses are presented in this section.

7.4.1 GOCE Electrostatic Gravity Gradiometer

The latest gravity field mission GOCE was one of the three satellite missions, after CHAMP (CHAlleng-

ing Mini-satellite Payload) and GRACE (Gravity Recovery And Climate Experiment), which has helped

remarkably to improve the accuracy and resolution of the Earth’s global geopotential models from space.

In order to map the Earth’s gravitational field from satellite measurements, the influence of all temporal

gravitational and non-gravitational accelerations acting on the satellite should be measured and removed

from the observations.

Preliminary analyses and literature search have shown that the (GOCE) EGG measurements (Rummel

et al., 2011) are affected by unknown non-gravitational sources around the magnetic poles (Peterseim et al.,

2011; Stummer et al., 2012; Siemes et al., 2012; Yi et al., 2013; Ince, 2017; Ince and Pagiatakis, 2016). Ince

(2017) demonstrated that the source of these disturbances are related to solar activity dependent ionospheric

dynamics. Moreover, these disturbances can reach up to a magnitude of about 3 to 5 times larger than the

expected noise level (approximately 11 milli-Eotvos, mE) of the gravity field components at specific epochs.
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Figure 7.4: Two satellite ascending tracks (green curves) over Canada. The grid points represent the SEC grid.

Ince and Pagiatakis (2016) found that these specific epochs correspond to geomagnetic storms due to the

interaction between the interplanetary magnetic field and geomagnetic field.

In order to understand the relation between the undesirable disturbances observed in gravitational gra-

dients and plasma flow variations due to solar activity, Spherical Elementary Currents (SEC) are used for

the coherency analysis (Amm, 1997; Amm and Viljanen, 1999; Weygand et al., 2011). Based on the Laplace

condition, the summation of the diagonal components of the Gravitational Gradient Tensor (GGT) (trace)

should be zero. It is worth mentioning that these variations affect the EGG measurements around the au-

roral oval when the ionospheric dynamics (plasma flow) are more intense. In this example, the trace on

which these spurious signals are more visible is investigated, and the selected GOCE tracks are examined

individually in which the trace is subject to rapid changes (Figure 7.4).

The sampling period of GOCE measurements is one sample per second, and along track correlated errors

are not considered in this study (error in the GOCE gradients outside of the measurement bandwidth is

colored). The data sets analyzed here do not have any gaps, and they are equally spaced. However, it is

possible that GOCE data in level zero or level one may have gaps.
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7.4.2 Equivalent Ionospheric Currents and Poynting Vector

The SEC system methodology given in Amm (1997); Amm and Viljanen (1999) are used to derive

Equivalent Ionospheric Currents (EIC) which are based on the magnetic field disturbances measured at

the Earth’s surface (Weygand et al., 2011). The SEC system methodology furthermore upward continues

the anomalous magnetic field measurements from the ground to an altitude of about 110 km. Equivalent

currents (horizontal currents) and spherical elementary current amplitudes (vertical currents) are provided

in 10 s temporal resolution in a gridded format over North America and West Greenland (see the grid points

in Figure 7.4). The kriging method (using a variogram) is applied to interpolate the grid values into the

satellite ground track position (see green lines in Figure 7.4) for the analyses (Ince, 2017).

By using SEC values provided on a grid (see dots in Figure 7.4) interpolated into the satellite position,

the Poynting vector (Kelley, 2009; Ince, 2017) is computed in the north-south and east-west directions

along the satellite track. The units of Poynting vector are Watt per metre square (W/m2). In general, the

direction of the Poynting vector indicates the direction of the flow of the electromagnetic energy that drives

the ionospheric currents.

The Gravitational Gradient Tensor (GGT) trace and the Poynting vector of the first satellite track are

shown in Figure 7.5a. The unit time for our analyses is in hours and the sampling rate for original GGT trace

series is M1 = 3600 samples per hour. The sampling rate for the cross-track Poynting vector component

series is M2 = 360 samples per hour. Note that the Nyquist frequency of the cross-track Poynting vector

component series is 180 cycles per hour (c/h) which is different from the one for the original GGT trace

series of 1800 c/h. Therefore, the maximum frequency for the analysis must not be greater than 180 c/h. In

this analysis, Ω = {1, 2, . . . , 100}. The LSCS after removing the datum shift of the original GGT trace series

is shown in Figure 7.5b. The original GGT trace and the cross-track Poynting vector component series of

the second satellite track and their LSCS (after removing the datum shift) are also shown in Figure 7.6.

Note that the XWT (Grinsted et al., 2004) would require interfiling and editing of both time series to

be identical in their times and equally spaced, and it does not consider the covariance matrices associated

with the time series. However, the LSCWA does not require the series to have the same sampling rates and

to be equally spaced at identical times. The comparison between the XWT and LSCWA for equally spaced

time series of the same sampling rates are shown below. This comparison is made only for the first satellite

track.

In order to apply the XWT, the GGT trace series of the first satellite track should be decimated from

3600 to 360 samples per hour (M1 = 360) because the cross-track Poynting vector component series has the

sampling rate of 360 samples per hour. To keep the useful information of the GGT trace series as much as

possible, a Gaussian filter is used in this process (see Appendix E). The result of the decimated GGT trace

series is illustrated in black in Figure 7.5a, and it can be observed that the decimated data points match the
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Figure 7.5: (a) The cross-track Poynting vector component series in W/m2, original and decimated GGT trace
series in mE for the first satellite track, and (b) the LSCS of original GGT trace and cross-track Poynting vector
component series with 99% confidence level.

data points of cross-track Poynting vector component series in time.

Figure 7.7 shows the XWT of the decimated GGT trace series and the cross-track Poynting vector

component series of the first satellite track (the Morlet wavelet is used). The MATLAB code to generate

this figure was obtained from www.mathworks.com/matlabcentral/fileexchange/ 47985-cross-wavelet-and-

wavelet-coherence. Note that the XWT is in time-scale, and the scales are converted to frequencies in this

figure. The confidence level Z2(p) associated with a probability p in the XWT may be calculated by inverting

the following integral

p =

∫ Z2(p)

0

z K0(z) dz, (7.13)

where K0(z) is the modified Bessel function of order zero (Torrence and Compo, 1998; Ge, 2008). From
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Figure 7.6: (a) The original GGT trace series shown by blue and the cross-track Poynting vector component
series shown in red for the second satellite track, and (b) the LSCS of the original GGT trace and cross-track
Poynting vector component series with 99% confidence level.

Equation (7.13), one can obtain Z2(0.95) = 3.999 and Z2(0.99) = 5.767. Z2(0.99) is used in Figure 7.7.

The LSCWA for the first satellite track is applied to three different cases, namely, the decimated GGT

without (as in the XWT above) and with considering the covariance matrix and the original GGT trace

series. Based on the constituents of low frequency and short duration empirically observed in the time series,

the window size parameters are chosen as L1 = 1 and L0 = 5 for both time series and Φ = [1] for the

decimated GGT trace series to remove its datum shifts.

Figure 7.8a shows the LSCWS of the decimated GGT trace series by considering the covariance matrix

generated by the Gaussian filtering process described in Appendix E. The significant peaks in the LSCWS

are those that are above the stochastic surface shown by gray at 99% confidence level. The two-dimensional

representation of the LSCWS and its stochastic surface (gray) and phase differences are shown in Figure
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Figure 7.7: The XWT of the decimated GGT trace and cross-track Poynting vector component series of the
first satellite track along with phase shifts (arrows). The area within the thick contour is the significant area at
99% confidence level. The cone of influence where the edge effects might distort the results is shown as a light
shade.

7.8b. It can be seen that the two time series are highly coherent with approximately zero phase differences

(see the reddish area around 0.12 hour in Figure 7.8b). This fact can also be observed in Figure 7.7. The

very low coherence in the interval 0.02− 0.1 hours is also expected due to the lower power random character

of the signals (Figure 7.5a). However, the significant peaks are much more localized in the LSCWS than

in the XWT because the LSCWS is obtained from the spectrograms, decomposing the time series directly

into the time-frequency domain using the least-squares method. Although the Morlet wavelet used in the

XWT smooths the signal peaks in the spectrogram, it increases the bandwidth of the signal frequencies in

the spectrogram (poor time-frequency resolution).

To verify the importance of the covariance matrix in the analysis, an equally weighted analysis without

considering the covariance matrix is also performed (Figure 7.8c), and many of the cross-spectrogram values

(denoted by Xs(tj , ωk)) are shown in Table 7.2 and compared to the values when the covariance matrix is

considered (denoted by Xe
s (tj , ωk)). In Table 7.2, cv(tj , ωk) denotes the critical values (%) corresponding to

pair (tj , ωk) at 99% confidence level. Comparing the values in the third and fourth columns, one can observe

the changes in percentage variances for the LSCWS. The first five and last nine rows in this table correspond

to many of the values inside the left and right circles, respectively, shown in Figure 7.8b and c. Many of

the peaks that are significant in Figure 7.8b are insignificant in Figure 7.8c (inside the right circle). On the

other hand, many of the peaks that are insignificant in Figure 7.8b are significant in Figure 7.8c (inside the

left circle). For the original GGT trace series, the same window size parameters are selected but M1 = 3600
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Figure 7.8: (a) Three-dimensional representation of the LSCWS of the cross-track Poynting vector component
and decimated GGT trace series shown in Figure 7.5a considering the covariance matrix with the stochastic
surface at 99% confidence level (gray), (b) its two-dimensional representation with phase differences (arrows),
and (c) the LSCWS without considering the covariance matrix with phase differences (arrows).
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Table 7.2: Comparison between many of the values in the LSCWS with (third column) and without (fourth
column) considering the covariance matrix associated with the decimated GGT trace series and the critical value
(fifth column) at 99% confidence level.

tj ωk Xe
s (tj , ωk) Xs(tj , ωk) cv(tj , ωk)

0.058 19 3.82 9.16 5.9
0.058 20 3.84 9.01 5.9
0.058 22 4.37 9.45 7.02
0.061 25 8.03 10.13 8.5
0.061 26 7.45 8.98 8.5

0.153 23 11.73 6.45 7.02
0.158 21 5.94 4.95 5.9
0.158 28 16.36 9.02 10.5
0.164 36 29.4 7.71 13.28
0.164 37 29.32 8.47 13.28
0.167 36 33.99 7.52 13.28
0.167 37 34.22 8.65 13.28
0.169 36 20.72 6.61 13.28
0.169 37 22.49 7.97 13.28

(Figure 7.9). Since the window size for the original GGT trace series is larger than for the decimated one,

the critical values of the LSCWS of the original GGT trace series are smaller than the ones for the decimated

GGT trace series (Figures 7.8b, 7.9a). This means that the spectral peaks in the LSCWS for the decimated

series are expected to be stronger than the ones for the original series in order to be statistically significant.

Comparing Figure 7.8b and c with Figure 7.9a, one can observe that Figure 7.9a is closer to Figure 7.8b in

terms of significant peaks (e.g., see inside the circles). This indicates the crucial importance of considering

the covariance matrix associated with the series when computing the spectrogram (the weighted LSCWA).

The analysis of the original GGT trace series (Figure 7.9a) shows that the effects of the marginal windows

are improved and more reliable results for the coherency and the phase differences are obtained. Note that

various filtering and decimating techniques may alter the result of analysis, and so analyzing the original

series (raw data) will give more reliable results. Therefore, for the second satellite track, only the LSCWS of

the original GGT trace and cross-track Poynting vector component series (shown in Figure 7.6a) is illustrated

in Figure 7.9b.

There is a small negative phase difference around cyclic frequency 20 c/h and time 0.12−0.14 h in Figure

7.9a and b indicating that the ionospheric variations are leading the disturbances in GGT trace series.

The analyses show that the variations observed in the two series have a period of about 5 minutes. This

corresponds to spatial variations of around 2000 km. The ionospheric variations of this spatial resolution

were investigated and presented in Ince and Pagiatakis (2016).
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Figure 7.9: The LSCWS of the original GGT trace series and the cross-track Poynting vector component series
with stochastic surface at 99% confidence level (gray) along with the phase differences for (a) the first satellite
track, and (b) the second satellite track.
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7.5 Westford-Wettzell VLBI Baseline Length and Atmospheric Temperatures

In this section, the effect of atmospheric temperature on the VLBI baseline length estimates between

Westford in the USA and Wettzell in Germany is investigated, and the coherency between the temperature

variations at the two stations and the VLBI baseline are shown. The VLBI length series and the associated

variances are obtained from www.ccivs.bkg.bund.de, and the temperature time series for Westford and

Wettzell are obtained from http://ggosatm.hg.tuwien.ac.at/DELAY/SITE/VLBI/.

The VLBI series (cf., Figure 7.10a) comprises 1733 unequally spaced and unequally weighted baseline

length estimates from January 9th, 1984 at 19:12:00 Universal Time (UT) to September 3rd, 2014 at 16:48:00

Figure 7.10: (a) The unequally spaced VLBI baseline length evolution since January 1984 with error bars (red),
and (b) unequally spaced and equally weighted temperature series at stations Westford (red) and Wettzell (blue)
since January 1984.
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UT. In order to see the effect of the atmospheric temperature on the Westford-Wettzell baseline length, the

temperatures are chosen close to, and in many cases identical to the times when the baseline length estimates

are available (Figure 7.10b). Since there are 57 samples per year (on average), M = 57. In order to compare

the results with the results in Chapter 6, the window size parameters are chosen as L1 = 4 and L0 = 30,

and the set of cyclic frequencies is Ω = {0.1, 0.2, 0.3, . . . , 12} with unit of cycles per annum (c/a). Selecting

smaller window size parameters will produce cross-spectrograms that are more localized in time and more

accurate in phase shifts; however, frequency resolution will be poorer.

The linear trend observed in Figure 7.10a expresses the lengthening of the baseline due to the relative

tectonic plate movement on which the two VLBI antennas are mounted (Campbell, 2004). Therefore, the

linear trend is the known constituent, so in Equation (6.5), let Φ = [1, t]. Figure 7.11 shows the (weighted)

cross-spectrograms of the VLBI series and each of the temperature series (after removing the trends) along

with their stochastic surfaces at 99% confidence level. The coherency between the two series at the cyclic

frequency 1 c/a (365 days) can be seen in the figure. From the cross-spectrograms, one can observe that

both temperature series show relatively small coherency at 1 c/a with the VLBI series for the time period

from 1984 to 1991. This small coherency is due to large measurement errors for the VLBI series in that

period (Figure 7.10a). As it is shown in Chapter 6, considering the error bars of the VLBI series improves

the percentage variances of the spectral peaks in the LSWS, and it results in improved coherency with the

temperature series.

The VLBI series has approximately the same phase shifts over time with both temperature series at 1

c/a (the constituents of the temperature series at 1 c/a have approximately zero phase shifts) indicating

simultaneous contraction and expansion at both antennas which results in significant periodic change in

the baseline length (see arrows). The small negative phase differences mean that the constituents of each

temperature series lead the constituents of VLBI series at period of one year, indicating that the periodic

change in the VLBI baseline length slowly occurs after the temperature variation. In other words, depending

on the design of the antennas, the annual temperature variation can affect the geometry of the antennas by

several millimetres (Wresnik et al., 2007). The constituents of the VLBI series and each temperature series

at cyclic frequency 1 c/a have slightly smaller phase differences at certain time periods from 1989 to 2014

when selecting smaller window size parameters (e.g., L1 = 1 and L0 = 10).

For further investigation, the annual peaks are also suppressed from the VLBI baseline length series as

well as from the Westford temperature series, and the LSCWS of the residual series is shown in Figure 7.12a.

The weak peak at 1.6 c/a in Figure 7.12a may indicate that the Westford antenna is being deformed with

a period of approximately 228 days (unusual atmospheric temperature variations) from year 1997 to year

2001 with almost zero phase shift (see inside the circle) as was discussed in Chapter 6.
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Figure 7.11: The LSCWS of the residual VLBI series and the (a) Westford and (b) Wettzell temperature series
with their stochastic surfaces at 99% confidence level (gray) and phase differences (white arrows).

124



Figure 7.12: The LSCWS of the residual VLBI series and the residual (a) Westford and (b) Wettzell temperature
series with their stochastic surfaces at 99% confidence level (gray) and phase differences (white arrows). Many
of the significant peaks are shown inside the circles.
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To compare the results with the result of Wettzell temperature series shown in Chapter 6, the trends, the

annual peaks, and peaks at cyclic frequency 1.6 c/a are simultaneously removed from the VLBI series. The

trends and annual peaks are also removed from the Wettzell temperature series and the LSCWS of the two

residual series is shown in Figure 7.12b. The statistically significant coherency between the constituents of

the two series in the LSCWS indicates the deformation of Wettzell antenna, possibly affecting the baseline

length at certain periods (see inside the circles). The semiannual length variation of the baseline length can

be possibly linked to the temperature variation as observed in the cross-spectrograms shown in Figure 7.12

(since 2004). The dashed vertical lines in the cross-spectrograms are due to significant data gaps.

7.6 Summary

I proposed a new and robust method (the LSCWA) of analyzing two (or more) time series simultaneously

to search and estimate the amplitudes and phase differences of their common constituents. The LSCWA

is able to estimate the coherency between the components of any two equally/unequally spaced time series

statistically regardless of their sampling rates, opening a breakthrough in signal processing. I showed its

outstanding performance on two synthetic time series.

The time series analyses presented in this chapter are concrete examples of real time series sampled

at different rates and represent time-variant systems where the Fourier and wavelet transform or other

traditional methods cannot be applied directly.

We applied the LSCWA to investigate the disturbances in the gravitational gradients observed by GOCE

satellite that arise from plasma flow in the ionosphere represented by Poynting electromagnetic energy flux.

We discovered that the ionospheric variations are leading the disturbances in GGT trace series, and they are

coherent significantly at certain periods. Our analyses showed that the variations observed in the two series

have a period of about 5 minutes, corresponding to spatial variations of around 2000 km.

The coherence analyses of the VLBI baseline length and the atmospheric temperature variations at the

Westford and Wettzell stations showed that at certain time and periods the baseline length was affected

by temperature variations. In particular, we observed that the annual temperature variations affected the

baseline length significantly over time. I also showed that using the covariance matrix associated with the

VLBI baseline length can improve the percentage variances of the spectral peaks in the cross-spectrogram

and can produce more reliable results.
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8 Discussion, Conclusions and Future Directions

The Least-Squares Spectral Analysis (LSSA) is an appropriate method for analyzing non-stationary and

unequally spaced time series. Contrary to Fourier analysis, the LSSA can account for constituents of known

forms, such as trends and/or datum shifts simultaneously with periodic constituents. The covariance matrix

associated with the time series (if known) can also be accounted for in the analysis. No editing of the

time series of any sort is necessary when using the LSSA. In the LSSA, frequencies are examined one by

one (out-of-context), and so, when analyzing unequally spaced time series, the least-squares spectrum shows

spectral leakages, although the signal frequencies may be estimated accurately by increasing the resolution of

frequencies (zooming in). For data regularization purposes (e.g., seismic data regularization), these leakages

slow down the process and may cause significant errors in the final regularization results. However, the

spectral leakages can be effectively mitigated by simultaneously suppressing the statistically significant peaks

in the spectrum (simultaneously estimating the signal frequencies) as done in the LSSA, when considering

the constituents of known forms. On the other hand, if a non-stationary time series comprises constituents

of low/high frequency variability over time, neither the LSSA nor the Fourier analysis are appropriate for the

analysis because both methods decompose the time series into the frequency domain, disabling the nature

of constituents in the time series.

Starting from the fundamental concept and very desirable properties of the LSSA, I have accomplished

significant innovations in the way the analysis of a time/data series or a set of time/data series must be

approached to achieve reliable results, the significance of which can be assessed by rigorous statistical analysis.

The philosophy behind my contributions was that we needed a method or methods for the analyses of any

type of data series that does not require any alteration or preprocessing of the actual measurements. This

philosophy essentially dictated the development of new methods to meet the needs of the analyses and the

type of the data, unlike the most popular approaches that necessitate the editing of the data to meet the

stringent requirements of the method of analysis. To this end, beyond resolving the common problem of

spectral leakages in the data series analyses, I developed two robust methods, namely, the Least-Squares

Wavelet Analysis (LSWA) and Least-Squares Cross-Wavelet Analysis (LSCWA) that supersede all state-of-

the-art Fourier-based methods by achieving superior results demonstrated with a plethora of synthetic and

experimental time series.
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Table 8.1: Appropriate analysis methods for various types of time series without the need for their editing.

Properties of one time series Appropriate analyses
Equally spaced, equally weighted, LSSA, Fourier transform,

stationary wavelet transform, WWZ, LSWA
Equally spaced, equally weighted, Wavelet transform,

non-stationary WWZ, LSWA
Unequally spaced and/or unequally weighted, WWZ,

non-stationary LSWA

Properties of two or more time series Appropriate analyses
Same sampling rates, equally spaced, LSCSA,

equally weighted, stationary XWT, LSCWA
Same sampling rates, equally spaced, XWT,

equally weighted, non-stationary LSCWA
Different sampling rates, equally/unequally spaced, LSCSA,

equally/unequally weighted, stationary LSCWA
Different sampling rates, equally/unequally spaced, LSCWA

equally/unequally weighted, non-stationary

After an exhaustive and detailed review and comparisons of the most popular methods of data analysis

performed throughout this dissertation, I was compelled to develop Table 8.1 that summarizes all the appro-

priate methods of spectral analysis that could be used to analyze a series without prior editing (Ghaderpour

et al., 2018a). The main innovations of this dissertations are summarized in the following four sections

that are extensions of the LSSA. The first two methods (ALLSSA and MALLSSA) are established in the

frequency or wavenumber domain, and the other two methods (LSWA and LSCWA) are established in the

time-frequency or distance-wavenumber domain:

8.1 AntiLeakage Least-Squares Spectral Analysis (ALLSSA)

The ALLSSA is an iterative method based on the LSSA that usually uses an equally spaced preselected

set of wavenumbers to accurately estimate the statistically significant spectral peaks. After simultaneously

suppressing several significant spectral peaks with highest percentage variance (power/energy), this method

revisits the previously estimated wavenumbers to estimate them more accurately in the next step, and so

it significantly reduces the computational cost while it estimates the signal wavenumbers and amplitudes

more accurately than the LSSA. Once the wavenumbers and amplitudes are estimated, they can be used to

reconstruct the data series to any desired equally spaced series (regularization of data series). The ALLSSA

is applied to regularize irregularly sampled seismic data more accurately, efficiently, and computationally

faster than the state-of-the-art methods, such as the ALFT, ASFT, and IMAP (Ghaderpour et al., 2018b).

The ALLSSA is a fast and very accurate new method of regularizing data/time series that can also

attenuate the random noise down to a certain confidence level. This method takes into account the corre-
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lations among the sinusoidal basis functions as well as the constituents of known forms by considering the

covariance matrix associated with the data/time series. I demonstrated how an appropriate selection of the

weight matrix (the inverse of the covariance matrix) adapts the method for regularizing non-stationary and

more complex data series.

Simultaneously considering the correlation among the sinusoidal basis functions is the key point in the

ALLSSA. This correlation will be considered when the matrix of normal equations is being inverted. In

practice, this matrix is often invertible because the seismic traces are usually inherently unequally spaced.

However, one may calculate the pseudo-inverse of this matrix when it is singular. For seismic data with very

complex geologic structures that have severe aliasing, the ALLSSA may not be reliable for regularization

as this method is established mainly for the wide-sense stationary seismic data like the ALFT, ASFT, and

IMAP.

8.2 Multichannel AntiLeakage Least-Squares Spectral Analysis (MALLSSA)

Aliasing is a crucial problem in many fields of science, such as seismology. When interpolating seismic

data (demanded for various seismic exploration purposes) that are coarsely sampled, aliasing may introduce

significant artifacts (may generate false events) in the final regularized seismic data. Additional information

or assumption is a must when regularizing coarsely sampled data series. The MALLSSA is a robust method

that uses the spatial gradients of data series to accurately estimate the true signal wavenumbers required

for reconstruction of the seismic data on any desired regular grids. The MALLSSA is successfully applied to

accurately regularize coarsely sampled seismic data presenting severe aliasing (Ghaderpour, 2018).

A limitation of the MALLSSA is the potential overlap of two or more spectral replicas at the same

wavenumber, similar to the MIMAP. However, the effect of the replicas in the MALLSSA may be improved

in practice because the wavenumbers are being estimated simultaneously and more accurately at each round

of iterations. An appropriate windowing technique can be applied to adapt the MALLSSA to seismic data

with complex geologic structures as described in Chapter 4.

8.3 Least-Squares Wavelet Analysis (LSWA)

The selection of sinusoidal basis functions in the LSWA allows one to directly decompose a time series

into the time-frequency domain, considering the correlations among the sine and cosine functions and other

constituents of known forms as well as any correlated noise. The LSWA allows one to compute spectrograms

rigorously for equally or unequally spaced time series without any preprocessing, modification or editing.

When the fully populated covariance matrix associated with the time series is provided, the LSWA considers

the correlations between the entire time series values in each segment. For equally spaced and equally
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weighted time series, when the dilation window size parameter is set to zero (i.e., L1 = 0), the LSWS has

similar time and frequency resolution to the STFT, and it has similar time and frequency resolution to the

CWT when this parameter is greater than zero (i.e., L1 > 0). In the LSWA, when the dilation window size

parameter is greater than zero, the size of the translating window decreases when the frequency increases and

vice versa, allowing the detection of all short- and long-duration constituents simultaneously, particularly

when they are in attenuation (e.g., free oscillations of the Earth, resonant phenomena, etc.). The stochastic

surfaces defined for the spectrogram show the significant spectral peaks at a certain confidence level (usually

95% or 99%). The LSWA is applied to analyze many time series with various characteristics to show it

supersedes the state-of-the-art time series analysis methods, such as the very popular continuous wavelet

transform and its empirical cone of influence (Ghaderpour and Pagiatakis, 2017).

In the LSWA, care must be taken when selecting the window size parameters: the dilation parameter

(L1) and additional fixed number of data points (L0) in and around the window. For instance, if the window

location approaches to a large gap in an unequally spaced time series, then the LSWA will borrow data points

corresponding to the neighbouring time period when selecting a large number of additional data points (L0).

Taking these neighbouring data points into account may affect the percentage variance of the true signal

peaks in the spectrogram and may not be reliable when the time series is strongly non-stationary. Therefore,

the researchers need to know some basic information of the time series that are studying for the selection of

the window size parameters. The LSWA offers such alternative because it is a robust method of analyzing

time series containing energy and/or power signals. After detecting power signals (e.g., stationary sinusoidal

signals of constant amplitudes) and trends, they can be simultaneously removed from the time series to

search for hidden energy signals (e.g., transient signals).

The computational complexity of the LSWA will be depended on several factors, such as the window

size parameters, covariance matrices, number of constituents of known forms, set of frequencies, and the

translating windows (overlapping or non-overlapping). The LSWA can be set up to achieve O(n) complexity

per frequency like the fast algorithm for CWT, when windows do not overlap and covariance matrices are

ignored, or it can be as slow as O(n3) for a time series of n data points with n frequencies to be examined

when the windows overlap. The appropriate selection of the window size parameters can considerably reduce

the computational cost compared to the WWZ. In many fields of science, the quality and reliability of the

spectral peaks corresponding to periodic and/or aperiodic signals are far more important than the speed.

8.4 Least-Squares Cross-Wavelet Analysis (LSCWA)

The LSCWA is a novel method of analyzing two (or more) time series together, based on the LSWA.

The LSCWA can be applied to any type of time series and generates fairly simple and meaningful results

including the confidence level and phase differences between the two time series, and it shows how much
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the constituents of the time series in a particular frequency are coherent and whether the coherency is

significant at certain confidence level using rigorous statistical inference. In the LSCWA, the time series

do not have to be equally spaced and equally weighted, and they do not need to have the same sampling

rate. The LSCWA can analyze non-stationary time series consisting of constituents of variable amplitude

and frequency variability over time. The time series analyses presented in Chapter 7 are concrete examples

of real time series which are sampled at different rates and represent time-variant systems, where the Fourier

transform and wavelet transform or other traditional methods cannot be applied directly. Through a number

of synthetic and real time series, I showed that the LSCWA does not require any preprocessing or editing of

the original time series superseding the state-of-the-art methods (Ghaderpour et al., 2018a).

In many applied sciences, researchers would like to study the impact of one phenomenon on another

by analyzing two or more time series (or data series that are measurements recorded over other quantities,

such as distance instead of time, e.g., seismic data series) obtained for each phenomenon. The LSCWA is

a powerful tool that can efficiently and directly show the coherency and phase differences between the time

series to make a reliable decision. Note that the LSWA and LSCWA can be applied to data series instead

of time series, and so the decomposition is in time-wavenumber domain instead of time-frequency domain.

The properties of the time series analyses are listed in Table 8.1.

When analyzing unequally spaced time series, spectral leakages appear in the spectra and spectrograms,

often statistically insignificant. However, the spectral leakages can be significantly mitigated by simultane-

ously suppressing the significant spectral peaks as done in the LSSA and LSWA. In the LSCWA, the effect

of the leakages can be further mitigated because they appear randomly in the spectrograms of each time

series. Therefore, their cross-spectrogram mainly shows the coherency of the true signals. Furthermore, if

by any chance the random errors (e.g., colored noise) that might be present in two time series appear to

have similar behaviour in certain time periods, then they may also contaminate the cross-spectrograms.

8.5 Future Directions

The potential applications of my proposed methods, the ALLSSA, MALLSSA, LSWA, and LSCWA

are not restricted to seismology and geodesy, and their performances in other fields of science, such as

astronomy, atmospheric sciences, medical sciences and finance are expected to enhance the results of the

analyses. Here I provide several potential applications of my proposed methods in other fields of science that

can be implemented in the future.

• In geophysical time series analysis, there are cases in which time series show discontinuities, for example

in GPS (Global Positioning System) coordinate time series that may have discontinuities (i.e., sudden

offset or “jump”, instrument failure, antenna and reference frame changes) in its values or trend due
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to tectonic phenomena. Such cases are also observed in time series of gravimeter measurements. Since

the LSWA and LSCWA decompose time series segment-wise (depending on the time and frequency),

selecting the column vector of all ones and the position vector for the constituents of known forms will

automatically consider the discontinuities simultaneously with the periodic constituents thus, producing

more reliable results for detecting and quantifying signals.

• Astronomers are usually interested in analyzing light curves of variable stars whose brightness as seen

from the Earth fluctuates (Foster, 1996). Such astronomical time series are often unequally spaced and

weighted and can be obtained from the American Association of Variable Star Observers (AAVSO),

www.aavso.org/main-data. The LSWA is expected to show its robust performance in detecting and

quantifying periodic and aperiodic signals in these time series because the LSWA is somewhat similar

to the WWZ in that they are both least-squares based methods.

• Atmospheric scientists or agronomists may want to interpolate/extrapolate atmospheric temperature

time series, recorded in certain stations located around a farm that can be irregularly spaced, to use

it for various purposes, such as crop disease forecasting (Wolf et al., 2003). The ALLSSA can also be

useful for these purposes.

• Physicians may be interested in studying the coherency between the Heart Rate Variability (HRV) and

brain waves recorded by the Electroencephalography method (EEG) (Niedermeyer and da Silva, 2005).

The LSCWA may be applied to investigate the coherency between the components of these time series

rigorously, or the LSWA may be applied to the time series obtained by the EEG method to search for

brain tumors and other space-occupying lesions.

• Financial analysts may be interested in analyzing certain time series to estimate trends in the overall

unemployment rate as well as any periodicity in such time series, or occasional trends in price movement

in intraday transaction prices of International Business Machines (IBM) stock and its coherency with

transactions that resulted in price change, etc. (Tsay, 2010). The ALLSSA and LSWA may be able to

accurately estimate such trends simultaneously with other periodic or aperiodic components in such

time series for making a reliable decision.

The iterative antileakage technique in the ALLSSA may also be applied alongside the LSWA to further

mitigate spectral leakages in the spectrogram for data regularization purposes. Using other sophisticated

windows, such as Dolph-Chebyshev and Kaiser, instead of the Gaussian window, in the weighted ALLSSA and

LSWA may improve the quality of the spectral peaks by further reducing spectral leakages, and it is subject

to future work. I am planning to extend the ALLSSA and MALLSSA to higher dimension cases and show

their capabilities in regularization. It is expected that the generalizations of the ALLSSA and MALLSSA
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to higher dimensions will perform better in regularization of seismic data. A MATLAB software package

including a GUI (Graphical User Interface) is being developed for the ALLSSA, LSWA, and LSCWA (follow

the updates at www.ghader.org or www.researchgate.net/profile/Ebrahim Ghaderpour), and a manuscript

is currently being prepared to submit to Computers and Geosciences.
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A Comparison Between Simultaneous Least-Squares Spectral
Analysis and Discrete Fourier Transform

The Discrete Fourier Transform (DFT) of a sequence of n regularly spaced complex numbers
f(x1), . . . , f(xn) into another sequence of complex numbers (Fourier coefficients) is defined as

f̂(ωk) =
1

n

n∑
`=1

f(x`)e
−2πiωkx` , (A.1)

where x` = `/n, ωk ∈ K = {−n2 , . . . ,
n
2 − 1} if n is even, and ωk ∈ K = {−n−1

2 , . . . , n−1
2 } if n is odd.

Note that ωk is referred to wavenumber that is the number of cycles per unit distance. Considering all the
wavenumbers simultaneously, the DFT can be represented in matrix form as f = 1

nDTf , where

F =

 f̂(ω1)
...

f̂(ωn)

, f =

 f(x1)
...

f(xn)

, D =

 e
2πiω1x1 e2πiω2x1 . . . e2πiωnx1

...
... . . .

...
e2πiω1xn e2πiω2xn . . . e2πiωnxn

, (A.2)

and ‘T’ denotes the conjugate transpose (Craymer, 1998). It can be seen that f = DF (when traces are
regularly sampled in space). The Euler’s formula implies that e2πiωkx` = cos(2πωkx`)+ i sin(2πωkx`), and so
the LSSA expresses the columns of D as cosine and sine basis functions. More precisely, let Ω = {1, . . . , η},
where η = n

2 − 1 if n is even (η = n
2 is the Nyquist wavenumber), and η = n−1

2 if n is odd. When the real-
valued version of the normal equations considered, the least-squares minimization uses the model f = Φc to
estimate c as ĉ = N−1ΦTf , where N = ΦTΦ,

Φ =

 1 cos(2πω1x1) sin(2πω1x1) · · · cos(2πωηx1) sin(2πωηx1)
...

...
... · · ·

...
...

1 cos(2πω1xn) sin(2πω1xn) · · · cos(2πωηxn) sin(2πωηxn)

, (A.3)

and ωk ∈ Ω. The dimensions of Φ, N, and ĉ are n×(2η+1), (2η+1)×(2η+1), and (2η+1)×1, respectively.
Note that the first column of design matrix Φ above corresponds to the zero wavenumber. In fact, we

could have two column vectors associated to the zero wavenumber: the first column for cosine whose elements
are cos(0) = 1 and the second column for sine whose elements are sin(0) = 0. However, we avoid writing the
zero column vector because it will make matrix N singular. Note that matrix N is a real square matrix, and
it is invertible as long as the column vectors of Φ are linearly independent. One may also include the column
vector of cos(2π n2x`) = cos(2π n2

`
n ) = cos(`π) = ±1, ` = 1, . . . , n, in matrix Φ above when n is even. This

way f will be reconstructed accurately if f contains constituents of the Nyquist wavenumber n
2 . Note that

the column vector of sine is not included because sin(2π n2x`) = sin(2π n2
`
n ) = sin(`π) = 0 for ` = 1, . . . , n. To

avoid the singularity of square matrix N, the negative wavenumbers are excluded from matrix Φ. Craymer
(1998) discussed that when f is real, one may only consider the positive wavenumbers. However, not much
work is done on the LSSA for the case when f is complex. The analyses show that if f is complex, one may
still consider only the positive wavenumbers for regularization (see below for further details).
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Assume that n is even (a similar discussion for n odd). When a data series is regularly spaced,

n∑
`=1

cos(2πωkx`) cos(2πωux`)=

n for ωk = ωu = −n2 or 0
n
2 for ωk = ωu 6= −n2 or 0
0 for ωk 6= ωu

(A.4)

n∑
`=1

sin(2πωkx`) sin(2πωux`)=

0 for ωk = ωu = −n2 or 0
n
2 for ωk = ωu 6= −n2 or 0
0 for ωk 6= ωu

(A.5)

n∑
`=1

cos(2πωkx`) sin(2πωux`) = 0 for all ω ∈ K. (A.6)

Therefore, including only the positive wavenumbers in the LSSA also implicitly accounts for the identical
response to both positive and negative wavenumbers and produces a one-sided spectrum that is physically
meaningful. This will also effectively double the amplitude of the least-squares transform with respect to
the DFT (Vańıček, 1969; Craymer, 1998). More precisely, it can be seen that

ĉ = N−1ΦTf =



1
n

∑n
`=1 f(x`)

2
n

∑n
`=1 cos(2πω1x`)f(x`)

2
n

∑n
`=1 sin(2πω1x`)f(x`)

...
2
n

∑n
`=1 cos(2πωηx`)f(x`)

2
n

∑n
`=1 sin(2πωηx`)f(x`)


, Φĉ ≈ f . (A.7)

The elements of column vector ĉ in Equation (A.7) from top to bottom are the estimated coefficients
for the columns of Φ in Equation (A.3) from left to right, respectively. Note that Vańıček (1969); Craymer
(1998); Pagiatakis (1999) discussed the LSSA mainly for real time series (i.e., f a real vector) with its
applications in geodesy and geodynamics. However, since design matrix Φ is a real matrix, f can also be
a complex vector (e.g., a temporal frequency slice). In this case, ĉ in Equation (A.7) will be a complex
vector whose real and imaginary parts contain the estimated amplitudes corresponding to the real and
imaginary parts of f , respectively. One may also use Equation (A.7) for the real part and imaginary part of
f individually (treating each part as a real data series) and then form vector ĉ by combining the estimated
amplitudes of each part, producing similar regularization results to the previous case.

For irregularly spaced data series, Equations (A.4), (A.5) and (A.6) are no longer valid, i.e., the sinusoidal
basis functions are no longer orthogonal. However, the correlation between them is taken into account
when matrix N is being inverted. The selection of wavenumbers is a critical task for the simultaneous
estimation of the least-squares spectrum. The correlation among the sinusoids must be taken into account
carefully; otherwise, ill-conditioning in N can produce wrong results (Craymer, 1998). In the ALLSSA, the
wavenumbers are accurately estimated in an iterative manner, producing an accurate one-sided spectrum for
stationary data series. Note that in the ALLSSA, only the coefficients of significant components of a data
series of size n will be estimated, and so the number of columns in Equation (A.3) may be much smaller
than n. Also, note that we are not using the fast methods of the FFT for the ALFT, ASFT, and ALLSSA.
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B An Optimization Method for the Least-Squares Spectral
Analysis

A similar methodology used as in Wells et al. (1985); Craymer (1998) to obtain Equation (6.10). From

the model y = Φ c = Φ c + Φ c, estimate c using the least-squares method as ĉ = N
−1

Φ
T
Pyy, where

N = Φ
T
PyΦ. Now write N

−1
as

N
−1

=

 ΦTPyΦ ΦTPyΦ

ΦTPyΦ ΦTPyΦ

−1

=

 M1 M2

M3 M4

, (B.1)

where

M1 =
(
ΦTPyΦ−ΦTPyΦ (ΦTPyΦ)−1ΦTPyΦ

)−1

= N−1 + N−1ΦTPyΦ M4 ΦTPyΦ N−1, (B.2)

M2 = −M1 ΦTPyΦ (ΦTPyΦ)−1 = −N−1 ΦTPyΦ M4, (B.3)

M3 = −M4 ΦTPyΦ N−1, (B.4)

M4 =
(
ΦTPyΦ−ΦTPyΦ N−1ΦTPyΦ

)−1

, (B.5)

and N = ΦTPyΦ. Note that it is assumed that matrices ΦTPyΦ and N are invertible. Thus, from

[
x
ĉ

]
= ĉ = N

−1
Φ

T
Pyy =

 M1 M2

M3 M4

 ΦTPyy

ΦTPyy

, (B.6)

one obtains

ĉ = M3 ΦTPyy + M4 ΦTPyy

= −M4 ΦTPyΦ N−1ΦTPyy + M4 ΦTPyy

= M4 ΦTPy

(
y −Φ N−1ΦTPyy

)
= N−1ΦTPyĝ. (B.7)

where N = M4
−1 = ΦTPyΦ−ΦTPyΦ N−1ΦTPyΦ, and ĝ = y−Φ N−1ΦTPyy is the estimated residual

segment. Note that for each frequency, N is a square matrix of order two, and so its inverse is computationally
efficient.
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C Calculation of the Stochastic Surface of the LSWS

A similar methodology, used in Steeves (1981); Pagiatakis (1999), is applied to obtain the stochastic
surface of the least-squares wavelet spectrogram given by Equation (6.11). Note that the critical value of the
least-squares spectrum given by Equation (3.10) is a special case of this methodology that is independent of
frequency or wavenumber. Assume that time series f has been derived from a population of random variables
following the multidimensional normal distribution. The covariance matrix is always Hermitian (it is equal
to its conjugate transpose) and positive semi-definite. For simplicity, assume that the covariance matrix Cf

associated to the time series f is invertible and so positive definite. Thus, P = Cf
−1 is positive definite, and

so all its principal submatrices Py are positive definite, thus invertible (Horn and Johnson, 2012). Note that
in case of singular Cf , one may obtain the pseudo-inverse of Cf and obtain similar results (Rao and Mitra,
1972; Pagiatakis, 1999). A square matrix M is called idempotent if MM = M. Idempotent matrices have
many nice properties. For instance, rank(M) = trace(M) (Horn and Johnson, 2012).

Let J = Φ N
−1

Φ
T
Py, J = Φ N−1ΦTPy and J = ΦN−1ΦTPy, where N = Φ

T
PyΦ, N = ΦTPyΦ and

N = ΦTPyΦ−ΦTPyJΦ (same as defined in Appendix B). Note that Φ =
[
Φ Φ

]
is the R(j, k)× (q + 2)

design matrix. It can be seen that J and J are idempotent, and

Φ
T
PyJ =

 ΦTPyΦ N−1ΦTPy

ΦTPyΦ N−1ΦTPy

=

 ΦTPy

ΦTPyΦ N−1ΦTPy

, (C.1)

N
−1

Φ
T
PyJ =

 M1 M2

M3 M4

 ΦTPy

ΦTPyΦ N−1ΦTPy


=

 M1ΦTPy + M2ΦTPyΦ N−1ΦTPy

M3ΦTPy + M4ΦTPyΦ N−1ΦTPy


=


(
N−1 + N−1ΦTPyΦ M4 ΦTPyΦ N−1

)
ΦTPy −N−1 ΦTPyΦ M4ΦTPyΦ N−1ΦTPy

−M4 ΦTPyΦ N−1ΦTPy + M4ΦTPyΦ N−1ΦTPy


=

 N−1ΦTPy

0

. (C.2)

Therefore,

JJ = Φ N
−1

Φ
T
PyJ =

[
Φ Φ

]  N−1ΦTPy

0

 = Φ N−1ΦTPy = J. (C.3)

Taking the transpose of both sides of Equation (C.3), one also can see that PyJJ = PyJ. Since JJ = J

145



(Equation (C.3)) and

ĝTPyΦ = (y − J y)TPyΦ

= (y −Φ N−1ΦTPyy)TPyΦ

= yT(I−PyΦ N−1ΦT)PyΦ

= yT(PyΦ−PyΦ) = 0, (C.4)

it can be seen that

ĝTPyJĝ = ĝTPyJ
(
y − J y

)
= ĝTPyJy − ĝTPyJJ y

= ĝTPyJy − ĝTPyJ y

= ĝTPyJy −
(
ĝTPyΦ

)
N−1ΦTPy y

= ĝTPyJy

= ĝTPyΦ ĉ

= ĝTPyΦ x + ĝTPyΦ ĉ

= ĝTPyΦ ĉ

= ĝTPyJĝ, (C.5)

where the parameters are the same as the ones in Equation (B.6). Therefore, Equation (6.11) is identical to

s(tj , ωk) =
ĝTPyJĝ

ĝTPyĝ
. (C.6)

Since J and J are idempotent and JJ = J and PyJJ = PyJ,

ĝTPyJĝ =
(
y − J y

)T
PyJ

(
y − J y

)
= yT

(
Py −PyJ

)(
Jy − J y

)
= yT

(
PyJy −PyJ y

)
= yTPy

(
J− J

)
y, (C.7)

and

ĝTPyĝ =
(
y − J y

)T
Py

(
y − J y

)
= yT

(
Py −PyJ

)(
y − J y

)
= yT

(
Pyy −PyJ y

)
= yTPy

(
I− J

)
y. (C.8)

Therefore, Equation (C.6) can be written as

s(tj , ωk) =
yTPy

(
J− J

)
y

yTPy

(
I− J

)
y
. (C.9)

The denominator of Equation (C.9) can be written as yTPy

(
I− J

)
y = yTPy

(
J− J

)
y + yTPy

(
I− J

)
y.

Let Qs = yTPy

(
J− J

)
y (signal) and Qn = yTPy

(
I− J

)
y (noise). Equation (C.9) can be written as

s(tj , ωk) =
Qs

Qs +Qn
=

(
1 +

Qn
Qs

)−1

. (C.10)
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Since J− J is idempotent and

rank
(
Py

(
J− J

))
= rank

(
J− J

)
= trace

(
J− J

)
= trace

(
J
)
− trace

(
J
)

= q + 2− q = 2, (C.11)

random variable Qs is distributed as chi-squared distribution with 2 degrees of freedom, i.e., Qs ∼ χ2
2, where

symbol ∼ is used to show that a random variable ‘follows’ a distribution (Craig et al., 2013, Chapter 9.8).
Similarly, since I− J is idempotent and

rank
(
Py

(
I− J

))
= rank

(
I− J

)
= trace

(
I− J

)
= trace

(
I
)
− trace

(
J
)

= R(j, k)− (q + 2) = <, (C.12)

random variable Qn is distributed as chi-squared distribution with < degrees of freedom, i.e., Qn ∼ χ2
< (Craig

et al., 2013, Chapter 9.8). Since Py

(
I − J

)
P−1

y Py

(
J − J

)
= Py

(
J − J − J + J

)
= 0, random variables Qs

and Qn are statistically independent, and so Qn/Qs follows (</2)F<,2, where F is the F -distribution (Craig
et al., 2013, Chapter 9.8). Therefore, the least-squares wavelet spectrogram given by Equation (C.10) that is
identical to Equation (6.11) follows the beta distribution with parameters 1 and </2, i.e., s(tj , ωk) ∼ β1,</2.

Now define the null hypothesis H0 and alternative hypothesis H1 as follows:

H0 :
Qn
Qs
≥ <

2
F<,2,α, (C.13)

H1 :
Qn
Qs

<
<
2
F<,2,α, (C.14)

where α is the significance level (usually α = 0.01 or α = 0.05). Based on the null hypothesis, one may only
consider the lower tail end of F because large values of ratio Qn/Qs mean that the noise is significantly
larger than the signal, and so the signal is undetectable (Pagiatakis, 1999). The stochastic surface at (1−α)
confidence level for the spectrogram given by Equation (C.10) is

ζ(tj ,ωk) =

(
1 +
<
2
F<,2,α

)−1

, (C.15)

It can be seen that if s(tj , ωk) > ζ(tj ,ωk), then H0 is rejected, and spectral peak s(tj , ωk) is statistically
significant at (1 − α) confidence level. Note that the stochastic surface given by Equation (C.15) depends
on the window size, and it does not depend on the frequency when L1 = 0. The stochastic surface is also
independent of the time (the location of the window) except for the marginal windows.

Using the relation F<,2,α = F−1
2,<,1−α = (2/<)(α−2/< − 1)−1 (Rao and Mitra, 1972; Pagiatakis, 1999),

Equation (C.15) can be written as

ζ(tj ,ωk) =

(
1 +

1

α−2/< − 1

)−1

= 1− α2/<. (C.16)

Following similar methodology as discussed above, one can see that the least-squares spectrum given by
Equation (3.10) follows the beta distribution with parameter values 1 and (n− q − 2)/2, and so the critical
value at (1−α) confidence level for the least-squares spectrum is 1−α2/(n−q−2). In other words, in equations
above assume that R(j, k) = n, where n is the size of time series f , and Py = P.
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D Derivation of Estimated Multichannel Coefficients

A similar methodology used as in Wells and Krakiwsky (1971) and Vańıček and Krakiwsky (1986) to
obtain Equation (5.8) and to show that it minimizes Equation (5.6). Simplify Equation (5.6) using elementary
matrix operations (e.g., Horn and Johnson (2012)) as follows

Ψk(c) =
(
f −Φ c

)T

P
(
f −Φ c

)
+
(
fx −Φx c

)T

Px

(
fx −Φx c

)
=
(
fT − cTΦ

T
)
P
(
f −Φ c

)
+
(
fx

T − cTΦ
T

x

)
Px

(
fx −Φx c

)
= fTPf − fTPΦ c− cTΦ

T
Pf + cT

(
Φ

T
PΦ

)
c

+ fx
TPxfx − fx

TPxΦx c− cTΦ
T

xPxfx + cT
(
Φ

T

xPxΦx

)
c. (D.1)

To minimize Equation (D.1) with respect to c, one may calculate the derivative of Ψk(c) with respect to c
and set it equal to zero as follows

∂Ψk(c)

∂c
= −fTPΦ− fTPΦ + 2 cT

(
Φ

T
PΦ

)
− fx

TPxΦx − fx
TPxΦx + 2 cT

(
Φ

T

xPxΦx

)
= 0. (D.2)

Rearranging and simplifying the terms in Equation (D.2), one obtains

∂Ψk(c)

∂c
= −2

(
fTPΦ + fx

TPxΦx

)
+ 2 cT

(
Φ

T
PΦ + Φ

T

xPxΦx

)
= 0. (D.3)

Taking the transpose of both sides of Equation (D.3) and solve for c yields Equation (5.8):

ĉ =

[
v
ĉk

]
=
(
Φ

T
PΦ + Φ

T

xPxΦx

)−1(
Φ

T
Pf + Φ

T

xPxfx

)
, (D.4)

where ĉ is used to indicate that c, minimizing Equation (5.6), is an estimation. Using the second derivative
test in Calculus, one may verify that ĉ in fact minimizes Equation (5.6). To see this, one may calculate the
second derivative of Equation (D.3) as

∂

∂c

{∂Ψk(c)

∂c

}
= 2

(
Φ

T
PΦ + Φ

T

xPxΦx

)
, (D.5)

that is positive definite because

zT
(
Φ

T
PΦ + Φ

T

xPxΦx

)
z = zT

(
Φ

T
PΦ

)
z + zT

(
Φ

T

xPxΦx

)
z > 0, (D.6)

for any z 6= 0. Note that Φ
T
PΦ and Φ

T

xPxΦx are positive definite.
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E A Decimation Algorithm Using the Gaussian Filter

Since the time series in the XWT must have the same sampling rates, the GGT trace series described in
Section 7.4 must be decimated from 3600 to 360 samples per hour. In this appendix, I will show how one
may decimate the GGT trace series for the first satellite track shown in Figure 7.5a.

To decimate the M value of the original GGT trace series and show the importance of considering the
covariance matrix of decimated data points, one may use the Gaussian function g(`) = e−0.5`2/σ2

, where
σ = 2.5 and −9 ≤ ` ≤ 9. In other words, the Gaussian window contains 19 samples (Figure E.1a). Thus,
the cutoff frequency is (sampling rate)/(2π · σ) that is 3600/(2π · 2.5) ≈ 229 c/h. The Gaussian function is

normalized to define the weights of the filter as w(`) = g(`)/s (−9 ≤ ` ≤ 9), where s =
∑9
`=−9 g(`). It can

be seen from Figure E.1a that the Gaussian windows overlap each other when translate 10 points over time
(red arrows), and so one may obtain the weighted covariances between the decimated data points using the
weights shown with solid black diamonds.

The weighted average and standard deviation of the GGT trace values within each window give the value
of the decimated data point and its error bar, respectively (Pagiatakis et al., 2007b). More precisely, suppose
that n is the number of data points in the original GGT trace series f(ti) (1 ≤ i ≤ n), and m is the number
of data points in the decimated GGT trace series h(τj) (1 ≤ j ≤ m). In this example, n = 701 and m = 71.
The values of the decimated series may be calculated as

h(τj) =

9∑
`=−9

w(`)f(t10j+`−9) (E.1)

for 2 ≤ j ≤ 70 (except for j = 1 and j = 71 that correspond to the margins), and their corresponding
variances as

Var(j) = η

9∑
`=−9

w(`)
(
f(t10j+`−9)− h(τj)

)2
, (E.2)

where η = 19/18 (West, 1979). From Equations (E.1) and (E.2), one may calculate h(τ1) (for j = 1) and
h(τ71) (for j = 71) and their variances by ranging ` from 0 to 9 and −9 to 0, respectively. One may also

use η = 1/
(
1 −

∑9
`=−9 w

2(`)
)

that is slightly smaller than 19/18, producing almost the same final results
(Galassi et al., 2016). The minimum, maximum, and mean values of the standard deviations (error bars)
are 0.006, 0.0257, and 0.0154, respectively. Now it can be seen from Figure E.1a that only the covariance
between every two consecutive decimated data points is nonzero when σ = 2.5. One may also calculate the
covariance between each two consecutive decimated data points using

Cov(j, j + 1) = ηc

9∑
`=1

(
wc(`)

(
f(t10j+`−9)− h(τj)

)
(
f(t10j+`−9)− h(τj+1)

))
, (E.3)

for 1 ≤ j ≤ 70, where wc(`) = w(`− 10) for 1 ≤ ` ≤ 5, wc(`) = w(`) for 6 ≤ ` ≤ 9, and ηc may be calculated

as ηc = 1/
(
1 −

∑9
`=1 w

2
c (`)

)
similar to η (Stuart and Ord, 2010; Galassi et al., 2016). The result of this
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Figure E.1: The decimating process of the GGT trace series for the first satellite track shown in Figure 7.5a
using a Gaussian window. (a) The translating Gaussian window, (b) the result of decimation of the first 40 data
points of the GGT trace series using the Gaussian weights shown with diamonds in panel a (note that p, q, r are
the second, third, and fourth decimated points, respectively), and (c) the decimated GGT trace series and its
error bars in red.
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decimation method for the first few data points and the entire decimated GGT trace series along with its
error bars is illustrated in Figure E.1b and c, respectively (see decimated points p, q, r). The variances and
covariances calculated from Equations (E.2) and (E.3) form a covariance matrix (symmetric and tridiagonal)
associated with the decimated GGT trace series.
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