26,328 research outputs found

    Development of a group contribution method for the prediction of normal boiling points of non-electrolyte organic compounds.

    Get PDF
    Thesis (M.Sc.Eng.)-University of Natal, Durban, 2004.Physical properties are fundamental to all chemical, biochemical and environmental industries. One of these properties is the normal boiling point of a compound. However, experimental values in literature are quite limited and measurements are expensive and time consuming. For this reason, group contribution estimation methods are generally used. Group contribution is the simplest form of estimation requiring only the molecular structure as input. Consequently, the aim of this project was the development of a reliable group contribution method for the estimation of normal boiling points of non-electrolytes applicable for a broad range of components. A literature review of the available methods for the prediction of the normal boiling points from molecular structure only, was initially undertaken. From the review, the Cordes and Rarey (2002) method suggested the best scientific approach to group contribution. This involved defining the structural first-order groups according to its neighbouring atoms. This definition also provided knowledge of the neighbourhood and the electronic structure of the group. The method also yielded the lowest average absolute deviation and probability of prediction failure. Consequently, the proposed group contribution method was then developed using the Cordes and Rarey method as a starting point. The data set included experimental data for approximately 3000 components, 2700 of which were stored in the Dortmund Data Bank (DDB) and about 300 stored in Beilstein. The mathematical formalism was modified to allow for separate examination and regression of individual contributions using a meta-language filter program developed specifically for this purpose. The results of this separate examination lead to the detection of unreliable data, the re-classification of structural groups, and introduction of new structural groups to extend the range of the method. The method was extended using steric parameters, additional corrections and group interaction parameters. Steric parameters contain information about the greater neighbourhood of a carbon. The additional corrections were introduced to account for certain electronic and structural effects that the first-order groups could not capture. Group interactions were introduced to allow for the estimation of complex multifunctional compounds, for which previous methods gave extraordinary large deviations from experimental findings. Several approaches to find an improved linearization function did not lead to an improvement of the Cordes and Rarey method. The results of the new method are extensively compared to the work of Cordes and Rarey and currently-used methods and are shown to be far more accurate and reliable. Overall, the proposed method yielded an average absolute deviation of 6.50K (1.52%) for a set of 2820 components. For the available methods, Joback and Reid produced an average absolute deviation of 21.37K (4.67%) for a set of 2514 components, 14.46K (3.53%) for 2578 components for Stein and Brown, 13.22K (3.15%) for 2267 components for Constantinou and Gani, 10.23 (2.33%) for 1675 components for Marrero and Pardillo and 8.18K (1.90%) for 2766 components for Cordes and Rarey. This implies that the proposed method yielded the lowest average deviation with the broadest range of applicability. Also, on an analysis of the probability of prediction failure, only 3% of the data was greater than 20K for the proposed method. This detailed comparison serves as a very valuable tool for the estimation of prediction reliability and probable error. Structural groups were defined in a standardized form and the fragmentation of the molecular structures was performed by an automatic procedure to eliminate any arbitrary assumptions

    Physical properties of alternatives to the fully halogenated chlorofluorocarbons

    Get PDF
    Presented here are recommended values and correlations of selected physical properties of several alternatives to the fully halogenated chlorocarbons. The quality of the data used in this compilation varies widely, ranging from well-documented, high accuracy measurements from published sources to completely undocumented values listed on anonymous data sheets. That some of the properties for some fluids are available only from the latter type of source is clearly not the desired state of affairs. While some would reject all such data, the compilation given here is presented in the spirit of laying out the present state of knowledge and making available a set of data in a timely manner, even though its quality is sometimes uncertain. The correlations presented here are certain to change quickly as additional information becomes available

    Forces on a boiling bubble in a developing boundary layer, in microgravity with g-jitter and in terrestrial conditions

    Get PDF
    Terrestrial and microgravity flow boiling experiments were carried out with the same test rig, comprising a locally heated artificial cavity in the center of a channel near the frontal edge of an intrusive glass bubble generator. Bubble shapes were in microgravity generally not far from those of truncated spheres,which permitted the computation of inertial lift and drag from potential flow theory for truncated spheres approximating the actual shape. For these bubbles, inertial lift is counteracted by drag and both forces are of the same order of magnitude as g-jitter. A generalization of the Laplace equation is found which applies to a deforming bubble attached to a plane wall and yields the pressure difference between the hydrostatic pressures in the bubble and at the wall, p. A fully independent way to determine the overpressure p is given by a second Euler-Lagrange equation. Relative differences have been found to be about 5% for both terrestrial and microgravity bubbles. A way is found to determine the sum of the two counteracting major force contributions on a bubble in the direction normal to the wall from a single directly measurable quantity. Good agreement with expectation values for terrestrial bubbles was obtained with the difference in radii of curvature averaged over the liquid-vapor interface, (1/R2 − 1/R1), multiplied with the surface tension coefficient, σ. The new analysis methods of force components presented also permit the accounting for a surface tension gradient along the liquid-vapor interface. No such gradients were found for the present measurements

    Solid state and sub-cooled liquid vapour pressures of substituted dicarboxylic acids using Knudsen Effusion Mass Spectrometry (KEMS) and Differential Scanning Calorimetry

    Get PDF
    Solid state vapour pressures of a selection of atmospherically important substituted dicarboxylic acids have been measured using Knudsen Effusion Mass Spectrometry (KEMS) over a range of 20 K (298–318 K). Enthalpies of fusion and melting points obtained using Differential Scanning Calorimetry (DSC) were used to obtain sub-cooled liquid vapour pressures. They have been compared to estimation methods used on the E-AIM website. These methods are shown to poorly represent – OH groups in combination with COOH groups. Partitioning calculations have been performed to illustrate the impact of the different estimation methods on organic aerosol mass compared to the use of experimental data

    Explicit modelling of SOA formation from α-pinene photooxidation: sensitivity to vapour pressure estimation

    Get PDF
    The sensitivity of the formation of secondary organic aerosol (SOA) to the estimated vapour pressures of the condensable oxidation products is explored. A highly detailed reaction scheme was generated for α-pinene photooxidation using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A). Vapour pressures (P^(vap)) were estimated with three commonly used structure activity relationships. The values of P^(vap) were compared for the set of secondary species generated by GECKO-A to describe α-pinene oxidation. Discrepancies in the predicted vapour pressures were found to increase with the number of functional groups borne by the species. For semi-volatile organic compounds (i.e. organic species of interest for SOA formation), differences in the predicted Pvap range between a factor of 5 to 200 on average. The simulated SOA concentrations were compared to SOA observations in the Caltech chamber during three experiments performed under a range of NO_x conditions. While the model captures the qualitative features of SOA formation for the chamber experiments, SOA concentrations are systematically overestimated. For the conditions simulated, the modelled SOA speciation appears to be rather insensitive to the P^vap estimation method

    High performance, high density hydrocarbon fuels

    Get PDF
    The fuels were selected from 77 original candidates on the basis of estimated merit index and cost effectiveness. The ten candidates consisted of 3 pure compounds, 4 chemical plant streams and 3 refinery streams. Critical physical and chemical properties of the candidate fuels were measured including heat of combustion, density, and viscosity as a function of temperature, freezing points, vapor pressure, boiling point, thermal stability. The best all around candidate was found to be a chemical plant olefin stream rich in dicyclopentadiene. This material has a high merit index and is available at low cost. Possible problem areas were identified as low temperature flow properties and thermal stability. An economic analysis was carried out to determine the production costs of top candidates. The chemical plant and refinery streams were all less than 44 cent/kg while the pure compounds were greater than 44 cent/kg. A literature survey was conducted on the state of the art of advanced hydrocarbon fuel technology as applied to high energy propellents. Several areas for additional research were identified

    In Silico Prediction of Physicochemical Properties

    Get PDF
    This report provides a critical review of computational models, and in particular(quantitative) structure-property relationship (QSPR) models, that are available for the prediction of physicochemical properties. The emphasis of the review is on the usefulness of the models for the regulatory assessment of chemicals, particularly for the purposes of the new European legislation for the Registration, Evaluation, Authorisation and Restriction of CHemicals (REACH), which entered into force in the European Union (EU) on 1 June 2007. It is estimated that some 30,000 chemicals will need to be further assessed under REACH. Clearly, the cost of determining the toxicological and ecotoxicological effects, the distribution and fate of 30,000 chemicals would be enormous. However, the legislation makes it clear that testing need not be carried out if adequate data can be obtained through information exchange between manufacturers, from in vitro testing, and from in silico predictions. The effects of a chemical on a living organism or on its distribution in the environment is controlled by the physicochemical properties of the chemical. Important physicochemical properties in this respect are, for example, partition coefficient, aqueous solubility, vapour pressure and dissociation constant. Whilst all of these properties can be measured, it is much quicker and cheaper, and in many cases just as accurate, to calculate them by using dedicated software packages or by using (QSPRs). These in silico approaches are critically reviewed in this report.JRC.I.3-Toxicology and chemical substance

    EVAPORATION: a new vapour pressure estimation methodfor organic molecules including non-additivity and intramolecular interactions

    Get PDF
    We present EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature, Intramolecular, and Non-additivity effects), a method to predict (subcooled) liquid pure compound vapour pressure <i>p</i><sup>0</sup> of organic molecules that requires only molecular structure as input. The method is applicable to zero-, mono- and polyfunctional molecules. A simple formula to describe log<sub>10</sub><i>p</i><sup>0</sup>(<i>T</i>) is employed, that takes into account both a wide temperature dependence and the non-additivity of functional groups. In order to match the recent data on functionalised diacids an empirical modification to the method was introduced. Contributions due to carbon skeleton, functional groups, and intramolecular interaction between groups are included. Molecules typically originating from oxidation of biogenic molecules are within the scope of this method: aldehydes, ketones, alcohols, ethers, esters, nitrates, acids, peroxides, hydroperoxides, peroxy acyl nitrates and peracids. Therefore the method is especially suited to describe compounds forming secondary organic aerosol (SOA)

    Design and evaluation of heat transfer fluids for direct immersion cooling of electronic systems

    Get PDF
    Comprehensive molecular design was used to identify new heat transfer fluids for direct immersion phase change cooling of electronic systems. Four group contribution methods for thermophysical properties relevant to heat transfer were critically evaluated and new group contributions were regressed for organosilicon compounds. 52 new heat transfer fluids were identified via computer-aided molecular design and figure of merit analysis. Among these 52 fluids, 9 fluids were selected for experimental evaluation and their thermophysical properties were experimentally measured to validate the group contribution estimates. Two of the 9 fluids (C6H11F3 and C5H6F6O) were synthesized in this work. Pool boiling experiments showed that the new fluids identified in this work have superior heat transfer properties than existing coolant HFE 7200. The radiative forcing and global warming potential of new fluids, calculated via a new group contribution method developed in this work and FT-IR analysis, were found to be significantly lower than those of current coolants. The approach of increasing the thermal conductivity of heat transfer fluids by dispersing nanoparticles was also investigated. A model for the thermal conductivity of nanoparticle dispersions (nanofluids) was developed that incorporates the effect of size on the intrinsic thermal conductivity of nanoparticles. The model was successfully applied to a variety of nanoparticle-fluid systems. Rheological properties of nanofluids were also investigated and it was concluded that the addition of nanoparticles to heat transfer fluids may not be beneficial for electronics cooling due to significantly larger increase in viscosity relative to increase in thermal conductivity.PhDCommittee Chair: Teja, Amyn; Committee Member: Hess, Dennis; Committee Member: Joshi, Yogendra; Committee Member: Liotta, Charles; Committee Member: Realff, Matthe
    • …
    corecore