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ABSTRACT 
 

 

 

This report provides a critical review of computational models, and in particular 

(quantitative) structure-property relationship (QSPR) models, that are available for the 

prediction of physicochemical properties. The emphasis of the review is on the 

usefulness of the models for the regulatory assessment of chemicals, particularly for 

the purposes of the new European legislation for the Registration, Evaluation, 

Authorisation and Restriction of CHemicals (REACH), which entered into force in 

the European Union (EU) on 1 June 2007.  

 

It is estimated that some 30,000 chemicals will need to be further assessed under 

REACH. Clearly, the cost of determining the toxicological and ecotoxicological 

effects, the distribution and fate of 30,000 chemicals would be enormous. However, 

the legislation makes it clear that testing need not be carried out if adequate data can 

be obtained through information exchange between manufacturers, from in vitro 

testing, and from in silico predictions. 

 

The effects of a chemical on a living organism or on its distribution in the 

environment is controlled by the physicochemical properties of the chemical. 

Important physicochemical properties in this respect are, for example, partition 

coefficient, aqueous solubility, vapour pressure and dissociation constant. Whilst all 

of these properties can be measured, it is much quicker and cheaper, and in many 

cases just as accurate, to calculate them by using dedicated software packages or by 

using (QSPRs). These in silico approaches are critically reviewed in this report. 
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1. Introduction 

 

REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) is the 

new chemicals legislation for the European Union, which aims to ensure that existing 

chemicals made and used in the EU have adequate toxicity data. Currently there is a 

grave paucity of toxicological information concerning these chemicals. Even for 

chemicals produced in high volume (> 1000 tonne/year) there are remarkably few 

toxicity data; 3% have adequate toxicity data, 11% have a minimal base set of data, 

65% have very few data and 21% have no toxicity data at all. Some 30,000 chemicals 

are covered by REACH, which was adopted by the European Parliament on 13 

December 2006, and which entered into force on 1 June 2007 [EC 2006a, 2006b]. 

 

Clearly, the cost of toxicity testing of 30,000 chemicals would be enormous, when 

one considers that to test one chemical for carcinogenicity takes two years and costs 

over 5 million Euro, and that other toxicity tests, for example for mutagenicity, 

teratogenicity, allergenicity and endocrine disruption may also need to be carried out. 

However, the legislation makes it clear that animal testing should not be carried out 

unless other toxicological data are inadequate. Such data may be obtained through 

information exchange between manufacturers, from in vitro testing, and from in silico 

predictions. 

 

The effects of a chemical on living organisms and its distribution in the environment 

are controlled by the physicochemical properties of the chemical. Important 

physicochemical properties in this respect are, for example, partition coefficient, 

aqueous solubility, vapour pressure and dissociation constant. Whilst all of these 

properties can be measured, it is much quicker and cheaper, and in many cases just as 

accurate, to calculate them using dedicated computer software or by the use of 

quantitative structure-property relationships (QSPRs). 

 

Under the REACH legislation, the physicochemical properties required are: 

 

Under Annex V, for substances at a supply level of ≥ 1 tonne/year: octanol-water 

partition coefficient, aqueous solubility, melting/freezing point, boiling point, 

vapour pressure, relative density, surface tension, flash point, auto-ignition (self-
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ignition) temperature, flammability (including pyrophoric properties and 

flammability on contact with water), explosive properties, oxidising properties and 

granulometry (particle size distribution). 

 

Under Annex VI, for substances at a supply level of ≥ 10 tonne/year: 

adsorption/desorption screening (soil sorption). 

 

Under Annex VII, for substances at a supply level of ≥ 100 tonne/year: dissociation 

constant, viscosity, stability in organic solvents. 

 

Of the above properties, flammability, explosive properties, oxidising properties, 

granulometry and stability in organic solvents are not amenable to calculation, and 

hence are not discussed in this report. The report does, however, include a section on 

the calculation of the air-water partition coefficient (Henry’s law constant), since this 

is an important property that controls the environmental distribution of a chemical. 

 

 

2. Introduction to quantitative structure-property relationships 

(QSPRs) 

 

Every property (physical, chemical and biological) of a chemical compound depends 

on the molecular structure of that compound. A simple example of this is the fact that 

melting point increases and water solubility (Saq) decreases as one ascends an 

homologous series. In this example, the change in structure along the homologous 

series could be represented by an increase in carbon number or molecular weight 

(MW). Thus one would expect a correlation between water solubility and molecular 

weight, within the homologous series: 

 

log Saq = a MW + c       (1) 

 

where a and c are constants. The logarithm of the property value is often used, firstly 

because property values can span many orders of magnitude, and secondly because 

such properties are usually rate constants or equilibrium constants, and as such their 

logarithm is proportional to the free energy change of the reaction or equilibrium. The 
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correlations are known as linear free energy relationships, or more commonly as 

quantitative structure-property relationships (QSPRs). The term quantitative structure-

activity relationship (QSAR) is sometimes used instead of QSPR, but strictly this 

should be reserved for the correlation of biological activities. 

 

Introductions to QSPRs have been published by Walker et al [2003] and by Dearden 

and Cronin [2006]. The application of QSPRs to environmental assessment has been 

discussed by Borman [1990], Russom et al [2003] and Walker et al [2003]. Two very 

useful documents for those wishing to use QSPRs in environmental assessment are 

OECD Environment Monograph No. 67 [1993] and ECETOC Technical Report No. 

74 [1998].  

 

Generic guidance on the regulatory use of QSARs and QSPRs under REACH is given 

in ECB [2007]. 

 

2.1 The value of QSPRs 

 

QSPRs are valuable in two main ways. Firstly, they can be used to predict the 

property in question of compounds that were not used to develop the QSPR (i.e. that 

were not in the training set). In order for this to be valid, the compounds should be 

similar to those used in the training set. That is, they should be within what is called 

the “applicability domain” of the QSPR [Netzeva et al 2005]. Thus, if equation (1) 

was a QSPR developed with a training set of substituted benzenes, it would not give 

accurate predictions for aliphatic alcohols. Again, if the MW range of the benzene 

derivatives used in the training set was 100 to 250, the QSPR would probably not give 

an accurate prediction for a benzene derivative with MW = 500. Netzeva et al [2005], 

Dimitrov et al [2005], Nikolova-Jeliazkova and Jaworska [2005] and Schultz et al 

[2007] have discussed the determination of applicability domains. A recent useful 

critical assessment of QSARs in ecotoxicological risk assessment is given by de 

Roode et al [2006]. 

 

The second way that QSPRs can be useful is that the descriptor(s) that best model the 

property in question may throw some light on the mechanism that governs the 
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property. For example, sorption of chemicals on soils is found to be correlated well 

with the octanol-water partition coefficient. One could therefore deduce that the 

sorption mechanism is a partitioning process between water and the hydrophobic 

surface of soil particles. However, one must be careful not to place too much reliance 

on such interpretations, since a correlation is not proof of cause-and-effect. 

 

The structure descriptors (that is, the terms on the right hand side of the correlation) 

are usually structural or physicochemical properties. There are thousands of such 

descriptors available, and numerous software programs are available for their 

calculation. Descriptor values are also available in many books and compendia [e.g. 

Hansch & Leo 1995]. 

 

2.2 Development of a QSPR 

 

In order to develop a QSPR, one firstly needs property values, such as aqueous 

solubilities, for a series of compounds. The series of compounds may be a congeneric 

series, such as a series of substituted phenols, or it may be a very diverse set of 

chemicals. Better correlations are generally obtained for congeneric series, because 

even for a simple physicochemical process like dissolution, different mechanisms of 

dissolution can be envisaged for different classes of compounds. It is nevertheless true 

that, especially for physicochemical properties, good correlations are often obtained 

for very diverse training sets of compounds. One such QSPR, for aqueous solubility 

of a large and diverse set of organic chemicals, was developed by Abraham and Le 

[1999] using their so-called solvatochromic descriptors: 

 

log Saq = 0.518 – 1.004 R + 0.771 πH
 + 2.168 ΣαH

 + 4.238 ΣβH
 – 3.362 ΣαH

.ΣβH
  

               – 3.987 VX       (2) 

n = 659     R
2
 = 0.920     s = 0.557 

 

where R = excess molar refractivity (a measure of polarisability), πH
 = a 

polarity/polarisability term, ΣαH
 and ΣβH

 = sums of hydrogen bond donor and 

acceptor abilities respectively, and VX = McGowan characteristic molecular volume. 

All of these terms can be calculated with the Absolv-2 software (see Table 1). All the 
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descriptor values cover approximately the same ranges, so the magnitude of the 

coefficient of a descriptor indicates its contribution to aqueous solubility. Hence one 

can see from equation (2) that the two most important descriptors are hydrogen bond 

acceptor ability and molecular size. 

 

2.3 QSPR statistics 

 

The statistics of the correlation are given after the equation. The number (n) of 

compounds in the training set was 659; the multivariate coefficient of determination 

(R
2
) is a measure of the fraction of the variation in log (solubility) that is described by 

the QSPR (note that when a single descriptor is used to model a property, the 

coefficient of determination is written as r
2
); in this case, the QSPR describes 92% of 

the variation of solubility; the standard error of the estimate (s) gives an indication of 

the accuracy with which the aqueous solubility of the training set compounds is 

modelled. In this case, the standard error of the estimate is close to the experimental 

error in the measurement of aqueous solubility [Katritzky et al 1998], so the QSPR 

models the data well. Additional statistics, not reported in this case, are the standard 

errors on each coefficient, which can give an indication of whether or not a particular 

descriptor contributes significantly to the correlation; if the standard error of a 

coefficient is close to the value of the coefficient itself, the descriptor contributes 

little, and should be discarded. 

 

To safeguard against chance correlations, it is recommended [Topliss & Costello 

1972] that the ratio of training set compounds to descriptors in the QSPR should be at 

least 5:1. 

 

2.4 Descriptor selection 

 

Descriptors are generally selected in one of two ways. Firstly, one can “guess” what 

descriptors might best model the property in question, and use them to derive the 

QSPR. However, if one’s guess is wrong, then a good QSPR will not be obtained. A 

more commonly used approach is to generate a large number of descriptors (perhaps 

several hundred) and use a statistical method such as step-wise regression or genetic 
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algorithm to select the “best” descriptors, i.e. those that give the best correlation with 

the property in question. This procedure is, however, subject to a higher risk of chance 

correlations occurring [Topliss & Edwards 1979] 

 

2.5 Predictive ability of a QSPR 

 

Even if a good QSPR is obtained, it may not be a good predictor of the property in 

question for compounds not in the training set. Hence some measure of predictive 

ability is required. The best way for predictivity to be assessed is to use the QSPR to 

predict the property in question for a number of compounds that were not used in the 

training set, but for which the measured value of the property is known; such a set of 

compounds is called a test set. The test set compounds must be reasonably similar to 

those of the training set; that is, they must lie within the applicability domain of the 

QSPR. This is often achieved by dividing the total number of compounds into two 

groups; the larger group forms the training set, and the smaller group (typically 5 – 

50% of the total) forms the test set. If the standard error for the test set is much larger 

than that for the training set, then the QSPR does not have good predictivity, and it 

should not be used for predictive purposes. 

 

If the total number of compounds is small, then it may not be practicable to split it 

into training and test sets. In that case a procedure called internal cross-validation can 

be used, whereby each compound in turn is deleted from the training set, the QSPR is 

developed with the remaining compounds, and is used to predict the property value of 

the omitted compound. That compound is then returned to the training set and a 

second compound is deleted, and so on until every compound has been left out in turn. 

A cross-validated R
2
 value, called Q

2
, is then calculated, which is an indicator of the 

internal predictivity of the QSPR. It is, however, not considered to be as good an 

indicator as is obtained using an external test set. Walker et al [2003] have proposed 

that an indicator of good predictivity is that Q
2
 should not be more than 0.3 lower than 

R
2
, whilst Eriksson et al [2003] have proposed a minimal acceptable value of 0.5 for 

Q
2
. 
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2.6 Prediction software 

 

Numerous software programs are available for the prediction of physicochemical and 

other properties of environmental and/or health interest. Some are freely accessible 

online, some are freely downloadable from a website, whilst others have to be 

purchased. The availability of such software is given in Table 1. ECETOC [2003] 

have examined the performance of five of these programs, namely Episuite, ASTER, 

SPARC, ACD/Labs and PREDICT. For some software, the input format is SMILES 

(simplified molecular input line entry system). SMILES is extremely easy to learn, 

and a tutorial can be found at www.daylight.com/smiles/smiles-intro.html. It is 

recommended that, given availability of appropriate software, property predictions be 

made in this way, as they can be obtained very quickly. It is recommended that at 

least three predictions be obtained if possible. For example, the experimental log Kow 

value for chloramphenicol is 1.14. The on-line AlogPS software (see Table 1) 

calculates a value of 1.15, whilst the on-lineChemSilico software (see Table 1) and 

the freely downloadable KOWWIN software (part of the Episuite software; see Table 

1) both calculate a value of 0.92. A predicted log Kow value within 0.3 – 0.4 log unit 

of a good measured value is considered acceptable. The relevant properties predicted 

by each software program are shown in Table 2.  

 

The question arises as to whether, if a measured property value is available, it should 

always be used in preference to a calculated value. It should be borne in mind that 

experimental values are also subject to error. For example, it is generally accepted that 

the mean experimental error on log Kow values is about 0.3 log unit. This is about the 

same as the mean error of the best predicted log Kow values. Since property prediction 

software is generally developed on training sets of several thousand very diverse 

chemicals, it can be assumed that the applicability domain of such software is very 

extensive. (Applicability domains are currently not usually available for commercial 

software.) The added precaution of using predictions from at least three software 

programs should ensure that a mean predicted property is just as acceptable as a 

measured value. Of course, if a measured value is available, it should not be ignored. 

    

However, if there is no appropriate software, or if it is too expensive, an appropriate 

QSPR should be selected. Tetko et al [2006] have discussed the accuracy of 
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prediction of properties such as log Kow. All the software can be run in batch mode, 

except where indicated. 

 

Table 1. Software for the prediction of physicochemical properties 

 

Software  Availability Website address 

 

Absolv-2  Purchase  www.ap-algorithms.com  

ACD/Labs
a
  Purchase  www.acdlabs.com 

Admensa  Purchase  www.inpharmatica.com 

ADME Boxes Purchase  www.ap-algorithms.com  

ADMET Predictor
a
 Purchase  www.simulationsplus.com 

ASTER
b  

Not available www.epa.gov  

  for public use  

ChemAxon  Purchase  www.chemaxon.com  

ChemOffice Purchase  www.cambridgesoft.com 

ChemProp  Not known  www.ufz.de/index.php?en=6738  

ChemSilico Purchase
c
  www.chemsilico.com 

ClogP  Purchase  www.daylight.com 

Episuite  Freely downloadable www.epa.gov/oppt/exposure/ 

                                                                         pubs/episuitedl.htm 

Molecular Modeling Purchase  www.chemsw.com  

   Pro 

Pallas  Purchase  www.compudrug.com  

Pipeline Pilot Purchase  www.scitegic.com  

PREDICT  Purchase  mwsoftware.com/dragon/ 

ProPred  Consortium www.capec.kt.dtu.dk 

  members only 

QikProp  Purchase  www.schrodinger.com   

SPARC
d
  Free on-line ibmlc2.chem.uga.edu/sparc 

TSAR  Purchase  www.accelrys.com  

VCCLAB  Free on-line www.vcclab.org  

 
a
Aqueous solubility module predicts intrinsic solubility, solubility in pure water and 

solubility at user-specified pH 
b
Aster is currently not available for public use. It is hoped that it will at some point be 

available on WWW. It is understood that OECD may also add it to their QSAR 

Toolbox. 
c
Log Kow and aqueous solubility predictions available free on-line at www.logp.com, 

but not in batch mode 
d
Not available in batch mode 
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Table 2. Physicochemical properties estimated by commercially and freely 

available software 
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Absolv-2 � �    � �     � 

ACD/Labs � � �  � �  �  � �  

ADME Boxes � � �    �     � 

ADMET Predictor � � �          

Admensa � �           

ASTER
 

� � �  � � �      

ChemAxon �  �          

ChemOffice �   � �        

ChemProp � �  � � � �  �    

ChemSilico � � �          

ClogP �            

Episuite � �  � � � �     � 

Molecular Modeling 

Pro 

� �  � � �  � �    

Pallas �  �          

Pipeline Pilot � � �          

Predict    � � �  � � �   

ProPred � �  � � � � � � � �  

QikProp � � �          

SPARC � � �  � � � �     

TSAR �            

VCCLAB � � �          

 

2.7 Steps in the selection of a QSPR for predictive purposes 

 

1. Find a QSPR that is appropriate to the chemical(s) whose property you wish to 

predict; this is done by searching the scientific literature to find relevant 

papers or books, or by searching the internet. If the QSPR training set is 

available, check to see whether similar chemicals to yours are present. If the 

training set is not available, find out what the authors say about the nature and 

range of chemicals used in the training set. If that information is not available, 

find out whether the authors give the ranges of the descriptors used in the 
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training set (e.g. a log Kow range of 1 – 6). If none of the above information is 

available, it is recommended that the QSPR is not used. 

 

2. If the QSPR is appropriate, check that the statistics are acceptable. The R
2
 

value should preferably be > 0.9, and the Q
2
 value > 0.6. The standard error 

(or other measure of error such as RMS error) should be close to the error on 

experimental measurements. If an external test set has been used, the standard 

error of the test set results should be similar to that of the training set. For 

example, the experimental error on aqueous solubility measurements is about 

0.5 – 0.6 log unit, so a prediction error of, say, > 0.8 would be unacceptable. 

Conversely, do not use a QSPR with a standard error much lower than 

experimental error; this indicates that the QSPR has over-fitted the data, and 

its predictivity will be poor. If the standard error of each descriptor coefficient 

is given, check that the standard error is considerably lower than the value of 

the coefficient, otherwise the descriptor will be of low significance (p value > 

0.05, where p is the probability that the descriptor has been selected by 

chance). 

 

3.  Given acceptable statistics, check that the descriptors used in the QSPR are 

readily available from books, papers, the internet or from accessible and 

affordable software. If so, proceed with the property prediction. 

 

2.8 Consensus modelling 

 

Some QSPR predictions and software programs are better than others. However, even 

the good ones do not yield perfect predictions. It is therefore always best, provided 

that it is practicable, to obtain property predictions from at least three different 

methods. In that way one can see whether one prediction is very different from the 

others, and should perhaps be discarded. This is exemplified by four separate software 

predictions of the aqueous solubility (log Saq, with Saq in mol L
-1

) of three different 

chemicals. All the software programs have been tested [Dearden 2006] and found to 

give good predictions overall. It should be borne in mind that the average 

experimental error on aqueous solubility measurements is about ± 0.6 log unit. 
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Table 3. Software predictions of aqueous solubility 

 

 Atropine Caffeine Butylparaben 

Measured - 2.18 - 1.02 - 2.96 

Software no. 1 - 1.87 - 1.87 - 3.09 

Software no. 2 - 2.06 - 0.65 - 3.05 

Software no. 3 - 1.01 - 0.27 - 3.07 

Software no. 4 - 2.03 - 0.56 - 2.58 

 

For atropine, it is clear that three programs give similar predictions, well within the 

experimental error, whereas software no. 3 gives a poor prediction. The mean of the 

three good predictions is – 1.99, which is only 0.2 log unit different from the 

experimental value of – 2.18. However, it may be noted that even if the poor 

prediction from software no. 3 is included, the mean predicted value is – 1.74, which 

is still within the experimental error of ± 0.6 log unit from the measured value. 

 

For caffeine, there is a considerable divergence of predicted values, indicating that the 

solubility of this compound is difficult to predict. Only two of the four predictions are 

within the experimental error of ± 0.6 log unit, but the mean of all four predictions is 

– 0.84, which is well within the experimental error. This example really emphasises 

the value of consensus modelling. 

 

Butylparaben has a simpler chemical structure than those of atropine and caffeine, and 

this is reflected in the more accurate predictions of aqueous solubility, with all four 

being within the experimental error of ± 0.6 log unit, and the mean of all four 

predictions being – 2.94.  

 

It is recommended that, wherever possible, predictions be obtained from more than 

one software program and/or QSPR, and that the mean of all the predictions be used, 

unless one of the predicted values is clearly very different from the others, in which 

case that prediction should be rejected. 

 

Abshear et al [2006] have demonstrated, using aqueous solubility prediction, that a 

consensus model can give much better predictions than individual predictive models. 
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2.9 Predictions using artificial neural networks (ANNs) 

 

Taskinen and Yliruusi [2003] have discussed the prediction of physicochemical 

properties using neural network modelling. Clearly, an ANN is not transparent, and 

there is a risk of overtraining it, so it has to be used carefully, by someone who knows 

what they are doing. On the other hand, commercial software that uses the ANN 

approach has already been trained, so a non-expert user can use it quite safely. Since 

one cannot always expect all the OECD principles to be satisfied before using a QSPR 

or software program, lack of transparency is not a huge barrier to the use of an ANN 

method. 

 

2.10 Potential pitfalls in the use of QSPRs 

 

1. The compound of interest should be within the applicability domain of the 

QSPR/software program. This is generally not easy to determine. Most, but 

not all, software developers make their training sets available, but even then it 

is not always obvious whether one’s compound of interest is within the 

applicability domain, because software developers do not provide tables of 

descriptors from which one could check applicability. However, the read-

across approach can be used here. That is, one can use the software or QSPR 

to make predictions for similar compounds whose property values are known. 

If those predictions are acceptable, then it is reasonable to assume that the 

prediction for one’s compound of interest will also be acceptable. Almost 

invariably, QSPRs and property prediction software are trained on organic 

compounds, and cannot handle inorganic compounds or metallo-organics (an 

exception to this is the SPARC software). 

 

2. The user must be clear as to which endpoint is being predicted. This is 

particularly important when a software program is able to predict a number of 

similar endpoints. For example, several commercially available software 

programs for the prediction of aqueous solubility offer several endpoints, such 
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as solubility in pure water and intrinsic solubility (i.e. the solubility of the 

undissociated species). 

 

3. It is essential to check that the units of the property being predicted are known 

and understood. For example, a predicted log (solubility) value will probably 

have solubility in moles per litre, whereas the user might think that it is in 

milligrammes per 100 ml. 

 

4. Walker and de Wolf [2003] have warned against using a predicted property to 

predict another property. However, sometimes this is unavoidable, e.g. in the 

case where a compound has not been synthesised. In such cases one must 

accept that the accuracy of prediction will probably be lower than would 

otherwise be the case. 

 

5. When using a QSPR, it is essential to check that it has been validated, 

preferably by use of external validation, or, failing that, by cross-validation; 

this is because it is possible to develop a QSPR that models the training set 

data well, but does not give good predictions. In the case of external 

validation, the prediction errors of the test set should be similar to those of the 

training set. In the case of cross-validation, the cross-validated R
2
 (Q

2
) value 

should not be < 0.5 [Eriksson et al 2003], and should not be more than 0.3 

lower than the R
2
 value [Walker et al 2003]. 

 

6. The calculation of descriptors for use in a QSPR should always be done using 

the same software as that used by the workers who developed the QSPR. The 

reason for this is that different software programs can yield different 

numerical values for a given descriptor; this is especially so for quantum 

chemical descriptors. 

 

2.11 Major sources of misinterpretation of QSPR endpoints 

 

1. Selection of wrong endpoint: e.g. intrinsic solubility instead of solubility in 

pure water. 
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2. Use of incorrect units for a property: e.g. g/100 ml instead of mol L
-1

; use of 

natural logarithm instead of logarithm to base 10. 

3. Use of a QSPR or software program to make predictions outside its 

applicability domain. 

4. Placing too much reliance on a single prediction. 

 

2.12 Criteria for good and rigorous read-across 

 

The reliability of a QSPR property estimation can be judged by predicting values of 

the same property for one or more similar chemicals for which measured values of the 

property are available; if such predictions are judged to be acceptable (i.e. within or 

close to the experimental error on the measured property), then it can be assumed that 

the prediction for the chemical of interest will also be acceptable. However, this 

assumption depends on how similar to the chemical of interest are the “similar” 

chemicals [Barratt 2003]. Sedykh and Klopman [2006] have recently published an 

interesting read-across approach to the prediction of log Kow, which they claim is 

superior to conventional group contribution methods. 

 

Strictly, one ought to perform a statistical similarity exercise in order to obtain a 

numerical indication of similarity. However, this is clearly beyond the scope of a 

chemist working in a chemical company, and who probably has little or no knowledge 

of QSPR or similarity assessment. It is therefore suggested that a visual assessment of 

similarity should suffice. For example, if 4-chlorophenol were the chemical of 

interest, then suitable similar chemicals could be 3-chlorophenol, 4-bromophenol, or 

3,5-dichlorophenol, but not, say, 4-chloronitrobenzene. 4-nonylphenol or 

pentachlorophenol. 

 

 

3. Prediction of octanol-water partition coefficient (log Kow, log P) 

 

The octanol-water partition coefficient is the ratio of concentrations of a chemical in 

n-octanol and in water at equilibrium at a specified temperature (typically 25
o
C, 

although partition coefficient is not usually very temperature-dependent [Dearden & 

Bresnen 2005]). In the case of ionisable chemicals, it relates only to the concentration 
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ratio of the unionised species. Partition coefficient is a good surrogate for partitioning 

of chemicals through lipid membranes, and is the most important physicochemical 

descriptor of biological activity, appearing in some 70% of QSARs. 

 

The term distribution coefficient (Dow) is used for the ratio of total concentrations 

(both ionised and unionised species) in the two solvents, although it is generally 

assumed, not entirely correctly, that ionised species are not soluble in octanol. It 

should be remembered in this respect that water-saturated octanol contains about 27% 

mole of water at room temperature. For an ionisable chemical, it is possible to 

calculate log Dow at a given pH from the value of log Kow, given the pKa of the 

chemical: 

 

log Dow = log Kow – log (1 + 10
A(pH – pKa)

)     (3) 

where A = 1 for acids and –1 for bases. 

 

Hence those software packages that can calculate both log Kow and pKa also offer log 

Dow calculation. 

 

Many publications have dealt with the estimation of log Kow values from molecular 

structure, and Lyman [1990], Schwarzenbach et al [1993], Nendza [1998], Reinhard 

and Drefahl [1999], Leo [2000], Mannhold and van de Waterbeemd [2001], 

Livingstone [2003] and Klopman and Zhu [2005] have reviewed prediction methods 

for log Kow; Livingstone [2003] in particular gives a detailed critical analysis of 

available methods. The main prediction methodologies are based on physicochemical, 

structural and/or topological descriptors, or on atomic or group contributions. 

 

The earliest work on log Kow prediction was that of Hansch and co-workers, who 

developed [Fujita et al 1964] a hydrophobic substituent constant π, which was, to a 

first approximation, additive, although it required numerous correction factors. 

Rekker and co-workers [Nys & Rekker 1973, Rekker 1977] developed a fragmental 

approach which proved easier to use.  Extension of the fragmental approach by Leo et 

al [1975] led to the development of the ClogP software [www.daylight.com] for log 

Kow prediction.  
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Bodor et al [1989] developed a QSPR with 14 physicochemical and quantum 

chemical descriptors to model log Kow of a diverse set of 118 organic chemicals, with 

R
2
 = 0.882 and a standard error of 0.296 log unit. The method of Ghose et al [1988] 

used atomic contributions, and on a set of 893 compounds the standard error was 

0.496 log unit. Klopman and Wang [1991] used their MCASE group contribution 

approach to predict the log Kow values of 935 organic compounds with a standard 

error of 0.39 log unit. This error is close to the experimental error on log Kow. 

 

A method of predicting log Kow values that provides mechanistic insight is that of 

Abraham et al [1994b]. Using their solvatochromic descriptors they developed the 

following QSPR: 

 

log Kow = 0.088 + 0.562 R – 1.054 πH
 + 0.034 ΣαH

 – 3.460 ΣβH
 + 3.814 Vx          (4)  

 n = 613     R
2
 = 0.995     s = 0.116     

 

where R = excess molar refractivity, πΗ
 = a polarity term, ΣαH

 and ΣβH
 = hydrogen 

bond donor and acceptor abilities respectively, and Vx = the McGowan characteristic 

molecular volume. Since the descriptors are approximately autoscaled, the magnitudes 

of the coefficients give an indication of the relative contribution of each descriptor to 

log Kow. Thus it can be seen that hydrogen bond acceptor ability and molecular size 

make the most important contributions to log Kow; on the other hand the contribution 

of hydrogen bond donor ability is negligible, and this is attributed to the hydrogen 

bond acceptor abilities of both water and octanol being very similar, while in contrast 

the hydrogen bond donor ability of water is very strong, accounting for the high 

negative coefficient on the ΣβH
 term. The standard error is very low, and may indicate 

some over-fitting of the data. 

 

Although measured values of the Abraham descriptors are not available for all 

compounds, they can be calculated using the Absolv-2 software. 

 

It is important to point out that, contrary to what might be thought, solubility in 

octanol is not a measure of lipophilicity. When a chemical is taken up by lipid in vivo, 
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it is always from an aqueous phase, and so it is the distribution between aqueous and 

lipid phases that is important, and not the absolute solubility in lipid. In fact, the term 

hydrophobicity is preferable to lipophilicity, because the driving force for transfer 

from water to lipid comes largely from the aqueous phase; that is, a chemical is 

pushed from water to lipid, rather than being pulled by lipid from water. The driving 

force has a large entropic component [Dearden & Bresnen 2005] because of water-

structuring. Octanol tends to behave much as an ideal solvent, and solubility in 

octanol (So) is inversely correlated with melting point, but not with octanol-water 

partition coefficient. Dearden [1990] showed that the correlation between log Kow  and 

log So is very poor (n = 35, r
2
 = 0.216, s = 0.512). 

 

It is also pointed out that the calculation of log Kow from the ratio of solubilities in 

octanol and water is rather inaccurate, as the results below show [Yalkowsky et al 

1983]: 

 

Table 4. Performance of log (So/Sw) compared with measured log Kow 

 

Solute log(So/Sw) log Kow 

Antipyrine   -0.73  0.26 

Ethyl 4-aminobenzoate 1.86 1.96 

Caffeine -0.75 -0.20 

Theophylline -0.57 -0.09 

 

      

Other workers [Miller et al 1985, Anliker & Moser 1987, Niimi 1991, Sijm et al 

1999] have also shown that log (So/Sw) is not a good surrogate for log Kow.  

 

There are numerous software programs available for the estimation of log Kow of 

organic chemicals, and some of these give good predictions. A recent comparison of 

14 such programs [Dearden et al 2003a] found that, using a 138-chemical test set, the 

percentage of chemicals with log Kow predicted within ± 0.5 log unit of the measured 

log Kow value ranged from 94% to 50 %. The performances of the top six programs 

are shown in Table 5. 
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Table 5. Performance of top software for prediction of log Kow 

 

Software % Predicted                  

within ± 0.5                                

log unit of measured value 

Standard error (log unit) 

   

ADMET Predictor 94.2% 0.27 

ACD/Labs 93.5% 0.27 

ChemSilico 93.5%  0.30 

Episuite 89.1% 0.34 

SPARC 88.5% 0.33 

ClogP 88.4% 0.29 

 

      

  

Software programs not tested by Dearden et al [2003a] are Admensa, ASTER, 

AUTOLOGP [Devillers et al 1995], ChemAxon, ChemOffice, ChemProp, Molecular 

Modeling Pro, Pipeline Pilot and VCCLAB. Admensa is reported to yield a test set 

RMS error of 0.44 log unit. AUTOLOGP is reported [Devillers et al 1995] to yield a 

standard error of 0.39 log unit for a heterogeneous set of 800 organic compounds; it is 

not clear whether AUTOLOGP is still available. ChemOffice is reported to yield a 

standard error of 0.43 log unit, but that rises to 0.83 log unit for compounds 

possessing intramolecular hydrogen bonding. VCCLAB is reported to yield a standard 

error of 0.26 log unit. The performance of the other software programs is not known. 

 

Sakuratani et al [2007] tested six software programs, using a test set of 134 simple 

organic compounds. None of the programs predicted log Kow values of all the 

compounds. Their results were: Episuite (KOWWIN), n = 130, s = 0.94; ClogP, n = 

131, s = 0.95; ACD/Labs, n = 127, s = 1.09; VLOGP [www.accelrys.com], n = 122, s 

= 1.11; SLOGP [www.chemcomp.com], n = 132, s = 1.34; COSMO 

[www.cosmologic.de], n = 129, s = 1.35. 

 

It is recommended that at least two of the better software programs mentioned above 

be used for the prediction of log Kow. If possible, the average of several predictions 

should be taken. It should be noted that the VCCLAB web-site (see Table 1), as well 

as giving its own log Kow prediction, gives predictions from six other software 

packages, together with the mean of all seven. 
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4. Prediction of aqueous solubility 

 

Aqueous solubility depends not only on the affinity of a solute for water, but also on 

its affinity for its own crystal structure. Molecules that are strongly bound in their 

crystal lattice require considerable energy to remove them. This also means that such 

compounds have high melting points, and in general high-melting compounds have 

poor solubility in any solvent. 

 

Removal of a molecule from its crystal lattice means an increase in entropy, and this 

can be difficult to model accurately. For this reason, as well as the fact that the 

experimental error on solubility measurements can be quite high (generally reckoned 

to be about 0.6 log unit), the prediction of aqueous solubility is not as accurate as is 

the prediction of partition coefficient. Nevertheless, many papers [Dearden 2006] and 

a book [Yalkowsky & Banerjee 1992] have been published on the prediction of 

aqueous solubility, as well as a number of reviews [Lyman 1990, ECETOC 1998, 

Reinhard & Drefahl 1999, Mackay 2000, Schwarzenbach et al 2003, Dearden 2006]. 

There are also a number of commercial software programs available for that purpose 

[ECETOC 2003, Dearden 2006]. Livingstone [2003] has discussed the reliability of 

aqueous solubility predictions from both QSPRs and commercial software. 

 

It should be noted that there are various ways that aqueous solubilities can be 

reported: in pure water, at a specified pH, at a specified ionic strength, as the 

undissociated species (intrinsic solubility), or in the presence of other solvents or 

solutes. Solubilities are also reported in different units, for example g/100 ml, mol L
-1

, 

mole fraction. The use of mol L
-1

 is recommended, as this provides a good basis for 

comparison.  

 

Hansch et al [1968] first reported the inverse correlation between the aqueous 

solubility (Saq) of liquids and their octanol-water partition coefficients (Kow); 

 

log Saq = - 1.339 log Kow + 0.978      (5) 

n = 156     r
2
 = 0.874     s = 0.472 
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Lyman [1990] lists 18 (log Saq vs. log Kow) QSPRs for various classes of chemicals. 

So, for example, for a liquid ketone one could use the QSPR for ketones developed by 

Hansch et al [1968]: 

 

log Saq = - 1.229 log Kow + 0.720      (6) 

n = 13     r
2
 = 0.960 

 

The log Kow value could be either a measured or a calculated value (see section 3 on 

octanol-water partition coefficient). 

 

However, for solids work has to be done to remove molecules from their crystal 

lattice, and the simplest way to account for this is to use what Yalkowsky and co-

workers have termed the General Solubility Equation (GSE), which incorporates a 

melting point term to account for the behaviour of solids [Sanghvi et al 2003]: 

 

log Saq = 0.5 – log Kow – 0.01(MP – 25)     (7) 

 

where MP is the melting point (
o
C). The melting point term is taken as zero for 

compounds melting at or below 25
o
C. Calculated log Kow and MP values can be used 

in the GSE, although measured values are preferred. Aqueous solubilities of 1026 

non-electrolytes, with a log Saq range of – 13 to + 1 (S in mole L
-1

), calculated with the 

GSE had a standard error of 0.38 log unit. 

 

Yalkowsky and co-workers have also developed the AQUAFAC group contribution 

method for calculating aqueous solubility [Myrdal et al 1995]. They calculated the 

ideal solubility or fugacity ratio F as: 

 

log F = – (56.5 – 19.2 log σ)(MP – 25)/5706     (8) 

 

where σ = a symmetry number, i.e. the number of indistinguishable positions in which  

a molecule can be oriented, and the units in the equation are SI units. 
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For liquids, log Saq = - log γm, and for solids log Saq = log F – log γm, where γm is the 

molar activity coefficient, which itself is given by:  

 

log γm = Σniqi        (9) 

 

where ni is the number of times a group appears in a molecule and qi is the 

contribution of that group. Mackay [2000] lists a large number of the group 

contribution values. For a set of 97 diverse chemicals, the AQUAFAC mean absolute 

error of prediction was 0.41 log unit, whilst that using the log Kow approach was 0.61 

log unit. As usual, there is a trade-off between accuracy and ease of use. 

 

Good predictions for a large diverse data set have been obtained by the use of linear 

solvation energy descriptors [Abraham & Le 1999]: 

 

log Saq = 0.518 – 1.004 R + 0.771 πH
 + 2.168 ΣαH

 + 4.238 ΣβH
 – 3.362 ΣαH

.ΣβH
  

               – 3.987 VX                (10) 

n = 659     R
2
 = 0.920     s = 0.557 

 

where R = excess molar refractivity (a measure of polarisability), πH
 = a 

polarity/polarisability term, ΣαH
 and ΣβH

 = sums of hydrogen bond donor and 

acceptor abilities respectively, and VX = McGowan characteristic molecular volume. 

All of these terms can be calculated with the Absolv-2 software (see Table 1). It can 

be seen from the Abraham and Le equation that the main factors controlling aqueous 

solubility are hydrogen bond acceptor ability and molecular size. 

 

Katritzky et al [1998] used their CODESSA descriptors to model the aqueous 

solubilities of a large diverse set of organic chemicals: 

 

 

log Saq = – 16.1 Qmin – 0.113 Nel + 2.55 FHDSA(2) + 0.781 ABO(N) + 0.328 
0
SIC 

               –  0.0143 RNCS – 0.882                          (11) 

n = 411     R
2
 = 0.879     s = 0.573 
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where Qmin = most negative partial charge, Nel = number of electrons, FHDSA(2) = 

fractional hydrogen bond donor area, ABO(N) = average bond order of nitrogen 

atoms, 
0
SIC = an information content topological descriptor, and RNCS = relative 

negatively charged surface area. The CODESSA software is available from 

SemiChem Inc. [www.semichem.com].  

 

Electrotopological state descriptors [Votano et al 2004], hydrogen bonding and 

nearest-neighbour similarities [Raevsky et al 2004] and group contributions [Klopman 

& Zhu 2001] have also been used to model the aqueous solubilities of large diverse 

data sets of organic chemicals. 

 

There are relatively few studies of solubility prediction within specific chemical 

classes. Hawker and Connell [1988] obtained the following QSPR for polychlorinated 

biphenyls (PCBs) with 1-10 chlorine atoms: 

 

log Saq = (-4.13 x 10
-2

) TSA + (23.8/R)(1 – Tm/T) + 3.48             (12) 

n = 17     R
2
 = 0.901     s = 0.464 

 

where TSA = total surface area, R = universal gas constant, Tm = melting point (K) 

and T = temperature at which solubility is required (K). 

 

Huuskonen et al [1997] used artificial neural network modelling to predict the 

aqueous solubilities of steroids and other drug classes. For a set of 28 steroids, with a 

log Saq range of – 5.4 to – 2.6 (S in mole L
-1

), they obtained a standard error of 0.29 

log unit, using 5 molecular connectivity descriptors. 

 

Yang et al [2007] found a good correlation of log Saq with mean molecular 

polarisability for a small set of dioxins (n = 12, r
2
 = 0.978, s = 0.30). 

 

Solubility can vary considerably with temperature, and it is important that solubility 

data are reported at a given temperature. 

 

Dearden et al [2003b] compared 11 commercial software programs for aqueous 

solubility prediction (as log S), and found considerable variation in performance 
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against a 113-chemical test set of organic chemicals that included 17 drugs and 

pesticides. The performance of the top four programs is shown in Table 6.  

 

Table 6. Performance of top software for prediction of log Saq for 113-

compound test set 

    

Software % Predicted                  

within ± 0.5                                

log unit of measured value 

Standard error (log unit) 

   

ChemSilico 75.0% 0.49 

ADMET Predictor 74.3%  0.50 

ACD/Labs 72.6%  0.50 

Episuite (WSKOWWIN) 69.9% 0.56 

 

The Episuite predictions were made without the input of measured melting point 

values. Dearden [2007] tested the  new fragment-based WATERNT module in the 

Episuite software on the same 113-compound test set, and found it to be better than all 

previously tested software (79.6% within ± 0.5 log unit of measured value; standard 

error = 0.44 log unit).  

   

Dearden [2006] tested 16 commercially available software programs for their ability 

to predict the aqueous solubility of a 122-compound test set of drugs with accurately 

measured solubilities in pure water. Again there was considerable variation in 

performance. The performance of the top five programs is shown in Table 7. 

 

Dearden [2007] tested the  new fragment-based WATERNT module in the Episuite 

software on the same 122-drug test set, and found it to be among the worst of all 

previously tested software (38.5% within ± 0.5 log unit of measured value; standard 

error = 0.93 log unit). Investigation indicated that this was caused by the program’s 

not including all fragments and/or correction factors in its calculations. Software not 

tested by Dearden et al [2003b] or Dearden [2006] are ASTER, ChemProp, Molecular 

Modeling Pro and Pipeline Pilot. Their performances are not known. 
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Table 7. Performance of top software for prediction of log Saq for 122-drug test 

set 

 

Software % Predicted                  

within ± 0.5                                

log unit of measured value 

Standard error (log unit) 

   

Admensa  72.1%  0.65 

ADMET Predictor 64.8% 0.47 

ChemSilico 59.8% 0.73 

ADME Boxes 59.0% 0.62 

ACD/Labs 59.0% 0.66 

 

It is recommended that at least one of the above software programs be used for the 

prediction of aqueous solubility as log Saq. If possible, the average of several 

predictions should be taken (see Table 3). 

 

5. Prediction of pKa   

 

Within a congeneric series of chemicals, pKa is often closely correlated with the 

Hammett substituent constant, and this is the basis for a number of attempts at pKa 

prediction. Harris and Hayes [1990] and Livingstone [2003] have reviewed the 

published literature in this area. 

 

The Hammett substituent constant σ was derived from a consideration of acid 

dissociation constants Ka, and most non-computerised methods of calculating Ka and 

pKa values are based on σ values: 

 

pKa (derivative) = pKa (parent) – ρσ              (13)  

 

where ρ is the series constant, which is 1.0 for benzoic acids. Harris and Hayes [1990] 

list ρ values for other series. 

 

Harris and Hayes [1990] give several examples of pKa calculation, for example for 4-

t-butylbenzoic acid. The pKa value of benzoic acid is 4.205, the ρ value for benzoic 

acids is 1.0, and the σ value for 4-t-butyl is – 0.197. Hence the pKa value of 4-t-
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butylbenzoic acid is calculated as 4.205 – (– 0.197) = 4.402. This value is virtually 

identical to the measured value for this compound. 

 

A number of publications have dealt with estimation of pKa values from chemical 

structure, but these relate mostly to specific chemical classes, e.g. amines [Nagy et al 

1989], 4-aminoquinolines [Kaschula et al 2002] and imidazol-1-ylalkanoic acids 

[Soriano et al 2004]. There have, however, been a few attempts to model pKa values 

of diverse sets of chemicals. Klopman and Fercu [1994] used their MCASE 

methodology to model the pKa values of a set of 2464 organic acids, and obtained 

good predictions; a test set of about 600 organic acids yielded a standard error of 0.5 

pKa unit. Klamt et al [2003] employed their COSMO-RS methodology to predict pKa 

values of 64 organic and inorganic acids, with a standard error of 0.49 pKa unit. 

 

There are a number of software programs that predict multiple pKa values of organic 

chemicals, but there are no published comparisons of their performance, although a 

comparison has recently been published of the performance of four software packages 

for the calculation of pKa values of ionisable groups in proteins [Davies et al 2006]. 

ACD/Labs has a claimed standard error of 0.39 pKa unit for 22 compounds, and one 

of 0.36 pKa unit for 26 drugs. pKalc (part of the PALLAS suite) is claimed to be 

accurate to within 0.25 pKa unit [Tsantili-Kakoulidou et al 1997], QikProp is claimed 

to have a mean absolute error (MAE) of 0.19 pKa unit, and SPARC is claimed to have 

a RMS error of 0.37 pKa unit when evaluated on 3685 compounds[Hilal & 

Karickhoff 1995]. ADMET Predictor is claimed to have a MAE of 0.56 pKa unit for a 

test set of 2143 diverse chemicals. ChemSilico is reported to have a MAE of 0.99 pKa 

unit for a test set of 665 diverse chemicals, many of them multiprotic. No published 

information appears to be available for the performance of ADME Boxes, ASTER, 

Pipeline Pilot and VCCLAB. 

 

Dearden and Lappin [2007] have tested the performance of the ten available software 

programs that calculate pKa values (see Table 2; ASTER is not currently available). 

Some of these programs will calculate pKa values of all ionisable sites. However, the 

test-set of 665 chemicals that they used, which was kindly supplied by ChemSilico 

Inc. and used by them as their test-set, had measured pKa values only for the prime 

ionisation site in each molecule. There were doubts about the correct structures of 11 
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of the test set chemicals, and so the programs were tested on 654 chemicals. Some of 

the software companies kindly ran our compounds through their software in-house, 

and we have not yet obtained clearance from them to release their results. The results 

given in Table 8 are for those software programs that we have in our laboratory, or 

which are freely available on-line, together with the best-performing software (ADME 

Boxes from Ap-Algorithms). 

 

Table 8. Performance of pKa prediction software using a test set of 654 diverse 

organic chemicals 

 

Software Number of 

chemicals handled 

r
2
 MAE 

    

ADME Boxes 628 0.959 0.32 

VCCLabs 611 0.931 0.40 

SPARC 645 0.848 0.78 

ChemSilico   0.99* 

ACD/Labs  645 0.682 1.07 

Pallas 647 0.661 1.17 

 

        

*MAE reported on the ChemSilico website 

 

It should be noted that some of our test-set chemicals could have been included in the 

training sets for the various pKa prediction software programs. The only software 

where that was not the case is, of course, ChemSilico. This is therefore one reason for 

the ChemSilico predictions being rather poor relative to some of the others. 

 

It is recommended that the VCCLabs and SPARC software, which are both free to use 

on-line, be used for pKa prediction. It should be noted, however, that the VCCLabs 

program failed to predict pKa values for 43 compounds in our 654-compound test-set.  
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6. Prediction of melting point 

 

Melting point is an important property for two main reasons. Firstly, it indicates 

whether a chemical will be solid or liquid at particular temperatures, which will 

dictate how it is handled. Secondly, it is used in the General Solubility Equation 

[Sanghvi et al 2003] to predict aqueous solubility. 

 

The melting point of a crystalline compound is controlled largely by two factors – 

intermolecular interactions and molecular symmetry. For example, 3-nitrophenol, 

which can hydrogen-bond via its –OH group, melts at 97
o
C, whereas its methyl 

derivative, 3-nitroanisole, which cannot hydrogen-bond with itself, melts at 39
o
C. The 

symmetrical 1,4-dichlorobenzene melts at 53
o
C, whilst the non-symmetrical 1,3-

dichlorobenzene melts at -25
o
C. These and other effects have been discussed in detail 

by Dearden [1999]. 

 

There have been many attempts to predict the melting point of organic chemicals, and 

these have been reviewed by Horvath [1992], Reinhard and Drefahl [1999], Dearden 

[1999, 2003] and Tesconi and Yalkowsky [2000]. It may be noted that in the 19
th

 

century Mills [1884] developed a QSPR based on carbon chain length for melting 

points of homologous series of compounds that was accurate to ± 2
o
.  

 

Essentially two approaches have been used in the prediction of melting point – the 

physicochemical/structural descriptor approach and the group contribution approach. 

The former is exemplified by the work of Katritzky et al [1997], who used 9 of their 

CODESSA descriptors to model a diverse set of 443 aromatic chemicals with R
2
 = 

0.837 and s = 30.2
o
. The CODESSA software is available from SemiChem Inc. 

[www.semichem.com]. This is a complex QSPR, with descriptors that are not easy to 

comprehend, and reflects the difficulty of modelling the melting points of diverse data 

sets. Even for a set of 58 PCB congeners with 1-10 chlorine atoms, a 5-term QSPR 

was required [Abramowitz & Yalkowsky 1990], with R
2
 = 0.83 and s = 22.1

o
. 

 

Yalkowsky and co-workers have published extensively on the prediction of melting 

point. They incorporated terms to account for conformational flexibility and rotational 
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symmetry [Tsakanikas & Yalkowsky 1988] and molecular eccentricity [Abramowitz 

& Yalkowsky 1990] to try to account for the entropic contributions to melting. They 

were able [Zhao & Yalkowsky 1999] to model the melting points of 1040 aliphatic 

chemicals, using a combination of molecular geometry and group contributions, with 

a standard error of 34.4
o
. 

 

Todeschini et al [1997] used their WHIM descriptors to model the melting points of 

94 European Union environmental priority chemicals, with a standard error of 32.8
o
. 

Bergström et al [2003] used principal components analysis and partial least squares to 

model the melting points of 227 diverse drugs. They used 2-D, 3-D and a combination 

of 2-D and 3-D descriptors to give three separate models. A consensus of all three 

models gave the best results, with R
2
 = 0.63 and RMS error = 35.1

o
. Modarresi et al 

[2006] used eight descriptors from Tsar [www.accelrys.com], CODESSA 

[www.semichem.com] and Dragon [www.virtuallaboratory.org/lab/edragon] to model 

the melting points of 323 drugs, with R
2
 = 0.660 and RMS error = 41.1

o
. 

 

Recently Karthikeyan et al [2005] used a very large diverse training set of 4173 

chemicals to develop a QSPR based on a neural network approach using principal 

components. They found 2-D descriptors to be better than 3-D descriptors; the results 

were as follows: 

 

Training set  Internal validation Test set  Test set (drugs) 

(n = 2089)  (n = 1042)  (n = 1042)  (n = 277)  

      

R
2
 = 0.661  Q

2
 = 0.645  Q

2
 = 0.658  Q

2
 = 0.662 

MAE = 37.6
o 

MAE = 39.8
o
 MAE = 38.2

o
 MAE = 32.6

o
 

 

Considering the size and diversity of the data sets, the statistics are quite good. 

However, the methodology used was complex, and could not readily be applied. 

 

The group contribution approach to melting point prediction was first used by Joback 

and Reid [1987].  Simamora and Yalkowsky [1994] modelled the melting points of a 

diverse set of 1690 aromatic compounds using a total of 41 group contributions and 

four intramolecular hydrogen bonding terms, and found a standard error of 37.5
o
. 
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Constantinou and Gani [1994] used two levels of group contributions to model the 

melting points of 312 diverse chemicals, and obtained a mean absolute error (MAE) 

of prediction of 14.0
o
, compared with a MAE of 22.6

o
 for the Joback and Reid 

method. Marrero and Gani [2001] extended this approach to predict the melting points 

of 1103 diverse chemicals with a standard error of 25.3
o
. Tu and Wu [1996] used 

group contributions to predict melting points of 1310 diverse chemicals with a MAE 

of 8.2%. 

 

There are several software programs that predict melting point; they all use one or 

more group contribution approaches. Dearden [2003] used a 96-compound test set to 

compare the performances of three of these programs. Episuite calculates melting 

point by two methods, that of Joback and Reid [1987] and that of Gold and Ogle 

[1969], and takes their mean. ChemOffice uses the method of Joback and Reid 

[1987], and ProPred uses the Gani approach [Constantinou & Gani 1994, Marrero & 

Gani 2001]. 

 

Table 9. Software performance for prediction of melting point of a 96-compound 

test set 

 

Software Mean absolute error 

  

Episuite 26.3
o
 

ChemOffice 27.0
o
 

ProPred 25.8
o
 

 

An ECETOC [2003] report mentions a US. Environmental Protection Agency (EPA) 

report [1999] concerning the performance of the Episuite MPBPVP module; for two 

large, diverse test sets the performance was: (i) n = 666, r
2
 = 0.73, MAE = 45

o
; (ii) n = 

1379, r
2
 = 0.71, MAE = 44

o
. The lower MAE values reported in Table 7 could reflect 

either less diversity in the 96-compound test set used by Dearden [2003], or 

improvements made in the software since 1999. Molecular Modeling Pro uses the 

Joback and Reid [1987] method, so its performance should be the same as that of 

ChemOffice. The performances of ChemProp and PREDICT are not known. 

  

It can be seen that there is little to choose between the programs in terms of accuracy 

of prediction. They can all operate in batch mode. It is therefore recommended that 
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the Episuite software, which is freely downloadable, and at least one other method be 

used to calculate melting point.  

 

It should be noted that currently both QSPR methods and software programs have 

prediction errors well in excess of the error on experimental measurement of melting 

point, which is usually < 2
o
. Therefore it is preferable to use measured melting points 

if at all possible. 

 

 

7. Prediction of boiling point 

 

Boiling point (Tb) is an important property since it is an indicator of volatility, and can 

be used to predict vapour pressure. From the Clausius-Clapeyron equation, boiling 

point is inversely proportional to the logarithm of vapour pressure. Boiling point also 

indicates whether a chemical is gaseous or liquid at a given temperature.  

 

Lyman [2000] has discussed seven recommended methods for the prediction of 

boiling point. The methods are based on physicochemical and structural properties 

and group contributions. Perhaps the simplest of those methods is that of Banks 

[1939], who developed the following QSPR: 

 

log Tb (K) = 2.98 – 4/√MW               (14)  

where MW = molecular weight. No statistics were given for this QSPR. 

 

Rechsteiner [1990], Reinhard and Drefahl [1999] and Dearden [2003] have reviewed 

the QSPR prediction of boiling point. 

 

Many studies of boiling point prediction have dealt with specific chemical classes, 

and very good correlations have generally been obtained. In 1884 Mills [1884] 

modelled the boiling points of a number of homologous series with QSPRs based on 

carbon chain length. Ivanciuc et al [2000] used 4 topological descriptors to model the 

boiling points of 134 alkanes with a standard error of 2.7
o
, whilst Gironés et al [2000] 

used only one quantum chemical descriptor (electron-electron repulsion energy) to 

model the boiling points of 15 alcohols with a standard error of 5.6
o
. 
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Models based on diverse training sets are, however, more widely applicable. Katritzky 

et al [1996a] used 4 CODESSA descriptors to model the boiling points of 298 diverse 

organic compounds: 

 

Tb (K) = 67.4 GI
1/3

 + 21540 HDSA(2) + 140.4 δ-
max + 17.5 NCl – 151.3            (15)  

n = 298     R
2
 = 0.973     s = 12.4

o
 

 

where GI = gravitational index, HDSA(2) = area-weighted surface charge of 

hydrogen-bond donor atoms, δ-
max = most negative atomic partial charge, and NCl = 

number of chlorine atoms. The CODESSA software is available from SemiChem Inc. 

(www.semichem.com).  

 

Wessel and Jurs [1995] used their ADAPT descriptors to develop two QSPRs for the 

prediction of boiling point – one for compounds containing O, S and halogens, and 

the other for compounds containing N. The QSPR for O, S and halogens is: 

 

Tb (K) = 0.3009 PPSA – 3.690 PNSA – 51.78 RPCG + 9.515 NRA + 19.21 SQMW 

 + 554.7 SADH – 25.52 NF + 19.52 KETO + 50.84 Nsulf – 135.0 S/NA + 59.86

                 (16)  

n = 248     R
2
 = 0.991     RMS error = 11.6

o 

 

where PPSA = partial positive surface area, PNSA = partial negative surface area, 

RPCG = relative positive charge, NRA = number of ring atoms, SQMW = square root 

of molecular weight, SADH = surface area of donatable hydrogen atoms , NF = 

number of fluorine atoms, KETO = indicator variable for ketone, Nsulf = number of 

sulphide groups, and S/NA = (number of sulphur atoms)/(total number of atoms). The 

ADAPT descriptors are available in the Pharma Algorithms ADME Boxes software. 

 

Basak et al [2001] used 8 topochemical, topological and hydrogen bonding 

descriptors to model the boiling points of 1015 diverse organic compounds, with a 

standard error of 15.7
o
. The best QSPR developed to date is that of Hall and Story 

[1996], who used atom-type electrotopological descriptors [Kier & Hall 1999] and a 
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neural network to obtain a MAE of 3.9
o
 for a set of 298 diverse chemicals with a 

boiling point range of about 430
o
. 

 

The group contribution approach was used first by Joback and Reid [1987], who 

obtained a mean absolute error (MAE) of 12.9
o
 for a set of 438 diverse chemicals. 

Stein and Brown [1994] devised a simple group contribution method to model boiling 

points of a very large set of 4426 diverse chemicals, with a MAE of 15.5
o
. A group 

contribution approach was also used by Marrero and Gani [2001] to model the boiling 

points of 1794 organic compounds with a standard error of 8.1
o
, whilst Labute [2000] 

used 18 atomic contributions on a set of 298 diverse organics, to give a standard error 

of 15.5
o
. Simamora and Yalkowsky [1994] used 36 group contributions and 4 

intramolecular hydrogen bonding terms to model the boiling points of a diverse set of 

44 aromatic compounds, with a standard error of 17.6
o 

 

There are a number of software programs available for the prediction of boiling point, 

and Dearden [2003] compared the performance of six of these using a 100-compound 

test set. The results were as follows: 

 

Table 10. Software performance for prediction of boiling point of a 100-

compound test set 

 

Software Mean absolute error 

  

ACDLabs  1.0
o
 

SPARC  6.3
o
 

Episuite 13.8
o
 

ChemOffice 13.8
o
 

ProPred 16.1
o
 

Molecular Modeling Pro 21.7
o
 

 

 

The ACDLabs result is based on the 54 chemicals in the test set that were not 

included in the ACDLabs training set.  

 

Clearly the ACDLabs software gives by far the best predictions, but has to be 

purchased. SPARC is freely accessible, but operates only in manual mode, with 

SMILES input. Episuite can be freely downloaded, but its standard error of prediction 
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is more than twice that of SPARC. ECETOC [2003] quotes the US. Environmental 

Protection Agency (EPA) [1999] testing of the MPBPVP module of the Episuite 

software; two very large diverse test sets yielded the following: n = 4426, MAE = 

15.5
o
; n = 6584, MAE = 20.4

o
. These results are comparable with those given in Table 

8 above. It is recommended that at least two predictions be obtained, and their average 

used.  

 

Three other software programs, ASTER, ChemProp and PREDICT also predict 

boiling point. ASTER is claimed [ECETOC 1998] to have a mean error of 2%. 

PREDICT is claimed to have a MAE of 12.9
o
. The performance of ChemProp is not 

known. 

 

8. Prediction of vapour pressure 

 

The vapour pressure (VP) of a chemical controls its release into the atmosphere, and 

thus is an important factor in environmental distribution of chemicals. Vapour 

pressure is highly temperature-dependent. Most literature values are at ambient 

temperature, but some QSPRs allow predictions over a range of temperatures. 

 

The variation of vapour pressure with temperature is given by the Clausius-Clapeyron 

equation: 

 

ln (VP2/VP1) =  – (L/R)((1/T2) – (1/T1))              (17)  

where L = latent heat of vaporisation, and R = universal gas constant.  

 

If the latent heat of vaporisation is high, vapour pressure changes markedly with 

temperature, which is why some chemicals (e.g. PCBs) deposit out in polar regions. 

 

Numerous methods are available for the estimation of vapour pressure, and Grain 

[1990], Schwarzenbach et al [1993], Delle Site [1996], Sage and Sage [2000] and 

Dearden [2003] have reviewed many of these. The descriptors used in vapour pressure 

QSPRs include physicochemical, structural and topological descriptors, and group 
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contributions. Katritzky et al [1998] used their CODESSA descriptors to model the 

vapour pressure (in atmospheres at 25
o
C) of a large set of diverse organic chemicals: 

 

log VP = – 0.00618 GI – 4.02 HDCA(2) + 0.129 SA-2(F) + 6.02 MNAC(Cl) 

    – 0.0143 SA(N) + 2.30               (18) 

n = 411     R
2
 = 0.949     s = 0.331 

 

where GI = gravitational index, HDCA(2) = hydrogen-bond donor charged surface 

area, SA-2(F) = sum of surface area of fluorine atoms, MNAC(Cl) = maximum net 

atomic charge for a chlorine atom, and SA(N) = sum of surface area of nitrogen 

atoms. The CODESSA software is available from SemiChem Inc. 

[www.semichem.com].  

 

Liang and Gallagher [1998] used polarisability and 7 structural descriptors to model 

the vapour pressure of 479 diverse organic chemicals, using both multiple linear 

regression and an artificial neural network. There was little difference between the 

two methods with MLR giving a standard error of 0.534 log unit and ANN yielding 

0.522 log unit. 

 

Tu [1994] used a group contribution method to model the vapour pressure of 1410 

diverse organic chemicals. Using 81 group contributions, 2 hydrogen bonding terms 

and melting point he obtained a standard error of 0.36 log unit. 

 

The vapour pressures of 352 hydrocarbons and halohydrocarbons were modelled by 

Goll and Jurs [1999], using 7 of their ADAPT descriptors. Vapour pressure was 

recorded in pascals, and the data covered the log VP range – 1.016 to + 6.65. 

 

log VP = – 0.670 V0 + 0.204 ΝF + 5.47 x 10
-2

 NSB – 0.121 NRA – 6.35 x 10
-2

 DPSA 

                + 0.117 N3C + 0.518 RPCG + 8.15              (19)  

n = 352     R
2
 = 0.983     RMS error = 0.186 log unit 

 

where V0 = zero order molecular connectivity, NF = number of fluorine atoms, NSB 

= number of single bonds, NRA = number of atoms in ring systems, DPSA = 
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difference between partial positive surface area and partial negative surface area, N3C 

= number of 3
rd

 order clusters, and RPCG = relative positive charge. The ADAPT 

descriptors are available in the ADME Boxes software [www.ap-algorithms.com].   

 

Some of the ADAPT descriptors are difficult of interpretation, but have been found to 

give good correlations of a number of physicochemical properties. The very low 

standard error reflects the fact that there is little chemical diversity within the 

compounds used. 

 

A number of studies [Andreev et al 1994, Kühne et al 1997, Yaffe & Cohen 2001] 

allow of the estimation of vapour pressures over a range of temperatures. 

 

There are several commercially available software programs that will calculate vapour 

pressure; one of them (ACDLabs) will allow the calculation of vapour pressure over a 

temperature range. Using a 100-compound test set of organic chemicals with vapour 

pressures measured at 25
o
C, Dearden [2003] compared the performance of four 

software programs that calculate log (vapour pressure). The test results are given 

below. 

 

Table 11. Software performance for prediction of vapour pressure of a 100-

compound test set 

 

Software Mean absolute error (log unit) 

  

  

SPARC 0.105 

ACDLabs 0.107 

Episuite 0.285 

Molecular Modeling Pro 0.573 

 

 

The programs can operate in batch mode, except for SPARC. The ACDLabs result 

was determined on only 42 compounds; 46 test set compounds that were used in the 

ACD/Labs training set were deleted, and in addition the ACD/Labs software did not 

give a vapour pressure at 25
o
C for 18 very volatile compounds. ECETOC [2003] 

quotes the US. Environmental Protection Agency (EPA.) [1999] testing of the 
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MPBPVP module of the Episuite software; n = 805, r
2
 = 0.941, MAE = 0.476 log 

unit. This MAE probably reflects either the greater diversity of the US EPA. test set or 

improvements made in the software since 1999. Other software programs that 

calculate vapour pressure, but were not tested by Dearden [2003], are Absolv-2, 

ASTER, ChemProp, PREDICT and ProPred The prediction errors of the PREDICT 

software are reported to be 2 – 5%, depending on the method of calculation. The 

performances of the other software programs are not known although ASTER is 

expected [ECETOC 2003] to give similar results to those from the Episuite software. 

 

It is recommended that either SPARC, Episuite or ACDLabs software be used for the 

calculation of vapour pressure. Predictions from at least two different sources should 

be obtained if possible. 

 

9. Prediction of Henry’s law constant (air-water partition 

coefficient) 

 

The air-water partition coefficient is important in the distribution of chemicals 

between the atmosphere and water in the environment. The prediction of Henry’s law 

constant (H) has been reviewed by Schwarzenbach et al [1993], Reinhard and Drefahl 

[1999], Mackay et al [2000] and Dearden and Schüürmann [2003]. 

 

One simple way of calculating H is to use the ratio of vapour pressure and aqueous 

solubility (vp/cw). It is not a highly accurate method, but neither is the measurement 

of H, especially for chemicals with very high or very low H values. vp/cw can be 

converted to the dimensionless form of H (ratio of concentrations in air and water, 

ca/cw, or Kaw) by the following equation, which is valid for 25
o
C:  

 

ca/cw = 40.874 vp/cw                (20)  

 

Most prediction methods for H use a group or bond contribution approach, although 

some have used physicochemical properties [Dearden et al 2000]. The group and bond 

contribution methods were first used by Hine and Mookerjee [1974], who obtained, 

for a set of 263 diverse simple organic chemicals, a standard deviation of 0.41 log unit 
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for the group contribution method and one of 0.42 for the bond contribution method. 

Cabani et al. [1981] claimed an improvement in the group contribution method over 

that of Hine and Mookerjee, whilst Meylan and Howard [1991] extended the bond 

contribution method and obtained, for a set of 345 diverse chemicals, a standard error 

of 0.34 log unit. Their method, together with a group contribution method, is 

incorporated in the HENRYWIN module of the Episuite software.  

 

Several workers have used physicochemical and/or structural descriptors to model H. 

Nirmalakhandan and Speece [1988] developed a QSPR using a polarisability 

descriptor, a molecular connectivity term and an indicator variable for hydrogen 

bonding. However, Schüürmann and Rothenbacher [1992] found it to have poor 

predictive power.  

 

Russell et al [1992] used their ADAPT software to develop a 5-descriptor model of 

log Kaw for a relatively small but diverse data-set: 

 

log Kaw = – 0.547 NHEAVY + 0.0402 WPSA + 0.0360 RNCS + 10.1 QHET 

    – 215 QRELSQ + 0.73               (21) 

n = 63     R
2
 = 0.956     s = 0.375 

 

where NHEAVY = number of heavy atoms, WPSA = (total solvent-accessible surface 

area) x (sum of surface areas of positively charged atoms), RNCS = (charge on most 

negative atom) x (surface area of most negative atom)/(sum of charges on negatively 

charged atoms), QHET = (total charge on heteroatoms)/(number of heteroatoms), and 

QRELSQ = square of (total charge on heteroatoms)/(number of atoms). Note that the 

ADAPT descriptors are available in the Pharma Algorithms ADME Boxes software 

(www.ap-algorithms.com).  

 

The Ostwald solubility coefficient L (the reciprocal of Kaw) of a very diverse data-set 

of chemicals was modelled by Abraham et al [1994a]: 

 

log L = 0.577 R + 2.549 π + 3.813 Σα + 4.841 Σβ - 0.869 VX + 0.994            (22) 

n = 408     R
2
 = 0.996     s = 0.151 
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where R = excess molar refractivity (a measure of polarisability), π = a 

polarity/polarisability term, α and β = hydrogen bond donor and acceptor abilities 

respectively, and VX = the McGowan characteristic volume (see next section on 

prediction of relative density of liquids). The Abraham descriptors are approximately 

auto-scaled, so that the magnitudes of the coefficients in equation 22 indicate the 

relative contributions of each term. It is clear that hydrogen bonding is the most 

important factor controlling water-air distribution; the greater magnitude of the Σβ 

term probably reflects the strong hydrogen bond donor ability of water. Molecular 

size, represented by VX, appears to play only a minor role in determining air-water 

partitioning. It may be noted that the very high correlation coefficient and low 

standard error of equation 22 suggest possible overfitting; no external validation of 

equation 22 was provided. The Abraham descriptors are available in the Absolv-2 

software (www.ap-algorithms.com).  

 

Katritzky et al [1996b] used their CODESSA software [www.semichem.com] to 

model the data-set of Abraham et al [1994]: 

 

log L = 42.37 HDCA(2) + 0.65 [N(O) + N(N)] – 0.16 ∆E + 0.12 PCWT + 0.82 NR  

            + 2.65                (23) 

n = 406     R
2
 = 0.942     s = 0.52 

 

where HDCA(2) = hydrogen bond donor ability, N(O) + N(N) = a linear combination 

of the number of oxygen and nitrogen atoms, ∆E = HOMO-LUMO energy difference, 

PCWT = most negative partial charge-weighted topological electronic index, and NR 

= number of rings. It may be noted that the standard error of 0.52 log unit is more 

realistic than is that of 0.151 reported by Abraham et al [1994]. 

 

Katritzky et al [1998] used predicted vapour pressure and aqueous solubility to 

calculate Henry’s law constant according to equation 20 for 411 diverse chemicals. 

The table giving their results was inadvertently omitted in their paper, but they 

reported a standard error of 0.63 log unit, which is not very much greater than that 

found (0.52 log unit) in their correlation shown in equation 23 above. 
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Very recently QSPRs have been developed by Modarresi et al [2007] using a very 

large (940-compound) diverse data set. Using genetic algorithm selection of 

descriptors, they obtained a 10-descriptor QSPR with a root mean square error of 

0.571 log unit. 

 

There are seven software programs that calculate Henry’s law constant, namely 

Episuite, Absolv-2, ADME Boxes, ASTER, ChemProp, ProPred and SPARC. The 

performances of the last five are not known.  

 

Dearden and Schüürmann [2003] tested a number of methods for prediction of log H, 

using a large, diverse test set of 700 chemicals. Only one of the methods, the bond 

contribution method in the HENRYWIN module of the Episuite software, allowed 

prediction of log H for all 700 chemicals, with a mean absolute error of prediction of 

0.63 log unit. 

 

It is recommended that the HENRYWIN module of the Episuite software be used for 

the prediction of Henry’s law constant.  

 

 

10. Prediction of relative density of liquids 

 

Nelken [1990] and Reinhard and Drefahl [1999] have reviewed the prediction of 

relative density, ρL. A related property is molar volume, VM (the volume in cm
3
 

occupied by 1 gram mole of a compound), and the two are related thus: 

 

ρL = MW/VM                (24) 

 

where MW = molecular weight, and ρL has the units of g cm
-3

. 

 

Correlations between density or molar volume and molecular surface area [Grigoras 

1990], molecular connectivites [Kier & Hall 1976] and group contributions [Girolami 

1994] have been reported. The Girolami method is very simple, and is based on the 

following equation: 
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ρL = MW(5Vscal)
-1

                (25) 

 

where M = molecular weight, and Vscal = scaled volume calculated as the sum of the 

atom contributions of the constituent atoms. The method is claimed to be accurate to 

within 0.1 g cm
-3

. 

 

The variation of density with temperature can be estimated using the method of Grain 

(reported in [Nelken 1990]): 

 

ρL = M ρLb[3 – 2(T/Tb)]
n
               (26) 

 

where M = molecular weight, subscript “b” refers to the boiling point, and n = a 

constant that depends on chemical class (n = 0.25 for alcohols, 0.29 for hydrocarbons 

and 0.31 for other organics). 

 

Abraham and McGowan [1987] reported a very simple method for the calculation of 

characteristic volume, which is closely correlated with molar volume. Atomic and 

bond contributions are: C 16.35, H 8.71, O 12.43, N 14.39, F 10.48, Cl 20.95, Br 

26.21, I 34.53, S 22.91, P 24.87; for each bond, irrespective of type, subtract 6.56. 

Thus for NH2COCH3 the value is (2 x 16.35 + 12.43 + 14.39 + (5 x 8.71) – (8 x 6.56) 

= 50.59 cm
3
 mol

-1
; the experimental value of its molar volume is 50.86 cm

3
 mol

-1
. 

 

There are five software programs that predict liquid density, namely ACDLabs, 

PREDICT, Molecular Modeling Pro, ProPred and SPARC. The ACDLabs website 

reports a standard error of 0.028 g cm
-1

 for the densities of a test set of 671 liquids. 

PREDICT is reported to yield errors of < 2%. The performance of the other software 

is not known. 

 

It is recommended that one of the software programs or the Abraham and McGowan 

method [1987] be used for the calculation of liquid density and/or molar volume. 
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11. Prediction of viscosity of pure liquids 

 

The viscosity data required under Annex VII of REACH are for aqueous solutions of 

chemicals. So far as can be ascertained, there are no methods available for the 

prediction of viscosity of aqueous solutions. This section therefore pertains only to the 

prediction of viscosity of pure liquids. Viscosity is important because it affects how a 

liquid should be handled, and also because it controls the permeation of liquids, for 

example in a spillage. 

 

Liquid viscosity (ηL) can be regarded as a measure of the force needed to overcome 

the mutual attraction of molecules so that they can be displaced relative to each other 

[Grain 1990]. The prediction of liquid viscosity has been reviewed by Grain [1990] 

and Reinhard and Drefahl [1999].  

 

The method of van Velzen et al [1972] is based on the following equation: 

 

log ηL = B3(1/T – 1/T0)                (27) 

 

where B3 = a class-dependent constant, and T0 (in K) is the temperature at which the 

viscosity is 1 centipoise (cp). Grain [1990] gives details of how to calculate B3. 

 

Grain’s method [Grain 1990] allows the calculation of viscosity at different 

temperatures, given the viscosity at the boiling point Tb (K): 

 

ln ηL = ln ηLb + B4(1/T – 1/Tb)               (28)   

 

Values of ηLb are: alcohols and amines (aliphatic and aromatic) 0.45; all other organic 

liquids 0.2. The calculation of B4 is given by Grain [1990]. 

 

Skubla [1985] developed a group contribution scheme for calculating the viscosity for 

various homologous series: 

 

log ηL = a0 + a1Pvap                (29) 
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where a0 and a1 are derived from group contributions, and Pvap is vapour pressure. 

 

Suzuki et al [1997] developed a 9-descriptor QSPR to model the viscosities of 237 

organic liquids, with R
2
 = 0.916 and RMS error = 0.167 log unit. When the same 

descriptors were used with a neural network model the statistics improved to R
2
 = 

0.958 and RMS error = 0.118 log unit. The descriptors, which were obtained from the 

ChemProp software [Schüürmann et al 1997], were not fully explained in the paper. 

 

Katritzky et al [2000] used their CODESSA descriptors [www.semichem.com] to 

model the viscosities of a large diverse set of organic liquids: 

 

log  ηL = 1.77 HDCA(2) + 0.000557 GI + Nrings + 20.2 FPSA(3) + 0.0897 Emin(C) 

 - 10.3                (30) 

n = 361     R
2
 = 0.854     s = 0.22 

 

where HDCA(2) = hydrogen-bond donor charged surface area, GI = gravitational 

index, Nrings = relative number of rings in a molecule, FPSA(3) = fractional positive 

partial charged surface area, and Emin(C) = minimum atomic state energy for a carbon 

atom. 

 

Kauffman and Jurs [2001] used their ADAPT software to develop a multiple linear 

regression QSPR for liquid viscosity, based on viscosity values (mPa.s) for a number 

of common organic solvents: 

 

log ηL = 0.263 V0-1 + 0.0983 DPOL-1 – 3.032 SADH3 + 0.168 SCDΗ−1  

              + 0.0710 NRA-18 + 1.065 FNSA-2 – 4.053 FNSA-3 – 0.0681 WPSA-3 

   – 1.475                 (31) 

n = 170     R
2
 = 0.834     RMS error = 0.257 log unit 

 

where V0-1= zero-order valence molecular connectivity, DPOL-1 = dipole moment, 

SADH-3 = (total surface area of all donatable H atoms)/(total molecular surface area), 

SCDH-1 = sum of (surface area x charge) for all donatable H atoms, NRA-18 = 
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number of ring atoms, FNSA-2 = (total charge-weighted partial negative surface 

area)/(total molecular surface area), FNSA-3 = (atomic charge-weighted partial 

negative surface area)/(total molecular surface area), and WPSA-3 = surface-weighted 

charged partial positive surface area. 

 

Use of a neural network with the same descriptors gave much improved results (R
2
 = 

0.949, RMS error = 0.147 log unit). The ADAPT descriptors are available in the 

Pharma Algorithms ADME Boxes software. 

 

Four software programs, namely ChemProp, Molecular Modeling Pro, PREDICT and 

ProPred, predict liquid viscosity. PREDICT is reported to yield errors of 2 – 20%, 

depending on the calculation method used. The performance of the other software is 

not known. 

 

It is recommended that the method of van Velzen et al [1972] or of Grain [1990] be 

used for the estimation of liquid viscosity. 

 

 

12. Prediction of surface tension of liquids 

 

Surface tension of liquids affects, for example, leakage from a container and 

permeation into soils. 

 

The prediction of surface tension (σ) has been reviewed by Grain [1990] and Reinhard 

and Drefahl [1999]. Grain’s recommended method, which is applicable to diverse 

chemical classes, is the Macleod-Sugden approach [Macleod 1923, Sugden 1924], 

which uses the following equation: 

 

σ = (PρL/MW)
4
                (32) 

 

where P = parachor, ρL = liquid density, and MW = molecular weight. Parachor is an 

easily calculated additive property, and Grain [1990] lists incremental P values for 

numerous atoms, groups and bonds. Parachor can also be calculated by the ACDLabs 
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software. Reid et al [1977] found the Macleod-Sugden equation to yield a mean error 

in σ of 4.5%. 

 

If the density of the liquid is unknown, the method of Grain [1990] can be used: 

 

σ = [(P/ Vb)(1 + k)(3 – 2T/Tb)
n
]

4
               (33) 

         

where k and n are constants listed by Grain [1990] for different chemical classes, Vb = 

molar volume at boiling point, Tb = boiling point (K). The method allows the 

calculation of surface tension at different temperatures, and has a mean error of 5.1%. 

 

Another approach to the calculation of surface tension at different temperatures is 

given by the Othmer equation: 

 

σ (T) = σref [(Tc – T)(Tc – Tref)]
11/9

               (34) 

 

where the subscript “ref” refers to a reference temperature Tref, and Tc = critical 

temperature. The parameters needed for the Othmer equation have been reported by 

Yaws et al [1991] for 633 chemicals. 

 

Stanton and Jurs [1992], using their ADAPT software, developed a 10-descriptor 

model for a set of 146 alkanes, esters and alcohols, and found a standard error of 0.4 

dyne/cm (mN/m). Kauffman and Jurs [2001] later developed a more general 8-

descriptor model based on the surface tensions of 159 common organic solvents: 

 

σ = – 3.301 KAPA-4 – 19.46 QPOS-1 + 87.40 SADH-3 + 0.0595 PPSA-1  

       − 140.6 FNSA-3 + 9.501 GRAV-3 + 0.200 RNCS-1 – 13.96 SAAA-3 – 46.80  

               (35) 

n = 159     R
2
 = 0.835     RMS error = 3.37 mN m

-1 

 

where KAPA-4 = kappa shape index, QPOS-1 = charge on most positive atom, 

SADH-3 = (total surface area of all donatable H atoms)/(total molecular surface area), 

PPSA-1 = total surface area of all partial positively charged atoms, FNSA-3 = (atomic 
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charge-weighted partial negative surface area)/(total molecular surface area), GRAV-

3 = cube root of gravitational index. RNCS-1 = relative negatively charged surface 

area, and SAAA-3 = (sum of surface area of acceptor atoms)/(total molecular surface 

area).  

 

Use of a neural network with the same descriptors gave much improved results (R
2
 = 

0.931, RMS error = 2.22 mN m
-1

). The ADAPT descriptors are available in the 

Pharma Algorithms ADME Boxes software. 

 

Delgado and Diaz [2006] used a relatively large training set to derive a 6-term QSPR: 

 

σ = 56.60 NC
R
 + 48.40 NO

R
 + 83.09 NN

R
 + 0.98 MW + 3.47 

3χv
 + 0.16 HDSA-1  

       – 6.45                 (36) 

n = 320     R
2
 = 0.96     s = 1.43 dyn cm

-1
 

 

where NX
R 

= relative number of X atoms, MW = molecular weight, 
3χv

 = 3
rd

 order 

valence molecular connectivity, and HDSA-1 = hydrogen-bond donor surface area. 

The relative descriptors were obtained by divding the number of X atoms by the total 

number of atoms in the molecule. A test set of 55 compounds yielded r
2
 = 0.94, s = 

1.52 dyn cm
-1

. 

 

There are three software programs available that calculate surface tension. For a test 

set of 432 liquid compounds, the ACD/Labs software gave a standard error of 

prediction of 2.84 dyn cm
-1

. PREDICT is reported to yield errors of about 5%. The 

performance of ProPred is not known. 

 

It is recommended that the McLeod-Sugden method [Macleod 1923, Sugden 1924] or 

the Grain method [Grain 1990], or one or more of the above software programs, be 

used for the prediction of surface tension. The computer-based methods are especially 

useful if predictions are required for large numbers of chemicals. 

 

 

13. Prediction of flash point 
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There have been very few publications on QSPR prediction of flash point. Hagopian 

[1990] and Vidal et al [2004] have reviewed the published work. 

 

Butler et al [1956] reported a correlation of flash point determined by the closed cup 

method (TF, 
o
F) with boiling point (TB, 

o
F) for hydrocarbons: 

 

TF = 0.683 TB – 119                (37) 

 

No standard error was given, although it may be noted that of 29 chemicals used to 

derive the above QSPR, 24 were predicted within ± 14
o
F (8

o
C) of the measured value; 

the maximum error was 40
o
F (22

o
C) for tetralin. 

 

Hagopian [1990] used a similar approach to model the flash points of alcohols, 

aldehydes, amines and ketones, determined by both closed and open cup methods, 

with a different QSPR for each. For example, for alcohols he reported the following 

QSPRs and the mean absolute errors (MAE) of prediction: 

 

Closed cup     

TF = 0.706 TB – 77.1                (38)  

n = 31     MAE = 6.7
o
F   

 

Open cup 

TF = 0.688 TB – 66.4               (39) 

n = 25     MAE = 7.4
o
F 

 

Satyanarayana and Rao [1992] also modelled the flash point of a large number of 

diverse organic chemicals using boiling point, with different correlations for different 

chemical classes. Using a test set of 1221 compounds they found the mean absolute 

error to be < 1%. 

 

Hshieh [1997] used a quadratic equation in TB (
o
C) to model the flash points of a large 

number of diverse organic chemicals: 

 

TF = - 51.24 + 0.499 TB + 0.00047 TB
2
              (40) 
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n = 494     R
2
 = 0.935     s = 11.7

o
C 

 

Suzuki et al [1991] used principal components analysis to correlate the flash points of 

400 diverse chemicals with two structural factors related to 1
st
 order molecular 

connectivity (
1χ) and the polar characteristics (Gi) of the functional groups: 

 

TF (
o
C) = 25.57 

1χ + ΣniGi – 86               (41) 

N = 400     R
2
 = 0.935     s = 13.5

o 

 

Tetteh et al [1999] expanded this work by the use of a radial function neural network 

analysis, and were able to reduce the mean absolute prediction errors to 10-12
o
.  

 

Katritzky et al [2001] used their CODESSA descriptors [www.semichem.com] to 

model flash points of a diverse set of 271 chemicals: 

 

TF = 44.5 Gb
1/3

 + 16731 HDCA + 4.95 MWR – 117.7             (42) 

n = 271     R
2
 = 0.902     s = 16.1

o
 

 

where Gb = gravitational index over all bonded atoms, HDCA = charged solvent-

accessible surface area of donatable H atoms, and MWR = relative molecular weight. 

 

By incorporating measured boiling point they were able to reduce the standard error to 

11.2
o
, and by incorporating calculated boiling point the standard error was 14.2

o
. 

 

Zhokhova et al [2003] critically analysed the work of Tetteh et al [1999] and 

Katritzky et al [2001], showing that there were some database errors in those 

publications. Zhokhova et al [2003] used a fragmental approach to model flash point. 

They developed several QSPR equations that gave good predictions. Thus, for a 

training set of 266 diverse compounds and using 9 indicator descriptors (counts of 

numbers of 9 different specified molecular fragments), they obtained R
2
 = 0.872 and s 

= 18.8
o
. They obtained improved models with additional indicator descriptors, but did 

not report the QSPRs. 
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Gramatica et al [2004] used two Dragon descriptors 

[www.virtuallaboratory.org/lab/edragon] to model a small set of 35 esters with R
2
 = 

0.926 (s not given). 

 

It appears from the above that a molecular fragment approach is the simplest and best 

way currently to model flash point. Of course such an approach means that 

predictions cannot be made for compounds that do not contain the molecular 

fragments used to train the model.  

 

Only two software programs, namely ACDLabs and ProPred, appear to estimate flash 

point. However, no indications of performance are given. 

 

It is recommended that either the approach of Hshieh [1997], Zhokhova et al [2003] 

or the ACDLabs software be used to predict flash point. Boiling points can be 

estimated as indicated in section 6, if experimental values are not available. 

 

 

14. Prediction of auto-ignition temperature  

 

There have been only a very few publications concerning the prediction of auto-

ignition temperature (AIT). Taskinen and Yliruusi [2003] have reviewed the available 

literature.  Tetteh et al [1996, 1998] used radial basis function neural networks to 

model a set of 232 organic chemicals with 13 different functional groups. They 

obtained a mean test set error of 33
o
. 

 

Egolf and Jurs [1992] used their ADAPT software to model AIT values of 

hydrocarbons, alcohols and esters. They had to develop a separate QSPR for each 

class of chemical. For alcohols, for example, they found: 

 

TAIT (K) = – 18.69 NSB +  2640 VCC7 + 152.2 BJI – 12.80 STS + 395.1           (43) 

n = 28     R
2
 = 0.941     s = 24

o
 

 

where NSB = number of single bonds, VCC7 = valence chain-7 molecular 

connectivity, BJI = Balaban J-index, and STS = steric strain. 



 49 

 

Mitchell and Jurs [1997] used their ADAPT software to model AIT values of a data 

set of 327 diverse organic chemicals. They were unable to obtain good correlations 

for the whole data set, but found improved correlations when the chemicals were 

divided into hydrocarbons, nitrogen compounds, oxygen/sulphur compounds and 

alcohols/ethers. For example, for alcohol/ether compounds they obtained: 

 

TAIT (K) =  – 1700 QPOS + 820 RPCG + 1.94 SAAA + 236 RDTA – 197 V4P  

           + 43.4 N2P + 136                    (44) 

n = 67     R
2
 = 0.854     RMS error = 35.0

o
 

 

where QPOS = charge on most positive atom, RPCG = relative positive charge, 

SAAA = sum of surface areas of hydrogen bonding acceptor groups, RDTA = ratio of 

number of hydrogen bonding donor groups to hydrogen bonding acceptor groups, 

V4P = fourth order valence path molecular connectivity, and N2P = count of 2
nd

 order 

paths. The authors commented that their prediction errors were in the range of 

experimental errors. The ADAPT descriptors are available in the Pharma Algorithms 

ADME Boxes software. 

 

None of the approaches given above is very amenable to general use, so it is 

unfortunately the case that there is at present no simple method available for the 

prediction of auto-ignition temperature. The Mitchell and Jurs [1997] method is 

perhaps the least difficult of those mentioned above, provided that the ADAPT 

descriptors are accessible (ADMEWORKS Predictor from www.fqs.pl).  

 

 

15. Prediction of soil sorption 

 

Soil sorption involves the take-up of chemicals, usually into the organic surface 

coating of soil particles, from the surrounding milieu (usually an aqueous phase). It is 

in effect a partitioning process, and soil sorption (Koc) of organic non-ionic chemicals 

can be estimated from their octanol-water partition coefficient (Kow), as well as from 

other properties such as aqueous solubility. The subscript “oc” stands for “organic 

carbon”. A number of reviews of Koc prediction have been published recently [Lyman 
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1990, Reinhard & Drefahl 1999, Doucette 2000, Delle Site 2001, Doucette 2003, 

Dearden 2004, Kahn et al 2005]. That of Doucette [2000] contains a number of 

worked examples of the estimation of log Koc values. 

 

Sabljić et al [1995] correlated log Koc values of several chemical classes with log Kow 

values, and obtained reasonably good correlations. They found, however, that slopes 

and intercepts varied widely from class to class. For example, for hydrocarbons and 

halogenated hydrocarbons the correlation was: 

 

log Koc = 0.81 log Kow + 0.10               (45) 

n = 81     r
2
 = 0.887     s = 0.451 

 

That for anilines was: 

 

log Koc = 0.62 log Kow + 0.85               (46) 

n = 20     r
2
 = 0.808     s = 0.341 

 

 

It might be thought that such differences should mean that good correlations could not 

be obtained for diverse data sets. In fact, that has been shown not to be the case. 

Gerstl [1990] found, for a large diverse data set, a correlation as good as most of those 

of Sabljić et al [1995]: 

 

log Koc = 0.679 log Kow + 0.094             (47) 

n = 419     r
2
 = 0.831     s not given 

 

Briggs [1981] found a good correlation for a large set of pesticides: 

 

log Kom = 0.53 log Kow + 0.64               (48) 

n = 105     r
2
 = 0.90     s not given 

 

Note that the soil sorption term here is Kom, where “om” stands for “organic matter”. 

The relationship between Koc and Kom is: log Koc = log Kom + 0.2365 [Nendza 1998]. 
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Hence from the two correlations above an estimate of Koc or Kom can readily be 

obtained. Calculated log Kow values can quickly be obtained from, for example, the 

ChemSilico website [www.logp.com].  

 

The Abraham descriptors have been used [1999] to model Koc values of a large 

diverse data set: 

 

log Koc = 0.74 R – 0.31 ΣαH
 – 2.27 ΣβO

 + 2.09 VX + 0.21             (49) 

n = 131      R
2
 = 0.955     s = 0.245 

 

where R = excess molar refractivity (a measure of polarisability), ΣαH
 = hydrogen 

bond donor ability, ΣβO
 = hydrogen bond acceptor ability of oxygen, and VX = 

McGowan molecular volume. The descriptors are approximately autoscaled, so that 

the magnitude of each coefficient is an indication of the relative contribution of each 

descriptor to soil sorption. Hence hydrogen bond acceptor ability and molecular size 

appear to be the most important factors controlling soil sorption. The Abraham 

descriptors can be calculated using the Absolv-2 software. 

 

Kahn et al [2005] used log Kow and CODESSA descriptors [www.semichem.com] to 

model soil sorption of a large diverse data set: 

 

log Koc = 0.424 log Kow + 0.00272 PNSA-1 – 0.241 η − 0.404 Pπ−π
max

 + 2.156       (50) 

 

n = 344     R
2
 = 0.759     s = 0.409 

 

where PNSA-1 = partial negative surface area, η = absolute hardness, and Pπ−π
max

 = 

maximum π−π bond order. 

 

Tao et al [1999] used a combination of 74 fragmental constants and 24 structural 

factors to model soil sorption of 592 diverse organic chemicals, with a standard error 

of 0.366 log unit. Although this is a good prediction, fragmental constant methods are 

not always easy to use, and can be tedious. 
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Delgado et al [2003] developed a very simple group contribution approach to model 

soil sorption, albeit with a relatively small training set: 

 

log Koc = 0.60 Nφ + 0.0102 MW – 0.48 NN – 0.25 NO + 0.61 NS + 0.51            (51) 

n = 82     R
2
 = 0.94     s = 0.33 

 

where Nφ = number of benzene rings, MW = molecular weight, NN = number of 

nitrogen atoms, NO = number of oxygen atoms, and NS = number of sulphur atoms. A 

validation set of 43 chemicals yielded R
2
 = 0.96, s = 0.30. 

 

Although soil sorption varies to some extent with temperature, there do not appear to 

be any QSPR studies concerning this. One study has been published concerning the 

effect of ionisation on Koc values. Bintein and Devillers [1994] reported the following 

QSPR based on 229 data points for 53 diverse chemicals: 

 

log Kp = 0.93 log Kow + 1.09 foc + 0.32 CFa – 0.55 CFb' + 0.25            (52) 

n = 229     R
2
 = 0.933     s = 0.433 

 

where Kp = sorption coefficient uncorrected for organic content, foc = fraction of 

organic carbon in soil, Cfa = correction factor for acid ionisation, and CFb' = 

correction factor for base ionisation. 

 

Bearing in mind the large experimental error associated with soil sorption 

measurements [Nendza 1998], the standard errors given above are as good as can be 

hoped for. 

 

There are three software programs that calculate log Koc values. Using a test set of 100 

diverse organic chemicals, Dearden [2004] compared the performance of two of them, 

and the results are shown below. The performance of the Pharma Algorithms ADME 

Boxes is not known. 

 

 

 



 53 

Table 12. Software performance for prediction of soil sorption of a 100-

compound test set 

 

Software % Predicted                  

within ± 0.5                                

log unit of measured value 

Mean absolute 

error (log unit) 

   

Episuite   82% 0.490 

Absolv-2 70% 0.569 

        

 

It is recommended that the QSPRs developed by Gerstl [1990] or by Delgado et al 

[2003] and the Episuite software be used for estimation of log Koc. 
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Abstract 
 
This report provides a critical review of computational models, and in 
particular (quantitative) structure-property relationship (QSPR) models, that 
are available for the prediction of physicochemical properties. The emphasis 
of the review is on the usefulness of the models for the regulatory assessment 
of chemicals, particularly for the purposes of the new European legislation for 
the Registration, Evaluation, Authorisation and Restriction of CHemicals 
(REACH), which entered into force in the European Union (EU) on 1 June 
2007.  
 
It is estimated that some 30,000 chemicals will need to be further assessed 
under REACH. Clearly, the cost of determining the toxicological and 
ecotoxicological effects, the distribution and fate of 30,000 chemicals would 
be enormous. However, the legislation makes it clear that testing need not be 
carried out if adequate data can be obtained through information exchange 
between manufacturers, from in vitro testing, and from in silico predictions. 
 
The effects of a chemical on a living organism or on its distribution in the 
environment is controlled by the physicochemical properties of the chemical. 
Important physicochemical properties in this respect are, for example, partition 
coefficient, aqueous solubility, vapour pressure and dissociation constant. 
Whilst all of these properties can be measured, it is much quicker and 
cheaper, and in many cases just as accurate, to calculate them by using 
dedicated software packages or by using (QSPRs). These in silico 
approaches are critically reviewed in this report. 
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