1,433 research outputs found

    State (hydrodynamics) Identification In The Lower St. Johns River Using The Ensemble Kalman Filter

    Get PDF
    This thesis presents a method, Ensemble Kalman Filter (EnKF), applied to a highresolution, shallow water equations model (DG ADCIRC-2DDI) of the Lower St. Johns River with observation data at four gauging stations. EnKF, a sequential data assimilation method for non-linear problems, is developed for tidal flow simulation for estimation of state variables, i.e., water levels and depth-integrated currents for overland unstructured finite element meshes. The shallow water equations model is combined with observation data, which provides the basis of the EnKF applications. In this thesis, EnKF is incorporated into DG ADCIRC-2DDI code to estimate the state variables. Upon its development, DG ADCIRC-2DDI with EnKF is first validated by implementing to a low-resolution, shallow water equations model of a quarter annular harbor with synthetic observation data at six gauging stations. Second, DG ADCIRC-2DDI with EnKF is implemented to a high-resolution, shallow water equations model of the Lower St. Johns River with real observation data at four gauging stations. Third, four different experiments are performed by applying DG ADCIRC-2DDI with EnKF to the Lower St. Johns River

    The theory of multiple measurements techniques in distributed parameter systems

    Get PDF
    A comprehensive theory of multiple measurements for the optimum on-line state estimation and parameter identification in a class of noisy, dynamic distributed systems, is developed in this study. Often in practical monitoring and control problems, accurate measurements of a critical variable are not available in a desired form or at a desired sampling rate. Rather, noisy independent measurements of related forms of the variable may be available at different sampling rates. Multiple measurements theory thus involves the optimum weighting and combination of different types of available measurements. One of the contributions of this work is the development of a unique measurement projection method by which off-line measurements may be optimally utilized for on-line estimation and control. The analysis of distributed systems often requires the establishment of monitoring stations. Another contribution of this study is the development of a measurement strategy, based on statistical experimental design techniques, for the optimum spatial monitoring stations in a class of distributed systems. By incorporating in the optimization criterion, terms representing the realistic costs of making observations, an algorithm is developed for an estimator indicator whose values dictate an observation strategy for the optimum number and temporal intervals of observations. This, along with the optimum measurement stations thus provides a comprehensive monitoring policy on which the estimation and control of a distributed system may be based. By employing the measurement projection scheme and the monitoring policy, algorithms are further developed for Kalmantype distributed filters for the estimation of the state profiles based on all available on-line and off-line measurements. In the interest of a realistic engineering application, the developments in this study are based on a specific class of distributed systems representable by the mass transport models in environmental pollution systems. However, the techniques developed are equally applicable to a broader class of systems, including process control, where measurements may be characterized by noisy on-line instrumentation and off-line empirical laboratory tests. Although pertinent field data were not available for the research, the multiple measurements techniques developed were applied to several simulated numerical examples that do represent typical engineering problems. The results obtained demonstrate the consistent superiority of the techniques over existing estimation methods. Methods by which the results of this work may be integrated into real engineering problems are also discussed

    Hidden Markov modelling of movement data from fish

    Get PDF

    Application and comparison of Kalman filters for coastal ocean problems : an experiment with FVCOM

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C05011, doi:10.1029/2007JC004548.Twin experiments were made to compare the reduced rank Kalman filter (RRKF), ensemble Kalman filter (EnKF), and ensemble square-root Kalman filter (EnSKF) for coastal ocean problems in three idealized regimes: a flat bottom circular shelf driven by tidal forcing at the open boundary; an linear slope continental shelf with river discharge; and a rectangular estuary with tidal flushing intertidal zones and freshwater discharge. The hydrodynamics model used in this study is the unstructured grid Finite-Volume Coastal Ocean Model (FVCOM). Comparison results show that the success of the data assimilation method depends on sampling location, assimilation methods (univariate or multivariate covariance approaches), and the nature of the dynamical system. In general, for these applications, EnKF and EnSKF work better than RRKF, especially for time-dependent cases with large perturbations. In EnKF and EnSKF, multivariate covariance approaches should be used in assimilation to avoid the appearance of unrealistic numerical oscillations. Because the coastal ocean features multiscale dynamics in time and space, a case-by-case approach should be used to determine the most effective and most reliable data assimilation method for different dynamical systems.P. Malanotte-Rizzoli and J. Wei were supported by the Office of Naval Research (ONR grant N00014-06-1- 0290); C. Chen and Q. Xu were supported by the U.S. GLOBEC/Georges Bank program (through NSF grants OCE-0234545, OCE-0227679, OCE- 0606928, OCE-0712903, OCE-0726851, and OCE-0814505 and NOAA grant NA-16OP2323), the NSF Arctic research grants ARC0712903, ARC0732084, and ARC0804029, and URI Sea Grant R/P-061; P. Xue was supported through the MIT Sea Grant 2006-RC-103; Z. Lai, J. Qi, and G. Cowles were supported through the Massachusetts Marine Fisheries Institute (NOAA grants NA04NMF4720332 and NA05NMF4721131); and R. Beardsley was supported through U.S. GLOBEC/Georges Bank NSF grant OCE-02227679, MIT Sea Grant NA06OAR1700019, and the WHOI Smith Chair in Coastal Oceanography

    Multi-layer model simulation and data assimilation in the Serangoon Harbor of Singapore

    Get PDF
    In June of 2009, a sea trial was carried out around Singapore to study and monitor physical, biological and chemical oceanographic parameters. Temperature, salinity and velocities were collected from multiple vehicles. The extensive data set collected in the Serangoon Harbour provides an opportunity to study barotropic and baroclinic circulation in the harbour and to apply data assimilation methods in the estuarine area. In this study, a three-dimensional, primitive equation coastal ocean model (FVCOM) with a number of vertical layers is used to simulate barotropic and baroclinic flows and reconstruct the vertical velocity structures. The model results are validated with in situ ADCP observations to assess the realism of the model simulations. EnKF data assimilation method is successively implemented to assimilate all the available ADCP data, and thus correct for the model forecast deficiencies.Singapore. National Research FoundationSingapore-MIT AllianceSingapore-MIT Alliance. Center for Environmental Sensing and Monitorin

    Estimation of Shallow Water Flow Based on Kalman Filter FEM

    Get PDF
    In this chapter, we present numerical examples of an estimation of shallow water flow based on Kalman filter finite element method (Kalman filter FEM). Shallow water equations are adopted as the governing equations. The Galerkin method, using triangular elements, is employed to discretize the governing equation in space, and the selective lumping method is used to discretize time. We describe the influence on the numerical results of setting the observation points

    A survey on tidal analysis and forecasting methods for Tsunami detection

    Get PDF
    Accurate analysis and forecasting of tidal level are very important tasks for human activities in oceanic and coastal areas. They can be crucial in catastrophic situations like occurrences of Tsunamis in order to provide a rapid alerting to the human population involved and to save lives. Conventional tidal forecasting methods are based on harmonic analysis using the least squares method to determine harmonic parameters. However, a large number of parameters and long-term measured data are required for precise tidal level predictions with harmonic analysis. Furthermore, traditional harmonic methods rely on models based on the analysis of astronomical components and they can be inadequate when the contribution of non-astronomical components, such as the weather, is significant. Other alternative approaches have been developed in the literature in order to deal with these situations and provide predictions with the desired accuracy, with respect also to the length of the available tidal record. These methods include standard high or band pass filtering techniques, although the relatively deterministic character and large amplitude of tidal signals make special techniques, like artificial neural networks and wavelets transform analysis methods, more effective. This paper is intended to provide the communities of both researchers and practitioners with a broadly applicable, up to date coverage of tidal analysis and forecasting methodologies that have proven to be successful in a variety of circumstances, and that hold particular promise for success in the future. Classical and novel methods are reviewed in a systematic and consistent way, outlining their main concepts and components, similarities and differences, advantages and disadvantages
    corecore