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ABSTRACT 

 

This thesis presents a method, Ensemble Kalman Filter (EnKF), applied to a high-

resolution, shallow water equations model (DG ADCIRC-2DDI) of the Lower St. Johns River 

with observation data at four gauging stations.  EnKF, a sequential data assimilation method for 

non-linear problems, is developed for tidal flow simulation for estimation of state variables, i.e., 

water levels and depth-integrated currents for overland unstructured finite element meshes. The 

shallow water equations model is combined with observation data, which provides the basis of 

the EnKF applications.  In this thesis, EnKF is incorporated into DG ADCIRC-2DDI code to 

estimate the state variables. 

 Upon its development, DG ADCIRC-2DDI with EnKF is first validated by implementing 

to a low-resolution, shallow water equations model of a quarter annular harbor with synthetic 

observation data at six gauging stations.  Second, DG ADCIRC-2DDI with EnKF is 

implemented to a high-resolution, shallow water equations model of the Lower St. Johns River 

with real observation data at four gauging stations.  Third, four different experiments are 

performed by applying DG ADCIRC-2DDI with EnKF to the Lower St. Johns River. 
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CHAPTER 1: INTRODUCTION 

 

In the following research, an Ensemble Kalman Filter (EnKF) is coupled with an 

ADvanced CIRCulation (ADCIRC) numerical code to simulate water surface elevations and 

depth-integrated velocities in the St. Johns River for a 30-day time period spanning September 

21 – October 21, 1999.  The St. John River is located in north Florida (Figure 1).  The watershed 

of the St. Johns River is over 22,000 km2 in area and the overall length of the St. Johns River is 

over 500 km (Sucsy and Morris, 2002).  Tides extend 160 km upstream to Lake George 

(Giardino, 2009).  River flow is slow and lazy because of an average river bed slope of only 2.2 

cm of drop per km of length (Toth, 1993).  In the Lower St. Johns River, four observation 

stations are available (Bourgerie, 1999): 1) Mayport; 2) Fulton; 3) Dames Point; and 4) 

Jacksonville.  The locations of the stations are shown in Table 1.  Boundary conditions are 

applied on the open ocean boundary as a water surface elevation that is composed of seven 

astronomical tidal constituents (K1, O1, M2, S2, N2, K2, and Q1).  Previous research (Bacopoulos, 

2009) applied a spatial distribution of Manning’s n values based on two classes, ‘open water’ (n 

= 0.025); and ‘emergent herbaceous wetland’ (n = 0.050). 

 The major goal of this research is that EnKF, a sequential data assimilation method, will 

be used to improve model prediction through the incorporation of observation data into a 

hydrodynamic model.  This research will develop and couple EnKF with a high-resolution 

hydrodynamic model of the Lower St. Johns River (Bacopoulos 2009) for estimating of water 

levels and depth-integrated currents.  In this research, EnKF is incorporated into the 
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hydrodynamic model included a shallow water equations model DG ADCIRC-2DDI (Ethan, et 

al., 2006). 

There are three objectives in this research.  The first objective is to validate the 

development of DG ADICRC-2DDI with EnKF using a low resolution, shallow water equations 

model of a quarter annular harbor (http://www.adcirc.org/) with synthetic observation data at six 

gauging stations for estimations of the water surface elevations and depth-integrated velocities.  

The second objective is to apply DG ADCIRC-2DDI with EnKF to a high-resolution, shallow 

equations model of the Lower St. Johns River for estimations of water levels and depth-

integrated currents with real observation data at three stations for data assimilations and one 

station, not used for data assimilation, for comparisons.  The station, used for the comparisons, is 

called a target station.  The third objective is to perform four different experiments by applying 

DG ADICRC-2DDI with EnKF to the Lower St. Johns River. 

 

Table 1  Locations of four gauging stations. 

Gauging Station Latitude (N) Longitude (W) 

Mayport 30.38 81.46 

Fulton 30.39 81.51 

Dames Point 30.39 81.56 

Jacksonville 30.38 81.63 

 

 

http://www.adcirc.org/
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Figure 1 Locator Map; a) shown in red is St. Johns River location, b) shown in black box is the Lower St. Johns 
River, and c) the Lower St. Johns River with four gauging stations. 
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CHAPTER 2: LITERATURE REVIEW 

 

This chapter presents a literature review of the following three topics related data 

assimilation techniques: 1) a general concept of data assimilation and its applications, 2) a basic 

concept of KF and its applications, and 3) EnKF and its applications. 

 

2.1. Data Assimilation 

 

Wei et al. (2009) states that (p. 3) 

“Data assimilation methods synthesize numerical solutions with the available 

observations to obtain an optimal estimation which can be used as the new initial 

condition for model forecasting…Since numerical models contain errors due to the 

incomplete physics and numerical implementation, insufficient resolution, and errors in 

forcing functions and observations, it is necessary to correct simulation results.  This 

process can be done in data assimilation.  In general, the analysis procedure minimizes 

the mean square error between the model states and the observations.” 

Figure 2 illustrates the procedures of data assimilation (Miyoshi, 2005).  Shown in black dashed 

arrows is a true state variable which is usually unknown.  Thus, a state variable is predicted using 

a numerical calculation model.  At the time when an observed state variable is available, the 
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predicted state variable is updated using the observed state variable.  The updated state variable 

is calculated using the optimal weights of the predicted and observed state variables. 

 

 

Figure 2 Data assimilation scheme taken from Miyoshi (2005). t0 is the initial time, k is 
the time interval of observation data, shown in black star is initial state 
variable, in green star is observed state variable, in purple star is predicted 
state variable, and in red star is updated state variable. 

 

Data assimilation utilizes observation data, numerical models, and updated system 

(Robinson and Lermusiaux, 2000).  Data assimilation considers modeling error and observation 

error.  All hydrodynamic models are not perfect because of discretization of continuous system 

and parameter settings.  Some sources of error associated with observation include: 1) error of 

measurement noise; 2) error of measurement interpretation.  Thus, data assimilation combines 

uncertainties of numerical models and observation data in the updated system. 

Data assimilation is used in many fields of geosciences, most importantly in weather 

forecasting and hydrology (Fisher, et. al., 2009).  Some of the data assimilation methods are 

nudging methods (Auroux and Blum, 2008), optimal interpolation methods (Tombette, et. al., 
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2009), inverse methods (Evensen, 1994), and Kalman filtering methods.  In this study, Kalman 

filtering based methods are used. 

 

2.2. Kalman Filter 

 

Kalman Filter (KF), a method of data assimilation, is a mathematical method for a linear 

system.  KF estimates state variables using the observation values and predicted values from 

numerical model.  The estimations consider the uncertainty of the predicted value and 

observation value, and compute a weighted average of the predicted value and the observed 

value (Welch and Bishop, 2006).  KF has been used since the 1960’s in scientific fields for 

communication and navigation systems.  More recently, KF is used in variety fields for 

numerical model estimation. 

 Kalman (1960) emphasizes the concept of state and state transition which is a dynamic 

system.  KF uses the dynamic system’s model, e.g., laws of physics, known control inputs to the 

dynamic system, and observations within the environment, to calculate an estimation of the 

variables in the dynamic system.  KF is an attractive method for practical problems of prediction 

since it considers the uncertainties of the dynamic system and the observations. 

 There are three sources of uncertainty associated with the modeling of a dynamic system.  

First, one error source is ‘formulation’ error of the physical system within the natural world.  A 

discrete representation of the continuous system is used for the modeling.  For example, 

geographical features, such as the bottom of the sea, coastline, and riverline cannot be fully 
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represented in the model as continuous features.  The second error source is ‘numerical’ error.  

The numerical errors are mainly from the truncation of the infinite series involved in the 

numerical approximation but also from round-off of calculated values (machine precision).  The 

third error source is ‘data’ error.  Observed data contain error.  This is because the observation of 

a physical process in the natural world involves uncertainty, e.g., with the sensors used for 

measurement, environmental conditions during the time of measurement, and interpretation and 

processing of the measurements. 

The following equations are the basis of KF as presented by Ojima (2009).  KF is based 

on a system equation that predicts the state estimate: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.1) 

 

and the observation equation that relates the observed data and the state estimate: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.2) 

 

where kx  is a vector of the state estimate at time k , kF  is the state transition matrix which 

represents the prediction model, kG  is the driving matrix, kw  is the system noise, ky  is a vector 

of the observations at time k , kH  is the coefficient matrix, expressed as the correspondence 

between the observation and state estimate, and kv  is the observation noise.  The mean errors of 

kkkkk wxx GF +=+1

kkkk vxy += H
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the system noise is assumed to be equal to zero { } 0=kwE , which generates the following 

covariance matrix: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.3) 

 

and making the same assumption for the observation noise { } 0=kvE  generates the following 

covariance matrix: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.4) 

 

with { } 0, =jk vwE  and where kjδ  is Kroncker’s delta (Zwillinger, 2003): 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5) 

 

in which E  is the mean value operator, Q  is the system error covariance, and R  is the 

observation error covariance matrix. 

 External forcing can be applied using boundary conditions, which modifies the system 

equation (Eq. [2.1]) accordingly: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.6) 

 

{ } { } kjwjkjk k
wwEww δQ== T,,cov

{ } { } kjvjkjk k
vvEvv δR== T,,cov



 =

=
otherwise,0

,1 jk
kjδ

kkkkkkk wuxx GDF ++=+1
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where ku  represents the boundary input and kD  takes the form of the state transition matrix 

which represents the treatment of boundary conditions by the prediction model. 

The optimal estimate kx̂  is defined as the average of the predictions kx  given the 

observed data at the current time step ky : { }kkk yxEx ,ˆ = .  The estimated error covariance is 

written as: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.7) 

 

and the estimate ∗
kx  is defined as the average of the predictions kx  given the observed data at the 

previous time step 1−ky : { }1, −
∗ = kkk yxEx .  The predicted error covariance is written as: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.8) 

 

Bayes’ theorem (Zwillinger, 2003) is written in terms of the predictions kx  and observations ky : 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.9) 

 

from which are derived the optimal estimate kx̂ : 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.10a) 

{ } ( ) ( ){ }Tˆ,ˆ,cov kkkkkkk xxxxEyx −−==P

{ } ( ) ( ){ }T
1 ,,cov ∗∗
− −−== kkkkkkk xxxxEyxΓ

( ) ( ) ( )
( )1

1

−

−=
kk

kkkk
kk yyP

yxPxyP
yxP

( )∗∗ −+= kkkkkk xyxx HKˆ
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where the Kalman-gain kK  is computed as: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.10b) 

 

where the estimated error covariance kP  is computed as: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.10c) 

 

and the predicted error covariance 1+kΓ  is computed as: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.10d) 

 

where I  is the identify matrix, Q  is the system error covariance, and R  is the observation error 

covariance. 

 

The algorithm of KF is written as (Ojima and Kawahara, 2009): 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.11a) 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.11b) 

 

( ) 1TT −
+= kkkvkkk k

HΓHRHΓK

( ) kkkk ΓHKIP −=

TT
1 kwkkkkk k

GQGFPFΓ +=+

{ } { }0init0 ˆˆ xx ==Γ

( ) 1TT −
+= HHΓRHΓK kvkk
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.11c) 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.11d) 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.11e) 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.11f) 

 

where { }kx̂  is a vector of the state estimate at time k  and Γ , K , and P  are the predicted error 

covariance, Kalman-gain, and estimated error covariance, respectively.  Eqs. (2.11a) to (2.11d) 

are called offline calculation because they do not rely on the observation data.  Conversely, Eqs. 

(2.11e) and (2.11f) are called online calculation because they use the observation data. 

 As mentioned earlier, KF is a data assimilation method for linear systems.  However, 

most ocean and coastal processes are non-linear.  As an extension of KF, EnKF is developed for 

non-linear problems. 

 

2.3. Ensemble Kalman Filter 

 

EnKF is a sequential data assimilation method for non-linear problems.  Burgers et al. 

(1998) states that (p. 1) 

( ) kkk ΓHKIP −=

TT
1 kwkkkkk GQGFPFΓ +=+

{ } { } kkkkk uxx DF +=∗ ˆ

{ } { } { } { }( )∗∗ −+= kkkkk xyxx HKˆ
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“EnKF is first introduced by Evensen (1994) as an alternative to the traditional extended 

Kalman filter, which has been shown to be based on a statistical linearization or closure 

approximation that is too severe to be useful for some cases with strongly non-linear 

dynamics... EnKF is attractive since it avoids many of the problems associated with the 

traditional extended Kalman filter; for example there is no closure problem as is 

introduced in the extended Kalman filter by neglecting contributions from higher-order 

statistical moments in the error covariance evolution equation… It can also be computed 

at a much lower numerical cost, since usually a rather limited number of model states are 

sufficient for reasonable statistical convergence.  For sufficient ensemble sizes, the errors 

will be dominated by statistical noise, not by closure problems or unbounded error 

variance growth.” 

Then, it has been studied by a lot of researchers (Evensen, 2003; Houtekamer and Mitchell, 

1998; Tippett et al., 2003; Zang and Malanotte-Rizzoli, 2003; Chen et al., 2008). 

 EnKF is composed of data assimilation and ensemble prediction (Miyoshi, 2005).  

Ensemble prediction is mainly used for weather forecasting (Manousos, 2006).  Ensemble 

prediction calculates an ensemble of the state variables in the dynamic system for a future time 

using different ensemble state variables that are generated from the state variable at the current 

time (Figure 3).  Ensemble state variables at time t are generated by adding small error and 

translating them to the future time step.  Then, an average of ensemble can be calculated using 

the ensemble state variables at the future time step.  The averaged state variable is a better 

prediction because error is canceled out by ensemble state variables at the future time step. 
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Figure 3 Ensemble prediction scheme taken form Miyoshi (2005).  Shown in red star 
is the state variable at time t, in red circle is ensemble state variables at time 
t, in red dash circle is ensemble spread at time t, in blue circle is ensemble 
state variables at time t+1, in blue star is the average of state variables at 
time t+1, and in blue ellipsoidal circle is ensemble state spread at time t+1. 

 

EnKF is based on ensemble integrations.  An ensemble of model states is integrated 

forward in time, and the mean and error covariance matrices are calculated at analysis times.  

According to Evensen (2004), the error covariance matrices for the forecasted and the analyzed 

estimate, Pf and Pa, are defined in the KF in terms of the true state as 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.12) 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.13) 

 

where the overbar denotes an expected value, ψ  is the model state vector at a particular time, 

and the superscripts f, a, and t represent forecast, analyzed, and true state, respectively.  

( )( )Tf f t f tψ ψ ψ ψ= − −P

( )( )Ta a t a tψ ψ ψ ψ= − −P
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However, since the true state is not known, it is more convenient to consider ensemble 

covariance matrices around the ensemble mean ψ : 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.14) 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.15) 

 

where the overbar denotes an average over the ensemble.  The ensemble covariance is 

considered the best estimation of the error covariance since the ensemble mean cancels out the 

errors by ensemble members. 

 The following equations include the base equations and the algorithm for EnKF as 

presented by Wang et al., 2009.  For a general stochastic dynamic model the system equation is: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.16) 

 

where xk is the state vector at time k (size n by 1), θ is the system parameter vector (size l by 1) 

and assumed to be known, f represents the model structure, and wk (size n by 1) is the model 

error term, which takes the form of a Gaussian distribution with zero mean and covariance 

matrix Uk (size n by n) which is diagonal.  The observation equation is: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.17) 

( )( )Tf f f f f f
e ψ ψ ψ ψ= − −P P

( )( )Ta a a a a a
e ψ ψ ψ ψ= − −P P

( ) ( )1 , , 0,k k k k kx f x w w N Uθ+ = + 

( ) ( )1 1 1 1 1, , 0,k k k k ky h x v v N Rθ+ + + + += + 
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where yk+1 is the observation vector at time k + 1 (size m by 1), h is a measurement function that 

describes the relationship between observation and the state variables, and vk+1 (size m by 1) is 

the measurement error which has a Gaussian distribution with zero mean and covariance matrix 

Rk+1 (size m by m) which is diagonal.  The model and observation errors are assumed to be 

uncorrelated, i.e., 1 0T
k kE w v +  =  , where the superscript T denotes the matrix transpose.  The 

EnKF translates an ensemble of states in parallel based on Eq. (2.16): 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.18) 

 

where 1|
i
k kx +  is the ith ensemble member forecast at time k + 1, |

i
k kx  is the ith updated ensemble 

member at time k and i
kw  is the generated system noise for the ith ensemble member.  The error 

covariance matrix is calculated based on the forecasted ensemble members: 

 

. . . . . . . . . . . . . . . . . . . (2.19) 

 

where 1|k kx +  is the ensemble mean of the forecasted members and N is the ensemble size.  The 

updated state is calculated by a linear correction, and the analysis step is: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.19) 

 

( )1| | ,i i i
k k k k kx f x wθ+ = +

1
1| 1|1| 1| 1| 1| 1|1|

1 , , ,
1

xx T N
k k k kk k k k k k k k k kk k

X X X x x x x
N

+ ++ + + + ++
 = = − − −∑ 

( )1| 1 1| 1 1 1| ,i i i i
k k k k k k k kx x K y h x θ+ + + + + +

 = + − 
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where 1
i
ky +  is the ith observation sample generated by adding the observation error 1

i
kv +  to the 

actual observation: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.20) 

 

The same KF approach is used, however, for each of the ensemble members.  The important fact 

is that the addition of random perturbations to the observations preserves the variance of the 

analyzed ensemble. 

The Kalman gain matrix Kk+1 can be calculated by: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.21) 

 

where 
1|

xy

k k+∑ is the cross covariance of the forecasted states 1|
i
k kx +  and the forecasted output 

( )1| ,i
k kh x θ+ , and it is approximated as: 

 

. . . . . . . . . . . . . . . . . . . . . (2.22) 

 

where 1|
i
k ky +  is the forecasted output ( )1| ,i

k kh x θ+ , and 1|k ky +  is the forecasted ensemble mean.  

1|

yy

k k+∑  is the error covariance matrix of the forecasted output: 

 

1 1 1
i i
k k ky y v+ + += +

1

1 11| 1|

xy yy
k kk k k k

K R
−

+ ++ +
 = + ∑ ∑

1
1| 1| 1| 1| 1|1| 1|1|

1 , , ,
1

xy T N
k k k k k k k k k kk k k kk k

X Y Y y y y y
N + + + + ++ ++

 = = − − −∑ 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.23) 

 

The updated state error covariance matrix is calculated by the updated states similarly as Eq. 

(2.19).  In the ensemble Kalman filter, the translation of the state error covariance matrix is not 

needed, and the covariance matrices (
1|

xy

k k+∑ ,
1|

yy

k k+∑ , and 
1|

xx

k k+∑ ) are computed through the 

ensemble of members avoiding the computation of observation matrix H. 

Figure 4 depicts the ensemble Kalman filter as the propagation of the state ensemble for a 

simulation where ensemble observations are used in the model estimation method. 

 

1| 1|1|

1
1

yy T
k k k kk k

Y Y
N + ++

=
−∑
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Figure 4 Schematic of the ensemble Kalman filter take from Moradkhani et al. (2005). 
t is the time, and k is the time interval of the observation. 

 

Ensemble Kalman filters have been applied in coastal area modeling (Madsen and 

Canizares, 1999), the ensemble Kalman filter in the Selat Pauh of Singapore (Wei and 

Malanotte-Rizzoli, 2009), and dual state-parameter estimation of hydrological models using 

ensemble Kalman filter (Moradkhani et al., 2005; Wang et al., 2009).  
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CHAPTER 3: MANNING’S N VALUES 
 

3.1. Overview 

 

In hydrodynamic modeling, friction coefficients are commonly used to parameterize drag 

(Hsu et al., 1999).  Drag refers to the hydraulic resistance occurring over the wetted perimeter of 

the flow.  In the estuarine setting, hydraulic resistance generally accounts for roughness due to 

soil grain, bedform variations, and vegetation. 

 Manning’s roughness, frequently used in the calculation of open channel flows (Chow, 

1959), will be employed herein for the parameterization of bottom stress: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.1) 

 

where Q  = flow; A  = cross-sectional area of flow; n  = Manning’s roughness coefficient; 

PAR =  = hydraulic radius of flow, where P  = wetted perimeter; and 0S  = bed slope.  

Manning’s roughness coefficients have been tabulated by Chow (1959) for different material 

types and channel geometries.  Barnes (1967) catalogued Manning’s n values for typical rivers 

and creeks, which range from 0.024 to 0.075. 

 Arcement and Schneider (1989) tabulated Manning’s roughness coefficients for natural 

channels and floodplains as being the composite effect of (Cowen, 1956): 

 

( )unitsmetric21
0

32 SR
n
AQ =



20 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.2) 

 

where 0n  = base value for bare soil; 1n  = correction factor for irregularities; 2n  = correction 

factor for cross-sectional variations; 3n  = correction factor for obstructions; 4n  = correction 

factor for vegetation; m  = correction factor for sinuosity.  With respect to the marshes of the 

Lower St. Johns River, 40 nnn += , since vegetation is prevalent in the domain. 

 Vegetation can dominate drag in shallow water flow (Fathi-Moghadam and Kouwen, 

1997).  Arcement and Schneider (1989) suggested adjustment for 4n  values as small as 0.001 – 

0.010 for little vegetation to as large as 0.100 – 0.200 for extreme vegetation.  Chow (1959) 

suggested Manning’s n values as small as 0.025 – 0.050 for pasture with no brush to as large as 

0.110 – 0.160 for areas with trees. 

 

3.2. Spatially Distributed Bottom Roughness 

 

Base knowledge of spatially distributed Manning’s n values for the Lower St. Johns 

River is obtained from Bacopoulos (2009).  In the work of Bacopoulos (2009), two classes of 

landcover (Table 2) were used over the entire domain in the Lower St. Johns River: ‘open water 

(n = 0.025)’; and ‘emergent herbaceous wetlands (n = 0.050)’. 

( )mnnnnnn 43210 ++++=
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The bottom roughness is another source of uncertainty.  Thus, the ensemble Manning’s n 

values are generated; 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.3) 

 

where ni is ith ensemble Manning’s n, nbase is the base value of Manning’s n for each landcover 

(Table 2), θ is the parameter error coefficient, and N (0,1) is the standard normal distribution 

with zero mean and variance 1.  Constraints will be integrated into the EnKF in order to keep the 

ensemble Manning’s ni values within physically reasonable limits.  The spatial distribution of 

Manning’s n values used herein will be bounded as shown in Table 2.  Bacopoulos (2009) used 

0.025 for ‘open water,’ while Mattocks et al. (2006) and Loder et al. (2009) used 0.020.  Herein, 

the lower limit for ‘open water’ is set equal to 0.010 to be representative of well-compacted mud.  

The upper limit is set equal to 0.035 to be representative of a sandy, undulating bottom.  

Bacopoulos (2009) used 0.050 for ‘emergent herbaceous wetlands,’ while Mattocks et al. (2006) 

used 0.045. 

 

Table 2  Physically based ranges of Manning’s n values. 

Landcover/vegetation Base valuea Lower limit Upper limit 

‘Open water’ 0.025 / 0.020 0.010 0.035 

‘Emergent herbaceous wetlands’ 0.035 / 0.045 / 0.050 0.025 0.075 
a Base values are from either Mattocks et al. (2006), Bacopoulos (2009), or Loder et al. (2009). 

  

* (0,1)i
basen n Nθ= +
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CHAPTER 4: SHALLOW WATER EQUATIONS MODEL 

 

4.1. Governing Equations and Discretization 

 

ADCIRC - 2DDI is the depth-integrated version of the hydrodynamic code ADCIRC and 

is governed by shallow water equations (Luettich and Westerink 2006b; Kolar et al. 1994a; 

Westerink et al. 2008).  In their barotropic form, the shallow water equations are expressed in a 

spherical coordinate system as (Kolar et al., 1994a; Westerink et al., 2008): 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.1) 
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where depth-integrated momentum dispersion φλ ,M  in the longitudinal and latitudinal directions, 

respectively, is given by (Blumberg and Mellor, 1987; Kolar and Gray, 1990): 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.4) 

 

and t  = time; λ , φ  = degrees longitude (east of Greenwich positive) and latitude (north of 

equator positive), respectively; U , V  = depth-integrated velocity in the longitudinal (traversing 

meridians of longitude/east-west movement) and latitudinal (traversing parallels of 

latitude/north-south movement) directions, respectively; H  = total height of the water column, 

ζ+h ; h  = bathymetric depth, relative to NAVD88; ζ  = free surface elevation, relative to 

NAVD88; R  = radius of the Earth; φsin2Ω=f  Coriolis parameter; Ω  = angular speed of the 

Earth; sp  = atmospheric pressure at the free surface; 0ρ  = reference density of water; g  = 

acceleration due to gravity; α  = Earth elasticity factor; 
2hE  = horizontal eddy viscosity; λτ s , φτ s  

= applied free surface stress in the longitudinal and latitudinal directions, respectively; ∗τ  = 

bottom stress; and η  = Newtonian tide potential (Reid, 1990). 

 ADCIRC solves the shallow water equations in the form of the Generalized Wave 

Continuity Equation (GWCE) to provide highly accurate, noise free, finite element-based 

solutions (Lynch and Gray 1979; Kinnmark 1985; Kolar et al. 1994b).  A standard Galerkin 

finite element method is applied on linear, triangular finite elements in space, and a three-level 

implicit scheme in time. 
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 ADCIRC utilizes a quadratic slip formulation for the bottom stress term (Luettich and 

Westerink 2006a), which herein is expressed in terms of Manning’s roughness: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.5) 

 

and vu ,τ  = bottom stress components in the longitudinal and latitudinal directions; 0ρ  = reference 

density of water; U , V  = depth-integrated velocity in the longitudinal and latitudinal directions; 

H  = water column depth; fC  = (dimensionless) bottom friction coefficient; g  is acceleration 

due to gravity; and n  is the Manning’s roughness coefficient. 

 

4.2. DG ADCIRC with EnKF 

 

EnKF is incorporated into DG ADCIRC (Ethan, et. al., 2006a, 2006b, 2007a, 2007b, 

2008, 2009a, and 2009b).  The original DG ADCIRC codes (DG_ADCIRC_hydro_trans_v20.2) 

are provided from Dr. Ethan Kubatko at The Ohio State University.  In this research, the 

following three program files are primarily developed: 1) ADCIRC.F, 2) READ_INPUT.F, and 

3) DG_TIMESTEP.F.  Shown in red are newly developed in DG ADCIRC codes for EnKF.  

More detail of the developments is shown in Appendix A. 
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Table 3 Original DG ADCIRC code vs. DG ADCIRC with EnKF code. 

 DG ADCIRC DG ADCIRC with EnKF 

1) 

Call READ_INPUT.F 

Call CSTART.F or HSTART.F 

Set Flags and coefficients used in time stepping 

Call PREP_DG.F 

DO ITIME_A = ITHS+1,NT 

     Call DG_TIMESTEP.F 

END DO 

Call READ_INPUT.F 

Call CSTART.F or HSTART.F 

Set Flags and coefficients used in time stepping 

Call PREP_DG.F 

Generate initial ensemble states 

Generate ensemble parameters 

DO ITIME_A = ITHS+1,NT 

     Call DG_TIMESTEP.F 

END DO 

2) 

Read fort.14 file 

Read fort.15 file 

Read fort.13 file 

Read fort.dg file 

Read fort.14 file 

Read fort.15 file 

Read fort.13 file 

Read fort.dg file 

Read INPUT.TEXT 

Read ZE_OBS.TEXT 

Read UU_OBS.TEXT 

Read VV_OBS.TEXT 

3) 
Call DG_HYDRO_TIMESTEP.F 

Call DG_SED_TIMESTEP.F 

Call WRITE_RESUTLS.F 

Call DG_HYDRO_TIMESTEP.F 

Call DG_SED_TIMESTEP.F 

Call MPI_ALLREDUCE 

Calculate Cross Covariance 

Calculate Output Error Covariance 

Calculate Kalman Gain 

Update states variables and/or parameters 

Call WRITE_RESUTLS.F 
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CHAPTER 5: IDEALIZED MODEL ESTIMATION 

 

EnKF is validated for preliminary model estimation using the quarter annular harbor 

mesh (http://www.adcirc.org/) (Figure 5) as the test case.  The mesh contains 64 nodes and 96 

elements.  As mentioned earlier, since observation data are required to implement DG ADCIRC-

2DDI with EnKF, six nodes shown in red circle in Figure 5 are set as observation gauging 

stations (from gauges a to f).  To show the validation of the development, two types of 

Manning’s n are used for the simulations.  One is set to n = 0.025 called ‘True’ Manning’s n.  

The other is set to n = 0.035 called ‘Applied’ Manning’s n. 

 

5.1. Model Setup 

 

Three simulations are performed for the mesh: 1) running original DG ADCIRC-2DDI 

using ‘True’ Manning’s n (= 0.025) called a true simulation; 2) running original DG ADCIRC-

2DDI using ‘Applied’ Manning’s n (= 0.035) called an original simulation; and 3) running 

developed DG ADCIRC-2DDI with EnKF using ‘Applied’ Manning’s n (= 0.035) called an 

EnKF simulation.  As mentioned in Chapter 3.2., the ensemble Manning’s ni are need to be 

calculated for the EnKF simulation.  The base value (nbase), the lower limit (nLower), and upper 

limit (nUpper) of the ensemble Manning’s ni are set to 0.035, 0.025, and 0.045, respectively.  

Finite amplitude and advective terms enabled.  The total simulation length is 30 days with 

boundary conditions ramped up the first 3 days.  M2 tidal forcing (amplitude = 0.309 m) is 

http://www.adcirc.org/
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applied on open ocean boundary shown in blue line (Figure 5).  Tidal potential forcings and 

harmonic analysis are not included.  Wetting and drying capability is disabled with the minimum 

water depth set to 1.0 m.  Time step is set to 180-second because of the very simple grid.  The 

GWCE weighting parameter is set equal to -0.01 (Kolar et al., 1994a). 

EnKF is applied during the last 10 days of simulation.  To implement DG ADCIRC-

2DDI with EnKF, the ensemble sizes are set to 20, the observation error coefficients are set to 

30% for WSE, UU, and VV at all gauging stations, and the model error coefficients are set to 

10% for WSE, UU, and VV.  RMSE are calculated for each state variable.  RMSEOriginal for the 

original simulation results can be calculated as: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.1) 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.2) 

 

 

. . . . . . . . . . . . . . . . . . . . . . . (5.3) 

 

where _Time i
TrueStates  is state variable at iteration i from the true simulation (n = 0.025), _Time i

OriginalStates  

is state variable at iteration i from the original simulation (n = 0.035), IFirst is the first iteration 

that EnKF is applied (= day 20th), Time_i is the iteration step (day 20 ≤ Time_i ≤ day 30 every 6 

_ _ _Time i Time i Time i
True Original True OriginalError States States− = −



_

_
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Time i
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Time i IFirst
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Error
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−
=

− =
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min.), and NTotal is the Time_i during the last 10 days (2401).  Similarly, RMSEEnKF for the 

EnKF simulation results can be calculated as: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.4) 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.5) 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6) 

 

where _Time i
EnKFStates  is state variable at iteration i from the EnKF simulation (n = 0.035). 
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Figure 5 Quarter Annular Harbor mesh taken from ADCIRC 
(http://www.adcirc.org/).  Synthetic observation data is available on the 
gauging stations shown in red.  Shown in green circle is non-gauging station 
node. 

 

5.2. Synthetic Observation Data 

 

 The synthetic observation data are generated from the true simulation (n = 0.025) for all 

variables (WSE, UU, and VV) at each gauging station (gauges a to f) every 30 minutes over the 

last 10 days.  Figures 6 to 8 shows observation data at gauges a and f for WSE, UU and VV.  The 

observation data at the other gauging stations are shown in Appendix B. 

a 

b 

c 

d 

e 

f 

g 

http://www.adcirc.org/
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Figure 6 Observation data for WSE at gauge a (upper) and gauge f (bottom). 
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Figure 7 Observation data for UU at gauge a (upper) and gauge f (bottom). 
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Figure 8 Observation data for VV at gauge a (upper) and gauge f (bottom). 
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5.3. Results at gauging station nodes 

 

In this section, simulation results on two observation gauging stations (gauges a and f) 

will be discussed during the last 10 days.  Also, the simulation results on the gauging stations are 

shown at the first day (day 19.5th to 20.5th), the middle day (day 24.5th to 25.5th), and the last day 

(day 29th to 30th).  The simulation results on the other gauging stations are shown in Appendix B. 

 

5.3.1. Water surface elevation 

 

Time series of WSE during the last 10 days on the gauging stations are shown in Figure 

9.  Shown in black line is the WSE from the true simulations using ‘True’ Manning’s n (0.025), 

shown in green line is the WSE from the original simulations using ‘Applied’ Manning’s n 

(0.035), and shown in red line is the averaged ensemble WSE from EnKF simulations using 

‘Applied’ Manning’s n (0.035).  Time series of WSE at the first day, middle day, and last day on 

the gauging stations are shown in Figures 10 to 12.  Shown in yellow star is the average of 

generated ensemble observed WSE which is taken from the EnKF simulation, in blue circle is 

the average of ensemble predicted WSE which is taken from the EnKF simulation, and in red 

diamond is the average of ensemble updated WSE which is taken from the EnKF simulation. 
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Figure 9 Time series of WSE at gauge a (upper) and gauge f (bottom) during last 10 days. 
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Figure 10 Time series of WSE at gauge a (upper) and gauge f (bottom) at the first day. 
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Figure 11 Time series of WSE at gauge a (upper) and gauge f (bottom) at the middle day. 
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Figure 12 Time series of WSE at gauge a (upper) and gauge f (bottom) at the last day.
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As shown in the figures above, the original simulation using ‘Applied’ Manning’s n (= 

0.035) results in smaller amplitudes and delayed phases compared to the true simulation (n = 

0.025) results at the gauge a.  On the gauge f, differences of amplitudes and phases are not as 

obvious, which is because of gauge f so closely located to the open ocean boundary.  Simulation 

results from EnKF match the amplitudes and phases to the true simulation results on the gauge a. 

 RMSE of WSE on the two gauging stations for the original simulation and the EnKF 

simulation are listed below (Table 4). 

Table 4  RMSE of WSE for the simulations on two gauging stations. 

Gauge No. 

RMSE of WSE 

Original (m) EnKF (m) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Gauge a 1.126E-01 0.154E-01 86.3 

Gauge f 1.118E-02 0.343E-02 69.4 

 

RMSEs on the other gauging stations are listed in Appendix B.  As shown in the table above, the 

errors are improved with EnKF by 86% on gauge a and by 70% on gauge f.  DG ADCIRC-2DDI 

with EnKF works effectively on gauging stations for WSE. 
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5.3.2. Depth-integrated velocities in the Easting direction 

 

Time series of UU during the last 10 days on the gauging stations are shown in Figure 13.  

Shown in black line is the UU from the true simulations using ‘True’ Manning’s n (0.025), in 

green line is the UU from the original simulations using ‘Applied’ Manning’s n (0.035), and in 

red line is the averaged ensemble UU from EnKF simulations using ‘Applied’ Manning’s n 

(0.035).  Time series of UU at the first day, middle day, and last day on the gauging stations are 

shown in Figures 14 to 16.  Shown in yellow star is the average of the generated ensemble 

observed UU which is taken from the EnKF simulation, in blue circle is the average of ensemble 

predicted UU which is taken from the EnKF simulation, and in red diamond is the average of 

ensemble updated UU which is taken from the EnKF simulation. 
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Figure 13 Time series of UU at gauge a (upper) and gauge f (bottom) during last 10 days. 
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Figure 14 Time series of UU at gauge a (upper) and gauge f (bottom) at the first day. 
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Figure 15 Time series of UU at gauge a (upper) and gauge f (bottom) at the middle day. 
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Figure 16 Time series of UU at gauge a (upper) and gauge f (bottom) at the last day.
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As shown in the figures above, the original simulation using ‘Applied’ Manning’s n (= 

0.035) results in smaller amplitudes and delayed phases compared to the true simulation (n = 

0.025) results at gauge a.  On gauge f, differences of amplitudes and phases are not as obvious, 

which is because of gauge f so closely located to the open ocean boundary.  The phases of EnKF 

simulation results match well with the phases of the true simulation results.  The amplitudes of 

the EnKF simulation results are updated, i.e., fixed, to the amplitudes of the true simulation 

results.  After EnKF is applied, predicted UU converges to the amplitudes of original simulation 

results, which is because the amplitudes of the velocity are more sensitive to Manning’s n. 

 RMSE of UU on the two gauging stations for the original simulation and the EnKF 

simulation are listed below (Table 5). 

 

Table 5  RMSE of UU for the simulations on two gauging stations. 

Gauge No. 

RMSE of UU 

Original (m/s) EnKF (m/s) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Gauge a 5.785E-02 3.714E-02 35.8 

Gauge f 7.675E-03 3.189E-03 58.4 

 

RMSEs on the other gauging stations are listed in Appendix B.  As shown in the table above, the 

errors are improved with EnKF by 36% on gauge a and by 58% on gauge f.  DG ADCIRC-2DDI 

with EnKF works effectively on gauging stations for UU.  
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5.3.3. Depth-integrated velocities in the Northing direction 

 

Time series of VV during the last 10 days on the gauging stations are shown in Figure 17.  

Shown in black line is the VV from the true simulations using ‘True’ Manning’s n (0.025), in 

green line is the VV from the original simulations using ‘Applied’ Manning’s n (0.035), and in 

red line is the averaged ensemble VV from EnKF simulations using ‘Applied’ Manning’s n 

(0.035).  Time series of VV at the first day, middle day, and last day on the gauging stations are 

shown in Figures 18 to 20.  Shown in yellow star is the average of generated ensemble observed 

VV which is taken from the EnKF simulation, in blue circle is the average of ensemble predicted 

VV which is taken from the EnKF simulation, and in red diamond is the average of ensemble 

updated VV which is taken from the EnKF simulation. 
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Figure 17 Time series of VV at gauge a (upper) and gauge f (bottom) during last 10 days. 
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Figure 18 Time series of VV at gauge a (upper) and gauge f (bottom) at the first day. 
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Figure 19 Time series of VV at gauge a (upper) and gauge f (bottom) at the middle day. 
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Figure 20 Time series of VV at gauge a (upper) and gauge f (bottom) at the last day.
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 As shown in Figure 17 above, the differences between the true simulation results and 

original simulation results are not as obvious on both gauges a and f.  However, the amplitudes 

and phases of the original simulation results are smaller and delayed compared to the true 

simulation results shown in the Figures 18 to 20.  On the other hand, the amplitudes and phases 

of EnKF simulation results match well with the true simulation results.  After EnKF is applied, 

predicted VV converges to the amplitudes of original simulation results, which is because 

amplitudes of the velocity are more sensitive to Manning’s n. 

RMSE of VV on the two gauging stations for the original simulation and the EnKF 

simulation are listed below (Table 6). 

 

Table 6  RMSE of VV for the simulations on two gauging stations. 

Gauge No. 

RMSE of VV 

Original (m/s) EnKF (m/s) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Gauge a 1.340E-02 0.603E-02 55.0 

Gauge f 2.851E-02 0.793E-02 72.2 

 

RMSEs on the other gauging stations are listed in Appendix B.  As shown in the table above, 

errors are improved using EnKF by 55% on gauge a and by 72% on gauge f. DG ADCIRC-2DDI 

with EnKF works effectively on gauging stations for VV.  Thus, DG ADCIRC-2DDI with EnKF 

works effectively on gauging stations for all state variables. 
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5.4. Results at non-gauging station node 

 

In this section, simulation results for the last 10 days at a non-gauging station (gauge g) 

shown in Figure 5 will be discussed.  At the non-gauging station, there are no synthetic 

observation data, but state variables can be updated using EnKF.  The non-gauging station is 

called as a target station.  The simulation results on the target station are shown at the first day 

(day 19.5th to 20.5th), and the middle day (19.5th to 20.5th), and the last day (day 29.0th to 30.0th). 

 

5.4.1. Water surface elevation 

 

 Time series of WSE during the last 10 days on the target station are shown in the top of 

Figure 21.  Shown in black line is the WSE from the true simulations, in green line is the WSE 

from original simulation, and in red line is the averaged ensemble WSE from EnKF simulations.  

Time series of WSE for the first day are shown in the bottom of Figure 21, for the middle day are 

shown in the top of Figure 22, and for the last day are shown in the bottom of Figure 22.  Shown 

in blue circle is the average of ensemble predicted WSE which is taken from the EnKF 

simulation and in red diamond is the average of ensemble updated WSE which is taken from the 

EnKF simulation. 
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Figure 21 Time series of WSE at the target station g during last 10 days (upper) and at the first day (bottom). 
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Figure 22 Time series of WSE at the target station g at the middle day (upper) and at the last day (bottom). 
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 As shown in the figures above, the amplitudes and phases of the original simulation 

results are smaller and delayed compared to the true simulation at the target station.  Both the 

amplitudes and phases of the EnKF simulation results match well with to the true simulation 

results. 

 RMSE of WSE at the target station and two gauging stations for the original simulation 

and the EnKF simulation are listed below (Table 7). 

 

Table 7  RMSE of WSE at the target station and gauging stations. 

Gauge No. 

RMSE of WSE 

Original (m) EnKF (m) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Gauge g 4.447E-02 0.576E-02 87.1 

Gauge a 1.126E-01 0.154E-01 86.3 

Gauge f 1.118E-02 0.343E-02 69.4 

 

As shown in the table above, the errors are improved using EnKF by 87% at the target station 

using EnKF.  DG ADCIRC-2DDI with EnKF works effectively on the target station as well as 

on the gauging stations for WSE. 
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5.4.2. Depth-integrated velocities in the Easting direction 

 

 Time series of UU during the last 10 days on the target station are shown in the top of 

Figure 23.  Shown in black line is the UU from the true simulations, in green line is the UU from 

original simulation, and in red line is the averaged ensemble UU from EnKF simulations.  Time 

series of UU for the first day are shown in the bottom of Figure 23, for the middle day are shown 

in the top of Figure 24, and for the last day are shown in the bottom of Figure 24.  Shown in blue 

circle is the average of ensemble predicted UU which is taken from the EnKF simulation and in 

red diamond is the average of ensemble updated UU which is taken from the EnKF simulation. 
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Figure 23 Time series of UU at the target station g during last 10 days (upper) and at the first day (bottom). 
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Figure 24 Time series of UU at the target station g at the middle day (upper) and at the last day (bottom). 
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As shown in the figures above, the amplitudes and phases of the original simulation 

results are smaller and delayed compared to the true simulation results at the target station.  On 

the other hand, both amplitudes and phases of the EnKF results match well with the true 

simulation results.  After EnKF is applied, predicted UU converges to the amplitudes of the 

original simulation results, which is because amplitudes of the velocity are more sensitive to 

Manning’s n. 

 RMSE of UU at the target station and two gauging stations for the original simulation 

and the EnKF simulation are listed below (Table 8). 

 

Table 8  RMSE of UU at the target station and gauging stations. 

Gauge No. 

RMSE of UU 

Original (m/s) EnKF (m/s) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Gauge g 3.317E-02 1.276E-02 61.5 

Gauge a 5.785E-02 3.714E-02 35.8 

Gauge f 7.675E-03 3.189E-03 58.4 

 

As shown in the table above, the errors are improved by 62% at the target station using EnKF.  

DG ADCIRC-2DDI with EnKF works effectively at the target station as well as on gauging 

station. 
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5.4.3. Depth-integrated velocities in the Northing direction 

 

 Time series of VV during the last 10 days on the target station are shown in the top of 

Figure 25.  Shown in black line is the VV from the true simulations, in green line is the VV from 

original simulation, and in red line is the averaged ensemble VV from EnKF simulations.  Time 

series of VV for the first day are shown in the bottom of Figure 25, for the middle day are shown 

in the top of Figure 26, and for the last day are shown in the bottom of Figure 26.  Shown in blue 

circle is the average of ensemble predicted VV which is taken from the EnKF simulation, and 

shown in red diamond is the average of ensemble updated VV which is taken from the EnKF 

simulation. 
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Figure 25 Time series of VV at the target station g during last 10 days (upper) and at the first day (bottom). 
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Figure 26 Time series of VV at the target station g at the middle day (upper) and at the last day (bottom). 
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As shown in the figures above, the amplitudes and phases of the original simulation 

results are smaller and delayed compared to the true simulation results at the target station.  On 

the other hand, both amplitudes and phases of the EnKF results match well with the true 

simulation results.  After EnKF is applied, predicted VV converges to the amplitudes of original 

simulation results, which is because amplitudes of the velocity are more sensitive to Manning’s 

n. 

RMSE of VV at the target station and two gauging stations for the original simulation 

and the EnKF simulation are listed below (Table 9). 

 

Table 9  RMSE of VV at the target station and gauging stations 

Gauge No. 

RMSE of VV 

Original (m/s) EnKF (m/s) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Gauge g 3.317E-02 1.309E-02 60.5 

Gauge a 1.340E-02 0.603E-02 55.0 

Gauge f 2.851E-02 0.793E-02 72.2 

 

As shown in the table above, the errors are improved by 61% at the target station using EnKF.  

DG ADCIRC-2DDI with EnKF works effectively on the target station as well as on the gauging 

stations for VV.  Thus, DG ADCIRC-2DDI with EnKF works effectively on not only the 

gauging station but also the target station for all state variables.  
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CHAPTER 6: APPLICATION TO LOWER ST. JOHNS RIVER 

 

Four numerical experiments for a real test case are presented in this chapter.  DG 

ADCIRC-2DDI with EnKF is applied to the St. Johns River (Figure 27-a).  The total number of 

nodes and elements in the finite element mesh (Bacopoulos et al. 2012) are 30472 and 56262, 

respectively.  Four NOAA gauging stations are located in the Lower St. Johns River (Figure 27-

b).  In each experiment, three gauging stations (of the four totals) are used in EnKF estimation 

and remaining gauging station is used for comparison, called the target station.  Thus, there are 

four combinations of gauging-target stations for the four experiments: 1) Mayport is the target 

station, 2) Fulton is the target station, 3) Dames Point is the target station, and 4) Jacksonville is 

the target station. 

 

 

Figure 27 a) St. Johns River and b) Lower St. Johns River with four NOAA gauging 
stations. 
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6.1. Model Setup 

 

The model simulates 30 days of tides from September 21st to October 21st, 1999, the 

boundary conditions are ramped up over the first 5.0 days, and the time step is 1.5 sec.  

Boundary conditions include a tidal elevation forcing on the open boundary and no-normal flow 

constraints (with free tangential slip) along all coastlines.  The tidal elevation forcing is 

composed of seven principal tidal constituents (K1, O1, M2, S2, N2, K2, and Q1; see Table 10) 

interpolated from the South Atlantic Bight mesh of Bacopoulos et al. (2011).  Tidal potential 

forcings are not indluded.  Wetting and drying is disabled with the minimum bathymetric depth 

set to 1.0 m.  The advective terms are enabled.  Horizontal eddy viscosity is set equal to 0.0 m2/s.  

The GWCE weighting parameter is set equal to –0.01 (Kolar et al. 1994a).  Ensemble Manning’s 

n for ‘open water’ and ‘emergent herbaceous wetlands’ are calculated using Equation 3.3.  The 

base values, lower limits, and upper limits of the two landcover classes are shown in Table 2. 

EnKF is applied during last 10 days.  To implement DG ADCIRC-2DDI with EnKF, the 

ensemble sizes are set to 30, and model error coefficients are set to 10% for WSE, UU and VV. 
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Table 10 The 7 tidal constituents employed by ADCIRC are sorted in ascending order by 
frequency. 

Constituent Speed (°/hr) Period (hr) 

Q1 13.40 26.87 
O1 13.94 25.82 

K1 15.04 23.93 

N2 28.44 12.66 

M2 28.98 12.42 

S2 30.00 12.00 

K2 30.08 11.97 

 

6.2. Observation data 

 

 Observation data are generated by tidal resynthesis using five constituents (M2, S2, N2, K1, 

and O1) that are derived from raw data at NOAA tide gauging stations (Zang et al., 2006 and 

Bourgerie, 1999).  Time series of observed tidal water levels and along-channel velocities are 

shown in Figures 28 to 31 at each target station.  The observed along-channel velocities cannot 

be directly used in DG ADCIRC-2DDI with EnKF because state variables of DG ADCIRC-

2DDI with EnKF are WSE, UU and VV.  Thus, the along-channel velocities have to be 

decomposed into UU and VV: 

 

( )Along-channel velocity*COSUU Angles= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6.1) 
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( )Along-channel velocity*SINVV Angles= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6.2) 

 

Each angle is shown in the table below (Bourgerie, 1999). 

 

Table 11  Conversion angles at each gauging station (Bourgerie, 1999). 

Gauge Mayport Fulton Dames Point Jacksonville 

Angle 152.46 153.00 175.23 259.90 

 

Time series of observed UU and VV are shown in Figures 32 to 35 at each target station. 

 



67 

 

 

 

Figure 28 Times series of observed tidal water level and along-channel velocity at Mayport. 
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Figure 29 Time series of observed tidal water level and along-channel velocity at Fulton. 
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Figure 30 Times series of observed tidal water level and along-channel velocity at Dames Point. 
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Figure 31 Time series of observed tidal water level and along-channel velocity at Jacksonville. 
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Figure 32 Times series of observed UU and VV at Mayport. 
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Figure 33 Time series of observed UU and VV at Fulton. 
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Figure 34 Time series of observed UU and VV at Dames Point. 
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Figure 35 Time series of observed UU and VV at Jacksonville. 



75 

 

6.2.1. Potential error for observed tidal water level 

 

 As mentioned above, observed tidal water levels are generated using five constituents 

that derived from raw data at NOAA tide gauging stations.  However, observed data includes 

uncertainty (error).  Three potential errors include error of pressure transducer of the tide gauge 

(up to 2cm; IOC 2006), error of geodetic benchmarking of the tide gauge (up to 1cm; Hicks et al. 

1987), and error of harmonic analysis of tide measurements (up to 2cm; Zhang et al. 2006).  The 

percentages of the total potential error for the tidal water levels are listed below (Table 12) at 

each gauging station. 

 

Table 12  Total potential errors for tidal water levels at each gauging station. 

 Mayport Fulton Dames Point Jacksonville 

Maximum tide (m) 0.90 0.75 0.70 0.50 

Minimum tide (m) -0.90 -0.75 -0.70 -0.50 

Total potential error (%) 5.6 6.7 7.1 10.0 

 

 

 

6.2.2. Potential error for observed along-channel velocity 
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 Similarly, two potential errors include error of harmonic analysis of observed tidal 

current constituents (up to 13cm; Bourgerie 1999) and error of conversion from along-channel 

velocities to UU & VV (up to ± 3 degree; Bougerie 1999).  The percentages of the total potential 

error for the along-channel velocities for each gauging station are listed below (Table 13). 

 

Table 13  Total potential errors for tidal water levels at each gauging station. 

 Mayport Fulton Dames Point Jacksonville 

Peak ebb velocity (m/s) 1.40 1.00 1.00 0.85 

Peak flood velocity (m/s) 1.20 1.00 1.00 0.70 

Total potential error (%) 12.3 16.0 16.0 20.6 
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6.3. Simulation 1: Comparison at Mayport 

 

In this section, simulation results during the last 10 days (October 11th to 21st, 1999) at 

the target station Mayport will be discussed.  In addition, simulation results are shown for the 

first day (October 10th at 18:00PM to 11th at 6:00AM, 1999), middle day (October 17th at 

0:00AM to at 12:00AM, 1999), and last day (October 20th at 12AM to 21st at 0:00AM, 1999).  

Simulation results at the gauging stations are shown in Appendix C. 

 

6.3.1. Tidal water level 

 

 Time series of the tidal water level during the last 10 days at the target station Mayport 

are shown in the top of Figure 36.  Shown in black line is the observed tidal water level, in green 

line is the tidal water level from the original DG ADCIRC simulation, and in red line is the 

average of ensemble tidal water levels from DG ADCIRC with EnKF simulation.  Time series of 

the tidal water level for the first day are shown in the bottom of Figure 36, for the middle day are 

shown in the top of Figure 37, and for the last day are shown in the bottom of Figure 37.  Shown 

in blue circle is the average of ensemble predicted tidal water levels which is taken from EnKF 

simulation and red diamond is the average of ensemble updated tidal water levels which is taken 

from EnKF simulation. 
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Figure 36 Time series of the tidal water level during the last 10 days (upper) and at the first day (bottom) at the 
target station (Mayport). 
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Figure 37 Time series of the tidal water level at the middle day (upper) and at the last day (bottom) at the target 
station (Mayport). 
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As shown in the figures above, the amplitudes of the original simulation results do not compare 

well with the observed tidal water level.  However, the amplitudes of the EnKF simulation 

results compare well with the amplitudes of the observed tidal water level. 

 RMSE of the tidal water level at the target station for the original simulation and the 

EnKF simulation are listed below (Table 14). 

 

Table 14  RMSE of the tidal water level at the target station Mayport. 

Gauge Name. 

RMSE of the tidal water level 

Original (m) EnKF (m) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Mayport 3.262E-02 2.147E-02 34.2 

 

As shown in the table above, the errors are improved by 34% at the target station using EnKF.  

RMSEs of the tidal water level at the gauging stations are listed in Appendix C. 
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6.3.2. Along-channel velocity 

 

 Time series of the along-channel velocity during the last 10 days at the target station are 

shown in the top of Figure 38.  Shown in black line is the observed along-channel velocity, in 

green line is the along-channel velocity from the original DG ADCIRC simulation, and in red 

line is the average of ensemble along-channel velocities from the DG ADCIRC with EnKF 

simulation.  Time series of the along-channel velocity for the first day are shown in the bottom of 

Figure 38, for the middle day are shown in the top of Figure 39, and for the last day are shown in 

the bottom of Figure 39.  Shown in blue circle is the average of ensemble predicted along-

channel velocities which is taken from EnKF simulation and in red diamond is the average of 

ensemble updated along-channel velocities which is taken from EnKF simulation. 
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Figure 38 Time series of the along-channel velocity during the last 10 days (upper) and at the first day (bottom) at 
the target station (Mayport). 
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Figure 39 Time series of the along-channel velocity at the middle day (upper) and at the last day (bottom) at the 
target station (Mayport). 
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As shown in the figures above, the amplitudes and phases of the original simulation results do 

not compare well with the observed along-channel velocity.  The amplitude and phases of the 

predicted along-channel velocity shown in blue circle of EnKF simulation results converge to the 

original simulation results.  However, both amplitudes and phases of the EnKF simulation results 

compare well with the observed data. 

 RMSE of the along-channel velocity at the target station for the original simulation and 

the EnKF simulation are listed below (Table 15). 

 

Table 15  RMSE of the along-channel velocity at the target station Mayport. 

Gauge Name. 

RMSE of the along-channel velocity 

Original (m/s) EnKF (m/s) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Mayport 2.354E-01 4.041E-02 82.8 

 

As shown in the table above, the errors are improved using EnKF by 83% at the target station.  

RMSEs of the along-channel velocity at the gauging stations are listed in Appendix C. 

  



85 

 

6.4. Simulation 2: Comparison at Fulton 

 

In this section, simulation results during the last 10 days (October 11th to 21st, 1999) at 

the target station Fulton will be discussed.  In addition, simulation results are shown at the first 

day (October 10th at 18:00PM to 11th at 6:00AM, 1999), middle day (October 17th at 0:00AM to 

at 12:00AM, 1999), and last day (October 20th at 12AM to 21st at 0:00AM, 1999).  Simulation 

results at the gauging stations are shown in Appendix C. 

 

6.4.1. Tidal water level 

 

 Time series of the tidal water level during the last 10 days at the target station are shown 

in the top of Figure 40.  Shown in black line is the observed tidal water level, in green line is the 

tidal water level from the original DG ADCIRC simulation, and in red line is the average of 

ensemble tidal water levels from the DG ADCIRC with EnKF simulation.  Time series of the 

tidal water level for the first day are shown in the bottom of Figure 40, for the middle day are 

shown in the top of Figure 41, and for the last day are shown in the bottom of Figure 41.  Shown 

in blue circle is the average of ensemble predicted tidal water levels which is taken from the 

EnKF simulation and in red diamond is the average of ensemble updated tidal water levels which 

is taken from the EnKF simulation. 
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Figure 40 Time series of the tidal water level during the last 10 days (upper) and at the first day (bottom) at the 
target station (Fulton). 
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Figure 41 Time series of the tidal water level at the middle day (upper) and at the last day (bottom) at the target 
station (Fulton). 
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As shown in the figures above, the amplitudes of the original simulation results compare fairly 

well with the observed tidal water level.  However, the amplitudes of the original simulation 

results are 0.05m smaller than the amplitudes of the observed tidal water level around high or 

low tides.  On the other hand, the amplitudes of the EnKF simulation results match well with the 

amplitudes of the observed tidal water levels. 

 RMSE of the tidal water level at the target station for the original simulation and the 

EnKF simulation are listed below (Table 16). 

 

Table 16  RMSE of the tidal water level at the target station Fulton. 

Gauge Name. 

RMSE of the tidal water level 

Original (m) EnKF (m) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Fulton 2.481E-02 2.058E-02 17.06 

 

As shown in the table above, the errors are improved by 17% at the target station using EnKF.  

RMSEs of the tidal water level at the gauging stations are listed in Appendix C. 
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6.4.2. Along-channel velocity 

 

 Time series of the along-channel velocity during the last 10 days at the target station are 

shown in the top of Figure 42.  Shown in black line is the observed along-channel velocity, in 

green line is the along-channel velocity from the original DG ADCIRC simulation, and in red 

line is the average of ensemble along-channel velocities from the DG ADCIRC with EnKF 

simulation.  Time series of the along-channel velocity for the first day are shown in the bottom of 

Figure 42, for the middle day are shown in the top of Figure 43, and for the last day are shown in 

the bottom of Figure 43.  Shown in blue circle is the average of ensemble predicted along-

channel velocities which is taken from the EnKF simulation and in red diamond is the average of 

ensemble updated along-channel velocities which is taken from the EnKF simulation. 

 



90 

 

 

 

Figure 42 Time series of the along-channel velocity during the last 10 days (upper) and at the first day (bottom) at 
the target station (Fulton). 
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Figure 43 Time series of the along-channel velocity at the middle day (upper) and at the last day (bottom) at the 
target station (Fulton). 
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As shown in the figures above, the amplitudes and phases of the original simulation results do 

not compare well with the observed along-channel velocity.  The amplitudes and phases of the 

predicted along-channel velocity shown in blue circle are closer to the original simulation results.  

On the other hand, both amplitudes and phases of the EnKF simulation results compare well with 

the observed data. 

 RMSE of the along-channel velocity at the target station for the original simulation and 

the EnKF simulation are listed below (Table 17). 

 

Table 17  RMSE of the along-channel velocity at the target station Fulton. 

Gauge Name. 

RMSE of the along-channel velocity 

Original (m) EnKF (m) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Fulton 1.346E-01 3.652E-02 72.9 

 

As shown in the table above, the errors are improved using EnKF by 73% at the target station.  

RMSEs of the along-channel velocity on gauging stations are listed in Appendix C. 
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6.5. Simulation 3: Comparison at Dames Point 

 

In this section, simulation results during the last 10 days (October 11th to 21st, 1999) at 

the target station Dames Point will be discussed.  In addition, the simulation results are shown at 

the first day (October 10th at 18:00PM to 11th at 6:00AM, 1999), middle day (October 17th at 

0:00AM to at 12:00AM, 1999), and last day (October 20th at 12AM to 21st at 0:00AM, 1999).  

Simulation results at the gauging stations are shown in Appendix C. 

 

6.5.1. Tidal water level 

 

 Time series of the tidal water level during the last 10 days at the target station are shown 

in the top of Figure 44.  Shown in black line is the observed tidal water level, in green line is the 

tidal water level from the original DG ADCIRC simulation, and in red line is the average of 

ensemble tidal water levels from the DG ADCIRC with EnKF simulation.  Time series of the 

tidal water level for the first day are shown in the bottom of Figure 44, for the middle day are 

shown in the top of Figure 45, and for the last day are shown in the bottom of Figure 45.  Shown 

in blue circle is the average of ensemble predicted tidal water levels which is taken from the 

EnKF simulation and in red diamond is the average of ensemble updated tidal water levels which 

is taken from the EnKF simulation. 
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Figure 44 Time series of the tidal water level during the last 10 days (upper) and at the first day (bottom) at the 
target station (Dames Point). 
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Figure 45 Time series of the tidal water level at the middle day (upper) and at the last day (bottom) at the target 
station (Dames Point). 
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As shown in the figures above, the amplitudes and phases of the original simulation results are 

different from the observed tidal water level.  However, the amplitudes and phases of the EnKF 

simulation results match well with the observed tidal water level. 

 RMSE of the tidal water level at the target station for the original simulation and the 

EnKF simulation are listed below (Table 18). 

 

Table 18  RMSE of the tidal water level at the target station Dames Point. 

Gauge Name. 

RMSE of the tidal water level 

Original (m) EnKF (m) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Dames Point 4.617E-02 1.933E-02 57.1 

 

As shown in the table above, the errors are improved by 57% at the target station using EnKF.  

RMSEs of the tidal water level on gauging station are listed in Appendix C. 
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6.5.2. Along-channel velocity 

 

 Time series of the along-channel velocity during the last 10 days at the target station are 

shown in the top of Figure 46.  Shown in black line is the observed along-channel velocity, in 

green line is the along-channel velocity from the original DG ADCIRC simulation, and in red 

line is the average of ensemble along-channel velocities from the DG ADCIRC with EnKF 

simulation.  Time series of the along channel velocity for the first day are shown in the bottom of 

Figure 46, for the middle day are shown in the top of Figure 47, and for the last day are shown in 

the bottom of Figure 47.  Shown in blue circle is the average of ensemble predicted along-

channel velocities which is taken from the EnKF simulation and in red diamond is the average of 

ensemble updated along-channel velocities which is taken from the EnKF simulation. 
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Figure 46 Time series of the along-channel velocity during the last 10 days (upper) and at the first day (bottom) at 
the target station (Dames Point). 
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Figure 47 Time series of the along-channel velocity at the middle day (upper) and at the last day (bottom) at the 
target station (Dames Point). 
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As shown in the figures above, the amplitudes and phases of the original simulation results are 

different from the observed along-channel velocity.  The amplitudes and phases of the predicted 

along-channel velocity shown in blue circle do not match well with the observed along-channel 

velocity.  However, the amplitudes and phases of the updated along-channel velocity shown in 

red diamond match well with the observed along-channel velocity. 

 RMSE of the along-channel velocity at the target station for the original simulation and 

the EnKF simulation are listed below (Table 19). 

 

Table 19  RMSE of along-channel velocity at the target station Dames Point. 

Gauge Name. 

RMSE of along-channel velocity 

Original (m) EnKF (m) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Dames Point 1.544E-01 3.519E-02 77.2 

 

As shown in the table above, the errors are improved using EnKF by 77% at the target station.  

RMSEs of the along-channel velocity at the gauging stations are listed in Appendix C. 
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6.6. Simulation 4: Comparison at Jacksonville 

 

In this section, simulation results during the last 10 days (October 11th to 21st, 1999) at 

the target station Jacksonville will be discussed.  In addition, the simulation results are shown at 

the first day (October 10th at 18:00PM to 11th at 6:00AM, 1999), middle day (October 17th at 

0:00AM to at 12:00AM, 1999), and last day (October 20th at 12AM to 21st at 0:00AM, 1999).  

Simulation results at the gauging stations are shown in Appendix C. 

 

6.6.1. Tidal water level 

 

 Time series of the tidal water level during the last 10 days at the target station are shown 

in the top of Figure 48.  Shown in black line is the observed tidal water level, in green line is the 

tidal water level from the original DG ADCIRC simulation, and in red line is the average of 

ensemble tidal water level from the DG ADCIRC with EnKF simulation.  Time series of the tidal 

water level for the first day are shown in the bottom of Figure 48, for the middle day are shown 

in the top of Figure 59, and for the last day are shown in the bottom of Figure 59.  Shown in blue 

circle is the average of ensemble predicted tidal water levels which is taken from the EnKF 

simulation and in red diamond is the average of ensemble updated tidal water levels which is 

taken from the EnKF simulation. 
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Figure 48 Time series of the tidal water level during the last 10 days (upper) and at the first day (bottom) at the 
target station (Jacksonville). 
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Figure 49 Time series of the tidal water level at the middle day (upper) and at the last day (bottom) at the target 
station (Jacksonville). 
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As shown in the figures above, the amplitudes and phases of the original simulation results do 

not match well with the observed tidal water level.  On the other hand, the amplitudes and phases 

of the EnKF simulation results match well with the observed tidal water level. 

 RMSE of the tidal water level at the target station for the original simulation and the 

EnKF simulation are listed below (Table 20). 

 

Table 20  RMSE of the tidal water level at the target station Jacksonville. 

Gauge Name. 

RMSE of the tidal water level 

Original (m) EnKF (m) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Jacksonville 4.695E-02 1.806E-02 61.5 

 

As shown in the table above, the errors are improved by 62% at the target station using EnKF.  

RMSEs of the tidal water level at the gauging stations are listed in Appendix C. 
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6.6.2. Along-channel velocity 

 

 Time series of the along-channel velocity during the last 10 days at the target station are 

shown in the top of Figure 50.  Shown in black line is the observed along-channel velocity, in 

green line is the along-channel velocity from the original DG ADCIRC simulation, and in red 

line is the average of ensemble along-channel velocities from the DG ADCIRC with EnKF 

simulation.  Time series of the along-channel velocity for the first day are shown in the bottom of 

Figure 50, for the middle day are shown in the top of Figure 51, and for the last day are shown in 

the bottom of Figure 51.  Shown in blue circle is the average of ensemble predicted along-

channel velocities which is taken from EnKF simulation and in red diamond is the average of 

ensemble updated along-channel velocities which is taken from EnKF simulation. 
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Figure 50 Time series of the along-channel velocity during the last 10 days (upper) and at the first day (bottom) at 
the target station (Jacksonville). 
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Figure 51 Time series of the along-channel velocity at the middle day (upper) and at the last day (bottom) at the 
target station (Jacksonville). 
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As shown in the figures above, the amplitudes and phases of the original simulation results do 

not compare well with the observed along-channel velocity.  The amplitudes of phases of the 

predicted along-channel velocity shown in blue circle are closer to the original simulation results.  

However, both amplitudes and phases of the updated along-channel velocity compare well with 

the observed along-channel velocity. 

 RMSE of the along-channel velocity at the target station for the original simulation and 

the EnKF simulation are listed below (Table 21). 

 

Table 21  RMSE of along-channel velocity at the target station Jacksonville. 

Gauge Name. 

RMSE of the along-channel velocity 

Original (m) EnKF (m) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Jacksonville 1.343E-01 3.677E-02 72.6 

 

As shown in the table above, the errors are improved using EnKF by 73% at the target station.  

RMSEs of the along-channel velocity at the gauging stations are listed in Appendix C. 
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CHAPTER 7: CONCLUSION 

 

 This thesis presents Ensemble Kalman Filter (EnKF), a sequential data assimilation 

method for non-linear problems, coupled with an ADvanced CIRCulation (ADCIRC) model for 

estimation of state variables (water surface elevations and depth-integrated velocities) in the 

Lower St. Johns River.  EnKF is used to improve state estimation through the incorporation of 

observation data into ADCIRC.  EnKF is incorporated into DG ADCIRC-2DDI for estimating 

state variables.  For the development, the numerical codes of DG ADCIRC-2DDI are modified. 

 First, the development was validated by applying DG ADCIRC-2DDI with EnKF to an 

idealized model with synthetic observation data at six gauging stations.  The quarter annular 

harbor mesh was used as the idealized model.  The simulation run 30-day time period, and EnKF 

was applied during last 10 days.  The errors were improved by 76% for WSE at all gauging 

stations using EnKF.  Similarly, the errors were improved by 55% for UU and 57% for VV at all 

gauging stations using EnKF.  Also, the errors were improved by 87% for WSE, 62% for UU, 

and 61% for VV at a non-gauging station using EnKF. 

 The developed model was further applied to the St. Johns River as a real case.  

Observation data of tides and tidal currents were assembled from four NOAA gauging stations 

located in the Lower St. Johns River.  In the real model estimations, observation data at three 

stations, called gauging stations, were used for EnKF, and observation data at the one station, 

called a target station, was compared to simulation results.  Thus, four different experiments 

using DG ADCIRC-2DDI with EnKF were performed.  In each experiment, the errors were 
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improved by 43% for the tidal water levels at the target stations using EnKF.  Also, the errors 

were improved by 76% for the along-channel velocities at the target stations using EnKF. 

 Thus, DG ADCIRC-2DDI with EnKF worked effectively for estimations of state 

variables on the gauging stations as well as non-gauging stations.  DG ADCIRC-2DDI with 

EnKF adds to the modeling community a practical tool to use for nowcasting and forecasting of 

hydrodynamics in real systems as well as a scientific tool to learn more about the hydrodynamics 

process, both the modeling and observation of, in real systems.  Future work of the thesis is to 

show model sensitivities for the estimation model for the Lower St. Johns River.  One is to 

perform the performance vs. computational cost, i.e. changing ensemble size and increasing 

model error.  The model estimation might be improved with large ensemble size, but the 

computational time is excessive.  Additional sensitivity is the design of observation networks, 

i.e. the total number of observation stations for EnKF and the frequency of observation data.  

Model sensitivity will also be examined with respect to how Manning’s n is parameterized over 

the domain. 
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APPENDIX A: DG ADCIRC WITH EnKF 
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ADCIRC.F 

 ADCIRC.F is a main program in DG ADCIRC codes.  The main tasks for the program 

are to setup model parameter and initial variables, read input files, and call timestep iteration.  In 

the EnKF program, generate initial ensemble variables and ensemble parameters. 

 

READ_INPUT.F 

 READ_INPUT.F, called in ADCIRC.F, is a subroutine in DG ADCIRC codes.  The main 

tasks for the subroutine are to read input files (e.g. fort.13, fort.14, fort.15, and fort.dg etc.).  In 

the EnKF program, new input files are read.  The EnKF general information is read from 

INPUT.TEXT (e.g. ensemble size, first iteration that EnKF is applied, observation nodes, and 

observation error coefficients etc.).  Also, observation data are read at gauging stations from 

ZE_OBS.TEXT, UU_OBS.TEXT, and VV_OBS.TEXT. 

 

DG_TIMESTEP.F 

 DG_TIMESTEP.F, called in ADCIRC.F, is a subroutine in DG ADCIRC codes.  The 

main tasks for the subroutine are to call simulation subroutines (DG_HYDRO_TIMESTEP.F and 

DG_SED_TIMESTEP.F).  In the EnKF program, main EnKF calculations are performed in the 

subroutine.  EnKF is applied when observation data are available.  In the other iteration step, 

original DG ADCIRC is run.  For the EnKF iteration step, original DG ADCIRC is run as a 

prediction step.  Then, a global communication is used to collect results of the prediction step at 

gauging station for each processer.  After the global communication, the cross covariance, the 
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output error covariance, and the Kalman gain are calculated.  Then, all variables are updated 

using the Kalman gain, the observation data, and the predicted states. 
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APPENDIX B: IDEALIZED MODELS 
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Figure 52 Observation data for WSE at gauge b (upper) and gauge c (bottom). 
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Figure 53 Observation data for WSE at gauge d (upper) and gauge e (bottom). 
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Figure 54 Observation data for UU at gauge b (upper) and gauge c (bottom). 
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Figure 55 Observation data for UU at gauge d (upper) and gauge e (bottom). 
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Figure 56 Observation data for VV at gauge b (upper) and gauge c (bottom). 
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Figure 57 Observation data for VV at gauge d (upper) and gauge e (bottom). 
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Figure 58 Time series of WSE at gauge b (upper) and gauge c (bottom) during last 10 days. 
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Figure 59 Time series of WSE at gauge d (upper) and gauge e (bottom) during last 10 days. 
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Figure 60 Time series of WSE at gauge b (upper) and gauge c (bottom) at the first day. 
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Figure 61 Time series of WSE at gauge d (upper) and gauge e (bottom) at the first day. 
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Figure 62 Time series of WSE at gauge b (upper) and gauge c (bottom) at the middle day. 
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Figure 63 Time series of WSE at gauge d (upper) and gauge e (bottom) at the middle day. 
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Figure 64 Time series of WSE at gauge b (upper) and gauge c (bottom) at the last day. 
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Figure 65 Time series of WSE at gauge d (upper) and gauge e (bottom) at the last day.
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Table 22  RMSE of WSE for the simulations at the gauging stations. 

Gauge No. 

RMSE of WSE 

Original (m) EnKF (m) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

b 1.118E-02 3.415E-03 69.5 

c 1.134E-01 1.521E-02 86.6 

d 9.161E-03 3.763E-03 58.9 

e 1.126E-01 1.580E-02 86.6 
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Figure 66 Time series of UU at gauge b (upper) and gauge c (bottom) during last 10 days. 
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Figure 67 Time series of UU at gauge d (upper) and gauge e (bottom) during last 10 days. 
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Figure 68 Time series of UU at gauge b (upper) and gauge c (bottom) at the first day. 
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Figure 69 Time series of UU at gauge d (upper) and gauge e (bottom) at the first day. 
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Figure 70 Time series of UU at gauge b (upper) and gauge c (bottom) at the middle day. 
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Figure 71 Time series of UU at gauge d (upper) and gauge e (bottom) at the middle day. 
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Figure 72 Time series of UU at gauge b (upper) and gauge c (bottom) at the last day. 
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Figure 73 Time series of UU at gauge d (upper) and gauge e (bottom) at the last day.



138 

 

Table 23  RMSE of UU for the simulations at the gauging stations. 

Gauge No. 

RMSE of UU 

Original (m) EnKF (m) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

b 2.851E-02 8.043E-03 71.8 

c 2.693E-02 1.289E-02 52.1 

d 1.920E-02 8.208E-03 57.3 

e 1.340E-02 6.367E-03 52.5 
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Figure 74 Time series of VV at gauge b (upper) and gauge c (bottom) during last 10 days. 
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Figure 75 Time series of VV at gauge d (upper) and gauge e (bottom) during last 10 days. 
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Figure 76 Time series of VV at gauge b (upper) and gauge c (bottom) at the first day. 
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Figure 77 Time series of VV at gauge d (upper) and gauge e (bottom) at the first day. 
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Figure 78 Time series of VV at gauge b (upper) and gauge c (bottom) at the middle day. 
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Figure 79 Time series of VV at gauge d (upper) and gauge e (bottom) at the middle day. 
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Figure 80 Time series of VV at gauge b (upper) and gauge c (bottom) at the last day. 
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Figure 81 Time series of VV at gauge d (upper) and gauge e (bottom) at the last day. 
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Table 24  RMSE of VV for the simulations on the gauging stations. 

Gauge No. 

RMSE of VV 

Original (m) EnKF (m) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

b 7.675E-03 3.144E-03 59.0 

c 2.693E-02 1.307E-02 51.5 

d 1.920E-02 5.337E-03 72.2 

e 5.785E-02 3.673E-02 36.8 

 

  



148 

 

APPENDIX C: SIMULATION RESULTS REAL MODELS 
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Figure 82 Time series of tidal water level during the last 10 days (upper) and at the first day (bottom) at Fulton 
from Simulation 1. 
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Figure 83 Time series of tidal water level at the middle day (upper) and the last day (bottom) at Fulton from 
Simulation 1. 
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Figure 84 Time series of along-channel velocity during the last 10 days (upper) and the first day (bottom) at Fulton 
from Simulation 1. 
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Figure 85 Time series of along-channel velocity at the middle day (upper) and the last day (bottom) at Fulton from 
Simulation 1. 
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Figure 86 Time series of tidal water level during the last 10 days (upper) and at the first day (bottom) at Dames 
Point from Simulation 1. 
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Figure 87 Time series of tidal water level at the middle day (upper) and the last day (bottom) at Dames Point from 
Simulation 1. 
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Figure 88 Time series of along-channel velocity during the last 10 days (upper) and at the first day (bottom) at 
Dames Point from Simulation 1. 
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Figure 89 Time series of along-channel velocity at the middle day (upper) and the last day (bottom) at Dames Point 
from Simulation 1. 
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Figure 90 Time series of tidal water level during the last 10 days (upper) and at the first day (bottom) at 
Jacksonville from Simulation 1. 



158 

 

 

 

Figure 91 Time series of tidal water level at the middle day (upper) and the last day (bottom) at Jacksonville from 
Simulation 1. 
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Figure 92 Time series of along-channel velocity during the last 10 days (upper) and at the first day (bottom) at 
Jacksonville from Simulation 1. 
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Figure 93 Time series of along-channel velocity at the middle day (upper) and the last day (bottom) at Jacksonville 
from Simulation 1.
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Table 25  RMSE of tidal water level at the gauging stations (Simulation 1). 

Gauge Name. 

RMSE of tidal water level 

Original (m) EnKF (m) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Fulton 2.481E-02 2.028E-02 18.3 

Dames Point 4.617E-02 1.967E-02 57.4 

Jacksonville 4.695E-02 1.772E-02 62.3 

 

Table 26  RMSE of along-channel velocity at the gauging stations (Simulation 

1). 

Gauge Name. 

RMSE of along-channel velocity 

Original (m/s) EnKF (m/s) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Fulton 1.346E-01 3.710E-02 72.4 

Dames Point 1.544E-01 3.501E-02 77.3 

Jacksonville 1.343E-01 3.490E-02 74.0 
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Figure 94 Time series of tidal water level during the last 10 days (upper) and at the first day (bottom) at Mayport 
from Simulation 2. 
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Figure 95 Time series of tidal water level at the middle day (upper) and the last day (bottom) at Mayport from 
Simulation 2. 
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Figure 96 Time series of along-channel velocity during the last 10 days (upper) and at the first day (bottom) at 
Mayport from Simulation 2. 
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Figure 97 Time series of along-channel velocity at the middle day (upper) and the last day (bottom) at Mayport 
from Simulation 2. 
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Figure 98 Time series of tidal water level during the last 10 days (upper) and at the first day (bottom) at Dames 
Point from Simulation 2. 
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Figure 99 Time series of tidal water level at the middle day (upper) and the last day (bottom) at Dames Point from 
Simulation 2. 
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Figure 100 Time series of along-channel velocity during the last 10 days (upper) and at the first day (bottom) at 
Dames Point from Simulation 2. 
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Figure 101 Time series of along-channel velocity at the middle day (upper) and the last day (bottom) at Dames Point 
from Simulation 2. 
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Figure 102 Time series of tidal water level during the last 10 days (upper) and at the first day (bottom) at 
Jacksonville from Simulation 2. 
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Figure 103 Time series of tidal water level at the middle day (upper) and the last day (bottom) at Jacksonville from 
Simulation 2. 
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Figure 104 Time series of along-channel velocity during the last 10 days (upper) and at the first day (bottom) at 
Jacksonville from Simulation 2. 
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Figure 105 Time series of along-channel velocity at the middle day (upper) and the last day (bottom) at Jacksonville 
from Simulation 2.
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Table 27  RMSE of tidal water level at the gauging stations (Simulation 2). 

Gauge Name. 

RMSE of tidal water level 

Original (m) EnKF (m) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Mayport 3.2621E-02 2.216E-02 32.1 

Dames Point 4.617E-02 1.931E-02 58.2 

Jacksonville 4.695E-02 1.834E-02 60.9 

 

Table 28  RMSE of along-channel velocity at the gauging stations (Simulation 

2). 

Gauge Name. 

RMSE of along-channel velocity 

Original (m/s) EnKF (m/s) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Mayport 2.354E-01 3.923E-02 83.3 

Dames Point 1.544E-01 3.409E-02 77.9 

Jacksonville 1.343E-01 3.564E-02 73.5 
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Figure 106 Time series of tidal water level during the last 10 days (upper) and at the first day (bottom) at Mayport 
from Simulation 3. 
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Figure 107 Time series of tidal water level at the middle day (upper) and the last day (bottom) at Mayport from 
Simulation 3. 
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Figure 108 Time series of along-channel velocity during the last 10 days (upper) and at the first day (bottom) at 
Mayport from Simulation 3. 
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Figure 109 Time series of along-channel velocity at the middle day (upper) and the last day (bottom) at Mayport 
from Simulation 3. 
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Figure 110 Time series of tidal water level during the last 10 days (upper) and at the first day (bottom) at Fulton 
from Simulation 3. 
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Figure 111 Time series of tidal water level at the middle day (upper) and the last day (bottom) at Fulton from 
Simulation 3. 
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Figure 112 Time series of along-channel velocity during the last 10 days (upper) and at the first day (bottom) at 
Fulton from Simulation 3. 
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Figure 113 Time series of along-channel velocity at the middle day (upper) and the last day (bottom) at Fulton from 
Simulation 3. 
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Figure 114 Time series of tidal water level during the last 10 days (upper) and at the first day (bottom) at 
Jacksonville from Simulation 3. 
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Figure 115 Time series of tidal water level at the middle day (upper) and the last day (bottom) at Jacksonville from 
Simulation 3. 
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Figure 116 Time series of along-channel velocity during the last 10 days (upper) and at the first day (bottom) at 
Jacksonville from Simulation 3. 
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Figure 117 Time series of along-channel velocity at the middle day (upper) and the last day (bottom) at Jacksonville 
from Simulation 3.
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Table 29  RMSE of tidal water level at the gauging stations (Simulation 3). 

Gauge Name. 

RMSE of tidal water level 

Original (m) EnKF (m) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Mayport 3.2621E-02 2.146E-02 34.2 

Fulton 2.481E-02 2.073E-02 16.5 

Jacksonville 4.695E-02 1.788E-02 61.9 

 

Table 30  RMSE of along-channel velocity at the gauging stations (Simulation 

3). 

Gauge Name. 

RMSE of along-channel velocity 

Original (m/s) EnKF (m/s) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Mayport 2.354E-01 3.895E-02 83.5 

Fulton 1.346E-01 3.810E-02 71.7 

Jacksonville 1.343E-01 3.565E-02 73.5 
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Figure 118 Time series of tidal water level during the last 10 days (upper) and at the first day (bottom) at Mayport 
from Simulation 4. 
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Figure 119 Time series of tidal water level at the middle day (upper) and the last day (bottom) at Mayport from 
Simulation 4. 
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Figure 120 Time series of along-channel velocity during the last 10 days (upper) and at the first day (bottom) at 
Mayport from Simulation 4. 
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Figure 121 Time series of along-channel velocity at the middle day (upper) and the last day (bottom) at Mayport 
from Simulation 4. 
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Figure 122 Time series of tidal water level during the last 10 days (upper) and at the first day (bottom) at Fulton 
from Simulation 4. 
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Figure 123 Time series of tidal water level at the middle day (upper) and the last day (bottom) at Fulton from 
Simulation 4. 
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Figure 124 Time series of along-channel velocity during the last 10 days (upper) and at the first day (bottom) at 
Fulton from Simulation 4. 
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Figure 125 Time series of along-channel velocity at the middle day (upper) and the last day (bottom) at Fulton from 
Simulation 4. 
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Figure 126 Time series of tidal water level during the last 10 days (upper) and at the first day (bottom) at Dames 
Point from Simulation 4. 
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Figure 127 Time series of tidal water level at the middle day (upper) and the last day (bottom) at Dames Point from 
Simulation 4. 
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Figure 128 Time series of along-channel velocity during the last 10 days (upper) and at the first day (bottom) at 
Dames Point from Simulation 4. 
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Figure 129 Time series of along-channel velocity at the middle day (upper) and the last day (bottom) at Dames Point 
from Simulation 4. 
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Table 31  RMSE of tidal water level at the gauging stations (Simulation 4). 

Gauge Name. 

RMSE of tidal water level 

Original (m) EnKF (m) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Mayport 3.2621E-02 2.179E-02 33.2 

Fulton 2.481E-02 2.041E-02 17.7 

Dames Point 4.617E-02 1.965E-02 57.4 

 

Table 32  RMSE of along-channel velocity at the gauging stations (Simulation 

4). 

Gauge Name. 

RMSE of along-channel velocity 

Original (m/s) EnKF (m/s) Original EnKF

Original

RMSE RMSE
RMSE

−
(%) 

Mayport 2.354E-01 4.007E-02 83.0 

Fulton 1.346E-01 3.700E-02 72.5 

Dames Point 1.544E-01 3.480E-02 77.5 
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