17 research outputs found

    A Global Systematic Review of Improving Crop Model Estimations by Assimilating Remote Sensing Data: Implications for Small-Scale Agricultural Systems

    Get PDF
    There is a growing effort to use access to remote sensing data (RS) in conjunction with crop model simulation capability to improve the accuracy of crop growth and yield estimates. This is critical for sustainable agricultural management and food security, especially in farming communities with limited resources and data. Therefore, the objective of this study was to provide a systematic review of research on data assimilation and summarize how its application varies by country, crop, and farming systems. In addition, we highlight the implications of using process-based crop models (PBCMs) and data assimilation in small-scale farming systems. Using a strict search term, we searched the Scopus and Web of Science databases and found 497 potential publications. After screening for relevance using predefined inclusion and exclusion criteria, 123 publications were included in the final review. Our results show increasing global interest in RS data assimilation approaches; however, 81% of the studies were from countries with relatively high levels of agricultural production, technology, and innovation. There is increasing development of crop models, availability of RS data sources, and characterization of crop parameters assimilated into PBCMs. Most studies used recalibration or updating methods to mainly incorporate remotely sensed leaf area index from MODIS or Landsat into the WOrld FOod STudies (WOFOST) model to improve yield estimates for staple crops in large-scale and irrigated farming systems. However, these methods cannot compensate for the uncertainties in RS data and crop models. We concluded that further research on data assimilation using newly available high-resolution RS datasets, such as Sentinel-2, should be conducted to significantly improve simulations of rare crops and small-scale rainfed farming systems. This is critical for informing local crop management decisions to improve policy and food security assessments

    Kalman Filters in crop models: old experiences in new contexts

    Get PDF
    Data assimilation has been widely used for improvement of crop modelsā€™ estimates, for example to incorporate the effects of external events or compensate calibration errors in large areas. The term describes multiple approaches for those who want to take advantage of satellite imagery to reduce uncertainty or improve accuracy of model estimates. Kalman Filters are among the most used methods for achieving these goals. But their use in new contexts, i.e., from open field to protected environments, requires untangling aspects of the pipeline that are often performed in many different ways without guidelines, such as which variables to assimilate or how to ascribe uncertainty to observations or model estimates. This study is then divided in two parts. In the first, we review details on how uncertainty is ascribed on crop model estimates and in observations for applications of the Kalman Filter and three variations of the method, i.e., the Extended, Unscented and Ensemble, as well as which state variables are often updated and the frequency with which assimilation may occur, as well as how these aspects are connected to each other. In the second part, we apply different approaches from the reviewed literature in a greenhouse tomato crop model. We use artificial data with controlled noise levels as well as artificial data generated by simulation using other tomato crop model. We assess the impacts of using different methods and different approaches for ascribing uncertainty in model estimates and in observations, by assimilating artificial observations of fruit and of mature fruit biomass. We note that covariances should not be fixed values, that there are trade-offs between ascribing model uncertainty to the state itself and to other elements of the process, that observation covariance may have been considered disproportionality higher when using some ensemble generation approaches in the EnKF, and that bias in model estimates may lead to worse outcomes even when observations are high-quality ones. While we discussed aspects that should be considered in a new environment, many of them are also important for field crops, and we concluded assimilation should follow an assessment of which variables could be useful for assimilation

    Sugarcane yields prediction at the row level using a novel cross-validation approach to multi-year multispectral images

    Full text link
    Early prediction of sugarcane crop yield would benefit sugarcane growers and policymakers by allowing for timely decisions. The primary objective of this study was to reduce reliance on satellite images and improve early prediction of sugarcane yield at row level by using high-resolution multispectral Unmanned Aerial Vehicle (UAV) imagery. To our knowledge, no previous study has evaluated the performance of multispectral UAV-derived vegetation indices in sugarcane crops at the crop row level. In this study, we used UAV mapping on 48 rows of sugarcane at three main growth stages (early, middle, and mature) over three growing seasons. A secondary objective was to predict future sugarcane yields at the earliest possible stage of growth. The results showed that the optimal growth stage for all 23 VIs varied, but the middle stage, from mid-March to early May, was the most prevalent. Further detailed analysis in the middle stage revealed that March was the best month for predicting future sugarcane yields when compared to April and May. This result is approximately a month earlier than previous studies in the same region. Following two stages of feature selection, such as Pearson correlation analysis and stepwise feature selection, a novel cross-validation methodology based on a generalized linear model trained and tested the yield prediction models on various combinations of the VIs. This novel methodology improves model accuracy by avoiding overfitting and over complexity caused by interdependent VIs, and then validates the model generality using previously unseen data. The best performance was achieved by combining the Normalized Difference RedEdge (NDRE) and the Greenā€“Red Normalized Difference Vegetation Index (GRNDVI) at March. These results help growers and decision-makers benefit from early row-level yield forecast, six months before harvest, if UAV mapping is available

    Crop monitoring and yield estimation using polarimetric SAR and optical satellite data in southwestern Ontario

    Get PDF
    Optical satellite data have been proven as an efficient source to extract crop information and monitor crop growth conditions over large areas. In local- to subfield-scale crop monitoring studies, both high spatial resolution and high temporal resolution of the image data are important. However, the acquisition of optical data is limited by the constant contamination of clouds in cloudy areas. This thesis explores the potential of polarimetric Synthetic Aperture Radar (SAR) satellite data and the spatio-temporal data fusion approach in crop monitoring and yield estimation applications in southwestern Ontario. Firstly, the sensitivity of 16 parameters derived from C-band Radarsat-2 polarimetric SAR data to crop height and fractional vegetation cover (FVC) was investigated. The results show that the SAR backscatters are affected by many factors unrelated to the crop canopy such as the incidence angle and the soil background and the degree of sensitivity varies with the crop types, growing stages, and the polarimetric SAR parameters. Secondly, the Minimum Noise Fraction (MNF) transformation, for the first time, was applied to multitemporal Radarsat-2 polarimetric SAR data in cropland area mapping based on the random forest classifier. An overall classification accuracy of 95.89% was achieved using the MNF transformation of the multi-temporal coherency matrix acquired from July to November. Then, a spatio-temporal data fusion method was developed to generate Normalized Difference Vegetation Index (NDVI) time series with both high spatial and high temporal resolution in heterogeneous regions using Landsat and MODIS imagery. The proposed method outperforms two other widely used methods. Finally, an improved crop phenology detection method was proposed, and the phenology information was then forced into the Simple Algorithm for Yield Estimation (SAFY) model to estimate crop biomass and yield. Compared with the SAFY model without forcing the remotely sensed phenology and a simple light use efficiency (LUE) model, the SAFY incorporating the remotely sensed phenology can improve the accuracy of biomass estimation by about 4% in relative Root Mean Square Error (RRMSE). The studies in this thesis improve the ability to monitor crop growth status and production at subfield scale

    On the Use of Imaging Spectroscopy from Unmanned Aerial Systems (UAS) to Model Yield and Assess Growth Stages of a Broadacre Crop

    Get PDF
    Snap bean production was valued at $363 million in 2018. Moreover, the increasing need in food production, caused by the exponential increase in population, makes this crop vitally important to study. Traditionally, harvest time determination and yield prediction are performed by collecting limited number of samples. While this approach could work, it is inaccurate, labor-intensive, and based on a small sample size. The ambiguous nature of this approach furthermore leaves the grower with under-ripe and over-mature plants, decreasing the final net profit and the overall quality of the product. A more cost-effective method would be a site-specific approach that would save time and labor for farmers and growers, while providing them with exact detail to when and where to harvest and how much is to be harvested (while forecasting yield). In this study we used hyperspectral (i.e., point-based and image-based), as well as biophysical data, to identify spectral signatures and biophysical attributes that could schedule harvest and forecast yield prior to harvest. Over the past two decades, there have been immense advances in the field of yield and harvest modeling using remote sensing data. Nevertheless, there still exists a wide gap in the literature covering yield and harvest assessment as a function of time using both ground-based and unmanned aerial systems. There is a need for a study focusing on crop-specific yield and harvest assessment using a rapid, affordable system. We hypothesize that a down-sampled multispectral system, tuned with spectral features identified from hyperspectral data, could address the mentioned gaps. Moreover, we hypothesize that the airborne data will contain noise that could negatively impact the performance and the reliability of the utilized models. Thus, We address these knowledge gaps with three objectives as below: 1. Assess yield prediction of snap bean crop using spectral and biophysical data and identify discriminating spectral features via statistical and machine learning approaches. 2. Evaluate snap bean harvest maturity at both the plant growth stage and pod maturity level, by means of spectral and biophysical indicators, and identify the corresponding discriminating spectral features. 3. Assess the feasibility of using a deep learning architecture for reducing noise in the hyperspectral data. In the light of the mentioned objectives, we carried out a greenhouse study in the winter and spring of 2019, where we studied temporal change in spectra and physical attributes of snap-bean crop, from Huntington cultivar, using a handheld spectrometer in the visible- to shortwave-infrared domain (400-2500 nm). Chapter 3 of this dissertation focuses on yield assessment of the greenhouse study. Findings from this best-case scenario yield study showed that the best time to study yield is approximately 20-25 days prior to harvest that would give out the most accurate yield predictions. The proposed approach was able to explain variability as high as R2 = 0.72, with spectral features residing in absorption regions for chlorophyll, protein, lignin, and nitrogen, among others. The captured data from this study contained minimal noise, even in the detector fall-off regions. Moving the focus to harvest maturity assessment, Chapter 4 presents findings from this objective in the greenhouse environment. Our findings showed that four stages of maturity, namely vegetative growth, budding, flowering, and pod formation, are distinguishable with 79% and 78% accuracy, respectively, via the two introduced vegetation indices, as snap-bean growth index (SGI) and normalized difference snap-bean growth index (NDSI), respectively. Moreover, pod-level maturity classification showed that ready-to-harvest and not-ready-to-harvest pods can be separated with 78% accuracy with identified wavelengths residing in green, red edge, and shortwave-infrared regions. Moreover, Chapters 5 and 6 focus on transitioning the learned concepts from the mentioned greenhouse scenario to UAS domain. We transitioned from a handheld spectrometer in the visible to short-wave infrared domain (400-2500 nm) to a UAS-mounted hyperspectral imager in the visible-to-near-infrared region (400-1000 nm). Two years worth of data, at two different geographical locations, were collected in upstate New York and examined for yield modeling and harvest scheduling objectives. For analysis of the collected data, we introduced a feature selection library in Python, named ā€œJostarā€, to identify the most discriminating wavelengths. The findings from the yield modeling UAS study show that pod weight and seed length, as two different yield indicators, can be explained with R2 as high as 0.93 and 0.98, respectively. Identified wavelengths resided in blue, green, red, and red edge regions, and 44-55 days after planting (DAP) showed to be the optimal time for yield assessment. Chapter 6, on the other hand, evaluates maturity assessment, in terms of pod classification, from the UAS perspective. Results from this study showed that the identified features resided in blue, green, red, and red-edge regions, contributing to F1 score as high as 0.91 for differentiating between ready-to-harvest vs. not ready-to-harvest. The identified features from this study is in line with those detected from the UAS yield assessment study. In order to have a parallel comparison of the greenhouse study against the UAS study, we adopted the methodology employed for UAS studies and applied it to the greenhouse studies, in Chapter 7. Since the greenhouse data were captured in the visible-to-shortwave-infrared (400-2500 nm) domain, and the UAS study data were captured in the VNIR (400-1000 nm) domain, we truncated the spectral range of the collected data from the greenhouse study to the VNIR domain. The comparison experiment between the greenhouse study and the UAS studies for yield assessment, at two harvest stages early and late, showed that spectral features in 450-470, 500-520, 650, 700-730 nm regions were repeated on days with highest coefficient of determination. Moreover, 46-48 DAP with high coefficient of determination for yield prediction were repeated in five out of six data sets (two early stages, each three data sets). On the other hand, the harvest maturity comparison between the greenhouse study and the UAS data sets showed that similar identified wavelengths reside in āˆ¼450, āˆ¼530, āˆ¼715, and āˆ¼760 nm regions, with performance metric (F1 score) of 0.78, 0.84, and 0.9 for greenhouse, 2019 UAS, and 2020 UAS data, respectively. However, the incorporated noise in the captured data from the UAS study, along with the high computational cost of the classical mathematical approach employed for denoising hyperspectral data, have inspired us to leverage the computational performance of hyperspectral denoising by assessing the feasibility of transferring the learned concepts to deep learning models. In Chapter 8, we approached hyperspectral denoising in spectral domain (1D fashion) for two types of noise, integrated noise and non-independent and non-identically distributed (non-i.i.d.) noise. We utilized Memory Networks due to their power in image denoising for hyperspectral denoising, introduced a new loss and benchmarked it against several data sets and models. The proposed model, HypeMemNet, ranked first - up to 40% in terms of signal-to-noise ratio (SNR) for resolving integrated noise, and first or second, by a small margin for resolving non-i.i.d. noise. Our findings showed that a proper receptive field and a suitable number of filters are crucial for denoising integrated noise, while parameter size was shown to be of the highest importance for non-i.i.d. noise. Results from the conducted studies provide a comprehensive understanding encompassing yield modeling, harvest scheduling, and hyperspectral denoising. Our findings bode well for transitioning from an expensive hyperspectral imager to a multispectral imager, tuned with the identified bands, as well as employing a rapid deep learning model for hyperspectral denoising

    IoT Applications Computing

    Get PDF
    The evolution of emerging and innovative technologies based on Industry 4.0 concepts are transforming society and industry into a fully digitized and networked globe. Sensing, communications, and computing embedded with ambient intelligence are at the heart of the Internet of Things (IoT), the Industrial Internet of Things (IIoT), and Industry 4.0 technologies with expanding applications in manufacturing, transportation, health, building automation, agriculture, and the environment. It is expected that the emerging technology clusters of ambient intelligence computing will not only transform modern industry but also advance societal health and wellness, as well as and make the environment more sustainable. This book uses an interdisciplinary approach to explain the complex issue of scientific and technological innovations largely based on intelligent computing

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production
    corecore