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Abstract: There is a growing effort to use access to remote sensing data (RS) in conjunction with crop
model simulation capability to improve the accuracy of crop growth and yield estimates. This is critical
for sustainable agricultural management and food security, especially in farming communities with
limited resources and data. Therefore, the objective of this study was to provide a systematic review of
research on data assimilation and summarize how its application varies by country, crop, and farming
systems. In addition, we highlight the implications of using process-based crop models (PBCMs) and
data assimilation in small-scale farming systems. Using a strict search term, we searched the Scopus
and Web of Science databases and found 497 potential publications. After screening for relevance
using predefined inclusion and exclusion criteria, 123 publications were included in the final review.
Our results show increasing global interest in RS data assimilation approaches; however, 81% of
the studies were from countries with relatively high levels of agricultural production, technology,
and innovation. There is increasing development of crop models, availability of RS data sources,
and characterization of crop parameters assimilated into PBCMs. Most studies used recalibration or
updating methods to mainly incorporate remotely sensed leaf area index from MODIS or Landsat into
the WOrld FOod STudies (WOFOST) model to improve yield estimates for staple crops in large-scale
and irrigated farming systems. However, these methods cannot compensate for the uncertainties
in RS data and crop models. We concluded that further research on data assimilation using newly
available high-resolution RS datasets, such as Sentinel-2, should be conducted to significantly improve
simulations of rare crops and small-scale rainfed farming systems. This is critical for informing local
crop management decisions to improve policy and food security assessments.

Keywords: process-based crop models; earth observation; data assimilation; crop yield estimates;
data limitation

1. Introduction

Global agricultural systems are under significant pressure due to population growth,
limited productive land, water scarcity, and climate change. In Africa, these pressures
further exacerbate in small-scale farming systems that are highly dependent on erratic
rainfall and affected by various socioeconomic factors, such as poverty, food insecurity, and
limited access to technical support and financial resources, which limit their ability to adapt
to multiple stressors [1,2]. Therefore, there is a need to find agricultural land management
strategies that maximize food production with lower resource inputs, often referred to as
“sustainable intensification” [3], especially in small-scale farming systems.

Process-based crop models (PBCMs) are among the essential numerical tools used to
explore the effects of potential sustainable agricultural land management practices on crop
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growth and yield [4,5]. Such models use mathematical equations to capture the relationship
between a crop’s environmental conditions and mechanistic biophysical processes [6]. In
addition, they focus on dynamically describing the physiological processes that drive plant
growth, including photosynthesis, respiration, and evapotranspiration [7]. Thus, PBCMs
can estimate potential or water-limited yield as a function of climate, soil conditions, and
cropping practices. At the same time, they simulate crop growth limits at the model’s
time step (i.e., daily). PBCMs can be used as a decision-support tool to evaluate the effects
of current and future limiting factors, such as climate, soil, water, nutrient stress, and
crop management, on crop growth and yield. However, numerous uncertainties often
compromise the performance of these models, particularly the quality and quantity of
input data required to initialize and calibrate PBCMs [8,9]. For example, applying PBCMs
for estimating crop growth and yield over large areas remains limited due to the lack
of essential information on spatial variations in soil properties, weather variables, crop
varieties, plant conditions variables, and crop management strategies [10]. Additional
uncertainties may arise from model parameterization (e.g., exclusion of diseases and pest
effects), climate drivers (e.g., localized frost), and simplified model process descriptions.
These uncertainties reduce the accuracy with which the models can be used to estimate
crop growth and yield, limiting the utility of their applicability.

Several studies have proposed integrating external observations of crop parameters
from remote sensing (RS) into crop models to improve model calibration and the accuracy
of estimates, a process called data assimilation [11,12]. Data assimilation can be used
when there are uncertainties in certain model input values. In addition, it can be used to
adjust the model to account for excluded biophysical processes to reduce discrepancies
between model estimates and actual observations. The continuous development of RS
technology and sensors has led to a timely, accurate, and consistent collection of estimates
for certain key biophysical variables of crops at field and regional scales [13,14]. Accessible
and inexpensive datasets from RS can be used to measure several plant variables, including
the leaf area index (LAI) [12], soil moisture (SM) [15], evapotranspiration (ET) [16], nitrogen
content [17], chlorophyll content [18], and the fraction of absorbed photosynthetically active
radiation (FAPAR) [19]. The inclusion of these variables in the PBCMs leads to a better
characterization of the heterogeneity within the agricultural systems and a reflection of
actual seasonal vegetation dynamics in the simulations.

There are increasing efforts to use the dynamic simulation capacity of PBCMs in con-
junction with access and spatial quantification of RS data. Currently, three data assimilation
methods are used to assimilate RS data into a PBCM: forcing, recalibration, and updating.
In the forcing method, the state variables in the crop model are replaced with estimated RS
data to improve the simulation results [20]. In the recalibration method, the state variables
are re-initialized or re-estimated to an optimal level using optimization algorithms that
minimize the difference between the derived and model-simulated state variables [21].
The updating method assumes that better estimation of the model state variables on “day
t” by combining model estimation and RS observation will increase the accuracy of the
model-simulated variables over subsequent days [22]. Therefore, model state variables
are updated directly as observed RS data become available. A typical data assimilation
process and the differences between data assimilation methods are best illustrated in previ-
ous reviews [23,24]. Nevertheless, the extent to which these methods have been applied
worldwide and under different agricultural systems, including heterogeneous small-scale,
rainfed, and often data-poor conditions, is still limited.

Several previous studies have highlighted opportunities to improve crop model esti-
mates by assimilating RS data, including recent reviews [23–26] that focused on providing
an overview of crop model development, RS technology, data assimilation methods, algo-
rithms, and sources of uncertainty. However, none of these reviews focused exclusively
on how the application of data assimilation differs by country, crop, and farming system.
More specifically, none focused on how small-scale farming systems in data-limited areas
such as Africa can benefit from this approach. Assessing the field’s current state will also
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highlight developments that will support future research and democratize the use of crop
models, especially in areas with limited data. Thus, this study aims to provide a systematic
overview of data assimilation research and to summarize how its application varies by
country, crop, and farming system. The specific objectives are (1) to present the temporal
scope and geographical distribution of relevant studies around the world; (2) to provide
an overview of the major crop, crop model, and remote sensing datasets used during the
data assimilation process; (3) to summarize the different data assimilation methods used
and discuss their strengths and drawbacks; (4) to evaluate the agricultural systems under
which these studies are conducted and discuss the challenges associated them; and (5) to
highlight the implications of implementing PBCMs and data assimilation in small-scale
agricultural systems.

2. Materials and Methods
2.1. Systematic Review

This study conducted a systematic literature review to adequately structure and thor-
oughly evaluate existing research on integrating RS data into crop models. We particularly
considered the guidelines for systematic reviews in environmental management [27,28] in
this study. The overarching research question, “To what extent does research focused on in-
tegrating RS data into PBCM to improve crop growth and yield estimation differ by country,
crop, and farming systems?” was divided into clearly searchable concepts using the PICO
framework: population; intervention; comparison; and outcome. In the present study, the
PICO was defined as population—cropping systems worldwide; intervention—integration
of RS data into PBCMs; comparison—data assimilation methods and algorithms; and
outcome—improving crop growth and yield estimation.

2.2. Literature Selection Process

As part of this study, we conducted a broad literature search using two peer-reviewed
databases of professional publications: Web of Science (Core Collection) and Scopus. These
databases contain extensive, best-recorded, up-to-date, and interdisciplinary academic jour-
nals and reports [28,29]. Nevertheless, this study may have missed other relevant studies
not indexed in these databases. The initial literature search included publications from
1995 to 2021, but 84% were between 2011 and 2021. Only publications published between
1 January 2011 and 31 July 2021 were considered for further analysis. We performed the
database searches in English and used an asterisk (*) to capture multiple word endings,
e.g., remote* to pick up both remotely and remote. We used the following general terms in
the search for relevant articles were:

(remote* OR “earth observation*” OR “spatio-temporal*” OR satellite*) AND (as-
similation OR “data assimilation*” OR “data integration*”) AND (“crop model*” OR
“crop growth*” OR “crop simulation model*”) AND (agricultur* OR yield* OR crop* OR
“vegetation indices”)

The process was iterative and allowed the exploration of different keywords. We used
rigorous inclusion/exclusion criteria to select relevant articles that addressed improving
crop model estimates by assimilating remote sensing data. Table 1 and Figure 1 summarize
the data selection process.

Table 1. The inclusion and exclusion criteria for the literature selection.

Search Protocol Inclusion Criteria Exclusion Criteria

Initial database and
document search

English literature Non-English literature

The use of both remote sensing and crop models Studies on the exclusive use of remote sensing or
crop models

Application in cropping systems Application in other sectors such as hydrology,
health, fire, forests, and pests
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Table 1. Cont.

Search Protocol Inclusion Criteria Exclusion Criteria

Removal of duplicates Single studies Duplicated studies from the different databases

Title and
abstract screening

Studies after 2011 Studies before 2011
Original studies A literature review or discourse analysis

Assimilation of remote sensing data into crop
models to assess and/or monitor crop growth and
crop yield

Title and/or abstract that is out of the general
scope of the current study, abstract not available,
or abstract without the data assimilation of remote
sensing and crop models

Full-text screening
and reviewing

Assimilation of remote sensing data into crop
models using forcing, recalibration, or
updating methods

No mention of data assimilation methods; remote
sensing data used as a proxy indicator

Studies aimed at improving crop yield and the
accuracy of crop growth outputs predictions

Studies not aimed at improving crop productivity
and the accuracy of crop growth
output predictions

Studies that used process-based crop
models (PBCMs) Studies that used other types of crop models

Clearly stated the assimilation algorithm used No mention of the assimilation algorithm used
National, subnational, and local scale Regional and global analyses
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We imported the search results into the EndNote (https://endnote.com/) reference
manager software for further analysis and identified 497 studies in the two databases
(Figure 1). These were peer-reviewed articles and grey literature (e.g., conference proceed-
ings, working papers, and project reports). The first screening stage consisted of automatic
(using the duplicate function in EndNote) and manual removal of all duplicate publications.
During the title and abstract screening, we removed all publications unrelated to this
study’s objectives. In addition, we removed literature reviews and discourse studies. Only

https://endnote.com/
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studies that used PBCMs were included in the full-text review and rescreening, as they
can evaluate multiple growth and yield limiting factors at different spatial and temporal
resolutions. In addition, only studies that had full English text clearly stating the data
assimilation method and algorithm used that were conducted at the national, subnational,
and local levels were included in the final review. Ultimately, this systematic review con-
sisted of 123 studies (Figure 1). These included 103 scientific journal articles (84%) and
20 conference papers (16%).

2.3. Review Analysis

The selected studies were coded for information and classified into thematic groups.
These included the geographic location of the study, the crop and crop model used, the RS
data used, the state variable derived from RS data, the data assimilation method and the
algorithm used, the scope and overall objective of the study, the cropping system (i.e., small-
scale, rainfed), and the challenges of in assimilating RS with crop models. This study defines
small-scale agricultural systems as cropping systems where the main production is for
subsistence and only a small portion (i.e., when there is a surplus) is marketed [30]. In
addition, these systems are located in rural areas and have limited data, resources, and
different climatic and non-climatic conditions [2]. These thematic groups demonstrate the
depth of this systematic review and the extent to which assimilation of RS data has been
used in PBCMs worldwide.

3. Results
3.1. Temporal Scope

Over the past decade, there has been an increasing trend in publications focused on
improving crop model estimates by integrating RS data from around the world (Figure 2).
The number of publications was highest especially in the last three years (2019–2021),
accounting for about 45% of the reviewed studies.
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3.2. Geographical Distribution

Most identified studies that focused on improving crop model estimation by assimilat-
ing RS data were conducted in Asia, Europe, and North America (Figure 3), with Asia having
the highest proportion (71%). More specifically, these studies were mainly conducted in
China (63%) [31,32] and the United States (US) (7%) [33,34]. France [35,36], Germany [37,38],
and Italy [39,40] each contributed 5%. In contrast, South America (3%) and Africa (<1%)
showed a lack of data assimilation research, with studies conducted only in Brazil [41,42],
Uruguay [7,43], and Ethiopia [44]. The geographic distribution of the identified data as-
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similation research seems to reflect regional differences in the progress of and access to
agricultural technologies and innovation status. In addition, China, the US, France, and
Germany are among the top ten agricultural-producing countries in the world. Thus, the
predominance of data assimilation research in Asia, Europe, and North America indicates
a focus on relatively advanced regions in agricultural production, technology, and innova-
tion. This also shows where the research groups currently working on data assimilation
are located.
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3.3. Crop Models

The studies reviewed have integrated RS data into many PBCMs to improve crop
growth and yield (Tables A1–A3). These include WOrld FOod STudies (WOFOST) [45,46],
Decision Support System for Agro-technology Transfer (DSSAT) [47,48], a Simple Algorithm
For Yield (SAFY) [49,50], AquaCrop [51,52], and Soil Water Atmosphere Plant–WOrld
FOod STudies (SWAP-WOFOST) [53,54]. Most of these studies used data assimilation
to improve crop growth and yield estimates of staple crops (94%), consisting of maize,
rice, soybeans, and wheat [55,56] (Tables A1–A3). In addition, other studies examined
barley [57], jujube [58,59], and sugarcane [19,60].

3.4. Remote Sensing Datasets

We observed a positive trend in the availability and spatiotemporal details of the RS
datasets (Table 2). This trend argues for using RS data for short- and long-term analyses.
Most data assimilation studies (n = 34) used the Moderate Resolution Imaging Spectrora-
diometer (MODIS) Terra or Aqua datasets to estimate crop state variables [61,62]. MODIS
data have been freely available for decades (since 1999) with a daily temporal resolution.
However, they are limited by their low spatial resolution (250–1000 m). Other studies
used Landsat datasets (n = 27), which have higher spatial resolution (30–120 m) but lower
temporal resolution (16 days) [63,64]. With such low temporal resolution, the acquisition of
analyzable Landsat imagery may be less frequent and strongly influenced by cloud cover.

Other studies used optical RS datasets with high spatial and temporal resolution,
including Sentinel-2 [65,66], Huanjing-1 [67,68], RapidEye [69,70], SPOT-6 [71], and
GeoFan-1 [72]. However, the optical satellite sensors only work during the daytime and
are limited by weather conditions and vegetation density. In comparison, other studies
have used radar RS datasets, such as Sentinel-1 [56] and RadarSAT-2 [73], which are not
limited by light availability and can penetrate through clouds and particular vegetation.
Recent advances in science and technology have led to the development of unmanned
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aerial vehicles (UAVs) and affordable, portable field sensors. Therefore, several studies
assimilated have evaluated data from UAVs [54,74] and ASD FieldSpec Spectrometer field
sensors [75,76].

Table 2. Remote sensing datasets and their resolutions in the selected papers.

Satellite (Years Active) Sensor Spatial Resolution Temporal Resolution Total Papers

MODIS (Terra: 1999–present,
Aqua: 2002–present) Terra; Aqua 250–1000 m 1–2 days 34

Landsat-5 (1984–2013) MSS; TM

30–120 m 16 days 27Landsat-7 (1999–present) ETM

Landsat-8 (2013–present) OLI; TIRS

HJ-1 A/B CCD (2009–present) Optical 30 m 2–4 days 22

Sentinel-1 (2013–present) Radar
5–60 m 1–5 days 17

Sentinel-2 (2015–present) Optical

Field sensors Multiple Varies Varies 13

SPOT 4 (1993–2013)

Optical 2.5–30 m 1–26 days 11SPOT 5 (2002–2015)

SPOT 6 (2012–present)

GLASS (1981–2018) Multiple 1–5 km 8 days 5

Unmanned aerial vehicle (UAV) Multiple Varies Varies 5

RapidEye (2003–present) Optical 6.5 m 1–5.5 days 4

GaoFen-1 (2006–present) Optical 16 m 4 days 3

COMS GOCI (2010–present) Optical 500 m Daily 3

RadarSAT-2 (2007–present) Radar 5–100 m 1–6 days 3

SMOS (2009–present) MIRAS 35 km 3 days 2

AMSR-E (2002–2011) Optical 5.4–56 km Daily 2

FormoSat-2 (2004–2016) Optical 2–8 m Daily 2

GEOSAT-1 (2009–present) Optical 22 m Daily 1

Note: Some articles used multiple remote sensing datasets, so the total number of datasets is higher than the
number of reviewed publications. MSS, TM, ETM, OLI, and TIRS represent Multispectral Scanner, Thematic
Mapper, Enhanced Thematic Mapper, Operational Land Imager, Thermal Infrared Sensor, and Microwave Imaging
Radiometer with Aperture Synthesis (MIRAS), respectively.

3.5. Data Assimilation Methods and Application Scale

Several single-state variables were selected as assimilation variables, with LAI being the
most frequently (54%) assimilated variable in the studies examined (Tables A1–A3). In addi-
tion, soil moisture (SM) [41,77], FAPAR [19,72], vegetation indices [78,79], reflectance [69,80],
aboveground biomass (AGB) [70], canopy nitrogen accumulation (CNA) [81], phenology [54],
and fraction of vegetation cover (fvc) [39] were also assimilated into PBCMs. Other studies
combined two or more state variables to improve yield estimates [52,75]. About 21% of stud-
ies combined LAI with other state variables such as SM [82,83], sowing date (SD) [45,66],
evapotranspiration (ET) [16,63], canopy cover [51,84], CNA [85], AGB [73], leaf nitrogen
accumulation (LNA) [86], FAPAR [46], phenology [87], and vegetation indices [32,88] to im-
prove model simulations. Only 4% of studies used the forcing method to incorporate data
from RS into PBCMs [60,89] (Tables A1–A3). Meanwhile, 39% of the studies used the recali-
bration method, mainly using the shuffled complex evolution (SCE) (n = 20) [90,91] and
particle swarm optimization (PSO) algorithms (n = 17) [92,93] to optimize the initial model
parameters. Most studies applied the updating method (41%) along with the Ensemble
Kalman Filter (EnKF) (n = 34) algorithm [94,95] to update the critical model-simulated state
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variables. In addition, 3% and 12% of the studies compared recalibration with the forcing
and updating methods, respectively [96,97]. About 44% of the studies reviewed applied
data assimilation at the regional level, including the district and national levels [98,99],
while 33% were conducted at the field level [100,101] (Tables A1–A3). A few studies (3%)
were conducted at a sub-field scale, including plot and pixel levels [49,50]. In studies where
data assimilation was applied at both the field and regional scales, two experiments were
usually performed (20%) [66,102]. The first experiment was conducted at the field scale
to illustrate the feasibility of the data assimilation method. The second experiment was
conducted at the regional scale to estimate regional yields and analyze the spatial effect of
the data assimilation approach.

3.6. Types of Agricultural Cropping Systems

Of all the data assimilation research reviewed, 33% of the studies indicated that they
were conducted at national experimental sites, where research was conducted on various
sustainable farming practices, such as irrigation requirements [33,59]. About 44% of the
studies focused on irrigated agricultural cropping systems [103,104], while 15% were based
solely on rainfed agricultural cropping systems [105,106] (Figure 4). In addition, 3% of the
studies compared the effect of data assimilation on improving model simulations under
rainfed and irrigated systems [64,107]. The remaining studies did not clearly distinguish
whether the study was conducted under rainfed or irrigated conditions. Similarly, it
was unclear what type of fields were used, as 94% of studies did not indicate whether
the data assimilation approach was applied under commercial or small-scale farming
systems. Nevertheless, approximately 5% of the studies indicated that they were based on
commercial farms [38,43], while less than 1% were based on small-scale systems [44]. Thus,
this review shows that most data assimilation studies were based on cropping models
under potential conditions.
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4. Discussion
4.1. Current Status of Data Assimilation in Remote Sensing and Crop Models

Over the past decade, interest in improving crop model estimates by assimilating
RS data has increased worldwide. The highest number of annual studies was conducted
between 2018 and 2021 (Figure 2). The more significant number of studies in recent years
reflects the growing awareness and demonstrates the benefits of assimilating RS data into
PBCMs worldwide. In addition, the last decade has been marked by significant advances
in computational capacity and efficiency and individual development of PBCMs and RS
technologies. Thus, we expect the interest in integrating RS data into crop models to grow
as knowledge of the process improves, and there is a need to estimate crop growth status
and yield at regional and national scales.

Our research shows that data assimilation applications are mainly used in Asia, Europe,
and North America, with China having the largest share. This is consistent with areas
associated with high agricultural technology and innovation. These areas have access to
and can use advanced computer software, code, and facilities, as well as the data needed
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to calibrate and validate crop models. They can also access the latest satellite data and
advanced technologies such as UAVs and portable field sensors. This geographic distribution
highlights a notable lack of data assimilation applications in African and South American
countries where agricultural crop production significantly contributes to food security,
economic growth, and poverty reduction. This gap also highlights the lack of human
resources and data capacity to conduct and evaluate such research; thus, there is less capacity
to use PBCMs in these areas. Finally, it is vital to investigate the impact of potentially
sustainable agricultural land management practices on local crop growth and yields.

4.2. Complementary Advancement of Crop Models and Remote Sensing Datasets

Crop models have evolved from simulating individual plant ecophysiological pro-
cesses to integrating crop development processes at the field and regional scales. PBCMs,
including WOFOST, DSSAT, and AquaCrop, are continuously refined and updated to better
assess crop growth status and yield [24]. In addition, many PBCMs are becoming easily
accessible using standardized and open-source modeling environments such as Python
Crop Simulation Environment (PCSE) (https://pcse.readthedocs.io/en/stable/, accessed
on 1 July 2022), which facilitates the assimilation of RS datasets [7]. Most studies assim-
ilated data from RS into the WOFOST model. WOFOST has an open-source repository
(https://github.com/ajwdewit/WOFOST, accessed on 1 July 2022) that provides clear
guidelines and methods for incorporating RS data and for the PCSE platform. Despite the
renowned development of crop models, they are still more efficient in simulating major
crops. However, due to a lack of detailed field data, they have difficulty representing un-
common and underutilized crops such as Bambara groundnut, hemp, and millet [108,109].
Therefore, most studies reviewed used data assimilation to improve growth and yield
estimates for mainly staple crops such as maize, rice, soybean, and wheat (Tables A1–A3).

Over the past decade, data sets from RS have evolved significantly due to the expan-
sion of spectral bands, radar sensors, and optical sensors and are now available (Table 2).
However, the application of data assimilation is generally limited due to the availability
and quality of the data from RS [110]. For example, although relatively high-resolution
data from RS can provide accurate estimates of crop variables, they may be limited by scale,
repeat time, and the availability of cloud-free imagery [10]. Therefore, most studies in our
review still used relatively coarse resolution MODIS data for assimilation because they are
freely available and have a short repeat time. Our review was also dominated by studies
that assimilated data from Landsat with relatively low temporal resolution but higher
spatial resolution. The mismatch between the RS data and the agricultural landscape may
reduce data reliability with particularly low spatial and/or temporal resolution.

Nevertheless, satellite data with high spectral, temporal, and spatial resolution from
the PlanetScope, Landsat-8, Sentinel-2, and Sentinel-3 series have recently become freely
available for research and operational purposes [111,112]. Sentinel-2, for example, has
a spatial resolution of 10 m and a repetition time of 1–5 days (Table 2). In addition,
multispectral UAVs and affordable field sensors have been introduced that provide non-
abstracted data at high spatial and temporal resolution [113]. To date, however, relatively
few studies have utilized these high-resolution datasets. In general, the assimilation of high-
resolution RS datasets into crop models leads to a more detailed spatial characterization
of accurate growth and yield estimates [25]. However, the choice of a high-resolution
RS dataset depends on the scale, access, and accuracy required by the user [114]. UAVs,
for example, provide relatively low-cost imaging at high spatial resolution, low altitude,
and user-preferred temporal resolution [14]. Therefore, they are well suited for field-
scale application. However, compared to satellite imagery, UAVs and field sensors have
low coverage per image. In contrast, high-resolution space-based, which are relatively
expensive (e.g., RapidEye) and susceptible to the influence of cloud cover (e.g., Sentinel-2),
provide imagery at higher altitudes and lower temporal resolution [74].

In some studies, high-resolution datasets from multiple sources of RS have been
integrated (e.g., the spatial resolution enhancement method) to obtain more accurate spatial

https://pcse.readthedocs.io/en/stable/
https://github.com/ajwdewit/WOFOST
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and temporal estimates of crop state variables. For example, combining the Huanjing-1
and RADARSAT-2 datasets with AquaCrop improved the accuracy of wheat biomass
(root mean square error (RMSE) = 1.53 t/ha) and yield estimates (RMSE = 0.81 t/ha) than
assimilating Huanjing-1 only (biomass RMSE = 2.35 t/ha, yield RMSE = 0.92 t/ha) and
RADARSAT-2 only (biomass RMSE = 2.11 t/ha, yield RMSE = 0.86 t/ha) [115]. Similarly,
assimilation of LAI from a fusion of Landsat-8 and MODIS data into SAFY resulted in
improved estimates of maize (RMSE = 146.34 g/m2, coefficient of determination (R2) = 0.56)
and soybean (RMSE = 82.86 g/m2, R2 = 0.54) yields [49].

4.3. Type of Data Assimilation Methods

Among the single-state variables used in data assimilation, LAI is one of the most
frequently used variables because it is easily retrieved from RS and captures crop growth
limiting and reducing factors. LAI also plays an essential role in accurately representing
different developmental stages, accounting for the combined effect of growth environment
and management, and determining the biomass and yield estimated within the crop
model [31,47,116,117]. However, numerous variables interact within PBCMs and influence
the final estimated yield [82]. RS data access and processing for several relevant crop
variables have improved significantly over the past decade, allowing multivariate data to
be incorporated into PBCMs. A study by [16] found that the joint integration of MODIS
LAI and ET variables into the SWAP resulted in more accurate wheat yield estimates
than the individual integration of LAI or ET data at the national level. Compared to
open-loop estimates (R2 = 0.41), [82] found that joint assimilation of LAI and SM from
Sentinel-1 and -2 into WOFOST resulted in the most accurate wheat yield estimates by
reducing the RMSE by 167 kg/ha (R2 = 0.76). Assimilation of only LAI and only SM reduced
the yield RMSE by 69 kg/ha (R2 = 0.65) and 39 kg/ha (R2 = 0.50), respectively. In addition,
joint assimilation of LAI and LNC from Landsat-8 into the DSSAT model improved the
accuracy of wheat grain protein content prediction (RMSE = 0.91%, R2 = 0.39) [118].

In addition, 30% of studies coupled crop models with radiative transfer models
(RTMs) during the data assimilation process [113,119]. RTMs, including PROSAIL, A two-
layer Canopy Reflectance Model (ACRM), the Markov Chain Reflectance Model (MCRM),
the Soil–Leaf–Canopy model (SLC), and the Atmospheric Land Exchange Inverse model
(ALEXI), can simulate state parameters such as the LAI needed during the assimilation
process [120,121]. This modeling framework directly compares the spectral reflectance
obtained from RS datasets with that simulated by RTMs to optimize specific processes or
update the initial parameters of the crop model. This leads to more detailed modeling of
temporal changes in the spectral reflectance response of the crop canopy and primary crop,
water, and nutrient processes [65,102]. Coupling PBCMs with RTMs, therefore, improves
estimates of crop growth and yield estimations.

The studies reviewed demonstrate, with varying degrees of success, the advantages
and limitations of all three data assimilation approaches. In general, it is relatively easy to
integrate data from RS into a crop model using the forcing method (Table 3). The forcing
approach is less complex and does not use data assimilation algorithms because the crop
model uses a remotely sensed state variable instead of its information and therefore requires
less computation time. However, the data from RS may contain measurement errors that
can be introduced into the crop model when the forcing method is used. This may reduce
the accuracy of the estimated model results. In addition, this method requires many RS
observations for each simulation step (i.e., daily or weekly observations), which are rarely
available, especially when using data from optical sensors that may be affected by cloud
cover [122]. The time of sowing or emergence, which mark the beginning of crop growth,
must be accurately determined in advance. In our review, forcing was used in only a
few studies. For example, the assimilation of LAI from Sentinel-1 into the ORYZA model
using the forcing method resulted in fairly accurate regional rice yield estimates with a
normalized root mean square error (NRMSE) of 9.21% and an overall agreement between
actual and estimated yield of 83–89% [56].
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Table 3. The main difference between the three methods for assimilating remote sensing data into
crop models.

Data Assimilation Method

Forcing Recalibration Updating

Number of iterations Fewer More Fewer
Computational time Less More Less
Flexibility No Yes Yes
Propagation of uncertainty Possibly Minimize errors Minimize errors
Number of parameters Fewer More More
Complexity Less Less More

In most studies reviewed, the recalibration or updating method was successfully
applied. For example, the re-estimation of developmental parameters in SWAP-WOFOST
based on phenological information derived from MODIS LAI using the SCE optimization
scheme resulted in an improved wheat yield estimate by reducing the RMSE to 5.4% in
2007 and 15.4% in 2008 compared to the method without data assimilation [98]. Assim-
ilation of MODIS LAI into WOFOST based on the two SCE optimization schemes for
reinitialization of emergence date, initial AGB, and initial available soil water significantly
improved the accuracy of regional wheat yield estimates by reducing the RMSE from
983 kg/ha to 474 kg/ha and 667 kg/ha, respectively, for the two different optimization
schemes [123]. In a study by [32], the EnKF algorithm was used to integrate Huanjing-1
LAI into WOFOST to update the simulated LAI, resulting in improved regional rice yield
estimates (RMSE = 1.61 t/ha, R2 = 0.66). The recalibration method is mainly used when
the RS observations are sufficient and have limited error [58]. It better represents the
input model parameters and minimizes the increase in RS error during the assimilation
process (Table 3). Therefore, the recalibration method performs better than the updating
method in the presence of uncertainties in plant information. However, the disadvan-
tage of the recalibration method is that the optimization iteration process takes too much
computation time [124]. The updating method requires relatively less computation time
than the recalibration method (Table 3). However, the updating method requires complex
calculations. This approach estimates the uncertainty between the model estimate and the
RS observation [122]. The accuracy of the estimate and efficiency of the updating method
also depends on the date of the selected images and the consistency in the phenological
information. For example, [44] concluded that wheat yield estimation is more sensitive to
LAI assimilation at the flowering stage. Nevertheless, [53] showed that the EnKF updating
method gave a more reliable estimate of sugarcane yield (RMSE = 7.1 t/ha, R2 = 0.63) than the
forcing (RMSE = 9.54 t/ha, R2 = 0.43) and calibration RMSE = 13.89 t/ha, R2 = 0.19) methods.

4.4. Application of Data Assimilation in Small-Scale Agricultural Systems

Data assimilation was applied to several agricultural systems (Figure 4). In our review,
studies conducted under irrigated systems dominated as opposed to rainfed systems.
Therefore, these studies evaluated crop growth under potential conditions. This is due to
the high proportion of studies conducted in China, where irrigated agriculture accounts for
a large portion of the country. Over 60% of China’s national water resources are used for
agricultural irrigation [125]. The country also has several national experimental sites where
the effects of various sustainable farming practices, such as irrigation demand and efficiency
on crop growth and yield, have been studied [31]. Integrating LAI and SM in the crop
model resulted in more accurate yield estimates than integrating each variable individually
for rainfed areas. For example, maize yield estimates improved more when both LAI and
SM were assimilated into DSSAT (RMSE = 1.8 Mg/ha, R2 = 0.65) compared with open loop
(R2 = 0.47) or independent assimilation of LAI (RMSE = 1.1 Mg/ha, R = 0.51) or SM (R = 50,
RMSE = 0.5 Mg/ha), especially when estimating yield in years with average rainfall [15].
However, assimilation of only LAI was better at estimating yield in extremely wet years.
Similarly, [48] found that assimilation of only LAI did not capture the increased water stress
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in rainfed wheat and reduced the accuracy of simulated yield, while assimilation of LAI
and SM resulted in the most accurate yield estimate (RMSE = 424.75 kg ha−1, absolute
relative error (ARE) = 9.55%).

More than 90% of the studies did not indicate whether they applied data assimilation to
commercial or small-scale agricultural systems (Figure 4). Only [44] assimilated MODIS LAI
using EnKF in WOFOST to improve wheat yield estimates from small-scale rainfed farming
systems in Ethiopia. The lack of such studies can be attributed to crop models inadequately
representing uncommon crops and alternative cropping methods (e.g., mixed cropping)
usually used by small-scale farmers [6]. In addition, obtaining reliable and sufficient
input data for calibration and validation of small-scale farming systems is difficult. Most
long-term sensors from RS cannot simultaneously produce images with high spatial and
temporal resolution [126]. Therefore, most freely available RS datasets have a low spatial
resolution, which limits their application in small-scale agriculture. Scattered, diverse,
and disparate plots with a mix of cropping patterns, varying access to technologies and
information (e.g., access to climate or agricultural extension), and different management
objectives (e.g., commercial or subsistence) typically characterize small-scale systems.
Therefore, matching available RS datasets with low spatial resolution to small-scale farming
systems’ great diversity and spatial detail can be challenging [127].

Nonetheless, satellite-based Earth observation (EO) is moving toward big data cloud
platforms. For example, high-resolution datasets such as PlanetScope, Landsat-8, Sentinel-2,
and Sentinel-3 show increasing improvements in the findability, accessibility, interoperabil-
ity, and reusability of RS datasets. On the one hand, access to such standardized processing
platforms reduces the effort to access ready-to-use RS-based crop parameters. Still, it
requires hardware and software capabilities for processing. Therefore, such high-resolution
RS data can be integrated into crop models when studying heterogeneous small-scale crop-
ping systems. Small-scale agricultural systems can also benefit from ultrahigh-resolution
multispectral UAVs. Unlike space satellites, UAV imagery is not limited by the effects of
cloud cover, as the user sets the temporal resolution that can be adjusted to local weather
conditions [54]. UAV imagery can provide observational data on individual crops or
patches at very low altitudes, ultimately providing better coverage of the overall patterns
and crop variability in fields, as required for small-scale agricultural conditions. Neverthe-
less, owning and maintaining UAVs could prove expensive and difficult for small-scale
farmers, especially in African countries, as they have limited resources and capacity to
operate, process, and interpret the collected data. However, a cost-effective alternative to
support small-scale farmers could be to opt for community ownership of UAVs and involve
extension services [114].

4.5. Future Opportunities

In the last decade, several single-crop models have been used to estimate the growth
and yield of various crops under different environmental conditions. However, individual
crop models differ in their strengths, structure, complexity, and parameters because they
were developed in multiple environments and for different purposes [23,24]. There is a
need to compare the performance of different crop models. For example, some studies in
this review compared the integration of RS into AquaCrop and SAFY to improve wheat
yield estimation [51,84]. There is also a need to combine the advantages of different models
to improve the overall applicability and capability of crop models. For example, the
Agricultural Model Intercomparison and Improvement Project (AgMIP) consists of several
crop modeling groups that evaluate simulation results for specific crops and environmental
conditions [128]. Future research can therefore explore the integration of RS data into
AgMIP models to improve crop estimation. In addition, the holistic approach of crop
models needs to be improved, including consideration of pests and diseases, other cropping
practices such as intercropping, and other extreme events such as frost damage and flooding.
We also anticipate increasing the application of crop models in climate change research,
as crop models can be used to assess the impact of future climate conditions and extreme
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events on current agricultural systems. Successful data assimilation results depend on the
careful calibration of the model [111]. However, obtaining reliable and sufficient data, as
required for complex PBCMs, remains challenging in some areas. Therefore, future research
should investigate deriving a simplified model with minimal requirements from complex
models. Integrating remote sensing data into crop models is a promising approach to
improve crop growth and yield estimation for sustainable crop management strategies. The
rapid development of RS technology has increased the availability of satellite datasets with
high temporal and spatial resolutions (Table 2). Such datasets can be used with UAVs and
portable field sensors to improve dynamic time series simulations of models, reduce the
likelihood of mixed pixels, and provide more spectral information to increase the accuracy
of crop growth and yield estimates at the field and regional levels. In addition, integrating
multiple multispectral datasets with high temporal and spatial resolution or multiple
state variables will further improve the accuracy of growth and yield estimates. Further
development of data assimilation strategies and algorithms will reduce uncertainties and
errors in assimilating RS into crop models. This will improve the accuracy of crop growth
and yield estimates.

Prospects of Data Assimilation Research in Africa

Small-scale rainfed agriculture systems dominate the African region and account for
about 80% of the food supply in sub-Saharan Africa [129]. Africa and other developing
areas, which have large and wide yield gaps compared with the global average, would
benefit noticeably from improved capacity to apply PBCM approaches. The results of
this study show a lack of research on data assimilation in Africa (Figure 2), as only one
study was conducted under these conditions [44]. The overall limited interest in using and
exploiting crop models in the region can explain the lack of African studies. This is primarily
due to the lack of reliable crop growth data for calibration, validation, and, ultimately,
relevance of the model [130,131]. Sometimes the required data are freely available or easy
to use. In cases where data are available, they are often of too low quality and quantity
to adequately control or validate most crop models [5]. In addition, the use of RS data in
African agriculture is limited due to the cost of acquiring imagery [132]. Crop models can
provide the opportunity to evaluate agronomic practices [133], yield changes [134], and
water productivity [135] under different climates and management practices to improve
small-scale rainfed agricultural systems. Despite the known limitations of data from RS,
freely available high-resolution RS data, including Sentinel-2, Sentinel-3, PlanetScope,
Landsat-8, can be assimilated into crop models to improve crop yield and growth estimates,
particularly for small-scale agricultural systems. This access could help address data
scarcity conditions, strengthen African scientific community interests by democratizing
the use of PBCMs, and gradually lead to efficient modeling and relevant information for
the improvement of small-scale heterogeneous agricultural systems. High-resolution RS
datasets can be further integrated with UAVs and field sensors [112] to reduce operational
costs and produce improved high-resolution multisource data suitable for modeling small-
scale agricultural systems. Data assimilation research can therefore enable African small-
scale farming systems to further address the need for site-specific and appropriate cropping
strategies for sustainable and climate-resilient agricultural development. Therefore, more
context-specific application of data assimilation to improve local crop growth and yield
estimates for small-scale cropping systems should be conducted throughout Africa.

5. Conclusions

Globally, there is growing interest in approaches and applications to better assess
crop growth and yield. We are seeing increasing development of crop models, availability
of RS data sources (with increasing detail), and characterization of potential state vari-
ables. However, the application of data assimilation has followed the trend of agricultural
production, technology, and innovation, with more studies conducted in technologically
advanced countries than in less developed counties (e.g., those in Africa). Most studies use
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recalibration or updating methods along with various algorithms to incorporate mainly
remotely sensed LAI data into crop models. Generally, the excessive computation time
required during the iteration process limits these methods. However, a cloud-based imple-
mentation will reduce this by providing ready-to-use EO crop parameters or distributing
data processing. Data assimilation has mainly been used to improve yield estimates for
staple crops in irrigated farming systems, while evaluations were not sufficiently performed
for rainfed systems and other important crops such as Bambara groundnut and millet. The
application of data assimilation in small-scale agricultural systems remains a challenge due
to the limited use of and access to crop models and remote sensing data at high spatial
resolutions that match the diversity, dispersion, and non-uniformity of small-scale agri-
cultural systems. However, the newly available high-resolution datasets such as UAVs,
PlanetScope, Landsat-8, Sentinel-2, and Sentinel-3 provide opportunities to address the
resolution problem. In addition, integrating multiple multispectral datasets with high
temporal and spatial resolution or multiple state variables into crop models will further
improve the accuracy of growth and yield estimates for small-scale agricultural systems.
Therefore, further research should investigate how published approaches to large-scale and
new high-resolution RS data can be used for small-scale agricultural systems. Additional
research is also needed to evaluate the parameters to assimilate, the assimilation strategies,
and the different crop models needed to estimate crop yields and the growth of small-scale
farming systems appropriately. This is key to making informed decisions about the local
crop management required to improve food policy and assess food security, especially in
small-scale farming systems and developing countries.

Author Contributions: Conceptualization, L.D., O.C. and J.v.D.; methodology, formal analysis, data
curation, writing—original draft preparation, visualization, L.D.; writing—review and editing, O.C.,
J.v.D. and L.K.; supervision, O.C. and J.v.D. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by an NRF-NUFFIC Doctoral Scholarship (Split Site Mode),
NRF-GCSSRP, an ARUA-CD Scholarship, and an ATAP Scholarship.

Data Availability Statement: The data presented in this study are openly available in 4TU.ResearchData
at https://data.4tu.nl/private_datasets/4dvmzBUFkO9H5-XxnyrC8P1c6Z_GgI0B-5_qqGU2SZo.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Analysis of publications that applied the forcing method.

Crop CGM RS Data State Variable Scale Aim Reference

Jujube WOFOST Landsat-8 LAI Field Yield, AGB [59]
Rice STICS SPOT-4, SPOT-5, Landsat-8 LAI Field AGB, SD [35]
Rice STICS + PROSAIL Sentinel-2 LAI, SD Field, regional Yield [66]
Wheat DSSAT Landsat-7, Landsat-8 NDWI Field, regional Yield, SM [64]
Wheat SAFY Sentinel-2, PlanetScope LAI Field Yield [89]
Rice ORYZA Sentinel-1 LAI Regional Yield [56]
Sugarcane MOSICAS SPOT-4, SPOT-5 NDVI Field Yield [60]
Sugarcane MOSICAS SPOT-4, SPOT-5 FAPAR Field Yield [19]
Sugarcane SWAP-WOFOST UAV LAI, SM Field Yield [53]
Wheat WOFOST SPOT-VGT LAI, SD Regional Yield [45]

Note: LAI, SD, AGB, NDWI, NDVI, and FAPAR represent leaf area index, sowing date, above-ground biomass,
normalized difference water index, normalized difference vegetation index, and the fraction of absorbed photo-
synthetically active radiation, respectively.

https://data.4tu.nl/private_datasets/4dvmzBUFkO9H5-XxnyrC8P1c6Z_GgI0B-5_qqGU2SZo
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Table A2. Analysis of publications that applied the recalibration method.

Crop Model RS Data State Variable Assimilation
Algorithm Scale Aim Reference

Jujube WOFOST Landsat-8 LAI SUBPLEX Field Yield [58]
Jujube WOFOST Landsat-8 LAI SCE Field Yield, AGB [59]

Soybean SAFY
Radarsat-2,
Formosat-2,
SPOT-4, SPOT-5

LAI, AGB Simplex Field Yield, AGB [73]

Wheat AquaCrop +
PROSAIL

Huanjing-1,
Landsat-8 LAI, CC Simplex Field Yield [119]

Wheat AquaCrop +
PROSAIL

Huanjing-1,
Landsat-8 LAI, CC Simplex Field Yield [51]

Wheat DSSAT Landsat-8 LAI, LNA SCE, SA, DE Regional GPC [118]

Rice STICS +
PROSAIL Sentinel-2 LAI, SD Simplex Field,

regional Yield [66]

Wheat DSSAT +
PROSAIL Field sensor Reflectance,

NDVI VFSA Field LAI [75]

Wheat DSSAT +
PROSAIL Field sensor Reflectance,

NDVI VFSA Field LAI [104]

Rice WARM +
PROSAIL

Landsat-7,
Landsat-8 LAI Simplex Field Yield [136]

Wheat WOFOST +
PROSAIL

Landsat-8,
MODIS Reflectance SCE Field,

regional Yield [80]

Wheat SAFY +
ESTARFM

Landsat-8,
MODIS GLAI SCE Field AGB [91]

Maize DSSAT +
MCRM MODIS LAI, EVI GA Regional Yield [88]

Wheat WOFOST MODIS LAI SCE Field,
regional LAI, MD [137]

Wheat SAFY
Landsat-7,
Landsat-8,
Sentinel-2

LAI ULM Field Yield [43]

Soybean WOFOST Sentinel-2 LAI SUBPLEX Field Yield [7]

Wheat SWAP-
WOFOST MODIS LAI, ET SCE Field,

regional Yield [63]

Wheat SWAP-
WOFOST MODIS LAI, ET SCE Field,

regional Yield [16]

Wheat,
Maize,
Soybean

STICS Landsat-7,
SPOT-5 LAI Simplex Field Yield, AGB [55]

Maize STICS Landsat-7,
SPOT-5, CASI LAI Simplex Regional Yield, SWC [105]

Rice GRAMI COMS GOCI,
MODIS LAI POWELL,

Quasi-Newton Regional ET, GPP [138]

Rice WOFOST Landsat-8 LAI PSO Regional WRT [93]
Wheat AquaCrop Field sensor NDMI PSO Regional Yield, AGB [76]

Wheat AquaCrop Huanjing-1,
MODIS

LAI, AGB, EVI,
RVI, MTV12 PSO Regional Yield, AGB,

CC [115]

Maize AquaCrop Field sensor CC, AGB PSO Sub-field Yield [52]
Maize DSSAT RapidEye AGB SA Field Yield [70]
Wheat DSSAT Field sensor CNA PSO Regional Yield, GPC [81]
Wheat DSSAT Field sensor LAI, CNA PSO Regional Yield, GPC [85]
Wheat WOFOST MODIS LAI SCE Regional Yield [123]

Rice SIMRIW COSMO-
SkyMed LAI Simplex Regional Yield [116]

Sugarcane MOSICAS SPOT-4, SPOT-5 FAPAR SA Field Yield [19]

Rice GRAMI COMS GOCI,
RapidEye LAI POWELL, Quasi-

Newton
Field,
regional Yield [106]

Rice GRAMI COMS GOCI,
RapidEye LAI POWELL, Quasi-

Newton Regional Yield [139]
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Table A2. Cont.

Crop Model RS Data State Variable Assimilation
Algorithm Scale Aim Reference

Wheat EPIC +
PROSAIL Sentinel-2 LAI Fmincon Field,

regional Yield [111]

Wheat EPIC MODIS LAI SCE Regional Yield, SD [61]
Soybean GRAMI Field sensor LAI POWELL Field Yield [101]

Wheat AquaCrop +
PROSAIL

Huanjing-1,
Landsat-8 LAI, CC PSO Field,

regional Yield [84]

Rice DSSAT MODIS LAI PSO Regional Yield [92]

Wheat DSSAT +
PROSAIL Field sensor LAI PEST, GA Field Yield, CC,

CNA [120]

Wheat WOFOST MODIS. LAI POWELL, SCE Field,
regional Yield [33]

Sunflower SUNFLOW

GEOSAT-1,
Formosat-2,
Landsat-8,
Sentinel-2,
SPOT-5

LAI LSE Field Yield [36]

Wheat AquaCrop Sentinel-2 CC PSO Field Yield [140]
Maize MCWLA GLASS, MODIS LAI, VTCI GA Regional Yield [32]

Rice RiceGrow Field sensor,
Huanjing-1 LNA, LAI PSO, SCE Field,

regional Yield [86]

Wheat WOFOST +
PROSAIL MODIS GAI Simplex Regional Yield, AGB [96]

Wheat WOFOST +
PROSAIL

GaoFen-1,
Huanjing-1 LAI SCE Field,

regional Yield [117]

Wheat WOFOST +
PROSAIL

GaoFen-1,
Huanjing-1 LAI SCE Field,

regional Yield, SM [97]

Wheat SWAP-
WOFOST MODIS LAI SCE Regional Phenology [98]

Wheat SAFY Field sensor LAI SCE Field LAI, AGB [50]

Wheat MCWLA GLASS LAI, SM,
phenology PSO Regional Yield [68]

Wheat SAFY Field sensor LAI SCE Field Yield, ET
AGB, SM [90]

Rice WOFOST Huanjing-1 LAI PSO Regional WSO, WRT [141]

Wheat WOFOST Huanjing-1,
Landsat-8 LAI LSM Regional Yield [142]

Wheat DSSAT ESACCI, MODIS SM, LAI SCE-UA Field Yield [143]

Wheat WOFOST MODIS LAI SCE-UA Regional MD,
anthesis [62]

Wheat WheatGrow +
PROSAIL HUANJING-1 NDVI, RVI, SAVI,

EVI, LAI, LAN PSO Regional LAI, LNA,
Yield [79]

Maize DSSAT Field sensor LAI VFSA Regional LAI [144]
Wheat AquaCrop Sentinel-2 CC PSO Field Yield [37]

Wheat WheatGrow +
PROSAIL

Huanjing-1,
SPOT-5, SPOT-6

RVI, NDVI, SAVI,
EVI LUT Regional Yield, LAI,

LNA [78]

Rice MCWLA GLASS LAI, phenology PSO Regional Yield,
phenology [87]

Rice WOFOST +
PROSAIL GaoFen-1 FAPAR PSO Regional FAPAR [72]

Wheat PROMET +
SLC

Landsat-7,
RapidEye LAI LUT Field Yield [121]

Rice STICS SPOT-4, SPOT-5,
Landsat-8 LAI Simplex Field AGB, SD [35]

Soybean,
maize

SAFY +
STARFM

Landsat-8,
MODIS GLAI SCE Subfield Yield, AGB,

phenology [49]
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Table A2. Cont.

Crop Model RS Data State Variable Assimilation
Algorithm Scale Aim Reference

Wheat WOFOST Landsat-8,
MODIS LAI SCE Field,

regional Yield [145]

Note: AGB, LNA, EVI, NDVI, RVI, SAVI, GLAI, CNA, CC, VTCI, SM, FAPAR, GPC, MD, ET, GPP, WRT, WSO
represent above-ground biomass, leaf nitrogen accumulation, enhanced vegetation index, normalized difference
vegetation index, radar vegetation index, soil-adjusted vegetation index, green leaf area index, canopy nitrogen
accumulation, canopy cover, vegetation temperature condition index, soil moisture and fraction of absorbed
photosynthetically active radiation, grain protein content, maturity date, evapotranspiration, gross primary
production, root weight, panicle weight, respectively. SCE-UA, DE, GA, ULM, PSO, LUT, VFSA, PEST, and LSM,
respectively, represent optimization algorithms shuffled complex evolution from the University of Arizona, differ-
ential evolution, genetic algorithm, unconstrained Levenberg–Marquardt algorithm, particle swarm optimization,
look-up-table, very fast simulated annealing, parameter estimation, and least square method.

Table A3. Analysis of publications that applied the updating method.

Crop Model RS Dataset State
Variable

Assimilation
Algorithm Scale Aim Reference

Jujube WOFOST Landsat-8 LAI EnKF Field Yield [58]
Wheat WOFOST MODIS LAI EnKF Field, regional Yield [44]

Wheat AquaCrop +
PROSAIL

Huanjing-1,
Landsat-8 LAI, CC EnKF Field Yield [119]

Wheat AquaCrop +
PROSAIL

Huanjing-1,
Landsat-8 LAI, CC EnKF Field Yield [51]

Soybean DSSAT SMOS SM EnKF Regional LAI, GW [41]

Wheat MCWLA
Copernicus,
GLASS,
GLOBMAP

LAI 4DVAR,
En4DVAR Regional Yield [22]

Wheat MCWLA GLASS LAI KF Regional Yield [110]

Maize WOFOST +
PROSAIL Huanjing-1 LAI EnKF Field Yield [67]

Maize WOFOST Huanjing-1 LAI EnKF Field, regional SAN [146]
Maize WOFOST Huanjing-1 LAI EnKF Regional SAN [95]
Maize WOFOST UAV LAI EnKF Regional LAI [113]
Maize DSSAT SMAP SM EnKF Regional Yield, IA [107]

Wheat WheatGrow +
PROSAIL

Huanjing-1,
SPOT6 LAI EnKF Field, regional LNA, Yield [71]

Wheat DSSAT +
PROSAIL Field sensor Reflectance,

NDVI EnKF, 4DVAR Field LAI [75]

Wheat DSSAT +
PROSAIL Field sensor Reflectance,

NDVI 4DVAR Field LAI [104]

Wheat WheatGrow Landsat-5 LAI, LNA EnSRF, EnKF Regional Yield [147]

Wheat WOFOST +
PROSAIL

Landsat-5,
Landsat-8 LAI 4DVAR Regional Yield [148]

Wheat WOFOST Landsat-5,
MODIS LAI EnKF, KF Regional Yield [10]

Wheat WOFOST Landsat-8,
MODIS LAI 4DVAR Field, regional Yield [145]

Wheat WOFOST +
PROSAIL

Landsat-8,
MODIS Reflectance 4DVAR Field, regional Yield [80]

Maize DSSAT AMSR-E SM EnKF Field, regional Yield [15]

Wheat WOFOST +
CASA Sentinel-2 LAI, FAPAR EnKF Field Yield, NPP [46]

Wheat DSSAT +
ACRM Huanjing-1 LAI PF Field, regional Yield [102]

Wheat DSSAT +
ACRM Huanjing-1 LAI POD4DVar Field, regional Yield [149]
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Table A3. Cont.

Crop Model RS Dataset State
Variable

Assimilation
Algorithm Scale Aim Reference

Maize SAFY
Landsat-5,
Landsat-7,
Landsat-8

LAI EnKF Field Yield, AGB [34]

Wheat DSSAT +
PROSAIL Field sensor LAI EnKF Field NDVI [47]

Maize WOFOST Landsat-7 LAI EnKF Regional Yield [103]

Wheat DSSAT +
PROSAIL

GaoFen-1,
Huanjing-1,
Landsat-8

LAI PF, POD4Dvar Field Yield [124]

Wheat DSSAT +
ACRM Huanjing-1 LAI EnKF Field, regional Yield,

phenology [150]

Wheat WOFOST MODIS LAI PF Field, regional Yield [31]

Soybean DSSAT +
MIMICS MODIS SM, LAI,

AGB EnKF Regional LAI, AGB [151]

Maize DSSAT AMSR-E,
SMOS SM EnKF Field Yield [77]

Wheat DSSAT Sentinel-2 LAI, SM EnKF Field, regional Yield [48]
Wheat DSSAT Sentinel-2 LAI EnKF Field, regional Yield [83]

Wheat WOFOST +
ACRM Huanjing-1 NDVI EnKF Regional Yield [152]

Maize APSIM +
PROSAIL RapidEye CSF PF Field AGB [69]

Maize DSSAT +
ALEXI RDSMP SM EnKF Regional Yield [94]

Wheat,
barley

SWAP-
WOFOST MODIS LAI KF Regional Yield, AGB [57]

Wheat WOFOST +
PROSAIL

Sentinel-1,
Sentinel-2 LAI, SM EnKF Field, regional Yield [82]

Maize SAFY UAV LAI EnKF Field Yield [14]

Sugarcane SWAP-
WOFOST UAV LAI, SM EnKF Field Yield [53]

Maize SAFY Sentinel-2 LAI EnKF Field Yield, AGB [40]

Wheat
SIMPLACE-
LINTUL5 +
PROSAIL

Sentinel-2 LAI EnKF, WM Sub-field AGB [65]

Wheat
SIMPLACE-
LINTUL5 +
PROSAIL

Sentinel-2 LAI EnKF Sub-field AGB, water
stress [38]

Sunflower SUNFLOW

GEOSAT-1,
Formosat-2,
Landsat-8,
Sentinel-2,
SPOT-5

LAI EnKF Field Yield [36]

Wheat AquaCrop Sentinel-2 CC EnKF Field Yield [140]
Wheat AquaCrop VENµS fvc DREAM(KZS) Regional Yield, AGB [39]
Maize WOFOST Field sensor LAI EnKF Regional Yield, GPP [153]
Wheat DSSAT MODIS VTCI 4DVAR Field, regional Yield [154]
Wheat WOFOST MODIS LAI EnKF Field, regional Yield [155]
Rice WOFOST Huanjing-1 LAI EnKF Regional Yield [32]
Wheat AquaCrop Sentinel-2 CC KF Field Yield [37]

Wheat WOFOST +
PROSAIL MODIS GLAI EnKF Regional Yield, AGB [96]

Wheat WOFOST MODIS LAI EnKF Regional Yield [156]

Wheat SAFY Field sensor LAI EnKF Field Yield, SM,
AGB, ET [90]

Wheat WOFOST +
PROSAIL

GaoFen-1,
Huanjing-1 LAI EnKF, EnSRF,

VW-4DEnSRF Regional Yield, SM [97]
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Table A3. Cont.

Crop Model RS Dataset State
Variable

Assimilation
Algorithm Scale Aim Reference

Sugarcane SWAP-
WOFOST UAV Phenology IES Field Yield [54]

Wheat AquaCrop UAV CC PF Field CC, cdc [74]
Wheat WOFOST Sentinel-2 SM EnKF Regional Yield [72]
Maize WOFOST MODIS LAI EnKF Regional Yield, GD [142]
Maize,
wheat WOFOST MODIS LAI EnKF Field LAI [100]

Wheat WOFOST Sentinel-1,
Sentinel-2 SM EnKF Regional Yield [157]

Note: SM, LNA, FAPAR, AGB, NDVI, fvc, VTCI, CC, GW, SAN, IA, NPP, GPP, and GD, respectively, represent
soil moisture, leaf nitrogen accumulation, fraction of absorbed photosynthetically active radiation, above-ground
biomass, normalized difference vegetation index, fraction of vegetation cover, vegetation temperature condition
index, canopy cover, grain weight, soil available nutrients, irrigation amount, net primary productivity, gross
primary production and growth duration. EnKF, 4DVAR, KF, EnSRF, PF, POD4DVar, WM, DREAM, 4DEnSRF,
and IES, respectively, represents updating algorithm ensemble Kalman filter, four-dimensional variational data
assimilation, ensemble square root filter, particle filter, proper orthogonal decomposition technique into 4DVar,
weighted mean, differential evolution adaptive Metropolis, four-dimensional variational into EnSRF, and iterative
ensemble smoother.
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