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 18 

ABSTRACT 19 

Data assimilation has been widely used for improvement of crop models’ estimates, for 20 

example to incorporate the effects of external events or compensate calibration errors in large 21 

areas. The term describes multiple approaches for those who want to take advantage of satellite 22 

imagery to reduce uncertainty or improve accuracy of model estimates. Kalman Filters are 23 

among the most used methods for achieving these goals. But their use in new contexts, i.e., 24 

from open field to protected environments, requires untangling aspects of the pipeline that are 25 

often performed in many different ways without guidelines, such as which variables to 26 

assimilate or how to ascribe uncertainty to observations or model estimates. This study is then 27 

divided in two parts. In the first, we review details on how uncertainty is ascribed on crop model 28 

estimates and in observations for applications of the Kalman Filter and three variations of the 29 

SciELO Preprints - This document is a preprint and its current status is available at: https://doi.org/10.1590/SciELOPreprints.8033

mailto:moniquepgoliveira@gmail.com
https://orcid.org/0000-0001-7167-4473
mailto:thaisqzc@unicamp.br
https://orcid.org/0000-0001-6959-7990
mailto:attux@unicamp.br
https://orcid.org/0000-0002-2961-4044
mailto:lique@unicamp.br
https://orcid.org/0000-0002-1756-7367


3 

 

method, i.e., the Extended, Unscented and Ensemble, as well as which state variables are often 30 

updated and the frequency with which assimilation may occur, as well as how these aspects are 31 

connected to each other. In the second part, we apply different approaches from the reviewed 32 

literature in a greenhouse tomato crop model. We use artificial data with controlled noise levels 33 

as well as artificial data generated by simulation using other tomato crop model. We assess the 34 

impacts of using different methods and different approaches for ascribing uncertainty in model 35 

estimates and in observations, by assimilating artificial observations of fruit and of mature fruit 36 

biomass. We note that covariances should not be fixed values, that there are trade-offs between 37 

ascribing model uncertainty to the state itself and to other elements of the process, that 38 

observation covariance may have been considered disproportionality higher when using some 39 

ensemble generation approaches in the EnKF, and that bias in model estimates may lead to 40 

worse outcomes even when observations are high-quality ones. While we discussed aspects that 41 

should be considered in a new environment, many of them are also important for field crops, 42 

and we concluded assimilation should follow an assessment of which variables could be useful 43 

for assimilation. 44 

 45 

Keywords: crop model; data assimilation; protected environments; uncertainty; state estimation 46 

 47 

1 INTRODUCTION 48 

Data assimilation on crop models has mostly been performed by the integration of remote 49 

sensing Earth observations into process-based crop models, often with the goal of improving 50 

agricultural systems’ models predictive capability. Technical aspects of the discipline have 51 

frequently been revisited given the evolution in computational capacity and available state 52 

estimation techniques [1–5]. These reviews, which detail how the approach has been used in 53 

crop modelling, have looked into the subject from different perspectives, such as the methods 54 
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used to derive biophysical and biochemical canopy state variables from optical remote sensing 55 

data in the VNIR-SWIR regions [2], the sources of errors in each element of the data 56 

assimilation process [3], the theoretical basis for methods as well as a walkthrough of the steps 57 

required to apply them [4], and the models and quantities being assimilated [5]. These studies, 58 

however, emphasize limitations and aspects related to satellite-derived observations, e.g. the 59 

spatial and temporal scale of satellite images [3–5]. 60 

In this sense, many of the lessons that have been learned by the crop modelling and remote 61 

sensing community could still be discussed and extended into other agricultural domains. 62 

Protected environments, for instance, allow for more intense monitoring, e.g. with daily pictures 63 

[6,7], without the adverse effects of large scale. It could be useful to explore assimilation 64 

techniques to enhance accuracy and reduce uncertainty in model estimates obtained in the 65 

context of these environments. In the steps suggested by Huang et al. (2019) [4], assimilating 66 

observations requires some pre-data assimilation considerations concerning the model and the 67 

observations, characterizing uncertainties, and solving a scale mismatch problem between 68 

observations and models. In the proposed new context, the first two would be the more relevant 69 

steps. 70 

Luo et al (2023) [5] quantified which state variables and models are the more frequently 71 

explored in data assimilation studies with remote sensing data and, for variables, leaf area index 72 

was unquestionably the most used. They give multiple reasons, but one relevant aspect not 73 

mentioned is the previous existence of products that allow for coupling model estimates and 74 

outputs of satellite images. For different crops and data sources, these are relationships that 75 

must be established. And they should be defined to represent the variables that could in fact be 76 

useful for assimilation, since not always updating one variable would lead to improvement in 77 

another [8,9]. Furthermore, the models they mentioned as most used would likely not be used 78 

in protected environments, for horticultural or ornamental crops. Therefore, the uncertainty 79 

SciELO Preprints - This document is a preprint and its current status is available at: https://doi.org/10.1590/SciELOPreprints.8033



5 

 

quantification step would be required for them, as well as for these new relationships and 80 

observations. Additionally, while the remote sensing realm is dependent on revisit frequency 81 

and is vulnerable to unfavorable atmospheric conditions, leading to fewer observations 82 

available, the high-frequency potentially noisy observations of a greenhouse environment 83 

[10,11] could become a hindrance. 84 

To better understand how these differences could impact new studies, it is useful to 85 

explore artificial data, so that it is possible to investigate the behavior of the system with more 86 

methodological control. These types of studies have sometimes been called Observation System 87 

Synthetic Experiments (OSSE) [9,12] or synthetic twin [13] and have been used for answering 88 

questions such as if the assimilation of an observation improves all components of the model’s 89 

simulations, if calibration errors can be compensated by assimilation [12], which are limitations 90 

imposed by the model, the assimilation method, and uncertainty in model inputs and 91 

observations [9], appropriate ensemble size [13], and to test new methods [14]. 92 

This study is then divided in two parts. In the first part, we revisit applications of data 93 

assimilation in crop models, describing the general use of Kalman Filters and focusing on the 94 

steps of uncertainty characterization. In the following sections, we assess how they relate to 95 

performance and use as example a greenhouse tomato growth model — the Reduced-State 96 

Tomgro model [15] —aiming at improving yield estimates through assimilating artificial 97 

observations of tomatoes in a greenhouse environment. 98 

2 BACKGROUND 99 

The reviews of data assimilation in crop models previously mentioned [1–5] categorize 100 

three types of data assimilation: forcing, calibration and update. Given the broad scope of three 101 

approaches and the several methods that exist to explore them, this study will only comment on 102 

the update approach using filters from the Kalman Family, which are very frequently used [5], 103 

focusing on the elements more connected to the uncertainty characterization. The reviews also 104 
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explain the methods in detail, so we refer to them, especially Huang et al. (2019) [4], for the 105 

mathematical equations of the filters. 106 

2.1 Crop models 107 

Briefly, crop models are mathematical representations of plants throughout their growth 108 

as affected by the factors that influence said growth, e. g. crop’s genetics and the environment. 109 

De Vries (1982) proposed three levels of complexity for categorizing crop models: preliminary, 110 

comprehensive, or summary models. While the first type contains basic features of the system 111 

and aims at a first understanding of the subject, once more knowledge into the processes is 112 

gained and imbued into the model, it becomes closer to the second type which, to be made more 113 

accessible to others, may then be simplified into the third type, depending on the intended use 114 

of the model. Passioura (1996) discussed two other categories, which are related to the intent 115 

of their development and use: they could be aimed at farmers, to aid in their decision-making 116 

and, for that, understanding of the underlying mechanisms would not be required, or they could 117 

be aimed at scientific purposes, which means that the description of mechanisms should be 118 

related to theories and validated by hypothesis testing. The first case is generally associated 119 

with the terms functional, empirical, statistical and phenomenological and the second, to the 120 

terms mechanistic and process-based [18]. In this study, we explore process-based crop models, 121 

given their ability to represent interactions between state variables. 122 

2.2 Kalman Filter methods and their requirements 123 

2.2.1 The Kalman Filter (KF) 124 

The main assumptions of the Kalman Filter are that the model estimates and the 125 

observations follow a normal distribution, and that the process model and the observation 126 

function are linear, but if the non-linear crop model can be assumed locally linear between 127 

adjacent time steps, the standard Kalman Filter could be a viable choice [4]. 128 
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Given its restrictions, there are fewer examples of the application of this technique. In 129 

some of them, the premise of the filter is used, but with modifications. Instead of calculating 130 

the gain, Vazifedoust et al. (2009) [19] tested different values, using the best one as fixed, 131 

circumventing the need for identifying the source error values. This approach was repeated by 132 

Chen, Zhang and Tao (2018) [20], who also normalized simulated and observation values 133 

according to the maximum value obtained so that they would be in the same range. Operating 134 

in this normalized space allowed them to focus on spatial variability and, in part, trends, instead 135 

of absolute values. Later, Chen and Tao (2020) [21] explored more approaches for defining an 136 

appropriate value for the fixed gain, by a grid search of an optimal value, as well as exploring 137 

historical values. 138 

2.2.2 Extended Kalman Filter (EKF) 139 

The Extended Kalman Filter is an adaptation of the Kalman Filter to deal with non-linear 140 

cases. To do so, it takes advantage of local linearization by replacing the model and the 141 

measurement function by their partial derivatives. The use of this technique is also limited, as 142 

it requires access to the Jacobian of the model or, in some cases, to an approximation by finite 143 

differences that often will not scale to higher dimensions [4], so there are also few examples on 144 

crop modeling that apply this technique. 145 

One of these few examples in which there is an explanation of how the filter was used is 146 

the study of Linker and Ioslovich (2017) [22]. The authors used data from growth experiments 147 

of cotton and potatoes aiming at improving estimates of canopy cover and biomass through 148 

state assimilation and through the recalibration of three parameters from the Aquacrop model. 149 

Given there were two different approaches for improving estimates, they estimated the 150 

covariance matrix of the errors in the state variables in two ways. For the assimilation process, 151 

by calculating the difference between the square of the model residuals and the dispersion of 152 

the measurements. They chose not to propagate the matrix along the process, given its strong 153 
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nonlinearity, and recalculated it at each new time of measurement. They justified this choice by 154 

claiming the propagation without assimilation of new measurements would only increase the 155 

uncertainty related to the linearization and to the unknown initial data of the model errors. For 156 

the recalibration process, the matrix was calculated using an assumption that the corresponding 157 

standard deviation of each of the chosen parameters is equal to 20% of the current value of 158 

corresponding parameter. In their assimilation approach, the H matrix, i.e., that used for the 159 

linearization, corresponded to the unit matrix, as the measurements directly corresponded to the 160 

states and, in the recalibration one, the components of the partial derivatives matrix H were 161 

calculated numerically at each instance of canopy cover measurement. 162 

2.2.3 Ensemble Kalman Filter (EnKF) 163 

Overall, in the Ensemble Kalman Filter, an ensemble of initial states is generated and 164 

each individual ensemble member is propagated through the model until an observation is 165 

available. Then the update step is performed individually in each member. This allows for 166 

recalculation of the ensemble mean for the states and generation of a new ensemble. The 167 

ensemble approach operates on the underlying assumption that at least some of the particles 168 

will represent the true state [12]. There are, however, different ways of approaching this 169 

problem and the elements of uncertainty are intimately connected to other decisions. 170 

Composition of ensemble elements 171 

The uncertainty associated with the model derives from the variability in the ensemble. 172 

Therefore, the choice of how to generate these elements is reflected on how much the filter will 173 

rely on the models’ estimates. There have been many approaches for doing so, dealing with 174 

every element involved in the simulations, i.e., inputs, parameters, or states. 175 

Input perturbation examples come from Lei et al. (2020) [13], who perturbed precipitation 176 

and irrigation inputs via multiplicative rescaling with mean-unity lognormally distributed 177 

random errors that have a standard deviation equal to 20% of the corresponding input, and from 178 
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De Wit and Van Diepen (2007) [23], who generated precipitation ensembles based on a highly 179 

accurate precipitation dataset that was perturbed with an additive error component and a 180 

multiplicative component that generated binary rain or no-rain events on locations in which the 181 

records pointed to the absence of precipitation. In Oliveira et al. (2023) [24], the authors 182 

explored the uncertainty existent in measurements of low-cost luxmeters to perturb the 183 

photosynthetically active radiation measurements used as inputs in the model. 184 

In cases in which states are perturbed, Xie et al. (2017) [25] input the initial states and 185 

parameters into the CERES-Wheat and, at the beginning of the green-up stage, LAI and soil 186 

moisture were perturbed according to the errors between the field measurements and the 187 

simulated LAI and soil moisture. Ines et al. (2013) [26] randomly sampled, at the start of the 188 

simulation, values of leaf weight at emergence and plant leaf area at emergence, to increase the 189 

variability of the ensemble. Beyond inputs, Lei et al. (2020) [13] also applied direct 190 

perturbations to soil moisture states at all depths independently with random errors sampled 191 

from a mean-zero, normal distribution with temporally varying standard deviation equal to 10% 192 

of the state value, followed by the introduction of a vertical auto-correlation at the different 193 

depths. Kang and Özdoğan (2019) [8] not only perturbed the initial aboveground biomass or 194 

LAI for each ensemble member to simulate model noise, but also initial soil water content, to 195 

simulate variations in soil properties and water balance. 196 

Researchers have used multiple ways of ascribing uncertainty to parameters. Kang and 197 

Özdoğan (2019) [8] added random noises drawn from a uniform distribution ranges from 0 to 198 

10% of the original values of soil hydraulic parameter. They also chose a parameter that should 199 

vary over the course of the growing season and that accounts for stress not simulated by the 200 

model to perturb with noise sampled from a uniform distribution centered in the original value. 201 

Huang et al. (2016) [27] chose the parameters based on the results of a sensitivity analysis and 202 

set the values of the standard deviations of two parameters, following the results of a previous 203 
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study. Ines et al. (2013) [26] identified which parameters had major influence in the model and, 204 

with an uncertainty level of 10%, perturbed each model parameter using a Gaussian 205 

distribution, generating ensemble members by randomly sampling model parameter 206 

combinations from the perturbed arrays. Zhao, Chen and Shen (2013) [28] even tried to evaluate 207 

the impact of using parameter uncertainty to generate the ensembles. They chose one parameter 208 

that was mostly correlated to crop yield and ascribed a distribution to it, multiplying its standard 209 

deviation by different fixed values. Lu et al. (2021) [29] took advantage of the existing 210 

uncertainty in parameters and used this as an artifact to generate ensembles without calibrating 211 

the model. They sampled parameters that they called variant as well as a fixed factor to scale 212 

phenological parameters for the canopy in a given year. 213 

One issue in perturbing parameters or inputs for generating the ensembles is what Curnel 214 

et al. (2011) [30] denominated phenological shift. This effect refers to ensemble elements that 215 

are in different phenological stages, which leads, at the same point in the simulation, to different 216 

modules in the model to be active and, therefore, the assimilation of an observation having 217 

different a meaning for each ensemble member. 218 

As for the perturbation used in observations — which are also treated as random variables 219 

to add to the variance of the updated ensemble [31] — Ines et al. (2013) [26] state that the 220 

variance used in its generation is based on the uncertainty of the data. But more precisely, 221 

Huang et al. (2016) [27] mentions that the standard deviation of the Gaussian white noise error 222 

needs to be a realistic value for it to represent the uncertainty of the remotely sensed 223 

observation. In section 2.3, uncertainties in observations are more thoroughly described, but as 224 

an example, Xie et al. (2017) [25] used the differences between field measurements and remote 225 

sensing observations to determine the standard deviations of the observed LAI and soil 226 

moisture. 227 
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Ensemble size 228 

The choice of ensemble size is often performed in three different ways: testing, 229 

referencing a theoretical result or referencing other assimilation study on the literature. Pellenq 230 

and Boulet (2004) [12] affirmed a preliminary study must be performed to find the minimum 231 

ensemble size that ensures particles may follow the same trajectory as the true state. They say 232 

the number usually corresponds to value above which assimilation results are identical. With 233 

this approach, Nearing et al. (2012) [9] showed an example in which the number depended on 234 

the goal of the assimilation. The authors tested different values when assimilating LAI and soil 235 

moisture aiming at improving estimates of wheat yield, LAI and soil moisture. In the cases of 236 

assimilation of the state variable, RMSE became stable with number of elements of 25. In the 237 

other cases, the stability came with an ensemble of 100 elements. Lu et al. (2021) [29] evaluated 238 

ensemble sizes for simultaneous assimilation of canopy cover and soil moisture from 10 to 400 239 

and overall observed little improvement for more than 200, even though in some years 10 240 

elements were enough for stable results. 241 

Several studies, however, refer to the experiences of other authors. Frequently, authors 242 

refer to De Wit and Van Diepen (2007) [23] when commenting on their choice for the ensemble 243 

size [28,32,33] The study, however, applies to assimilating soil moisture with an ensemble 244 

obtained by perturbing precipitation and with an initial state ascribed by sampling a calculated 245 

Gaussian acceptable value and it is possible that they do not generalize for other approaches. 246 

Additionally, the authors mention that although they observed reduced RMSE in soil moisture 247 

estimates, this was not applied to the variance. Despite that, their results were compatible with 248 

other results for soil moisture, and Mishra, Cruise and Mecikalski (2021) [34] followed the 249 

suggestion from the study of Yin et al. (2015) [35], who theoretically and through an example 250 

showed that the ideal ensemble size for assimilating soil moisture is 12, which suggests 50 251 

would be a reasonable estimate in similar situations. 252 
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2.2.4 Unscented Kalman Filter (UKF) 253 

Similarly to the EnKF, the Unscented Kalman Filter uses the average of an ensemble as 254 

the state estimate, instead of the direct estimates provided by the model. However, the ensemble 255 

is not just sampled from a distribution. It uses what is called the unscented transform to generate 256 

particles — the sigma points — and weights for those particles that, when combined, are more 257 

representative of the expected state value. These sigma points are propagated through the non-258 

linear model, which provides more accurate approximations of the mean and covariance matrix 259 

of the state vector, and thus more accurate state estimation. [36]. 260 

Torres-Monsivais et al. (2017) [37] evaluated the UKF along with data simulated with 261 

the Reduced State Tomgro model, perturbed by several noise levels. Ruíz-García et al. (2014) 262 

[38] used data from destructive analyses of lettuce in a greenhouse to assess uncertainty of the 263 

NICOLET model. In the study with tomato, the authors ascribed low covariances to the model 264 

and higher to the measurements, and assessed the UKF performance given noise added to model 265 

estimates, while in the study with lettuce, the values were tuned until reasonable results were 266 

obtained. Recently, Belozerova (2023) [39] emphasized the UKF advantages over the EnKF, 267 

namely, its non-stochastic behavior and its being computationally cheaper, with comparable 268 

performance. 269 

2.3 Errors and uncertainty 270 

How to identify errors in the elements involved in assimilation and quantify their 271 

uncertainties is widely discussed by Jin et al. (2018) [3] and Huang et al. (2019a) [4], as they 272 

are central in filtering approaches. For crop models, the sources of uncertainty they list include 273 

not only issues referring to how processes are represented and the quality of input data, but also 274 

the difference between simulations and actual growth, which is impacted by pests and diseases. 275 

For observations, they mention errors in the measurement themselves and in retrieval methods. 276 

In both cases, often their studies emphasize aspects of satellite-derived observations, such as 277 
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errors in spatial data and scale mismatches. This section aims to revisit this topic, with more 278 

details and examples on how these uncertainties have been quantified and applied in data 279 

assimilation studies. Although the discussion in this section focus on trying to ascribe meaning 280 

and understanding the uncertainties, these are filter hyperparameters that may be estimated from 281 

data [40]. 282 

2.3.1 Observations 283 

Overall, data assimilation in crop models rely on observations retrieved from satellite 284 

monitoring of Earth’s surface. Dorigo et al. (2007) [2] covered methods used to derive canopy 285 

state variables from optical remote sensing data in the visible to near-infrared and shortwave 286 

infrared regions. These methods either rely on statistical relationships between the spectral 287 

signature and the measured biophysical or biochemical properties of the canopy or they derive 288 

the states from the known behaviors of leaf reflectance and radiation propagation through the 289 

canopy. Both are used to obtain remote sensing products, which directly estimate the state for 290 

the final user. And both remote sensing products and reflectance itself, are used in assimilation. 291 

For those products, Huang et al. (2019a) [4] mention how guidelines for uncertainty 292 

quantification are still being established by the community and that many EO-derived products 293 

have poor or no uncertainty information available. Particularly for satellite‐derived leaf area 294 

index (LAI) products, Fang et al. (2019) [41] also comment on how given the complexity 295 

associated to the retrieval process, a comprehensive quantitative assessment of the quality of 296 

LAI products is still missing. In the case of assimilating reflectance or albedo, the crop model 297 

is coupled with a radiative-transfer model (RTM), which allows for quantifying uncertainty in 298 

the measurements directly [42]. 299 

By assimilating products, several studies [26–28] are able to consider the observation as 300 

the same quantity as the state, which means the relationship between states and observations 301 

may be obtained by the unit matrix, simplifying the approach. The adverse effects of this choice 302 
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are not often discussed and the main example we found that mentions them comes from the 303 

study of De Wit and Van Diepen (2007) [23], which makes it explicit that the variance they 304 

ascribed to observations did not account for deficiencies in the conversion model itself, later 305 

concluding that the value they ascribed to the variance was indeed underestimated. 306 

When measurements do not correspond directly to the state, filters require observation 307 

operators for the conversion. One observation operator often used is the RTM PROSAIL [42–308 

45]. It combines the PROSPECT leaf optical properties model and the SAIL canopy 309 

bidirectional reflectance model, and is used for retrieval of vegetation biophysical properties 310 

[46]. Huang et al. (2019b) [42] used the RTM PROSAIL, arguing this is a good way to avoid 311 

the process of regional LAI retrieval, and Li et al. (2017) [43] used the PROSAIL model and 312 

characterized errors in the observations, pointing to values from 0.09 to 0.51 m2 m-2 of error in 313 

LAI in the different development stages of wheat. For those who develop their own 314 

measurement functions, they often establish them with empirical relationships and characterize 315 

their uncertainty based on field data [32,47]. Either in their case, in the case of using the 316 

PROSAIL or other RTMs or, for example, in the case of Kang and Özdogan (2019) [8], who 317 

used a relationship between the Enhanced Vegetation Index extracted from Landsat images and 318 

field LAI observations derived from a global dataset with RMSE of 1.01m2 m -2 and MAE of 319 

0.81m 2 m -2, these metrics refer to the operator, which, as mentioned, may affect both estimates 320 

of state and covariance. For instance, depending on the quality of the observation operator, the 321 

conversion may lead to bias in the residual, and consequently, the updated estimate to the wrong 322 

value and, or by affecting the gain, to the wrong weight of the residuals in the new estimate. 323 

While observation uncertainties should be accounted for separately, these should not be 324 

disregarded when understanding the results. 325 

As for observation uncertainties themselves, since these studies often refer to large areas, 326 

their estimates may be considered as the variability across fields. For instance, Zhao, Chen and 327 

SciELO Preprints - This document is a preprint and its current status is available at: https://doi.org/10.1590/SciELOPreprints.8033



15 

 

Shen (2013) [28] understood that neighboring pixels had similar uncertainties for the same 328 

period and used the variance among fields as uncertainty of remote sensing LAI. Huang et al. 329 

(2016) [27] stated that by random sampling their synthetic 30-m LAI series, the observational 330 

errors well for each 1-km grid cell were well-represented. For a time-series derived from 331 

Landsat, they obtained linear regressions between the observations and LAI values from the 332 

field-measured subplots and used the RMSE as observational errors. Kang and Özdogan (2019) 333 

[8], on the other hand, assumed constant LAI observation variance at 0.5 m2 m-2, which they 334 

claimed corresponds to the average variance of LAI within a county across the growing season.  335 

Other than satellite retrieved data, there are other sources for observations to which error 336 

is ascribed in other ways. For instance, Linker and Ioslovich (2017) [22] and Ruíz-García et al. 337 

(2014) [38] used destructive measurements of the assimilated state. In the first case, the authors 338 

used direct measurements of aboveground biomass of potatoes and cotton and in the second 339 

case, of lettuces. As for non-destructive measurements, Linker and Ioslovich (2017) [22] also 340 

used pictures taken from 1.5 and 2 m above the crop to determine canopy cover. Since these 341 

were processed to obtain the fraction of the soil surface covered by the canopy, for the Aquacrop 342 

model this corresponded to a direct measurement of the state. On these cases, errors 343 

corresponded to variance from measurements. Data retrieved by unmanned aerial vehicles 344 

(UAVs) often have similar limitations as satellites regarding scale, but brings into discussions 345 

other aspects, particularly, as cameras are able to capture other types of data. For instance, Yu 346 

et al. (2020) [48] used field measured plant height as well as detected by UAVs and discussed 347 

the effects of multiple values ascribed to errors, arguing the trial-and-error procedure could 348 

provide a guideline when the true field observation error is unknown. Recently, Han et al. 349 

(2022) [49] commented on how, for smallholders, pictures could be a source of observations 350 

for assimilation and emphasized the need to proper characterize observation errors. They 351 

evaluated an approach in which the measurement and its error were estimated using the 352 
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probabilistic output of a convolutional neural network trained with pictures collected during 353 

growth using smartphones and labels obtained by destructive and non-destructive 354 

measurements. 355 

Finally, one relevant aspect refers to how soil-crop systems may not have a constant value 356 

for the error. Nearing et al. (2012) [9] explain how the soil moisture observation uncertainty is 357 

variable throughout time, since measurement accuracy degrades as vegetation water content 358 

increases throughout the season. They ascribed to error measurement a value derived from the 359 

relationship between variance in the soil moisture retrieval and this fraction of plant population 360 

and plant biomass that corresponds to water. Lei et al. (2020) [13] evaluated a time-varying 361 

error for soil moisture observations as a function of LAI. They observed an overall 362 

improvement in soil moisture estimates, but also a somewhat less stable DA performance. Also 363 

for soil moisture, Mishra; Cruise and Mecikalski (2021) [34], chose a constant error for the 364 

observation, but they were aware that the errors in the sensors used behaved in contrasting ways 365 

over crop growth stages, and that this choice may have led to errors that were too low in the 366 

early growth season and larger later in the season. Lu et al. (2021) [29] used the multi-year 367 

average value of the daily standard deviation of the observations from the 4 soil moisture 368 

profiles. But for canopy cover, they noted the error varies dramatically during the growing 369 

season, with significant variability in the exponential growth stage and the decay period canopy 370 

cover, and only marginal when the canopy was near maximum. So, they assumed canopy cover 371 

observation error as dynamic, and the standard deviation of the samplings from the different 372 

zones on each sampling day was used separately. Li et al. (2017) [43] considered the standard 373 

deviation of the LAI observations as 10% of the measured value, based on their observations 374 

of LAI, and Curnel et al. (2011) [30] used a coefficient of variation to characterize uncertainty, 375 

thus ascribing to this hyperparameter of the filter a value that corresponded to a fraction of the 376 

observation. Belozerova (2023) [39] built a trend curve of LAI observations and used the 377 
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deviation from the trend curve as a proxy of measurement uncertainty, ascribing a different 378 

error estimate for each observation. 379 

2.3.2 Model estimates 380 

For Wallach and Thorburn (2017) [50], uncertainty means the distribution of the errors 381 

of prediction. By defining the model error (𝑒) as in Equation 1, these distributions may be 382 

ascertained in two different ways, depending on the predictor (𝑓(𝑋 ;  𝜃)) being treated as fixed 383 

or random [51]. If the predictor is treated as fixed, the model error may be ascertained by 384 

hindcasts, determining the discrepancy between the prediction and an observed value (𝑌). If it 385 

is not treated as fixed, each of its elements may then be treated as random variables, with several 386 

possible values and, therefore, uncertainty in the predictor may have as sources uncertainty in 387 

inputs (𝑋), model structure itself (𝑓(𝑋 ;  𝜃)) and parameters (𝜃). 388 

𝑒 =  𝑌 −  𝑓(𝑋 ;  𝜃) Equation 1 389 

In the case of Pellenq and Boulet (2004) [12], they had two situations, and the differences 390 

in model behavior, regarding soil moisture and biomass, required different approaches for 391 

determining sources of model uncertainty. When analyzing the effects of initial input values, 392 

they observed that for biomass, as the state value is propagated throughout growth, there is no 393 

compensation for previous errors, and errors in the estimates of initial conditions could impact 394 

the following behavior. And while for soil water, the reliance on previous values is lower, with 395 

shorter “memory” of the system, in the coupled case, the initial water content could strongly 396 

impact biomass evolution. As for crop model noise, they assumed there would be at least one 397 

parameter set in the ensemble that could satisfactorily reproduce natural conditions. So, they 398 

decided by generating ensembles ascribing uncertainty to parameters and to inputs. On the other 399 

hand, in the case of soil moisture, since it tends towards low variance and equilibrium, they 400 

suggested including model noise as well, which should be nonetheless calibrated to avoid the 401 

loss of model integrity. Nearing et al. (2012) [9] evaluated uncertainty in weather inputs, 402 
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through correlated perturbations in weather time-series. Their results were not conclusive as in 403 

one of their systems, the assimilation of LAI improved yield estimates, but not the exclusive 404 

assimilation of soil moisture.  405 

Uncertain inputs also manifest through unusual events, which are often not included in 406 

models. Therefore, for some authors, an advantage of filter assimilation methods is that they 407 

can incorporate these dynamic changes [33]. For example, Hu et al. (2019) [52] improved 408 

sugarcane yield estimates by assimilating leaf area index into the SWAP-Wofost model, after 409 

the interference in LAI caused by artificial leaf stripping and natural storms, and in Zhao, Chen 410 

and Shen (2013) [28], the authors observed high errors when simulating yield for four regions 411 

in which meteorological disasters had occurred, which were then reduced to some extent by 412 

assimilating observations. 413 

Calibration is an issue that is often mentioned regarding model errors, as it makes the 414 

model more consistent with the spatially limited field measurements and calculated uncertainty 415 

in parameters could be propagated through the model [4]. Kang and Özdoğan (2019) [8] 416 

commented on how, because over large areas, calibration is no longer specific for cultivar, 417 

sowing dates or management, model estimates become biased, which violates the assumptions 418 

of assimilation techniques that require model errors to have zero means and results in 419 

inefficiency of the method. It is then the case that before performing assimilation, models are 420 

frequently calibrated [4]. Lu et al. (2021) [29] believed the calibration standard was lower, 421 

aiming at having an ensemble of non-calibrated simulations that could capture the dynamics of 422 

key model states and that its spread reflected the model state variability. Their assimilation of 423 

canopy cover and soil moisture was able to improve yield when compared to the no-assimilation 424 

case. Following a similar premise, Fattori Junior et al (2022) [53] also assessed the effect of a 425 

non-genotype-specific calibration for multiple cultivars, and observed an overall improvement 426 
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in model estimates after assimilation in the non-calibrated model, using three assimilation 427 

techniques. 428 

2.4 Variables 429 

In a way, the largest restrictions to performing data assimilation in crop models are which 430 

additional data is available and if the knowledge or ability of how to relate them to models’ 431 

state variables exists. This is one reason why LAI, canopy cover and soil moisture are frequently 432 

explored as observations, as there are several satellite products available for them as well as 433 

they are often simulated by crop models. To counter availability restrictions, Luo et al. (2023) 434 

[5] point to how coupling multi-source remote sensing observations has become more explored 435 

and how some studies have shifted from univariate to multivariate assimilation to improve the 436 

robustness of crop yield estimates. But being able to perform data assimilation does not ensure 437 

that assimilation will be effective. As summarized by Lei et al. (2020) [13], the performance of 438 

any data assimilation algorithm is fundamentally related to the strength of the relationship 439 

between observations and model states. 440 

For Mishra; Cruise and Mecikalski (2021) [34], assimilation of soil moisture, especially 441 

in irrigated areas, led to improvements in yield estimates, which is a very direct relationship, 442 

but for Ines et al. (2013) [26], they expected assimilation of soil moisture in the DSSAT-CSM-443 

Maize model to update the rootzone soil moisture, affecting soil nitrogen and, therefore, yield. 444 

There is then no guarantee that the included observations will improve estimates. For instance, 445 

Linker and Ioslovich (2017) [22] discuss how since the Aquacrop model is water-driven, and 446 

as such, solar radiation is not considered explicitly, the effect of canopy cover on crop 447 

development may be underestimated. And if assimilation not improving the outcomes is 448 

undesirable, it should be noted that it could even have an adverse effect on the estimates, 449 

depending on how variables interact with each other. Tewes et al. (2020a) [54] argue that as 450 

model complexity rises, sequential update of only one or few state variables could threaten the 451 
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model’s integrity and cause an undefined state of the model, such as when the simulation 452 

triggers a new module by reaching a threshold value, but the filter updates the estimate to a 453 

value lower than the threshold. 454 

Time-averaged correlation has been suggested as not very helpful when determining best 455 

assimilating state variables by Nearing et al. (2012) [9]. In their experiments, they point to 456 

several cases, using different realistic uncertainty scenarios, in which high correlation is not 457 

connected to improvement in yield estimates. Nearing et al. (2018) [55] framed this discussion 458 

by relying on concepts of information theory, proposing a method to quantify how efficient data 459 

assimilation may be, through the quantification of information content on simulated model 460 

states and of the retrieval data relative to the imperfect evaluation data, and then measuring the 461 

fraction of this information that is extracted by a given DA implementation or algorithm. 462 

2.5 Timing and frequency 463 

An issue that interacts with which variable is going to be assimilated to improve an 464 

estimate is at what time of growth and how often should the estimate be updated. Frequently, 465 

the discussion is connected to at which moment of the cycle the observation available will be 466 

most informative. Dente et al. (2008) [47] evaluated the exclusion of one more precise image 467 

and observed that for wheat, within the conditions they observed, the data should include 468 

images from either the end of stem elongation stage or the beginning of heading, when the LAI 469 

reaches the maximum value. Timing of assimilation in wheat has been widely discussed 470 

[8,25,30,43,47] with some authors reaching the conclusion that images from the whole cycle 471 

presented the best results [8,43]. For sugarcane, on the other hand, Yu et al. (2020) [48] 472 

concluded that assimilation of height in the late period of the elongation stage, involving the 473 

maximum plant height, can be the most useful, without the need for its sampling over the whole 474 

development stage.  475 
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As remote sensing observations are often only available with large intervals between 476 

them, their assimilation allows for the model to adjust to the updates, but local assimilation of, 477 

for example, soil moisture, would present a different situation. Lu et al. (2021) [29] commented 478 

on how their use of local probes for monitoring soil moisture allowed for daily assimilation of 479 

this state, which likely improved their results. As crop systems models often present daily steps, 480 

it is not the case that assimilation would be performed in more frequent intervals, but in other 481 

contexts, such as weather forecasts, it has been argued that very frequent updates could insert 482 

noise in models, degrading forecasts [56]. 483 

3 MATERIALS AND METHODS 484 

3.1 Data sources 485 

Environmental data collection was performed in research greenhouses cultivated with 486 

tomatoes and refer to photosynthetically active radiation and air temperature from three growth 487 

cycles. The first cycle took place from Jul/2019 to Oct/2019 (Exp 1), the second, from 488 

Nov/2020 to Feb/2021 (Exp 2) and the third, from Mar/2021 to Jun/2021 (Exp 3). Dry mass 489 

from aboveground plants’ organs and leaf area index from destructive analyses of one tomato 490 

growth cycle (Exp 3) were also collected for model calibration. Data is publicly available 491 

[57,58]. 492 

3.2 Crop models 493 

With the environmental data from greenhouses, we simulated growth using the Reduced 494 

State Tomgro model (RT) [15] and the Vanthoor model (VM) [59]. We performed assimilation 495 

in the RT using observations obtained by simulation with both models, as detailed in section 496 

3.3. Because we focus on the RT model, a brief explanation on how it calculates fruit biomass 497 

is warranted. In the RT model, fruit biomass (Equation 1) is obtained directly from the balance 498 

between photosynthesis and respiration (GRnet, i.e., net aboveground biomass growth rate), 499 
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which is affected by suboptimal higher (g(Tdaytime)) and lower temperatures (fF(Td)), as well as 500 

the maximum partitioning of new growth to fruit (αF). From fruit biomass, another function of 501 

temperature DF(Td) impacts the conversion of fruit biomass (WF) into mature fruit biomass 502 

(WM) (Equation 2). In Equation 1, ϑ and NFF are parameters connected to the transition between 503 

vegetative and reproductive stages and N is the number of nodes. 504 

𝑑𝑊𝐹

𝑑𝑡
= 𝐺𝑅𝑛𝑒𝑡 ⋅ 𝛼𝐹 ⋅ 𝑓𝐹(𝑇𝑑) ⋅ [1 − 𝑒𝜗−(𝑁−𝑁𝐹𝐹)] ⋅ 𝑔(𝑇𝑑𝑎𝑦𝑡𝑖𝑚𝑒) Equation 2 505 

𝑑𝑊𝑀

𝑑𝑡
= 𝐷𝐹(𝑇𝑑) ⋅ (𝑊𝐹 − 𝑊𝑀) Equation 3 506 

For assimilation, RT model was used without local calibration, i.e., with parameters 507 

obtained in the original experiment in Gainesville. For obtaining the artificial observations, 508 

calibration was performed in the RT and in the VM through minimizing the relative squared 509 

error of data obtained in the field and models’ estimates through growth. Parameters values for 510 

the Reduced State Tomgro model are presented in Supplementary Table A1. 511 

3.3 Data assimilation 512 

From the elements presented in Section 2.2, we chose two techniques, the Ensemble 513 

Kalman Filter (EnKF), and the Unscented Kalman Filter (UKF). We evaluated the impacts of 514 

different approaches for structuring model uncertainty when performing data assimilation for 515 

improving yield estimates. Ground truth values corresponded to the simulations performed in 516 

each of the three environments with the calibrated Reduced Tomgro. 517 

• Two assimilated state variables: Fruit dry weight (Wf) and Mature fruit dry weight 518 

(Wm). 519 

• Two sources of observations: one (Case 1) in which three noise levels (10%, 30% and 520 

50%) were ascribed to the simulations of the calibrated Reduced Tomgro (Xtruth) and one 521 

(Case 2) in which calibrated Vanthoor model was used for simulations. While a 50% noise 522 

level could seem excessive, it should be remarked that it could comprise the error from the 523 
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observation as well as the observation operator. In Case 1, the level multiplied by the 524 

observation was treated as the standard deviation of a normal distribution from which the 525 

perturbation was sampled (Equation 4), leading to the artificial observation (Yartif). Case 2 526 

was proposed as another artificial data source, but one in which the noise level was not 527 

chosen, similar to what would happen with observations retrieved from cameras, for 528 

example. Case 2 was not explored through all combinations below, but only for the scenarios 529 

with best performance for the more similar noise level of Case 1. 530 

𝑌𝑎𝑟𝑡𝑖𝑓𝑖
= 𝑋𝑡𝑟𝑢𝑡ℎ𝑖

+ 𝑁(0, 𝑋𝑡𝑟𝑢𝑡ℎ𝑖
∗ 𝑁𝑜𝑖𝑠𝑒) Equation 4 531 

• Uncertainty in crop model: UKF requires determining a value for uncertainty in model 532 

estimates. Since assimilation was performed in the non-calibrated Reduced Tomgro model, 533 

we decided to ascribed these uncertainties as two variants of a relative error metric of the 534 

non-calibrated model (Table 1). The first is obtained by multiplying the estimate by the mean 535 

absolute percentage error of the model (MAPE, Equation 5, in which Xi is an estimated value 536 

from the non-calibrated model and Yi is an observation measured through the cycle, also 537 

used for calibration) from the non-calibrated Reduced Tomgro model for the assimilated 538 

variable. This is denominated the fixed approach. The second approach, denominated 539 

variable, was obtained by multiplying the estimate by different relative errors through the 540 

cycle. Instead of the average value obtained in Equation 5, each relative absolute error (RAE) 541 

used in the calculation of MAPE is considered the as uncertainty associated with the 542 

estimates for that period (Equation 6). For the EnKF, as this uncertainty could be ascribed 543 

in four different ways, we made an assessment of the different approaches: 1. ascribing to 544 

the initial states the standard deviation of the observed initial values, 2. ascribing to a 545 

parameter, conditioned to which state variable would be assimilated (DFMax for mature fruit 546 

and alpha_F for fruits, Supplementary Table A1), a perturbation of 10% of its value, 3. 547 
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ascribing to the hourly photosynthetically active radiation a perturbation of 10% of its value 548 

and 4. ascribing the same values used for the UKF directly to the model state. 549 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑌𝑖−𝑋𝑖|

|𝑋𝑖|𝑖 , Xi > 0 Equation 5 550 

𝑅𝐴𝐸 =  
|𝑌𝑖−𝑋𝑖|

|𝑋𝑖|
 Equation 6 551 

• Uncertainty in observations: In Case 1, the noise level multiplied by the observation 552 

was treated as treated as the uncertainty (Ri) ascribed to that observation (Equation 7). In 553 

Case 2, we ascribed the normalized root mean squared error from the calibrated Vanthoor 554 

model for the assimilated variable, either using the RAE of the different observations in one 555 

day or MAPE of the whole cycle (Table 1). In modes 2 and 3 of the EnKF uncertainty 556 

assessment, as these perturbations affect the model difference equation output, instead of the 557 

state variable itself, the uncertainty ascribed to observations should take this into account, or 558 

variances in the filter will not be connected to the same quantity. To do so, in Case 1, we 559 

defined the uncertainty as the difference between the current observation and its previous 560 

value, multiplied by the respective noise level (Equation 8). In Case 2, for simplicity, we 561 

applied the RAE to the difference between the current artificial observation and the previous 562 

one (Equation 9) for variable observation error and, in the fixed case, the value used was the 563 

MAPE. 564 

𝑅𝑖 = (𝑌𝑎𝑟𝑡𝑖𝑓𝑖
× 𝑁𝑜𝑖𝑠𝑒)

2

 Equation 7 565 

𝑅𝑖 = [(𝑌𝑎𝑟𝑡𝑖𝑓𝑖
− 𝑌𝑎𝑟𝑡𝑖𝑓𝑖−1

) × 𝑁𝑜𝑖𝑠𝑒]
2

= (𝑅𝑖 − 𝑅𝑖−1)2 Equation 8 566 

𝑅𝑖 = [(𝑌𝑎𝑟𝑡𝑖𝑓𝑖
− 𝑌𝑎𝑟𝑡𝑖𝑓𝑖−1

) × 𝑅𝐴𝐸]
2

 Equation 9 567 

• We subsampled the observations to determine the effect of frequency. Subsampling 568 

used 50% and 10% of the data available in the cycle. We repeated the process 20 times to 569 
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avoid biasing the results due to sampling, and in one of the repetitions, sampling was 570 

regularly spaced through the cycle while in the others, it was random. 571 

• The number of elements in the Ensemble Kalman Filter was defined as 250, after 572 

evaluation (results not shown). 573 

Table 1. Errors ascribed to the filters as uncertainty estimates. 574 

 
Simulation 

day 
Model [%] Observations (Case 2) [%] 

State variable  Wf Wm Wf Wm 

Fixed – Non-

calibrated 

model 

All 81 65 43 37 

Variable 

1-10 0.01* 0.01* 0.01* 0.01* 

11-27 0.01* 0.01* 0.01* 0.01* 

28-38 100 0.01* 164 26 

39-52 94 0.01* 15 2010 

53-66 82 51 20 20 

67-90 66 68 3.8 38 

91-end 66 75 7.9 52 

*Placeholder to avoid 0 variance. 575 

There are few examples of how to assess model uncertainty, so we chose a simple 576 

approach of using a relative error metric that could be comparable to the noise applied. We 577 

evaluated our approaches by calculating the daily absolute relative error through growth 578 

(Equation 6). Our focus on evaluating daily results is related to the indeterminate growth. 579 

Differently from other crops in which one value is ascribed to yield, harvest for indeterminate 580 

crops is continuous, and therefore, model errors through the growth cycle affect estimates along 581 

harvests. Since the excess of zeros from the vegetative phase could skew these results, they 582 

were not included in the calculation. We also show mean error (Equation 10) in order to discuss 583 

bias. 584 

𝑀𝐸 =  𝑌𝑖 − 𝑋𝑖  Equation 10 585 

The code for the crop models was written in python and difference equations were 586 

integrated by the Euler method. Filtering used the python filterpy library1, in which the 587 

 
1 https://github.com/rlabbe/filterpy 
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ensemble Kalman filter function was slightly modified to accommodate the multiple 588 

approaches for generating the ensemble. Data preparation for running simulations and 589 

simulation and assimilation results were processed using R. All code used in this study, is 590 

available in an online repository [60]. 591 

4 RESULTS AND DISCUSSION 592 

We have identified in the Background section that even when the problem is well 593 

established, ascribing the covariances of filters’ parameters is performed in multiple ways. In 594 

our evaluation of strategies to determine how to ascribe uncertainty to model and observations, 595 

we aimed at observing how imperfect measurements can allow for improvements on estimates 596 

of greenhouse tomato yield, when compared to using the model without calibration (Open 597 

Loop). 598 

4.1 Assimilation variable 599 

The first aspect we can comment on is the effect of assimilating an observation that is 600 

different from the target, i.e., the variable for which the improvement is desired. In this case 601 

study, Open Loop simulations severely underestimated the truth (Figure 1), but followed its 602 

same trend of largest estimates for Exp 2, which was conducted during spring-summer. Since 603 

the artificial observations of Case 1 followed the trends in the truth, relying on them to update 604 

the state would lead to increasing fruit biomass, which was observed. However, assimilation of 605 

fruits’ observations (Wf) in general led to an overestimation of yield, which for the lowest noise 606 

level, only slightly reduced the absolute errors in yield (Wm) estimates — whenever it did 607 

reduce the error —, when compared to the model without calibration. Table 2 shows mean 608 

errors, to make explicit the differences in over and underestimation caused by assimilation, but 609 

improvement in absolute errors is highlighted in bold. On the other hand, assimilation of mature 610 

fruits’ observations (Wm) led to improvements for all experiments. 611 

 612 
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Table 2. Mean error (after fruit appearance) of mature fruit biomass with and without assimilation, using 613 
the variable approach for observation (only Case 2) and for model uncertainties (both cases), with 614 
simulated observations of fruit biomass (Wf) and mature fruit biomass (Wm). Bold numbers correspond 615 
to the cases in which the absolute value is lower than the case without assimilation. 616 

Case 
Noise 

level 

Assimilated 

variable 
Filter Exp 1 Exp 2 Exp 3 

No assimilation -29.0 -36.6 -11.5 

1 

10 % 

Wf 
EnKF 21.1 29.2 11.1 

UKF 27.3 37.2 13.7 

Wm 
EnKF -13.1 -16.3 -4.02 

UKF -1.42 -2.94 -1.59 

30 % 

Wf 
EnKF 5.75 13.0 4.41 

UKF 25.7 34.0 12.3 

Wm 
EnKF -20.8 -26.0 -6.90 

UKF -4.89 -7.60 -3.49 

50 % 

Wf 
EnKF -5.35 -5.77 -1.12 

UKF 14.3 20.1 5.71 

Wm 
EnKF -23.2 -30.6 -8.89 

UKF -14.1 -21.2 -8.04 

2 - 

Wf 
EnKF -14.7 -29.6 1.33 

    

Wm 
EnKF -26.8 -38.1 -8.9 

    

 617 

  618 
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 619 

Figure 1. Overview of data assimilation results. Growth curves [g m-2] for fruit (continuous line) and 620 
mature fruit dry mass (dashed line) obtained by assimilation of observations of fruit dry biomass (Meas: 621 
Wf) or mature fruit dry biomass (Meas: Wm), with different noise levels, in the Reduced Tomgro Model, 622 
with the complete observation dataset for the three weather experiments and ascribing variable 623 
uncertainty for both model and observations. The Ensemble Kalman Filter used Approach 2 (parameter 624 
perturbation) for ensemble generation. Assimilation curves in lighter colors refer to each of the 20 625 
repetitions of the experiment. The darker curve refers to the average result of the assimilation runs. Dots 626 
refer to all observations used in the multiple runs. For better visibility, fruit mass observations were 627 
truncated at 800 g m-2. The x-axis was truncated at 30 days since the previous period corresponds to the 628 
vegetative stage. 629 
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The first result happened because improving Wf estimates could not ensure Wm being 630 

correctly estimated. The simulations from the non-calibrated model (OL) showed very close 631 

estimates for Wf and Wm, representing a maturity rate much larger than the one from simulated 632 

truth. This is a consequence of the Wm estimate depending on a parameter that differed in more 633 

than 100% from the non-calibrated to the truth scenarios (Supplementary Table A1). The 634 

simulated truth also pointed to much larger overall biomass values than the estimates obtained 635 

by the non-calibrated model. So, while the model previously underestimated Wm, assimilation 636 

led to an overestimation, since Wm was then obtained by the non-calibrated model with the 637 

larger parameter, and based on a much larger value of Wf, as updated by the filter. This is 638 

similar to the problem described by Kang and Özdogan (2019) [8] as error inconsistency. 639 

Interestingly, the largest noise in measurements allowed for model estimates to be more 640 

explored by the filter, so the process led to improved estimates by averaging the higher and 641 

lower estimates of Wf. 642 

On the other hand, since assimilation of Wm itself did not depend on the step of the model 643 

processing the updated value, improvements, in particular for lower noise levels, are more 644 

noticeable. This effect is largely connected to the relationships between uncertainties as used 645 

by the Kalman Filters. We see that in general, for the assimilation of Wm, the lower the noise 646 

level, the closer the estimates were brought to the truth. It is the case then that not always 647 

assimilation is going to improve results, and this outcome depends on how the model will use 648 

the updated value and on its sensitivity to this input, i.e., how much the estimate relies solely 649 

on the input. 650 

An additional issue, that is obfuscated by assessing metrics only, is the behavior 651 

associated with the estimates. Directly updating the state, as is the case with the UKF, may lead 652 

to frequent non-monotonic behavior that is not compatible with plant growth. In Figure 1, 653 

although the average curve represents a smoothed result, individual curves, represented in 654 

SciELO Preprints - This document is a preprint and its current status is available at: https://doi.org/10.1590/SciELOPreprints.8033



30 

 

lighter colors, are very erratic, in particular for higher noise levels. There are two possibilities 655 

that could attenuate this issue. The first is the frequency of assimilation. When Torres-656 

Monsivais et al. (2017) [37] assessed the performance of the UKF in LAI assimilation with the 657 

RT, it seems that because they used fewer observations, the results they show do not lead to 658 

unreasonable curves, similar to the cases of updates performed with satellite imagery. The effect 659 

of frequent observation assimilation is further discussed on section 4.5. The second is the source 660 

of error in observations. In the example presented, the effect was amplified by sampling 661 

observations from a normal distribution with zero mean but increasingly larger variances. 662 

Despite the variability observed in the assimilation of fruits, the erratic behavior is attenuated 663 

when the updated fruit biomass estimate is processed by the model to estimate mature fruit 664 

biomass, since the update occurs in the level of the daily increment. 665 

Finally, there are trade-offs in the decision of which variable to assimilate. We chose in 666 

this study to simulate observations more directly connected to yield. This choice would still 667 

allow for using the crop model for forecasting, ensuring the starting point of these chosen 668 

variables is as correct as possible, but it nevertheless limits the advantage of exploring all the 669 

model’s potential. As stated in the section 2.4, other variables are more often used either given 670 

data availability or how much they affect the desired state variable. Therefore, while updating 671 

mature fruit biomass directly gives improved updates, it does not take advantage of the models’ 672 

interaction components and, for example, impacts on leaf area that could lead to a reduction in 673 

fruit biomass will only be detected whenever fruit biomass is itself affected. 674 

4.2 Noise level 675 

It could be said that it is pointless to assimilate observations that are known to be 676 

incorrect, but since every measurement include some sort of error, the discussion is on the 677 

threshold accepted. For instance, the overall relative root mean squared error of high resolution 678 

remote sensing data used as reference values for the leaf area index of crops used in the 679 
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validation of moderate resolution LAI products ranged from 2.1% to 37% with a median of 680 

22% [41]. In our case, visually, noise levels corresponding to 30% still reasonably represent the 681 

truth, but noise levels of 50% may lead to very unreasonable, non-monotonic, estimates. In our 682 

case, sampling was centered on the truth, so the fluctuations represent noise in measurements, 683 

but observation errors could also be caused by systematic bias, which we did not represent. 684 

In this Case 1, observations were expected to improve estimates, since the model was not 685 

calibrated and observations followed the trend in the truth. We also expected that increasing 686 

noise would lead to deterioration of filter performance. Both happened for the assimilation of 687 

mature fruit observations. But as the noise in observation increases and this information is 688 

passed to the filter, along with the observation covariance, the model estimate is further 689 

explored by the filter. And when the errors are in opposite directions, which is the case of 690 

assimilation of the biomass of fruits, they compensate and the result is an overall improvement 691 

in mature fruit biomass estimate. 692 

4.3 Ensemble generation approach 693 

In Figure 1, we show only the results of the Ensemble Kalman Filter for the second 694 

approach of obtaining the ensemble described in section 3.3. We decided on further using this 695 

approach for the assessments after we observed the effects of the different approaches on yield 696 

(Figure 2) using the intermediate noise level. We noticed how, differently from directly 697 

updating the states either with the EnKF or the UKF, this approach led to reasonable results 698 

while not generating implausible curves even for the noisier observations, as discussed on 699 

section 4.1. 700 

Furthermore, the Unscented Kalman Filter, when assimilating mature fruits, led to higher 701 

mature fruit biomass than fruit biomass (result not shown), which would not be realistic. This 702 

effect was not present in the EnKF as it relies more on model structure. Leaving the ensemble 703 

to be obtained by perturbing inputs and parameters likely lead to smoother results since they 704 
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affect the increment of the state variable and not the state itself. This means that, for observation 705 

uncertainty to be compatible with the variability generated within the ensemble, we needed to 706 

calculate uncertainties also based on the how these uncertainties affected the increments. This 707 

specific approach of associating the covariance of the observations with the magnitude of the 708 

increment is not explored in other studies. 709 

On the other hand, changing only initial states or perturbing inputs did not improve the 710 

results as much. Changing initial states, while sometimes used, is less appropriate for a variable 711 

that will only change later in the cycle, differently from soil moisture, aboveground biomass, 712 

or leaf area index. To better assess this approach, perturbations could be performed at fruit 713 

appearance. Moreover, the choice of noise level ascribed to inputs likely led to less variability 714 

in the state variable being assimilated than the noise level that affected the parameters. This, in 715 

turn, led to lower covariance in the ensemble and more reliance in model estimates than in the 716 

observations. Similarly, even though we chose the parameters with highest values in a 717 

sensitivity analysis [61], the same 10% perturbation led to very different curve dispersion for 718 

fruits or for mature fruits. 719 

It should also be noted that by leaving the uncertainty to perturbation, we imply that the 720 

estimate should be somewhere around the variability caused by this parameter or input, while 721 

ascribing it to the state considering model error, also carries an information with regard to the 722 

bias of the model. Albeit larger, it allows for the extra compensation, if needed.  723 
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 724 

Figure 2. Outcomes for different ensemble approaches. Growth curves for the estimates of mature fruit 725 
biomass [g m-2], by assimilation of fruit dry biomass (Meas: Wf) or mature fruit dry biomass (Meas: 726 
Wm), using the Ensemble Kalman Filter with different approaches for ascribing uncertainty to the 727 
model: to the initial state (Init. States), directly to the state variables (States), perturbing a parameter 728 
(Parameter) or perturbing an input (Input). All curves for the 20 repetitions are shown, in each of the 729 
three weather experiments, for the case of variable model uncertainty in simulations using 30% of noise 730 
in observations. 731 
  732 
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4.4 Effect of variable model error 733 

After determining strategies for generating the ensemble, we assessed the effect of 734 

treating the noise level as fixed or variable. In this assessment, we meant to deal with an aspect 735 

of crop models that is that they often do not have constant variance [62]. The few studies that 736 

do not leave uncertainty to be determined in the ensemble define both a fixed value [37] or 737 

variable ones [22]. We did not observe a large difference between approaches (Figure 3), even 738 

though some are statistically different, likely because this effect was already mitigated by the 739 

use of relative values. Even though we present the results, there were, as expected, no 740 

differences between approaches in the assimilation using the EnKF, since for the ensemble 741 

generation method used, the covariance is derived from the perturbation in the parameters and 742 

is not an input. In the EnKF case, the model covariance naturally varies throughout the 743 

simulation. 744 

For the UKF, the assimilation of fruits led to similar results between the approaches, 745 

within the same method and noise level, likely because the overall magnitudes of the 746 

uncertainties used either fixed or through growth (Table 1), are similar and the updated 747 

estimates are further modified by the model process. As previously discussed in section 4.1, the 748 

cases in which there was improvement in the estimates occur for the highest noise levels in 749 

observations. For the assimilation of mature fruit biomass, overall, the UKF was sensitive to 750 

the differences in covariance and even though the median error is similar, the variable approach 751 

frequently led to higher errors. These errors may be connected to small differences during 752 

mature fruit appearance, but are nonetheless quantified as high relative errors.  753 
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 754 

Figure 3. Assessment of the error in using different model covariance approaches. Relative errors for 755 
daily estimates of mature fruit dry mass obtained by assimilation of artificial observations of fruit dry 756 
biomass (Meas: Wf) or mature fruit dry biomass (Meas: Wm), obtained by different degrees of 757 
perturbations in the outputs of the calibrated Reduced Tomgro model (noise levels 10%, 30% and 50%), 758 
through the whole cycle. The results refer to three weather conditions, with two different approaches of 759 
assigning uncertainty to the model, using both the Unscented and the Ensemble Kalman Filters. 760 
Horizontal orange lines refer to the relative errors of the Reduced Tomgro model in estimating mature 761 
fruits without assimilation: full line corresponds to the median and dashed lines to the 25th and 75th 762 
percentiles. Y-axis is truncated at 100%. Asterisk corresponds to different distributions using the 763 
Kolmogorov-Smirnov test with a 0.05 significance level.   764 
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4.5 Frequency of assimilation 765 

Assimilation frequency may be considered complementary to the acceptable noise level 766 

in observations, since assimilating an observation very frequently may not allow for the model 767 

to have an input in the estimates. In our example, this happens, counterintuitively, to the low 768 

noise level in the assimilation of fruits. We commented on section 4.1 how assimilating fruit 769 

observations overestimates mature fruit estimates. Therefore, the more frequent assimilation of 770 

them lead to increasing the error in yield estimates. When the noise increases, the opposite is 771 

true, and because the filter relies more on the model, the more frequent assimilation of these 772 

observations lead to a better result. 773 

For the assimilation of mature fruits, we had already seen (section 4.2) that the 774 

assimilation of observations with the lowest noise levels led estimates to be closer to the truth, 775 

but the magnitude of the improvement depends on the covariance associated with model 776 

estimates (Figure 4). For the EnKF, the covariance generated on the ensemble seems lower than 777 

the one ascribed to the UKF so, as the noise in the observations increases, observations are less 778 

explored by the EnKF than by the UKF. Therefore, for the EnKF, reducing the frequency has a 779 

more pronounced effect when the noise level is the lowest, but less so when it increases.  780 

The performance of the UKF follows overall the same pattern, but the covariance ascribed 781 

to the model allows the filter to explore more of the observations even with higher noise levels. 782 

So the effects of more frequent assimilation of fruit biomass leading to an increase in the error 783 

of yield estimates and of increasing median errors with fewer observations of mature fruit 784 

biomass occur up to the noise level of 30%. 785 

By sampling twenty times randomly we do not assess the effect of timing of observations, 786 

but we can discuss the usefulness of continuous monitoring. In this example, for the highest 787 

noise level, assimilation with half the observations led to very similar results, in particular for 788 

the assimilation of mature fruit observations. This result is interesting when connected to 789 

processing capacity. For instance, if the observations are obtained by pictures of plants growing, 790 
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there would be no need for obtaining, storing, and extracting the related biomass from them 791 

every day.  792 
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 793 

 794 

Figure 4. Sampling frequency effect on assimilation. Relative errors for daily estimates of mature fruit 795 
dry mass obtained by assimilation of artificial observations of fruit dry biomass (Meas: Wf) or mature 796 
fruit dry biomass (Meas: Wm), obtained by different degrees of perturbations in the outputs of the 797 
calibrated Reduced Tomgro model (noise levels 10%, 30% and 50%), through the whole cycle. The 798 
results refer to three weather conditions, with different fractions of the complete observation dataset, 799 
using both the Unscented and the Ensemble Kalman Filters. Horizontal orange lines refer to the relative 800 
errors of the Reduced Tomgro model in estimating mature fruits without assimilation: full line 801 
corresponds to the median and dashed lines to the 25th and 75th percentiles. Y-axis is truncated at 100%. 802 
Asterisk corresponds to different distributions using the Kolmogorov-Smirnov test with a 0.05 803 
significance level.  804 
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4.6 Different source for observations 805 

In this example, observations were obtained by simulation using the calibrated Vanthoor 806 

model. From the previous results, given its more stable performance, we only use the EnKF, 807 

which also allows for not having to choose the covariance behavior through the cycle. We again 808 

chose the approach of ensemble generation by using perturbation of parameters. Since in this 809 

case the uncertainty on observations is not by design, the covariance ascribed to them was also 810 

evaluated as variable through the cycle or fixed. While we could assess this case without 811 

repetitions associated with the observations, since they are simulated instead of obtained by 812 

adding noise, we decided to use 10% of observations to make more visible the differences in 813 

the two observation covariance approaches, thus leading to repeating the procedure to account 814 

for variability in sampling. 815 

This is a scenario in which both model and observations underestimate the truth (Figure 816 

5), leading to the high errors seen in Table 2. But in all examples, the observation covariance 817 

ascribed was such that observations are quite explored by the filter, which also resulted in the 818 

improvement of the estimates. The exception occurs during fruit appearance, when the updated 819 

estimates are much closer to the ones obtained by the model. For the assimilation of fruits, with 820 

both approaches of ascribing the covariance, this is quite visible before the first date in which 821 

the covariance changes, marked by an ‘x’. For the assimilation of mature fruits, this shift 822 

happens at the second date, more visibly in Exp 3. 823 

We explored the approach of scaling the uncertainty in the observations by the period to 824 

which they refer, observing that without it, the gain would always be too low. By scaling, in all 825 

three experiments, for both approaches in the assimilation of fruits, we observed gain values 826 

ranging from 0 to almost 1, varying through the cycle. We mostly observed no difference 827 

between varying or fixing the covariance in the observations. Even the seemingly high fixed 828 

values ascribed (43% and 37%, Table 1) were apparently often of a compatible magnitude to 829 

the covariance generated by the ensemble. 830 
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By using fewer observations, we more clearly see the shifts in estimates caused by 831 

assimilation. After a shift in the magnitude, the Open Loop curve no longer represents model 832 

estimates, since the following estimates are based on the shifted updated value. This explains 833 

why, in Exp 2, some estimates are larger than both observation and open loop estimates. 834 

  835 
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 836 

Figure 5. Assimilation results considering a different source for observations. Growth curves for fruit 837 
and mature fruit dry mass obtained by assimilation of fruit dry biomass (Meas: Wf) and for mature fruit 838 
dry biomass by assimilation of mature fruit dry biomass (Meas: Wm). Observations correspond to 839 
estimates of the Vanthoor model, using the Ensemble Kalman Filter (EnKF) with subsamples of 10% 840 
of the observation dataset for the three weather experiments and ascribing variable uncertainty for both 841 
model and observations and only to model. The x-axis was truncated at 40 days, since the previous 842 
period corresponds to the vegetative stage. Curves refer to all 20 repetitions of the experiment. For better 843 
visibility, fruit mass observations were truncated at 300 g m-2 in the upper panels and at 150 g m-2 in the 844 
lower panels.  845 
  846 
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5 FINAL REMARKS AND CONCLUSION 847 

The recently published reviews help to quantify and better understand the prevalent 848 

approaches of remote sensing assimilation into crop models, but when the specific application 849 

is different in all aspects including which models, observations and state variables are to be 850 

used, there are practical decisions that go beyond what has been discussed. Our goal in this 851 

study was to contextualize and apply data assimilation in the context of protected environments. 852 

These environments are used to grow different crops, e.g. horticultural or ornamental, which 853 

entails new models and new data sources. These data sources could be connected to multiple 854 

variables represented by crop models, free from the previous restrictions of what satellite 855 

imagery could provide. They could, for instance, rely on digital images to estimate either fruit 856 

mass or leaf area. This would also have implications in the frequency, which would no longer 857 

be restricted to satellites temporal resolution. But not only it is unclear which new variables 858 

could be useful, but also how to ascribe uncertainty to them would have to be thought through, 859 

since filter uncertainty parameter choices really impacts outcomes. And as these elements 860 

interact, there were many aspects to be discussed. 861 

Giving meaning to filters’ hyperparameters is a choice, as they could be tuned to obtain 862 

the best outcome [20,38]. But recent discussions in the crop modeling community have been 863 

moving from strictly data driven approaches towards hybrid ones [63] and the need for machine 864 

learning models to explore the knowledge constraints present in crop models has been 865 

emphasized [64,65]. For parameter calibration, instead of blind sensitivity analysis followed by 866 

optimization, the community has been proposing a mixture of expert knowledge in parameter 867 

and bound selection, followed by optimization using mathematical criteria (AIC and loss 868 

function) [66,67]. Therefore, while no meaning could lead to better outcomes, they would also 869 

hinder understandability in the process. We focused on approaching explainable ways to 870 

ascribing uncertainty to filters. One takeaway from our review and analysis is that observation 871 

covariances should not be fixed values. Kalman filter methods are an optimized approach for 872 
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performing a weighted average, in which the weights are related to the covariance of each 873 

estimate. Since errors grow in magnitude through the cycle, the process is more informed if 874 

covariances can vary with the magnitude of the observations and estimates, which naturally 875 

occurs in the Ensemble Kalman Filter. Ascribing covariance values as a proportion of the 876 

magnitude of estimates or observations can mitigate this issue.  877 

We also noted how since these models work at the difference step, perturbation of 878 

elements of the equation to generate the ensemble leads to the need of scaling observation 879 

covariance. It is possible that this outcome is being achieved by using model uncertainty 880 

inflation, as suggested by Ines (2013) [26]. We noted in our experiments that, without scaling, 881 

the observation uncertainty was too large in comparison to the one generated in the ensemble, 882 

leading to gains almost always equal to zero. This was possible, however, because we directly 883 

assimilated observations. It’s unclear how scaling could work when an observation operator is 884 

involved. This empirical result could be further investigated. 885 

For model error, much of the discussion refers to bias, since many studies use the EnKF, 886 

which generates the model uncertainty. Using estimates from a non-calibrated model means 887 

more bias and uncertainty in the model estimate, so it is well-established that both should be 888 

reduced by parameter calibration to obtain a better estimate. Our example highlighted the aspect 889 

of updating the state itself being a weighted average which depended on the covariances 890 

ascribed both to model and observation, but that update of a different variable could be heavily 891 

affected by the relationship of the updated and the target variable. 892 

Finally, we noted that which variable to assimilate is an open question for field data as 893 

well. Previous assessments with artificial data could be useful for avoiding trial-and-error ad-894 

hoc studies with laborious data gathering steps. In a new context, in which there is little previous 895 

research pointing to which variables could be useful, choosing the variable means defining 896 

which data will be collected. In that sense, good understanding of the models is helpful. Our 897 
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study allowed for directly assessing the relationships between the assimilated variable and a 898 

parameter or another state, but this is often not possible, since the models are usually more 899 

complex and the relationships between variables are not so direct. 900 

In part, extended state estimation is solving the issue by leveraging sensitivity analysis, 901 

so that at least one component of the model, i.e., parameters, are changed with assurance of 902 

impact on the target variable. Orlova and Linker (2023) [14] used sensitivity analysis 903 

immediately before the assimilation step, to account for changes in parameter importance 904 

through the growth cycle. This approach, however, still relies on how the model represents the 905 

process, which prevents the assimilation advantage of capturing processes not included in the 906 

model. It could be said that parameter would behave as dynamic, accommodating these 907 

processes, but in this case, they may lose their original meaning. Furthermore, the value would 908 

be identified within the process. To be able to choose which variable and through it, which data 909 

to collect, the analysis would have to be performed prior to assimilation. A sequential sensitivity 910 

analysis for multiple state variables [68] could allow for identifying which parameter impacts 911 

both the various state variables that could be assimilated as well as the target state variable, 912 

suggesting an interesting variable to assimilate.  913 

Sensitivity analyses methods are well-established to characterize which elements impact 914 

an outcome the most. It focuses, however, on parameters, and effects from bias on other state 915 

variables and weather conditions are not included. Ines et al. (2013) [26] concluded that weather 916 

conditions expected during the growing season could provide information as to when a variable 917 

is best to be assimilated, and this would include a beneficial constraint in a sensitivity analyses 918 

across multiple years [61]. 919 

To address the two main points of how to characterize uncertainties and how to choose 920 

useful variables, it could be the case that protocols, such as those being proposed for calibration 921 

[67,69,70] could also be explored. At least a framework could be designed on how uncertainties 922 
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should be understood before moving into data gathering. The would be helpful both for 923 

practitioners that are now approaching the subject, but also for those that have already been 924 

using remote sensing observations, but with new models and crops. 925 
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Supplementary Material A  1190 

Table A1. Parameters values before and after calibration. 1191 

Parameter Calibrated value 
Non-calibrated value 

(Original set) 

alpha_F 0.92 0.8 

beta 0.5 0.169 

delta 0.07 0.038 

DFmax 0.033 0.08 

E 0.75 0.75 

K 0.58 0.58 

K_F 8 5 

m 0.1 0.1 

N_b 15.5 16 

N_FF 19.6 22 

N_max 0.57 0.5 

p_1 2 2 

Q10 1.4 1.4 

Qe 0.09 0.08 

rm 0.016 0.016 

sl_N1 0.025 0.025 

sl_N2 0.05 0.05 

sl_R 0.0032 0.0032 

T_crit 28.4 24.4 

tau1 0.07428 0.07428 

tau2 0.05848 0.05848 

tmaxPg 35 35 

tmin_fr_gr 8.5 8.5 

TQe 23 23 

TSlop 20.6 20.6 

V 0.135 0.135 

V_max 8 8 
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