37 research outputs found

    Estimation of Atmospheric Water Vapor from ANFIS Technique and Its Validation with GPS Data

    Get PDF
    Adaptive neuro-fuzzy inference system (ANFIS) is a prospective approach in modeling weather parameters based on learning from historical data used. This study presented the comparison of tropospheric precipitable water vapor (PWV) between ANFIS and Global Positioning System (GPS) for areas in Pekan, Pahang, Malaysia. The PWV value was estimated with the ANFIS model with the surface meteorological data as inputs. The accuracy of PWV from ANFIS has been validated with PWV from GPS measurements for the period of 2010. The result showed that the ANFIS PWV has a similar trend with the GPS PWV (r = 0.999 at the 99% confidence level) and found a difference of 0.024%. The PWV from ANFIS was calculated 0.035% higher compared to GPS PWV and found a similar character in two seasonal monsoons. This indicates that the PWV obtained with ANFIS model agreed very well with GPS measurements and it can be implemented to monitor atmospheric variability as well as climate change studies in the absence of GPS data.Adaptive neuro-fuzzy inference system (ANFIS) is a prospective approach in modeling weather parameters based on learning from historical data used. This study presented the comparison of tropospheric precipitable water vapor (PWV) between ANFIS and Global Positioning System (GPS) for areas in Pekan, Pahang, Malaysia. The PWV value was estimated with the ANFIS model with the surface meteorological data as inputs. The accuracy of PWV from ANFIS has been validated with PWV from GPS measurements for the period of 2010. The result showed that the ANFIS PWV has a similar trend with the GPS PWV (r = 0.999 at the 99% confidence level) and found a difference of 0.024%. The PWV from ANFIS was calculated 0.035% higher compared to GPS PWV and found a similar character in two seasonal monsoons. This indicates that the PWV obtained with ANFIS model agreed very well with GPS measurements and it can be implemented to monitor atmospheric variability as well as climate change studies in the absence of GPS data

    Development of Sumatera eArly warNing ConvectIve System (SANCIS) for Thunderstorm Prediction Model

    Get PDF
    Since the activity of thunderstorm over Sumatera area – Indonesia increased during intermonsoon season in September, October, and November (SON) month, the thunderstorm as a natural disaster is influenced human activity. During the thunderstorm status increased may change an economy factors in this state due to natural hazard damage. Therefore, the development of Sumatera eArly warNing of ConvectIve System (SANCIS) for Thunderstorm Prediction System is necessary to avoid the natural hazard victims and helping meteorologist to predict thunderstorm event. To support the SANCIS development, we designed the thunderstorm model based on Adaptive Neuro Fuzzy Inference System (ANFIS). This system is equipped database meteorology and satellite imaging to update information and status thunderstorm event. In addition, to create the ANFIS model we use a two variable such as relative humidity (H) and PWV from radiosonde (RSPWV) from Weather Underground (WU) website and University of Wyoming (UW), respectively. Furthermore, the thunderstorm status prediction was updated in the SANCIS website. The two information per-day of status thunderstorm prediction were covered thunderstorm activity in this area.  Finally, the system was designed to monitor and giving the information of thunderstorm status during thunderstorm event

    Comparison of Tropical Thunderstorm Estimation between Multiple Linear Regression, Dvorak, and ANFIS

    Get PDF
    Thunderstorms are dangerous and it has increased due to highly precipitation and cloud cover density in the Mesoscale Convective System area. Climate change is one of the causes to increasing the thunderstorm activity. The present studies aimed to estimate the thunderstorm activity at the Tawau area of Sabah, Malaysia based on the Multiple Linear Regression (MLR), Dvorak technique, and Adaptive Neuro-Fuzzy Inference System (ANFIS). A combination of up to six inputs of meteorological data such as Pressure (P), Temperature (T), Relative Humidity (H), Cloud (C), Precipitable Water Vapor (PWV), and Precipitation (Pr) on a daily basis in 2012 were examined in the training process to find the best configuration system. By using Jacobi algorithm, H and PWV were identified to be correlated well with thunderstorms. Based on the two inputs that have been identified, the Sugeno method was applied to develop a Fuzzy Inference System. The model demonstrated that the thunderstorm activities during intermonsoon are detected higher than the other seasons. This model is comparable to the thunderstorm data that was collected manually with percent error below 50%

    Failure prediction of e-banking application system using adaptive neuro fuzzy inference system (ANFIS)

    Get PDF
    Problems often faced by IT operation unit is the difficulty in determining the cause of the failure of an incident such as slowing access to the internet banking url, non-functioning of some features of m-banking or even the cessation of the entire e-banking service. The proposed method to modify ANFIS with Fuzzy C-Means Clustering (FCM) approach is applied to detect four typical kinds of faults that may happen in the e-banking system, which are application response times, transaction per second, server utilization and network performance. Input data is obtained from the e-banking monitoring results throughout 2017 that become data training and data testing. The study shows that an ANFIS modeling with FCM optimized input has a RMSE 0.006 and  increased accuracy by 1.27% compared to ANFIS without FCM optimization

    Deep Learning Techniques in Extreme Weather Events: A Review

    Full text link
    Extreme weather events pose significant challenges, thereby demanding techniques for accurate analysis and precise forecasting to mitigate its impact. In recent years, deep learning techniques have emerged as a promising approach for weather forecasting and understanding the dynamics of extreme weather events. This review aims to provide a comprehensive overview of the state-of-the-art deep learning in the field. We explore the utilization of deep learning architectures, across various aspects of weather prediction such as thunderstorm, lightning, precipitation, drought, heatwave, cold waves and tropical cyclones. We highlight the potential of deep learning, such as its ability to capture complex patterns and non-linear relationships. Additionally, we discuss the limitations of current approaches and highlight future directions for advancements in the field of meteorology. The insights gained from this systematic review are crucial for the scientific community to make informed decisions and mitigate the impacts of extreme weather events

    Empirical Models For Estimating Precipitable Water Using Advanced Tiros Operational Vertical Sounder Satellite Data Over Peninsular Malaysia

    Get PDF
    Precipitable water (PW) is a highly variable, but important greenhouse gas that regulates the radiation budget of the earth. Adequate knowledge on its distribution, in space and time, is required for a better description and understanding of weather and global climate. The few existing studies in Peninsular Malaysia utilized in situ data to estimate TPW, with the consequences of oversimplifying the situation by masking the effects of local circulation and topographical difference, which are considered important in small scale weather studies. Also, the use of single meteorological parameter to estimate TPW usually undermines other parameters that may have combined effect on the column water vapour. New models based on multiple linear regression (MLR) to estimate TPW have, therefore, been proposed using homogenized climate data records derived from ATOVS onboard NOAA along with surface observations for the period 2001 – 2011. ATOVS data agreed well with radiosonde measurements, both spatially and seasonally, with correlation coefficients

    Modeling of Optimized Neuro-Fuzzy Logic Based Active Vibration Control Method for Automotive Suspension

    Get PDF
    In this thesis, an active vibration control system was developed. The control system was developed and tested using a quarter car model of an adaptive suspension system. For active vibration control, an actuator was implemented in addition to the commonly used passive spring damper system. Due to nature of unpredictability of force required two different fuzzy inference system (FIS) were developed for the actuator. First a sequential fuzzy set was built, that resulted lower vertical displacement compared to basic damper spring model, but system had limited effect with disturbances of higher magnitude and continuous vibrations (rough road). To improve the performance of the sequential fuzzy set, the main fuzzy set was improved using an adaptive neuro fuzzy inference system (ANFIS). This model increased the performance substantially, especially for rough road and high magnitude disturbance scenarios. Finally, the suspension’s spring constant and damping co-efficient was optimized using a genetic algorithm to further improve the vibration control properties to achieve a balance of both ride stability and comfort. The final result is improved performance of the suspension system

    Reduced major axis approach for correcting GPM/GMI radiometric biases to coincide with radiative transfer simulation

    Get PDF
    Correcting radiometric biases is crucial prior to the use of satellite observations in a physically based retrieval or data assimilation system. This study proposes an algorithm - RARMA (Radiometric Adjustment using Reduced Major Axis) for correcting the radiometric biases so that the observed radiances coincide with the simulation of a radiative transfer modeL The RARMA algorithm is a static bias correction algorithm, which is developed using the reduced major axis (RMA) regression approach, NOAA\u27s Community Radiative Transfer Model (CRTM) has been used as the basis of radiative transfer simulation for adjusting the observed radiometric biases. The algorithm is experimented and applied to the recently launched Global Precipitation Measurement (GPM) mission\u27s GPM Microwave Imager (GMI), Experimental results demonstrate that radiometric biases are apparent in the GMI instrument, The RARMA algorithm has been able to correct such radiometric biases and a significant reduction of observation residuals is revealed while assessing the performance of the algorithm, The experiment is currently tested on clear scenes and over the ocean surface, where, surface emissivity is relatively easier to model. with the help of a microwave emissivity model (FASTEM-5)

    Predictive modelling of global solar radiation with artificial intelligence approaches using MODIS satellites and atmospheric reanalysis data for Australia

    Get PDF
    Global solar radiation (GSR) prediction is a prerequisite task for agricultural management and agronomic decisions, including photovoltaic (PV) power generation, biofuel exploration and several other bio-physical applications. Since short-term variabilities in the GSR incorporate stochastic and intermittent behaviours (such as periodic fluctuations, jumps and trends) due to the dynamicity of atmospheric variables, GSR predictions, as required for solar energy generation, is a challenging endeavour to satisfactorily predict the solar generated electricity in a PV system. Additionally, the solar radiation data, as required for solar energy monitoring purposes, are not available in all geographic locations due to the absence of meteorological stations and this is especially true for remote and regional solar powered sites. To surmount these challenges, the universally (and freely available) atmospheric gridded datasets (e.g., reanalysis and satellite variables) integrated into solar radiation predictive models to generate reliable GSR predictions can be considered as a viable medium for future solar energy exploration, utilisation and management. Hence, this doctoral thesis aims to design and evaluate novel Artificial Intelligence (AI; Machine Learning and Deep Learning) based predictive models for GSR predictions, using the European Centre for Medium Range Weather Forecasting (ECMWF) Interim-ERA reanalysis and Moderate Resolution Imaging Spectroradiometer (MODIS) Satellite variables enriched with ground-based weather station datasets for the prediction of both long-term (i.e., monthly averaged daily) as well as the short-term (i.e., daily and half-hourly) GSR. The focus of the study region is Queensland, the sunshine state, as well as a number of major solar cities in Australia where solar energy utilisation is actively being promoted by the Australian State and Federal Government agencies. Firstly, the Artificial Neural Networks (ANN), a widely used Machine Learning model is implemented to predict daily GSR at five different cities in Australia using ECMWF Reanalysis fields obtained from the European Centre for Medium Range Weather Forecasting repository. Secondly, the Self-Adaptive Differential Evolutionary Extreme Learning Machine (i.e., SaDE-ELM) is also proposed for monthly averaged daily GSR prediction trained with ECMWF reanalysis and MODIS satellite data from the Moderate Resolution Imaging Spectroradiometer. Thirdly, a three-phase Support Vector Regression (SVR; Machine Learning) model is developed to predict monthly averaged daily GSR prediction where the MODIS data are used to train and evaluate the model and the Particle Swarm Algorithm (PSO) is used as an input selection algorithm. The PSO selected inputs are further transformed into wavelet subseries via non-decimated Discrete Wavelet Transform to unveil the embedded features leading to a hybrid PSO-W-SVR model, seen to outperform the comparative hybrid models. Fourthly, to improve the accuracy of conventional techniques adopted for GSR prediction, Deep Learning (DL) approach based on Deep Belief Network (DBN) and Deep Neural Network (DNN) algorithms are developed to predict the monthly averaged daily GSR prediction using MODIS-based dataset. Finally, the Convolutional Neural Network (CNN) integrated with a Long Short-Term Memory Network (LSTM) model is used to construct a hybrid CLSTM model which is tested to predict the half-hourly GSR values over multiple time-step horizons (i.e., 1-Day, 1-Week, 2-Week, and 1-Month periods). Here, several statistical, Machine Learning and Deep Learning models are adopted to benchmark the proposed DNN and CLSTM models against conventional models (ANN, SaDE-ELM, SVR, DBN). In this doctoral research thesis, a Global Sensitivity Analysis method that attempts to utilise the Gaussian Emulation Machine (GEM-SA) algorithm is employed for a sensitivity analysis of the model predictors. Sensitivity analysis of selected predictors ascertains that the variables: aerosol, cloud, and water vapour parameters used as input parameters for GSR prediction play a significant role and the most important predictors are seen to vary with the geographic location of the tested study site. A suite of alternative models are also developed to evaluate the input datasets classified into El Niño, La Niña and the positive and negative phases of the Indian Ocean Dipole moment. This considers the impact of synoptic-scale climate phenomenon on long-term GSR predictions. A seasonal analysis of models applied at the tested study sites showed that proposed predictive models are an ideal tool over several other comparative models used for GSR prediction. This study also ascertains that an Artificial Intelligence based predictive model integrated with ECMWF reanalysis and MODIS satellite data incorporating physical interactions of the GSR (and its variability) with the other important atmospheric variables can be considered to be an efficient method to predict GSR. In terms of their practical use, the models developed can be used to assist with solar energy modelling and monitoring in solar-rich sites that have diverse climatic conditions, to further support cleaner energy utilization. The outcomes of this doctoral research program are expected to lead to new applications of Artificial Intelligence based predictive tools for GSR prediction, as these tools are able to capture the non-linear relationships between the predictor and the target variable (GSR). The Artificial Intelligence models can therefore assist climate adaptation and energy policymakers to devise new energy management devices not only for Australia but also globally, to enable optimal management of solar energy resources and promote renewable energy to combat current issues of climate change. Additionally, the proposed predictive models may also be applied to other renewable energy areas such as wind, drought, streamflow, flood and electricity demand for prediction
    corecore