82 research outputs found

    Estimation of ground reaction forces and moments during gait using only inertial motion capture

    Get PDF
    Ground reaction forces and moments (GRF&M) are important measures used as input in biomechanical analysis to estimate joint kinetics, which often are used to infer information for many musculoskeletal diseases. Their assessment is conventionally achieved using laboratory-based equipment that cannot be applied in daily life monitoring. In this study, we propose a method to predict GRF&M during walking, using exclusively kinematic information from fully-ambulatory inertial motion capture (IMC). From the equations of motion, we derive the total external forces and moments. Then, we solve the indeterminacy problem during double stance using a distribution algorithm based on a smooth transition assumption. The agreement between the IMC-predicted and reference GRF&M was categorized over normal walking speed as excellent for the vertical (ρ = 0.992, rRMSE = 5.3%), anterior (ρ = 0.965, rRMSE = 9.4%) and sagittal (ρ = 0.933, rRMSE = 12.4%) GRF&M components and as strong for the lateral (ρ = 0.862, rRMSE = 13.1%), frontal (ρ = 0.710, rRMSE = 29.6%), and transverse GRF&M (ρ = 0.826, rRMSE = 18.2%). Sensitivity analysis was performed on the effect of the cut-off frequency used in the filtering of the input kinematics, as well as the threshold velocities for the gait event detection algorithm. This study was the first to use only inertial motion capture to estimate 3D GRF&M during gait, providing comparable accuracy with optical motion capture prediction. This approach enables applications that require estimation of the kinetics during walking outside the gait laboratory

    Skilog: A Smart Sensor System for Performance Analysis and Biofeedback in Ski Jumping

    Full text link
    In ski jumping, low repetition rates of jumps limit the effectiveness of training. Thus, increasing learning rate within every single jump is key to success. A critical element of athlete training is motor learning, which has been shown to be accelerated by feedback methods. In particular, a fine-grained control of the center of gravity in the in-run is essential. This is because the actual takeoff occurs within a blink of an eye (\sim300ms), thus any unbalanced body posture during the in-run will affect flight. This paper presents a smart, compact, and energy-efficient wireless sensor system for real-time performance analysis and biofeedback during ski jumping. The system operates by gauging foot pressures at three distinct points on the insoles of the ski boot at 100Hz. Foot pressure data can either be directly sent to coaches to improve their feedback, or fed into a ML model to give athletes instantaneous in-action feedback using a vibration motor in the ski boot. In the biofeedback scenario, foot pressures act as input variables for an optimized XGBoost model. We achieve a high predictive accuracy of 92.7% for center of mass predictions (dorsal shift, neutral stand, ventral shift). Subsequently, we parallelized and fine-tuned our XGBoost model for a RISC-V based low power parallel processor (GAP9), based on the PULP architecture. We demonstrate real-time detection and feedback (0.0109ms/inference) using our on-chip deployment. The proposed smart system is unobtrusive with a slim form factor (13mm baseboard, 3.2mm antenna) and a lightweight build (26g). Power consumption analysis reveals that the system's energy-efficient design enables sustained operation over multiple days (up to 300 hours) without requiring recharge.Comment: 5 pages, 2 tables, 4 figure, Accepted at IEEE BioCAS 202

    Drift Reduction for Inertial Sensor Based Orientation and Position Estimation in the Presence of High Dynamic Variability During Competitive Skiing and Daily-Life Walking

    Get PDF
    Nowadays inertial sensors are extensively used for gait analysis. They can be used to perform temporal event detection (i.e. step detection) and to estimate the orientation of the feet and other body segments to determine walking speed and distance. Usually, orientation is estimated from integration of the measured angular velocity. Prior to integration of measured acceleration to obtain speed, the gravity component has to be estimated and removed. During each integration small measurement errors accumulate and result in so-called drift. Since the first uses of inertial sensors for gait analysis methods have been presented to model, estimate and remove the drift. The proposed methods worked well for relatively slow movements and movements taking place in the sagittal plane. Many methods also relied on periodically occurring static phases such as the stance phase during walking to correct the drift. Inertial sensors could also be used to track higher dynamic movements, for example in sports. Potential applications focus on two aspects: performance analysis and injury prevention. To better explain and predict performance, in-field measurements to assess the coordination, kinematics, and dynamics are key. While traditional movement analysis (e.g. video analysis) can answer most of the questions related to both performance and injury, they are cumbersome and complex to use in-field. Inertial sensors, however, are perfectly suited since they allow to measure the movement in any environment and are not restricted to certain capture volumes. Nevertheless, most sports have very high movement dynamics (e.g. fast direction changes, high speeds) and are therefore challenging for computing reliable estimates of orientation, speed and position. The inertial measurements are compromised by noise and movements oftentimes don't provide static or slow phases used in gait analysis for drift correction. Therefore, the present thesis aimed to propose and validate new methods to model, estimate and remove drift in sports and for movements taking place outdoors in uncontrolled environments. Three different strategies were proposed to measure the movement of classical cross-country skiing and ski mountaineering, alpine ski racing, and outdoor walking over several kilometres. For each activity specific biomechanical constraints and movement dynamics were exploited. The proposed methods rely only on inertial sensors and magnetometers and are able to provide orientation, speed, and position information with an accuracy and precision close to existing gold standards. The most complete system was designed in alpine ski racing, probably one of the most challenging sports for movement analysis. Extreme vibrations, high speeds of over 120 km/h and a timing resolution below 0.01 seconds require maximum accuracy and precision. The athlete's posture and the kinematics of his centre of mass both in a relative athlete-centred frame and in a global Earth-fixed frame could be obtained with high accuracy and precision. Where 3D video analysis requires a very complex experimental setup and takes several hours of post processing to analyse a single turn of a skier, the proposed system allows to measure multiple athletes and complete runs within minutes. Thus, new experimental designs to assess performance and injury risk in alpine ski racing became feasible, greatly helping to gain further knowledge about this highly complex and risky sport

    Wearable Sensors and Machine Learning based Human Movement Analysis – Applications in Sports and Medicine

    Get PDF
    Die Analyse menschlicher Bewegung außerhalb des Labors unter realen Bedingungen ist in den letzten Jahren sowohl in sportlichen als auch in medizinischen Anwendungen zunehmend bedeutender geworden. Mobile Sensoren, welche am Körper getragen werden, haben sich in diesem Zusammenhang als wertvolle Messinstrumente etabliert. Auf Grund des Umfangs, der Komplexität, der Heterogenität und der Störanfälligkeit der Daten werden vielseitige Analysemethoden eingesetzt, um die Daten zu verarbeiten und auszuwerten. Zudem sind häufig Modellierungsansätze notwendig, da die gemessenen Größen nicht auf direktem Weg aussagekräftige biomechanische Variablen liefern. Seit wenigen Jahren haben sich hierfür Methoden des maschinellen Lernens als vielversprechende Instrumente zur Ermittlung von Zielvariablen, wie beispielsweise der Gelenkwinkel, herausgestellt. Aktuell befindet sich die Forschung an der Schnittstelle aus Biomechanik, mobiler Sensoren und maschinellem Lernen noch am Anfang. Der Bereich birgt grundsätzlich ein erhebliches Potenzial, um einerseits das Spektrum an mobilen Anwendungen im Sport, insbesondere in Sportarten mit komplexen Bewegungsanforderungen, wie beispielsweise dem Eishockey, zu erweitern. Andererseits können Methoden des maschinellen Lernens zur Abschätzung von Belastungen auf Körperstrukturen mittels mobiler Sensordaten genutzt werden. Vor allem die Anwendung mobiler Sensoren in Kombination mit Prädiktionsmodellen zur Ermittlung der Kniegelenkbelastung, wie beispielsweise der Gelenkmomente, wurde bisher nur unzureichend erforscht. Gleichwohl kommt der mobilen Erfassung von Gelenkbelastungen in der Diagnostik und Rehabilitation von Verletzungen sowie Muskel-Skelett-Erkrankungen eine zentrale Bedeutung zu. Das übergeordnete Ziel dieser Dissertation ist es, festzustellen inwieweit tragbare Sensoren und Verfahren des maschinellen Lernens zur Quantifizierung sportlicher Bewegungsmerkmale sowie zur Ermittlung der Belastung von Körperstrukturen bei der Ausführung von Alltags- und Sportbewegungen eingesetzt werden können. Die Dissertation basiert auf vier Studien, welche in internationalen Fachzeitschriften mit Peer-Review-Prozess erschienen sind. Die ersten beiden Studien konzentrieren sich zum einen auf die automatisierte Erkennung von zeitlichen Events und zum anderen auf die mobile Leistungsanalyse während des Schlittschuhlaufens im Eishockey. Die beiden weiteren Studien präsentieren jeweils einen neuartigen Ansatz zur Schätzung von Belastungen im Kniegelenk mittels künstlich neuronalen Netzen. Zwei mobile Sensoren, welche in eine Kniebandage integriert sind, dienen hierbei als Datenbasis zur Ermittlung von Kniegelenkskräften während unterschiedlicher Sportbewegungen sowie von Kniegelenksmomenten während verschiedener Lokomotionsaufgaben. Studie I zeigt eine präzise, effiziente und einfache Methode zur zeitlichen Analyse des Schlittschuhlaufens im Eishockey mittels einem am Schlittschuh befestigten Beschleunigungssensor. Die Validierung des neuartigen Ansatzes erfolgt anhand synchroner Messungen des plantaren Fußdrucks. Der mittlere Unterschied zwischen den beiden Erfassungsmethoden liegt sowohl für die Standphasendauer als auch der Gangzyklusdauer unter einer Millisekunde. Studie II zeigt das Potenzial von Beschleunigungssensoren zur Technik- und Leistungsanalyse des Schlittschuhlaufens im Eishockey. Die Ergebnisse zeigen für die Standphasendauer und Schrittintensität sowohl Unterschiede zwischen beschleunigenden Schritten und Schritten bei konstanter Geschwindigkeit als auch zwischen Teilnehmern unterschiedlichen Leistungsniveaus. Eine Korrelationsanalyse offenbart, insbesondere für die Schrittintensität, einen starken Zusammenhang mit der sportlichen Leistung des Schlittschuhlaufens im Sinne einer verkürzten Sprintzeit. Studie III präsentiert ein tragbares System zur Erfassung von Belastungen im Kniegelenk bei verschiedenen sportlichen Bewegungen auf Basis zweier mobiler Sensoren. Im Speziellen werden unterschiedliche lineare Bewegungen, Richtungswechsel und Sprünge betrachtet. Die mittels künstlich neuronalem Netz ermittelten dreidimensionalen Kniegelenkskräfte zeigen, mit Ausnahme der mediolateralen Kraftkomponente, für die meisten analysierten Bewegungen eine gute Übereinstimmung mit invers-dynamisch berechneten Referenzdaten. Die abschließende Studie IV stellt eine Erweiterung des in Studie III entwickelten tragbaren Systems zur Ermittlung von Belastungen im Kniegelenk dar. Die ambulante Beurteilung der Gelenkbelastung bei Kniearthrose steht hierbei im Fokus. Die entwickelten Prädiktionsmodelle zeigen für das Knieflexionsmoment eine gute Übereinstimmung mit invers-dynamisch berechneten Referenzdaten für den Großteil der analysierten Bewegungen. Demgegenüber ist bei der Ermittlung des Knieadduktionsmoments mittels künstlichen neuronalen Netzen Vorsicht geboten. Je nach Bewegung, kommt es zu einer schwachen bis starken Übereinstimmung zwischen der mittels Prädiktionsmodell bestimmten Belastung und dem Referenzwert. Zusammenfassend tragen die Ergebnisse von Studie I und Studie II zur sportartspezifischen Leistungsanalyse im Eishockey bei. Zukünftig können sowohl die Trainingsqualität als auch die gezielte Verbesserung sportlicher Leistung durch den Einsatz von am Körper getragener Sensoren in hohem Maße profitieren. Die methodischen Neuerungen und Erkenntnisse aus Studie III und Studie IV ebnen den Weg für die Entwicklung neuartiger Technologien im Gesundheitsbereich. Mit Blick in die Zukunft können mobile Sensoren zur intelligenten Analyse menschlicher Bewegungen sinnvoll eingesetzt werden. Die vorliegende Dissertation zeigt, dass die mobile Bewegungsanalyse zur Erleichterung der sportartspezifischen Leistungsdiagnostik unter Feldbedingungen beiträgt. Zudem zeigt die Arbeit, dass die mobile Bewegungsanalyse einen wichtigen Beitrag zur Verbesserung der Gesundheitsdiagnostik und Rehabilitation nach akuten Verletzungen oder bei chronischen muskuloskelettalen Erkrankungen leistet

    Exploring the role of wearable technology in sport kinematics and kinetics: a systematic review

    Get PDF
    The aim of this review was to understand the use of wearable technology in sport in order to enhance performance and prevent injury. Understanding sports biomechanics is important for injury prevention and performance enhancement and is traditionally assessed using optical motion capture. However, such approaches are limited by capture volume restricting assessment to a laboratory environment, a factor that can be overcome by wearable technology. A systematic search was carried out across seven databases where wearable technology was employed to assess kinetic and kinematic variables in sport. Articles were excluded if they focused on sensor design and did not measure kinetic or kinematic variables or apply the technology on targeted participants. A total of 33 articles were included for full-text analysis where participants took part in a sport and performed dynamic movements relating to performance monitored by wearable technologies. Inertial measurement units, flex sensors and magnetic field and angular rate sensors were among the devices used in over 15 sports to quantify motion. Wearable technology usage is still in an exploratory phase, but there is potential for this technology to positively influence coaching practice and athletes’ technique

    ISBS 2018 AUCKLAND CONFERENCE SCHEDULE FINAL

    Get PDF
    This document contains the ISBS 2018 Auckland Conference Schedule of keynotes, oral podiums, oral posters, social events, workshops, SPRINZ-HPSNZ-AUT Millennium applied half day and teachers day

    The Use Of Inertial Measurement Units To Perform Kinetic Analyses Of Sprint Acceleration And Change Of Direction Tasks

    Get PDF
    Inertial measurement units (IMUs) are becoming more popular for field-based human movement analysis. However, their ability to track kinetic (i.e., 3-dimensional ground reaction force, F) and kinematic parameters used to evaluate sprint performance has not been assessed. Thus, the purpose of this thesis was three-fold. First was to assess the criterion validity of IMU estimates of the magnitude and direction of F during accelerative running tasks by comparison to a force plate. The second was to determine the concurrent validity of a novel IMU-based sprint velocity estimation algorithm. The third was to determine the concurrent validity of IMU estimates of kinetic determinates of sprint acceleration performance. For the first study, IMU estimates of continuous, step-average, and peak F while subjects performed linear sprint start and change of direction tasks were compared to the same measured by a force plate. For the second and third studies, a recently validated position-time method was used as the reference to which IMU estimates of continuous, average interval, and peak velocity as well as other performance variables (e.g., power, ratio of force, etc.) were compared. The results of these studies suggest the potential use of IMUs to assess sprint performance in the field

    Estimation of Lower-Body Kinetics from Loading Profile and Kinematics Alone, Without Measured Ground Reaction Forces

    Get PDF
    Biomechanical models of human motion can estimate kinetic outcomes, such as joint moments, joint forces and muscle forces. Typically, one performs an inverse dynamics (ID) analysis to compute joint moments from joint angles and measured external forces. Sometimes it is impractical to measure ground reaction forces and moments (GRF&M). We devised an empirical method for performing ID analysis of resistance exercises without measured GRF&M. The method solves the multibody dynamics equations of motion with four key assumptions about the GRF&M that reduce the number of unknowns. The assumptions are 1) negligible ground reaction moments, 2) fixed lateral/medial location of the center of pressure (COP), 3) equal fore/aft location of the COP between the feet, and 4) constant angle of the GRF vector relative to the vertical axis in the frontal plane. We used evaluation trials from a spaceflight countermeasure resistance training device to test this approach. Four participants performed squat and deadlift exercises at various loads. We compared results from traditional ID analysis to results without measured GRF&M using our method. We found that joint moment trajectories in the sagittal plane were qualitatively similar in shape between the two methods, and the amount of root mean squared error (RMSE), measured by difference in joint moment impulse, was typically under 10 percent. Non-sagittal joint moment trajectories, which are much lower in overall magnitude, were not qualitatively similar in shape between the two methods. Non-sagittal moments displayed much higher RMSE, with typical values well over 50 percent. These findings were further supported by validation metrics (Sprague and Geers' P and M metrics, Pearson's r correlation coefficient). Based on these findings, we concluded that useful kinetic results are obtained from ID analysis of squat and deadlift exercises, even when GRF&M are not measured, as long as the outcomes of interest lie in the sagittal plane

    spinfortec2022 : Tagungsband zum 14. Symposium der Sektion Sportinformatik und Sporttechnologie der Deutschen Vereinigung für Sportwissenschaft (dvs), Chemnitz 29. - 30. September 2022

    Get PDF
    Dieser Tagungsband enthält die Beiträge aller Vorträge und Posterpräsentationen des 14. Symposiums der Sektion Sportinformatik und Sporttechnologie der Deutschen Vereinigung für Sportwissenschaft (dvs) an der Technischen Universität Chemnitz (29.-30. September 2022). Mit dem Ziel, das Forschungsfeld der Sportinformatik und Sporttechnologie voranzubringen, wurden knapp 20 vierseitige Beiträge eingereicht und in den Sessions Informations- und Feedbacksysteme im Sport, Digitale Bewegung: Datenerfassung, Analyse und Algorithmen sowie Sportgeräteentwicklung: Materialien, Konstruktion, Tests vorgestellt.This conference volume contains the contributions of all oral and poster presentations of the 14th Symposium of the Section Sport Informatics and Engineering of the German Association for Sport Science (dvs) at Chemnitz University of Technology (September 29-30, 2022). With the goal of advancing the research field of sports informatics and sports technology, nearly 20 four-page papers were submitted and presented in the sessions Information and Feedback Systems in Sport, Digital Movement: Data Acquisition, Analysis and Algorithms, and Sports Equipment Development: Materials, Construction, Testing

    Proceedings XXI Congresso SIAMOC 2021

    Get PDF
    XXI Congresso Annuale della SIAMOC, modalità telematica il 30 settembre e il 1° ottobre 2021. Come da tradizione, il congresso vuole essere un’occasione di arricchimento e mutuo scambio, dal punto di vista scientifico e umano. Verranno toccati i temi classici dell’analisi del movimento, come lo sviluppo e l’applicazione di metodi per lo studio del movimento nel contesto clinico, e temi invece estremamente attuali, come la teleriabilitazione e il telemonitoraggio
    corecore