536 research outputs found

    Wavelet entropy of stochastic processes

    Full text link
    We compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the Normalized Total Wavelet Entropy (NTWS) family [Phys. Rev. E 57 (1998) 932; J. Neuroscience Method 105 (2001) 65; Physica A (2005) in press] and a second introduced by Tavares and Lucena [Physica A 357 (2005)~71]. In order to understand their advantages and disadvantages, exact results obtained for fractional Gaussian noise (-1<alpha< 1) and the fractional Brownian motion (1 < alpha < 3) are assessed. We find out that NTWS family performs better as a characterization method for these stochastic processes.Comment: 12 pages, 4 figures, submitted to Physica

    Self-similar prior and wavelet bases for hidden incompressible turbulent motion

    Get PDF
    This work is concerned with the ill-posed inverse problem of estimating turbulent flows from the observation of an image sequence. From a Bayesian perspective, a divergence-free isotropic fractional Brownian motion (fBm) is chosen as a prior model for instantaneous turbulent velocity fields. This self-similar prior characterizes accurately second-order statistics of velocity fields in incompressible isotropic turbulence. Nevertheless, the associated maximum a posteriori involves a fractional Laplacian operator which is delicate to implement in practice. To deal with this issue, we propose to decompose the divergent-free fBm on well-chosen wavelet bases. As a first alternative, we propose to design wavelets as whitening filters. We show that these filters are fractional Laplacian wavelets composed with the Leray projector. As a second alternative, we use a divergence-free wavelet basis, which takes implicitly into account the incompressibility constraint arising from physics. Although the latter decomposition involves correlated wavelet coefficients, we are able to handle this dependence in practice. Based on these two wavelet decompositions, we finally provide effective and efficient algorithms to approach the maximum a posteriori. An intensive numerical evaluation proves the relevance of the proposed wavelet-based self-similar priors.Comment: SIAM Journal on Imaging Sciences, 201

    Long Memory Options: LM Evidence and Simulations

    Get PDF
    This paper demonstrates the impact of the observed financial market persistence or long term memory on European option valuation by simple simulation. Many empirical researchers have observed the non-Fickian degrees of persistence or long memory in the financial markets different from the Fickian neutral independence (i.i.d.) of the returns innovations assumption of Black-Scholes' geometric Brownian motion assumption. Moreover, Elliott and van der Hoek (2003) provide a theoretical framework for incorporating these findings into the Black- Scholes risk-neutral valuation framework. This paper provides the first graphical demonstration why and how such long term memory phenomena change European option values and provides thereby a basis for informed long term memory arbitrage. By using a simple mono-fractal Fractional Brownian motion, it is easy to incorporate the various degrees of persistence into the Black-Scholes pricing formula. Long memory options are of considerable importance in corporate remuneration packages, since stock options are written on a company's own shares for long expiration periods. It makes a significant difference in the valuation when an option is 'blue' or when it is 'red.' For a proper valuation of such stock options, the degrees of persistence of the companies' share markets must be precisely measured and properly incorporated in the warrant valuation, otherwise substantial pricing errors may result.Options, Long Memory, Persistence, Hurst Exponent, Identification, Simulation, Executive Remuneration

    Spurious Long Memory in Commodity Futures: Implications for Agribusiness Option Pricing

    Get PDF
    Long memory, and more precisely fractionally integration, has been put forward as an explanation for the persistence of shocks in a number of economic time series data as well as to reconcile misleading findings of unit roots in data that should be stationary. Recent evidence suggests that long memory characterizes not commodity futures prices but rather price volatility (generally defined as LpL_p norms of price logreturns). One implication of long memory in volatility is the mispricing of options written on commodity futures, the consequence of which is that fractional Brownian motion should replace geometric Brownian motion as the building block for option pricing solutions. This paper asks whether findings of long memory in volatility might be spurious and caused either by fragile and inaccurate estimation methods and standard errors, by correlated short memory dynamics, or by alternative data generating processes proven to generate the illusion of long memory. We find that for nine out of eleven agricultural commodities for which futures contracts are traded, long memory is spurious but is not caused by the effect of short memory. Alternative explanations are addressed and implications for option pricing are highlighted.Q13, Q14, Marketing, C52, C53, G12, G13,

    Wavelet Packets of fractional Brownian motion: Asymptotic Analysis and Spectrum Estimation

    No full text
    International audienceThis work provides asymptotic properties of the autocorrelation functions of the wavelet packet coefficients of a fractional Brownian motion. It also discusses the convergence speed to the limit autocorrelation function, when the input random process is either a fractional Brownian motion or a wide-sense stationary second-order random process. The analysis concerns some families of wavelet paraunitary filters that converge almost everywhere to the Shannon paraunitary filters. From this analysis, we derive wavelet packet based spectrum estimation for fractional Brownian motions and wide-sense stationary random processes. Experimental tests show good results for estimating the spectrum of 1/f processes

    Long Memory Options: Valuation

    Get PDF
    This paper graphically demonstrates the significant impact of the observed financial market persistence, i.e., long term memory or dependence, on European option valuation. Many empirical researchers have observed non-Fickian degrees of persistence or long memory in the financial markets different from the Fickian neutral independence (i.i.d.) of the returns innovations assumption of Black-Scholes' geometric Brownian motion assumption. Moreover, Elliott and van der Hoek (2003) have now also provided a theoretical framework for incorporating these findings in the Black-Scholes risk-neutral valuation framework. This paper provides the first graphical demonstration why and how such long term memory phenomena change European option values and provides thereby a basis for informed long term memory arbitrage. Risk-neutral valuation is equivalent to valuation by real world probabilities. By using a mono-fractional Brownian motion, it is easy to incorporate the various degrees of persistence into the binomial and Black-Scholes pricing formulas. Long memory options are of considerable importance in Corporate remuneration packages, since warrants are written on a company's own shares for long expiration periods. Therefore, we recommend that for a proper valuation of such warrants, the degrees of persistence of the companies' share markets are measured and properly incorporated in the warrant valuation.Options, Long Memory, Persistence, Hurst Exponent, Executive Remuneration

    Wavelet Deconvolution in a Periodic Setting with Long-Range Dependent Errors

    Full text link
    In this paper, a hard thresholding wavelet estimator is constructed for a deconvolution model in a periodic setting that has long-range dependent noise. The estimation paradigm is based on a maxiset method that attains a near optimal rate of convergence for a variety of L_p loss functions and a wide variety of Besov spaces in the presence of strong dependence. The effect of long-range dependence is detrimental to the rate of convergence. The method is implemented using a modification of the WaveD-package in R and an extensive numerical study is conducted. The numerical study supplements the theoretical results and compares the LRD estimator with na\"ively using the standard WaveD approach
    • …
    corecore