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Abstract

This paper graphically demonstrates the significant impact of the ob-
served financial market persistence, i.e., long term memory or dependence,
on European option valuation. Many empirical researchers have observed
non-Fickian degrees of persistence or long memory in the financial mar-
kets different from the Fickian neutral independence (i.i.d.) of the returns
innovations assumption of Black-Scholes’ geometric Brownian motion as-
sumption. Moreover, Elliott and van der Hoek (2003) have now also
provided a theoretical framework for incorporating these findings in the
Black-Scholes risk-neutral valuation framework. This paper provides the
first graphical demonstration why and how such long term memory phe-
nomena change European option values and provides thereby a basis for
informed long term memory arbitrage. Risk-neutral valuation is equiva-
lent to valuation by real world probabilities. By using a mono-fractional
Brownian motion, it is easy to incorporate the various degrees of persis-
tence into the binomial and Black-Scholes pricing formulas. Long memory
options are of considerable importance in Corporate remuneration pack-
ages, since warrants are written on a company’s own shares for long ex-
piration periods. Therefore, we recommend that for a proper valuation of
such warrants, the degrees of persistence of the companies’ share markets
are measured and properly incorporated in the warrant valuation.

1 Introduction
In the past decade interest in the phenomenon of "Long Memory" in financial
market time series has drastically increased due to the availability of better mea-
surement methodologies and their more precise empirical measurements (Taqqu,
1986; Robinson, 1994; and Baillie, 1996). Unfortunately, the studies of Fractal
Brownian motion (FBM) with the LM property had faded out from financial
literature after the FBM was proven to be an inappropriate process for financial
asset prices due to its possible arbitrage opportunities. Nevertheless, Calvet and
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Fisher (2002) has recently shown that the compound process between the FBM
and trading time can be used to construct Multi-Fractal process that seems to
be superior to the Geometric Brownian Motion (GBM) and GARCH processes.
Since the properties of the FBM are transferred to the Multi-Fractal process via
the compounding procedure, the investigation of the LM effects on financial as-
set prices following the FBM is essential for further development of multi-fractal
modeling in finance.
Long Memory (LM) is sometimes also referred to as "global dependence,"

"strong dependence," or "persistence." In LM financial series, autocovariances
are not summable and spectral densities are unbounded.1 These mathemati-
cal properties lead to distinctive asymptotic behavior of statistics of financial
interest, like volatility or "risk."
The non-Fickian scaling of the volatility of the financial market rates of

return is now frequently corroborated, thereby falsifying the Fickian volatility
scaling assumption of i.i.d. log price innovations of the Black-Scholes (1973) op-
tion pricing formula. The empirical results corroborate the prevalent existence
of LM in various financial markets, both in its persistent and anti-persistent
versions. Therefore, this article proposes the incorporation of these non-Fickian
volatility scaling results in the option valuation literature. Black and Scholes
(1972) were aware of the problem of the degree of market efficiency or persis-
tence, but had no proper test for it and therefore maintained their assumption
of independent (martingale) innovations. Black and Scholes (1973) were also
aware of the fact that their second important maintained assumption of con-
stant instantaneous return volatility was invalid for the valuation of options,
but wanted to keep their valuation approach simple.
This paper presents the implications of LM, non-neutral or non-Fickian per-

sistence as a second-order (autocovariance or spectral) property of financial mar-
ket pricing series for European option valuation.2 This LM correction of the
existing option pricing literature is of considerable importance for the valuation
of corporative remuneration packages. These packages contain often options
written on the companies own stock, These options are long term, i.e., have
long expiration times and their values are impacted by the degree of LM or per-
sistence inherent in the market of the company’s shares or, in case such shares

1Cf. Robinson, 2003, Chapter 1, pp. 4 - 32 "Long-Memory Time Series" for a detailed
definition of the long memory phenomenon and a comprehensive overview of the statistical
time series literature.

2These second-order property does not completely describe non-Gaussian stable processes,
which need higher order moments, like skewness and kurtosis or "shape stability," for a com-
plete description. In these non-Gaussian stable processes the long term "memory" also occurs
in these higher order moments. It has been noted, for example, that asset returns x(t) fre-
quently exhibit little autocorrelation (= linear dependence), as is consistent with the efficient
market hypothesis, whereas x2(t) are noticeably correlated, indicating nonlinear dependence
of the asset returns x(t). This phenomenon has been modeled by Engle’s (1982) ARCH(p)
models and Bollerslev’s GARCH(p, q) models. However, these models imply that the autocor-
relations of x2(t) either eventually cut off completely or decay exponentially. But empirical
evidence shows slower decay consistent with LM (Ding, Granger, Engle, 1993; Ding and
Granger, 1996). There is also not yet a rigorous asymptotic distribution theory for the more
general ARCH(p) and GARCH(p, q) models for p > 1 and q > 1.
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are not traded, of the market of a comparable company, of which the shares are
traded. Thus proper valuation of these options requires the measurement of the
degree of persistence of the underlying price formation.
Options can be binomially priced by using (a) real world probabilities or (b)

risk-neutral probabilities. Both methods are equivalent, as can be easily demon-
strated. Consequently, the exact shape or form of the real world distribution is
immaterial, as long as independence and stationarity of the instantaneous return
shocks are assumed, and, consequently, the expiration-time-adjusted variance of
the stock returns remains constant, as Black and Scholes (1973) assumed.
But the option valuation turns out quite differently when the Black-Scholes

Fickian i.i.d. assumption for the instantaneous return innovations is not true and
the financial markets show non-neutral, non-Fickian persistence. However, even
then the risk-neutral option valuation method can still be used, since the only
variable of any significance is the, now non-Fickian, time-scaling volatility. This
empirically observed non-Fickian time-scaling volatility can now be incorporated
in the risk-neutral probabilities following the theoretical analysis of fractal white
noise rate of return innovations in the financial markets by Elliott and van der
Hoek (2003) and by using various LM simulation approaches.3

The scaling binomial distribution with a non-Fickian mono-fractal memory,
persistence, or Hurst exponent may no longer converge to a scaling Gaussian
distribution, but converges to a stable, scaling, non-Gaussian distribution. Both
scaling distributions are stable distributions in the sense that their shape is
immutable, although their distribution sizes scales over time. A more troubling
aspect is that for some small values of the memory exponent, these accumulated
distributions are no longer probability distributions, since their right tails veer
outside the [0, 1] range, leading to the possibility of intermittence and turbulence
in the log pricing sequence.
The following three Sections set the stage for LM option valuation. Section

2 of this paper surveys the basic concepts of fractional log price diffusion and
non-Frickian volatility scaling, the statistical measurement and testing theory,
as well as the most salient empirical values in stock, bond and foreign exchange
markets for the long memory exponent. This section demonstrates that the
proven existence of LM in those markets is becoming a very relevant topic for
option valuation. Then, following McDonald (2003), Section 3 discusses the
binomial pricing of options by using both real world probabilities and risk-
neutral probabilities, to show that both approaches are equivalent and that the
measurement of the volatility scaling is relevant for proper option valuation. In
Section 4 we incorporate the LM assumption in the Black-Scholes pricing model
and compare it with the, now classical, neutral memory Black-Scholes pricing

3Strictly, Elliott and Van der Hoek (2003) go beyond the simple mono-fractional Brownian
motions discussed in this paper and deliver their proof for the even more general multi-
fractional Brownian motions. In this paper we discuss only mono-fractional Brownian motions
for reasons of pedagogical exposition. This paper presents the implications of LM or non-
neutral persistence as a second-order (autocovariance or spectral) property of financial market
pricing series for European option valuation. Moreover, a multifractal white noise spectrum
would logically lead to a spectrum of option prices and contradict the fundamental economic
Law of One Price. Such a fundamental contradiction is the subject of another paper.
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model.
Section 5 forms the bread and butter of this paper by graphically showing

the impact of various degrees of LM or persistence on out-of-the-money (OTM)
options, at-the-money (ATM) options, and in-the-money options, both on call
and put values. Most corporate warrants are priced as ATM options. In Section
6 we summarize the discussions, formulate some conclusions and recommenda-
tions for empirical option valuation and point out some pitfalls of LM for such
valuation.
In a companion paper, we discuss the consequences of LM for secondary

issues, like for delta hedging, market-making and risk arbitrage.

2 Empirical Measurement of Long Memory
In the past two decades the mainstream econometric time series literature has
demonstrated considerable interest in LM in its focus on unit root series. Unit
root models assume a known degree of memory in the integer (unit) order of
differencing, which reduces a series to short memory stationarity and inverta-
bility. But more recently a greater willingness as been shown by empirical
financial modelers to consider the more flexible, fractional differencing models,
which arose from considerations of self-similarity over time and frequencies (For
extensive surveys, cf. Los, 2003, and Robinson, 2003).
A continuous time stochastic return process {x(t);−∞ < t < ∞} is self-

similar with a Hurst or memory exponent H ∈ (0, 1) introduced by Hurst (1951)
if for any a > 0, {x(at);−∞ < t < ∞} has the same time and frequency
distribution as the process {aHx(t);−∞ < t <∞}.
If the first differences ∆x(t) = x(t)− x(t− 1) = ε(t), for integer time t, are

covariance stationary, their autocorrelation function (ACF) is

γ(τ) =
γ(0)

2
[|τ + 1|2H − 2|τ |2H + |τ − 1|2H (1)

It is easy to show that as the time horizon τ →∞, this ACF decays over time
like

γ (τ) ∼ σ2ετ
2H−2 (2)

The formula for the corresponding spectral density, i.e. the Fourier transform
of this ACF, can, for example, be found in Sinai (1976) and Los (2003) and
satisfies also a power law, with radian frequency ω = 2π

τ :

P (ω) = σ2εω
−(2H−1) (3)

An example of such price diffusion is the fractional Brownian Motion for
stock market prices S(t). Such "fractional" log price diffusion has been exten-
sively studied by Mandelbrot and Van Ness (1968), Granger and Joyeux (1980),
Hosking (1981) and Sowell (1990).
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Definition 1 Fractional Brownian Motion (FBM) is defined by the frac-
tionally differenced time series

(1− L)dx(t) = ε(t), d ∈ (−1
2
,
1

2
), with ε(t) ∼ i.i.d.(0, σ2ε) (4)

where x(t) = ∆ lnS(t) = (1− L) lnS(t), so that x(t) are the rates of return, L
is the lag operator, and d = H − 1

2 is the fractional differencing exponent.

A completely equivalent definition of the FBM is that x(t) is fractionally
integrated white noise, since, by inversion

x(t) = (1− L)−dε(t), d ∈ (−1
2
,
1

2
), with ε(t) ∼ i.i.d.(0, σ2ε) (5)

Alternative forms of the FBM can be found in Marinucci and Robinson
(1999). This self-similar generalization of the geometric Brownian motion has
also been called an αZ−stable Lévy Motion, and has been the subject of two
monographs by Samorodnitsky and Taqqu (1994) and by Janicki and Weron
(1994). Such a fractional motion is "almost certain" (a.c.) dense with discon-
tinuities ("singularities"), in contrast to the geometric Brownian motion, which
is a.c. everywhere continuous. The discontinuities in an α−stable Levy Motion
imply that there may be occasionally a drawdown in the stock market with
0.5 < H < 1 faster than trades can be executed, as occurred in October 1929
and, more recently, in October 1987 (McCulloch, 1996, p. 397), so that program
hedging breaks down, which should be of considerable concern for banks and
insurance companies.
The corresponding spectral density is obtained by the Fourier Transform of

this integration FBM (Adenstedt, 1974):

FFBM (ω) = (1− e−jω)−dF [ε(t)] (6)

Next, by apply the two exponential series expansions for ejω and e−jω, with
j =
√−1, the imaginary number and ω is the radian frequency, and take the

limit for ω → 0 (or τ → ∞), we obtain the aforementioned power law for the
spectral density from which the differencing exponent d can be identified by
measuring the slope of logP (ω) versus the frequency ω.
Thus these fractional differencing models allow for the memory Hurst expo-

nent, which is H = d + 1
2 ,to be fractional, unknown, and identifiable from the

noisy financial data. It has been argued that statistical inferences and financial
modeling based on an incorrect order of differencing are liable to be invalid and
may lead to misleading pricing conclusions. For such a discussion of the (as-
ymptotic) statistical behavior of the various parametric statistics to identify H,
see Robinson (2003, pp. 4 - 25). However, the differencing rule should be sim-
ple: differentiate by integer numbers, until the residual series has a differencing
exponent d ∈ (−12 , 12).
Thus the current approach is to compute the H exponent from the negative

slope coefficient (2H−1) of the log periodogram, i.e., the data set based spectral
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density. The crucial test for financial analysts is the test of the existence of LM.
Or, more precisely, the test of the hypothesis of neutral short memory (H0 :
H = 0.5, or d = 0) against the two alternative hypotheses of LM, persistence
(H1 : 0.5 < H < 1.0, or 0 < d < 0.5) and anti-persistence (H2 : 0 < H < 0.5, or
−0.5 < d < 0).
The connection of this fractional time series literature with the stable fre-

quency distribution literature is direct (McCulloch, 1996): for 0 < H < 1, the
characteristic or shape (Zolotarev) exponent of a stable distribution αZ =

1
H .

Thus for H = 0.5, αZ = 2 and the stable distribution is Gaussian. For
0.5 < H < 1, we have 2 > αZ > 1, and the variance of the distribution is
non-existing or "infinite," due to a long upper "Paretian" tail. This is, for ex-
ample, the case for the empirical S&P Index since its measured H = 2/3, so
that its shape exponent αZ = 3/2. This strongly suggests that the S&P500
Index is statistically unsuitable as an "underlying" index for option valuation.
For the Geometric Brownian (GBM) motion x(t) of Black and Scholes (1973),

the log prices lnS(t) themselves have a memory exponent of 1+H = 1.5, so that
their αZ = 2/3, and, indeed, their mean does not exist, i.e., is nonconvergent.4

One differentiation of the GBM provides the log errors , which have a memory
exponent of H = 0.5, or αZ = 2, so that their mean exists E{ε(t)} = 0 as well
as their variance and their distribution is equivalent to a Gaussian N(0, σ2ε) in
their first two moments.
When 0 < H < 0.5 and ∞ > αZ > 2, the resulting "distribution" is not

a proper probability distribution, since one or both tails will then lie outside
[0, 1]. This is the case, for example, in some foreign exchange markets, where it
is found that H = 0.25, so that αZ = 4. Thus also options written in these anti-
persistent markets do not make much pricing sense when the usual risk-neutral
valuation is applied.
Statisticians have concentrated on finding a test statistic for H = d+ 1

2 with
a limiting distribution that can be easily computed and that has good power
for hypothesis testing. Based on some "slightly defective heuristics" (Robinson,
2003, p. 14) Geweke and Porter-Hudak (1983) argued that, asymptotically, the
distribution of the log-periodogram regression estimate of d satisfies

τ0.5(bd− d)→d N(0,
π2

24
) = N(0, 0.41123) (7)

giving rise to extremely simple inferential procedures. By employing a linear
process for x(t) based on martingale difference innovations, Robinson (1995a &
b) rigorously and correctly established a more precise result based on a slightly
different estimator for the whole range −0.5 < d < 0.5 or 0 < H < 1:

τ0.5(bd− d)→d N(0,
1

4
) (8)

This result provides simple asymptotic interval estimates as well as a simple
test of neutrality, d = 0 or H = 0.5. Robinson’s treatment, based on the

4While αZ = 2/3 is a value for brown noise, a lower value than the black noise value of
αZ = 2/5 has not been empirically found.
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theoretical assumption of Gaussianness,5 actually covered multiple time series,
possibly differing memory parameters (= multifractality), and more efficient
tests for equality of these parameters.
Additional asymptotic statistical theory for the log periodogram computa-

tion of d or H has also been provided by Velasco (2000), extending it to lin-
ear processes, and by Hurvich, Deo and Brodsky (1998), who proposed which
bandwidths τ to select for inclusion in the d statistic based on the data char-
acteristics. Such a bandwidth selection is required for periodograms based on
the Fourier transform, which uses sinus and cosinus bases with infinite support,
causing problems of overlapping ("double-counting" or "smearing"). However,
periodograms based on the wavelet transform, which uses non-overlapping or-
thogonal wavelet bases with finite support don’t require any "selection," since
no "double-counting" occurs and the analysis is complete: all empirically ob-
served bandwidths are properly included. Scalegrams (= periodograms based
on a wavelet transform) provide a complete analysis complete.
Hurvich and Ray (1995) showed that the log-periodogram procedure also

works for nonstationary or noninvertible fractional differencing processes. Moulines
and Soulier (1999, 2000), Hurvich and Deo (1999) and Hurvich and Brodsky
(2001), who used explicitly the fractional differencing process, extended the sta-
tistical measurement results over all frequencies. Thus there are now sufficient
asymptotic distributional results for statistical testing of the LM hypothesis in
both its persistent and anti-persistent ranges, against the null hypothesis of
memory neutrality of the Geometric Brownian Motion, which was assumed by
Black-Scholes (1973) for their option valuation procedures.
To emphasize: the relevance of these theoretical statistical discussions about

asymptotic results is questionable, since in practice the distribution of H is
very local. Moreover, the completeness of the wavelet multiresolution analysis
(MRA) or scalogram drastically reduces the scientific relevance of the concept
of statistical "sampling" on which these discussions are based. Flandrin and
Gonçalves (1996) studied the theoretical time-frequency distributions of affine
processes using wavelet MRA.
Notwithstanding this controversy about the scientific relevance of asymptotic

statistical sampling theory for empirical (= finite data set based) analysis, there
are already sufficient empirical measurement results to prove the existence of
LM and of non-Fickian volatility scaling in the financial markets for a wide
range of H = d+ 1

2 values.
Harvey and Whaley (1991, 1992) and Dumas, Fleming and Whaley (1998)

are looking for parametric functions in the implied volatility of the S&P500
Index returns. But their approach is spanning the cart before the horse, since
their implied volatilities are derived from the Black-Scholes option valuation
formula based on the now falsified i.i.d. assumption. A similar mistake was
made by Xu and Taylor (1994) in the foreign exchange markets, although their
analysis confirmed that the implied and historical return volatility was definitely

5This assumption of Gausianness begs the scientific question - why? - since we know that
the underlying is not Gaussian.
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not constant.
Peters (1994) and Cizeau et al. (1997) correctly observe and measure that

there exists non-Fickian volatility scaling in the S&P500 stock index returns
with a persistent H = 0.67, which should be incorporated in the Black-Scholes
formula.6 The S&P500 Index underlies important futures and options valued
and traded in Chicago. Cont, Potters, and Bouchaud (1997), Gopikrishnan et al.
(1998) and Lo and MacKinlay (1999) also observe non-Fickian volatility scaling
in stock markets return. Ramsey, Usikov and Zaslavsky (1995) were the first
to perform the analysis of stock market volatility using wavelets MRA. Batten,
Ellis and Mellor (1999), Batten and Ellis (1999) and Batten, Ellis and Hogan
(1999) observed non-Fickian volatility scaling in Australian Dollar Eurobond
and in foreign exchange market returns using more traditional scaled variance
measurements.
A seminal comprehensive study of volatility scaling in several financial mar-

kets using high frequency data is Müller et al. (1995). Müller et al. (1990)
were early observers of non-Fickian persistent volatility scaling in the smaller
pre-Euro foreign exchange markets. But Karuppiah and Los (2004) found non-
Fickian anti-persistent volatility scaling of H ≈ 1

3 in the ultra-liquid anchor cur-
rencies of the Japanese Yen/US dollar and (formerly) German Deutschemark/US
dollar foreign exchange markets before and after the Asian Financial Crisis in
1997. This surprising anti-persistence value suggests that turbulence is, indeed,
possible in foreign exchange markets, as already suggested by Ghasgaie et al.
(1996) and Mantegna and Stanley (1996), and it inspired the theoretical study
by Elliott and Van der Hoek (2003; originally presented in 2000). Similar volatil-
ity scaling behavior in foreign exchange and stock markets has also found by
Gençay, Selçuk and Whitcher (2001) , Kyaw, Los, and Zong (2003), and Lipka
and Los (2003) using wavelet MRA. In other words, replication research by
complete MRA has now corroborated those initial statistical findings.
More LM financial market results can be found in the compilations of articles

by Kondor and Kertesz (1999) and Robinson (2003), and in the monographs by
Peters (1994), Mantegna and Stanley (2000) and Los (2003). The existence of
these empirical results now warrants a serious correction of literature on the
option valuation.
However, one is forewarned that in the fast growing interdisciplinary litera-

ture on LM time series various notational systems are used, sometimes with the
same symbols meaning different concepts. The best is to accept one notational
system and to translate all other concepts into it, as is done in Table 4.3 in Los,
2003, p. 124 which provided the equivalence of various critical irregularity ex-
ponents, such as the dependence, difference, spectral, Hurst, Zolotarev stability
and Lipschitz exponents. In this paper we use the Hurst exponent H, since that
has become an accepted LM parameter in the finance literature, even though
the Lipschitz exponent is the most universally accepted in the mathematics and

6 Interestingly, the Dow Jones Industrial Average index is exceptionally market neutral and
have a Fickian Hurst exponent of H = 0.5 (Li, 1991). This is like the neutral memory of the
River Rhine in Europe, which represents the similar exception to the rule that long rivers are
persistent (Mandelbrot and Wallis, 1969).
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physics literatures.
These critical exponents have to be identified or computed from the available

"noise" data in the financial markets to determine if these markets are anti-
persistent, neutral or persistent. This was pursued, for example, by Beran
(1989, 1992, 1994) by conventional covariance stationary time series analysis
with constant integer correlations (= linear dependencies) and frequencies and
by Flandrin (1989, 1992) and Kaplan and Kuo (1993) by the complete, and
therefore superior, wavelet MRA, which can be applied to non-stationary time
series with time-varying fractional nonlinear dependencies and frequencies.

3 Binomial Pricing of Options

3.1 Pricing Options by Using Real World Probabilities

In the following two sub-sections we closely followMcDonald, 2003, pp. 337 - 338
and 358 - 359). Pricing options using real world probabilities is the conventional
financial discounting-of-expected-cash-flows method. In fact, for option pricing
the only distributional moment of importance is the second moment. All higher
order moments are not considered by the Black-Scholes valuation method.
Suppose we have a non-dividend paying stock S0 with an expected rate of

return α. Then if p is the real world probability of the stock going up, this p
must be consistent with the uptick u, the downtick d, and the expected stock
return α according to the following expectation:

E0{S1} = puS0 + (1− p)dS0

= eαhS0 (9)

Solving for the real world probability p gives

p =
eαh − d

u− d
(10)

with u > eαh > d. Thus, the actual expected payoff to the option one period
hence is

E0{C1} = pCu + (1− p)Cd (11)

=
eαh − d

u− d
Cu +

u− eαh

u− d
Cd (12)

The option is a leveraged investment in the stock and is thus riskier than
the stock. Consequently, it must be discounted at an expected rate γ > α.
Replication theory tells us that an option is equivalent to a portfolio consisting
of ∆ shares of stock S0 and B0 bonds:

C0 = ∆S0 +B0 (13)

The expected return on such a replicating portfolio is the weighted average:

eγh =
∆S0

∆S0 +B0
eαh +

B0
∆S0 +B0

erh (14)
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The option price is then the properly discounted payoff

C0 = e−γh
·
eαh − d

u− d
Cu +

u− eαh

u− d
Cd

¸
(15)

This formula using real world probabilities gives the same option price as
the risk-neutral probability valuation, as we’ll now show in the next section.

3.2 Pricing Options by Using Risk-Neutral Probabilities

Risk-neutral valuation states that the risk-neutrally expected payoff to the op-
tion one period hence is:

E∗0{C1} = p∗Cu + (1− p∗)Cd

=
erh − d

u− d
Cu +

u− erh

u− d
Cd

= erh
·
Cu − Cd

u− d
+ e−rh

uCd − dCu

u− d

¸
= erh[∆S0 +B0]

= erhC0 (16)

by the definition of ∆ = Cu−Cd
S0(u−d) and B0 = e−rh uCd−dCuu−d . This can also be

written as
C0 = e−rhE∗0{C1} (17)

This equation defines risk-neutral valuation (Los, 2001, Chapters 8 and 9;
Tavella, 2002, Chapter 3). The ∆ and B0 values are the solutions of the two
successfully replicating portfolio equations:

∆uS0 + erhB0 = Cu and (18)

∆dS0 + erhB0 = Cd (19)

To check that this approach comes out the same as with real world proba-
bilities, we can now rewrite the option price equation as follows:

C0 = (S∆+B)

µ
1

∆S0eαh +B0erh

¶·
erh − d

u− d
Cu +

u− erh

u− d
Cd +

eαh − erh

u− d
(Cu − Cd)

¸
= (∆S0 +B0)

µ
1

∆S0eαh +B0erh

¶£
erh[∆S0 +B0] + (e

αh − erh)∆S0
¤

= ∆S0 +B0 (20)

Q.E.D.
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4 Long Term Memory and Black-Scholes i.i.d.
Assumptions

Since the value of the expected stock return α does not matter in risk-neutral
pricing, any consistent pair of α and γ will give the same option price. Risk-
neutral pricing is thus valuable because setting the expected stock return α = r,
the risk-free rate, results in the simplest pricing procedure.
Black and Scholes (1973) assumed that the instantaneous return innovations

followed a simple neutral i.i.d. Wiener process. Now, matters turn out some-
what differently, when the Black-Scholes independence and stationarity (i.i.d.)
assumptions are violated.
For the Black-Scholes assumption of a GBM, the rate of stock return is

d lnSt = αdt+ σdzt, dzT ∼ i.i.d.(0, T ) (21)

and the long term memory or Hurst exponent has the Fickian value of H = 0.5
so that

V ar {ln(ST /S0)} = σ2T 2H = σ2T (22)

Thus, the expiration time-adjusted, instantaneous variance of the rate of return
is, indeed, a constant, as assumed by Black and Scholes (1973):

V ar {ln(ST /S0)}
T

= σ2 (23)

Consequently, under this i.i.d. assumption, the (Cox, Ross and Rubinstein,
1979) uptick u = eσT

0.5

and downtick d = e−σT
0.5

remain constant for a partic-
ular expiration time T and the risk-neutral valuation works very well.7

For the assumption of a mono-FBM, the rate of stock return is similarly:

d lnSt = αdt+ σdz∗t , dz
∗
T ∼ i.i.d.(0, T 2H) (24)

and the long term memory, or Hurst exponent has the non-Fickian value of
0 < H < 1, H 6= 0.5 so that

V ar {ln(ST /S0)} = σ2T 2H (25)

With the existence of LM, the expiration time-adjusted variance of the stock
rate of return is not constant, except when H = 0.5, since

V ar {ln(ST /S0)}
T

= σ2T 2H−1 (26)

7Notice that the Black-Scholes assumptions do NOT include a specific assumption re-
garding the shape of the distribution of the stochastic return shocks: i.i.d.= independent,
identically distributed (= strict-sense stationarity, although in their methodology wide-sense
stationarity suffices). The Gausianness equivalence stems from the neutral memory assump-
tion of H = 0.5, which is implied by their not so innocuous i.i.d., "white noise" or "flat
spectrum" assumption.
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Indeed Holton (1992) called time the second dimension of risk, the first
being the instantaneous return variance σ2. Still, the LM uptick u = eσT

H

and downtick d = e−σT
H

remain constant for a particular market value of the
(scaling) exponent H and a particular expiration time T and thus the risk-
neutral binomial valuation can still be used for option valuation. Since the u
and d ticks prominently figure in the risk-neutral probabilities, the option prices
will differ according to various values of H, indicating the degrees of persistence
of trading and pricing in the various financial markets.8

The Black-Scholes European option value based on a mono-FBM is as fol-
lows. The call option value is:

C0 = S0e
−gTSD(d1)−Ke−rTSD(d2) (27)

d1 =
ln(S0/K) + (r − g)T + 1

2σ
2T 2H

σTH
(28)

d2 = d1 − σTH (29)

with 0 < H < 1.9

Why the changed notation from N(.) to SD(.)? Strictly speaking, the d1
variable is no longer a standardized Gaussian variable, since it scales in a
non-Gaussian way. Therefore the accumulations SD(d1) and SD(d2) do no
longer represent cumulative standard Gaussian distributions but cumulative
(non-Gaussian) stable distributions. With the standard parametrization, they
represent cumulative standard stable (scaling) distributions, e.g., a self-similar
Lévy, Cauchy, Beta, Gamma, etc. distribution, something that Mandelbrot
(1971) had already observed in early computer generation of LM time series by
aggregation:

SD(di) =

diZ
−∞

f(z∗)dz∗ (30)

Unfortunately, this "closed form" representation does not hold for most sta-
ble distributions, although there exist explicit Zolotarev parametrizations for
their characteristic functions (Los, 2003, Chapter 3). This means that most
stable distributions can only numerically be integrated by simulation (McCul-
loch, 1996).
Other simulation approaches of LM time series are based on Cholesky de-

composition (Hipel and McLeod, 1978), on fast Fourier transform (Davies and
Harte, 1987) and on fast Wavelet transforms Flandrin (1992).10

8Various financial markets have different H values for 0 < H < 1. Cf. Cornelis A. Los,
Financial Market Risk: Measurement & Analysis, Routledge International Studies in Money
and Banking, Taylor & Francis Books Ltd, London, UK, 2003, who measures these various H
values using wavelet multiresolution analysis.

9This is a corrected version of the formula in Los (2003, p. 439).
10All four simulation approaches and the various methods to identify H are incorporated

in the Benoit 1.3 software package: "Fractal System Analysis for Windows" from Trusoft
International Inc., St. Petersburg, FL 33704.
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5 LM Options
As demonstrated by our review in Section 2, it has now empirically been estab-
lished that various financial markets have different persistence exponents or H
values for 0 < H < 1. Fig. 1 shows that when the expiration time, maturity, or
investment horizon T increases, the volatility of anchor foreign exchange (FX)
rates tends to increase slower than that of a GBM, while the volatility of stocks
and bonds tends to increase faster than that of a GBM. In popular opinion, in
the long run FX markets are considered more risky than stock markets in the
long term, while the opposite is actually true.
(1) The FX appreciation rates are usually antipersistent with Hurst expo-

nents of the order 0.2 < H < 0.5 (Karuppiah and Los, 2004). At Hurst values
of H = 1

3 financial turbulence may occur.
(2) Stock and bonds are traded securities. Their rates of return are persis-

tent, with Hurst exponents 0.5 < H < 0.8, e.g., the S&P500 index has H = 2
3 .
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Figure 1: Typical time dependence of financial price volatility, logσ2. The volatility
or second moment risk of the persistent stock and bond prices increases faster with the
time horizon T than the volatility of the conventional Geometric Brownian Motion,
while the volatility of FX rates increases slower

But does LM matter for option valuation? Let’s look at the numerical im-
pact of time decay within the whole range of degrees of persistence of a mono-
fractional price diffusion process (0 < H < 1) on the values of out-of-the-money
(OTM), at-the-money (ATM), and in-the-money (ITM) European call and put
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options. Thus, we model the price diffusion by a simple mono-FBM and use the
corresponding memory (LM) Black-Scholes formula to derive some qualitative
and quantitative statements regarding their correct LM pricing, relative to their
theoretical neutral memory pricing
For the sake of these examples, at all times we assume a constant instan-

taneous risk-free rate of r = 0.06, an instantaneous volatility of σ = 0.30, and
a strike price of K = $60. For simplicity, we assume a non-dividend-paying
stock S (dividend yield g = 0), but that assumption can, of course, be relaxed.
Moreover, the underlying can be an asset, a commodity, a futures (resulting in
a LM Black formula), etc., or a foreign exchange rate.

5.1 LM OTM Call Option

We begin this pictographic story with an long memory out-of-the-money (LM
OTM) call option, with the underlying stock price at $40, while we let the
expiration time vary over T = 1, 2, 5, 10 and 20 years, for various degrees of
persistence 0 < H < 1, as in Fig. 2.

Figure 2:

There is, of course, no exponential effect when T = 1 year, when the call
price is $0.90, no matter what the degree of persistence of the market of the
underlying stock. But notice that for a 2-year call option, the difference in value
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of a call option on a stock trading in an ultra-persistent market (H ↑ 0) and in
an ultra-anti-persistent (= ultra-fast mean-reversing or ultra-efficient) market
would be already ca. $3.00. That extreme LM difference in call value grows to
ca. $17.00 when the expiration time is T = 5 years and ca. $26.00 when T = 10.
Such 10-year options are used in corporative remuneration packages. These

options are written on the shares of the own corporation and are called warrants.
The question whether these shares are trading in an anti-persistent, neutral or
persistent market is thus a very relevant question for a manager, who finds a
substantial part of his or her remuneration awarded in the form of warrants.
The differences between option values based on the Black-Scholes GBM model
and based on the mono-FBM are the largest in the persistent markets. Since
most corporate shares are issued by medium-sized companies, these markets
are always smaller and less liquid and traded by less traders and thus likely to
be much more persistent than the perfect competition model of stock markets
suggests. A small or medium sized stock trading on the NASDAQ is likely to
show more persistent pricing than a blue chip technology stock trading on the
New York Stock Exchange.11 Notice that for 20-year options (are there any?)
this extreme difference has again been reduced to ca. $18.00, because of the
theta (θ) effect.
But what happens with the intra-year option values? Is there still a LM

effect? The answer is a resounding "yes," as demonstrated by Fig. 3. This Fig.
3 is the enlarged lower part of Fig. 2, for intra-year expiration times T = 1/365
(= 1 day), 30/365 (= 1 month), 90/365 (= three months), and 180/365 (=six
months).
But now the LM effect works "in reverse." There is virtually no impact

on the one-day options, except in the empirically unobserved area of the blue
noise ultra-anti-persistence H ↓ 0. The empirically observed range of the Hurst
exponent (thus far) is about 0.2 < H < 0.8. There is, for example, a $0.20
90-day call value difference between a H = 0.2 anti-persistent (ultra-efficient,
since ultra-fast reversing) market and a slightly persistent (= slightly inefficient)
market. This grows to a $0.30 difference for a 180-day call.

5.2 LM ATM Call Option

The LM effect is clearly less pronounced with the ATM options, as Fig. 4 shows
The call theta based on the first order Taylor expansion, using the stable

distributions, is now:

∂C0
∂T

= −ge−gTStSD(d1)− rKe−rTSD(d2)− Ke−rTSD0(d2)σ
2TH

(31)

= −rKe−rTSD(d2)− Ke−rTSD0(d2)σ
2TH

for g = 0 (32)

The following figures illustrate the LM effect on the theta values and they
show that the theta values differ a lot between anti-persistent and persistent

11At Kent State University we are currently empirically researching that same issue.
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Figure 3:

markets for the one day options, but that those differences fade out when the
expiration time or time-to-maturity T increases. Fig. 5 shows compares the
theta values of a one-day option with the values of options with longer expiration
times for the various degrees of persistence in the particular stock markets.
Fig. 6 shows that when the expiration time T increases, the difference in

values of the theta between the stock markets of different degrees of persistence
decreases. However, while anti-persistence is boosts theta values for expiration
time T < 90 days, the reverse is true for T > 90 days. For expiration times of
greater than five years, the differences between thetas are no longer important,
no matter what the degree of persistence in the stock market. All options of
various long term maturities have the same almost constant theta.

5.3 LM ITM Call Option

Interestingly, the differences in degrees of persistence are almost non-existent
in the anti-persistent 0 < H < 0.5 stock markets for LM ITM calls. In other
words, for LM ITM call options the Black-Scholes GBM formula will provide the
(almost) correct value, as is shown in Fig. 7. However, the different degrees of
persistence do matter in the persistent 0.5 < H < 1 stock markets for expiration
times T > 2 years. For a 10-year LM ITM option at the extreme H ↑ 1 value,
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Figure 4:

the value difference compared with the GBM valuation is about $8.50.

5.4 LM OTM Put Option

Let’s first look at the supra-year options. As Fig. 8 shows, the LM effect
is important almost exclusively in the persistent stock markets for the OTM
puts and is almost unimportant in the anti-persistent markets. This is clearly
different from the OTM calls, where the effect was noticeable in both anti-
persistent and persistent markets.
Another interesting phenomenon is the difference between the 10-year and

20-year options in the extreme persistence markets where H ↑ 1. This is caused
by the deep discounting of the strike price (equivalent to a zero-coupon bond),
which imposes a maximum value constraint on the present put option value P0,
since when S0 = 0, the present put value is maximally

P0 = Ke−rT (33)

Now, for T = 10, Ke−rT = 20× e−0.06×10 = $10. 98, but for T = 10, Ke−rT =
20× e−0.06×20 = $6. 03.
What is the intra-year effect on puts for the various degrees of persistence?

This is dramatically illustrated in Fig. 9. It only applies to the ultra-anti-
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Figure 5:

persistent markets with 0 < H < 0.3, and is therefore not relevant for empir-
ically observed markets. An interesting dichotomy occurs: for the OTM put
valuation the supra-year effects are very important for the empirically relevant
LM range of 0.3 < H < 1 while the intra-year effects are only relevant for the
empirically irrelevant 0 < H < 0.3 anti-persistence range.

5.5 LM ATM Put Option

For the LM ATM put options the degrees of persistence do matter over the
whole range of 0 < H < 1, as can be seen in Fig. 10. In other words, while
this LM effect is important for the OTM put options in the persistent markets,
but not in the anti-persistent markets, anti-persistence begins to matter for put
valuation with the LM ATM put options.

5.6 LM ITM Put Option

For an ITM put option the LM effects are rather surprising, as observed in Fig.
11. First, all intra-year put option values lie, of course, above the one year
put option values. Second, the supra-year ITM put option values are smaller
than the one-year values for the relevant empirical range 0 < H < 0.7. Thus
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Figure 6:

for this persistence range, the put option becomes more valuable as the time
to expiration decreases Third, the differences between ITM put option values
for these empirically relevant degrees of persistence are striking: in an anti-
persistent (H = 0.3) market a 10-year ITM put option is worth $5.00, but in
a persistent market the same put option is worth $17.50, a $12.50 difference.
Fourth, the supra-year ITM put option values are larger than the one-year values
in the empirically irrelevant range 0.7 < H < 1.

6 Conclusion
This paper demonstrates the impact of observed financial market persistence,
i.e., long term memory on European option valuation. The degree of persistence
or, equivalently, the type of long term memory of the market of the underly-
ing does have a significant impact on the LM option values via their time-
dependent volatility and thus via the risk-neutral probabilities used in their
valuation. Some of these effects are rather counter-intuitive. Option traders
should be aware of these LM phenomena and the arbitrage opportunities they
entail between persistent and anti-persistent markets.
Proper long memory option valuation is of considerable importance in cor-
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Figure 7:

porate remuneration packages, since such options are written on a company’s
own shares with long expiration periods. Therefore, we recommend that for a
proper valuation of such warrants, the degrees of persistence of the companies’
share markets are measured and properly incorporated in the warrant valuation.
As Elliott and van der Hoek (2003) show, this long memory financial market

analysis can be extended to multi-fractional Brownian Motions (multi-FBMs),
although such an extension raises another issue. Does this lead to a contradic-
tion with the fundamental Law of One Price, since multiple intrinsic option
prices may be coexistent within the same market, depending on the degree of
persistence experienced by the various market participants. The empirical cor-
roboration of the existence of a multi-FBM market points to a corroboration
of the idea that a market for a particular financial instrument of a particular
maturity or expiration time is actually segmented into buyers and sellers ac-
cording to the differences in time horizon of the various market participants, as
was suggested by Peters (1989 and 1994, p. 272).
Let us elaborate this point a bit. Spectrum analysis tells us how the energy

(= risk or volatility) of a particular financial market price diffusion is allocated
over various time scales or frequencies. What the multi-fractal spectrum of
one particular financial market shows is that in that term T market there are
trading participants who hold different investment time-horizons, and therefore
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Figure 8:

trade slower or faster, i.e., trade with more or less persistence. In other words,
within the market, say, of T = 2 year options, there can be participants who
have different T = 0.5, 1, 1.5, 2, 5, 10, 20, etc. year investment horizons, like
day traders, quarterly mutual fund managers, or very long term buy-and-hold
pension fund managers.
The intrinsic option prices of a particular expiration time T market, which

incorporates such different degrees of trading persistence, are different even for
traders trading options with the same expiration time. This can explain why
trading takes place at all within the same market: the persistent traders have
high intrinsic option values relative to the prevailing market option price and
tend to buy, while the anti-persistent traders have low intrinsic values relative
to the prevailing option market price and tend to sell.
In this paper we did not analyze multi-fractal spectra of the multi-FBMs,

but focused on the mono-fractal Hurst exponent. The mono-fractal Hurst ex-
ponent of such a particular internally segmented market, which is the most
prevalent long memory exponent, tells us the what the most important dimen-
sion or prevailing constituency of traders is in that market. Stock markets tend
to be persistent, because the traders in such markets tend to have longer in-
vestment horizons, while cash and anchor foreign exchange markets tend to be
anti-persistent, because the traders in such markets tend to have ultra-short
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Figure 9:

(intra-day) investment horizons.
This also points to an indicator of potential emerging market malfunctioning.

The wider the multi-fractal spectrum, the more varied the investment horizons
of the market participants. The narrower the multi-fractal spectrum, the nar-
rower the spectrum of market participants is. When the multi-fractal spectrum
narrows, more and more market participants tend to have the same investment
horizon or investment view and there are less buyers and sellers with different
investment perspectives.12
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