172 research outputs found

    Multiobjective evolutionary optimization of quadratic Takagi-Sugeno fuzzy rules for remote bathymetry estimation

    Get PDF
    In this work we tackle the problem of bathymetry estimation using: i) a multispectral optical image of the region of interest, and ii) a set of in situ measurements. The idea is to learn the relation that between the reflectances and the depth using a supervised learning approach. In particular, quadratic Takagi-Sugeno fuzzy rules are used to model this relation. The rule base is optimized by means of a multiobjective evolutionary algorithm. To the best of our knowledge this work represents the first use of a quadratic Takagi-Sugeno fuzzy system optimized by a multiobjective evolutionary algorithm with bounded complexity, i.e., able to control the complexity of the consequent part of second-order fuzzy rules. This model has an outstanding modeling power, without inheriting the drawback of complexity due to the use of quadratic functions (which have complexity that scales quadratically with the number of inputs). This opens the way to the use of the proposed approach even for medium/high dimensional problems, like in the case of hyper-spectral images

    Multiobjective Evolutionary Optimization for Prototype-Based Fuzzy Classifiers

    Get PDF
    Evolving intelligent systems (EISs), particularly, the zero-order ones have demonstrated strong performance on many real-world problems concerning data stream classification, while offering high model transparency and interpretability thanks to their prototype-based nature. Zero-order EISs typically learn prototypes by clustering streaming data online in a “one pass” manner for greater computation efficiency. However, such identified prototypes often lack optimality, resulting in less precise classification boundaries, thereby hindering the potential classification performance of the systems. To address this issue, a commonly adopted strategy is to minimise the training error of the models on historical training data or alternatively, to iteratively minimise the intra-cluster variance of the clusters obtained via online data partitioning. This recognises the fact that the ultimate classification performance of zero-order EISs is driven by the positions of prototypes in the data space. Yet, simply minimising the training error may potentially lead to overfitting, whilst minimising the intra-cluster variance does not necessarily ensure the optimised prototype-based models to attain improved classification outcomes. To achieve better classification performance whilst avoiding overfitting for zero-order EISs, this paper presents a novel multi-objective optimisation approach, enabling EISs to obtain optimal prototypes via involving these two disparate but complementary strategies simultaneously. Five decision-making schemes are introduced for selecting a suitable solution to deploy from the final non-dominated set of the resulting optimised models. Systematic experimental studies are carried out to demonstrate the effectiveness of the proposed optimisation approach in improving the classification performance of zero-order EISs

    Multi-Objective Evolutionary Optimisation for Prototype-Based Fuzzy Classifiers

    Get PDF
    Evolving intelligent systems (EISs), particularly, the zero-order ones have demonstrated strong performance on many real-world problems concerning data stream classification, while offering high model transparency and interpretability thanks to their prototype-based nature. Zero-order EISs typically learn prototypes by clustering streaming data online in a “one pass” manner for greater computation efficiency. However, such identified prototypes often lack optimality, resulting in less precise classification boundaries, thereby hindering the potential classification performance of the systems. To address this issue, a commonly adopted strategy is to minimise the training error of the models on historical training data or alternatively, to iteratively minimise the intra-cluster variance of the clusters obtained via online data partitioning. This recognises the fact that the ultimate classification performance of zero-order EISs is driven by the positions of prototypes in the data space. Yet, simply minimising the training error may potentially lead to overfitting, whilst minimising the intra-cluster variance does not necessarily ensure the optimised prototype-based models to attain improved classification outcomes. To achieve better classification performance whilst avoiding overfitting for zero-order EISs, this paper presents a novel multi-objective optimisation approach, enabling EISs to obtain optimal prototypes via involving these two disparate but complementary strategies simultaneously. Five decision-making schemes are introduced for selecting a suitable solution to deploy from the final non-dominated set of the resulting optimised models. Systematic experimental studies are carried out to demonstrate the effectiveness of the proposed optimisation approach in improving the classification performance of zero-order EISs

    A brief history of learning classifier systems: from CS-1 to XCS and its variants

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. The direction set by Wilson’s XCS is that modern Learning Classifier Systems can be characterized by their use of rule accuracy as the utility metric for the search algorithm(s) discovering useful rules. Such searching typically takes place within the restricted space of co-active rules for efficiency. This paper gives an overview of the evolution of Learning Classifier Systems up to XCS, and then of some of the subsequent developments of Wilson’s algorithm to different types of learning

    Towards Automatic Controller Design using Multi-Objective Evolutionary Algorithms

    Get PDF

    Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies

    Full text link

    Efficient Learning Machines

    Get PDF
    Computer scienc

    Multi-Objective Evolutionary Optimisation for Prototype-Based Fuzzy Classifiers

    Get PDF
    Evolving intelligent systems (EISs), particularly, the zero-order ones have demonstrated strong performance on many real-world problems concerning data stream classification, while offering high model transparency and interpretability thanks to their prototype-based nature. Zero-order EISs typically learn prototypes by clustering streaming data online in a “one pass” manner for greater computation efficiency. However, such identified prototypes often lack optimality, resulting in less precise classification boundaries, thereby hindering the potential classification performance of the systems. To address this issue, a commonly adopted strategy is to minimise the training error of the models on historical training data or alternatively, to iteratively minimise the intra-cluster variance of the clusters obtained via online data partitioning. This recognises the fact that the ultimate classification performance of zero-order EISs is driven by the positions of prototypes in the data space. Yet, simply minimising the training error may potentially lead to overfitting, whilst minimising the intra-cluster variance does not necessarily ensure the optimised prototype-based models to attain improved classification outcomes. To achieve better classification performance whilst avoiding overfitting for zero-order EISs, this paper presents a novel multi-objective optimisation approach, enabling EISs to obtain optimal prototypes via involving these two disparate but complementary strategies simultaneously. Five decision-making schemes are introduced for selecting a suitable solution to deploy from the final non-dominated set of the resulting optimised models. Systematic experimental studies are carried out to demonstrate the effectiveness of the proposed optimisation approach in improving the classification performance of zero-order EISs
    • …
    corecore