17 research outputs found

    Aliasing Reduction in Staring Infrared Imagers Utilizing Subpixel Techniques

    Get PDF
    We introduce and analyze techniques for the reduction of aliased signal energy in a staring infrared imaging system. A standard staring system uses a fixed two-dimensional detector array that corresponds to a fixed spatial sampling frequency determined by the detector pitch or spacing. Aliasing will occur when sampling a scene containing spatial frequencies exceeding half the sampling frequency. This aliasing can significantly degrade the image quality. The aliasing reduction schemes presented here, referred to as microscanning, exploit subpixel shifts between time frames of an image sequence. These multiple images are used to reconstruct a single frame with reduced aliasing. If the shifts are controlled, using a mirror or beam steerer for example, one can obtain a uniformly sampled microscanned image. The reconstruction in this case can be accomplished by a straightforward interlacing of the time frames. If the shifts are uncontrolled, the effective sampling may be nonuniform and reconstruction becomes more complex. A sampling model is developed and the aliased signal energy is analyzed for the microscanning techniques. Finally, a number of experimental results are presented that illustrate the perlormance of the microscanning methods

    Multispectral processing based on groups of resolution elements

    Get PDF
    Several nine-point rules are defined and compared with previously studied rules. One of the rules performed well in boundary areas, but with reduced efficiency in field interiors; another combined best performance on field interiors with good sensitivity to boundary detail. The basic threshold gradient and some modifications were investigated as a means of boundary point detection. The hypothesis testing methods of closed-boundary formation were also tested and evaluated. An analysis of the boundary detection problem was initiated, employing statistical signal detection and parameter estimation techniques to analyze various formulations of the problem. These formulations permit the atmospheric and sensor system effects on the data to be thoroughly analyzed. Various boundary features and necessary assumptions can also be investigated in this manner

    Methodische AnsÀtze zur Analyse biomechanischer Zeitreihendaten

    Get PDF
    Die vorliegende Dissertation beschĂ€ftigt sich mit der Frage inwiefern der Einsatz von Zeitreihenmethoden - also Methoden, die den kontinuierlichen Charakter biomechanischer Zeitreihendaten berĂŒcksichtigen - einen aus methodischer Sicht gĂŒnstigeren Auswertungsansatz darstellt als herkömmliche, diskrete Methoden. Damit liefert die Arbeit einen wichtigen Beitrag zur Überwindung der postulierten Konfidenzkrise biomechanisch-bewegungswissenschaftlicher Forschung, nach der sich die Ergebnisse vieler Studien aufgrund u. a. methodischer Defizite nicht oder nur eingeschrĂ€nkt reproduzieren lassen. Dabei konnte in drei Teilstudien fĂŒr verschiedene methodische Bereiche (Inferenzstatistik, Klassifikation, Trenderkennung) gezeigt werden, dass der Einsatz von Zeitreihenmethoden bekannte Probleme diskreter Methoden erfolgreich addressieren kann. Die vorgestellte Arbeit regt ĂŒber das spezifische Thema hinaus zu einem kritischeren Umgang mit methodischen Aspekten an und zeigt mögliche LösungsansĂ€tze auf

    Towards CO2 emission monitoring with passive air- and space-borne sensors

    Get PDF
    Coal-fueled power plants are responsible for 30 % of anthropogenic carbon dioxide (CO2) emissions and can therefore be considered important drivers of climate warming. The 2015 Paris Climate Accord has established a global stock take mechanism, which will assess the progress of global carbon emission reduction policies in five-yearly tallies of worldwide emissions. However, there exists no independent monitoring network, which could verify such stock takes. Remote sensing of atmospheric CO2 concentrations from air- and space-borne sensors could provide the means of monitoring localized carbon sources, if their ground sampling distance is sufficiently fine (i.e. below the kilometer scale). Increased spatial resolution can be achieved at the expense of decreasing the spectral resolution of the instrument, which in turn complicates CO2 retrieval techniques due to the reduced information content of the spectra. The present thesis aims to add to the methodology of remote CO2 monitoring approaches by studying the compromise between spectral and spatial resolution with CO2 retrievals from three different sensors. First, the trade-off between coarse spectral resolution and retrieval performance is discussed for a hypothetical imaging spectrometer which could reach a spatial resolution of ~50×50 m2 by measuring backscattered sunlight in the short wave infrared spectral range at a resolution of ∆λ ~ 1 nm. To this end, measurements of the Greenhouse gases Observing SATellite (GOSAT) at ∆λ = 0.1 nm are artificially degraded to coarser spectral resolutions to emulate the proposed sensor. CO2 column retrievals are carried out with the native and degraded spectra and the results are compared with each other, while data from the ground based Total Carbon Column Observing Network (TCCON) serve as independent reference data. This study identifies suitable retrieval windows in the short wave infrared spectral range and a favorable spectral resolution for a CO2 monitoring mission. Second, CO2 column retrievals are carried out with measurements of the air-borne AVIRIS-NG sensor at a spectral resolution of ∆λ = 5 nm. This case study identifies advantageous CO2 retrieval configurations, which minimize correlations between retrieval parameters, near two coal-fired power plants. A bias correction method is proposed for the retrievals and a plume mask is applied to the retrieved CO2 enhancements to separate the CO2 emission signal from the atmospheric background. Emission rates of the two facilities are calculated under consideration of the local wind speed, compared to a public inventory and discussed in terms of their uncertainties. Third, CO2 retrievals are extended to spectral resolutions on the order of ∆λ ~ 10 nm by analyzing spectra of the specMACS imager near a small power plant. Retrieval effects that hamper the detection of the source signal are discussed

    The quantitative analysis of transonic flows by holographic interferometry

    Get PDF
    This thesis explores the feasibility of routine transonic flow analysis by holographic interferometry. Holography is potentially an important quantitative flow diagnostic, because whole-field data is acquired non-intrusively without the use of particle seeding. Holographic recording geometries are assessed and an image plane specular illumination configuration is shown to reduce speckle noise and maximise the depth-of-field of the reconstructed images. Initially, a NACA 0012 aerofoil is wind tunnel tested to investigate the analysis of two-dimensional flows. A method is developed for extracting whole-field density data from the reconstructed interferograms. Fringe analysis errors axe quantified using a combination of experimental and computer generated imagery. The results are compared quantitatively with a laminar boundary layer Navier-Stokes computational fluid dynamics (CFD) prediction. Agreement of the data is excellent, except in the separated wake where the experimental boundary layer has undergone turbulent transition. A second wind tunnel test, on a cone-cylinder model, demonstrates the feasibility of recording multi-directional interferometric projections using holographic optical elements (HOE’s). The prototype system is highly compact and combines the versatility of diffractive elements with the efficiency of refractive components. The processed interferograms are compared to an integrated Euler CFD prediction and it is shown that the experimental shock cone is elliptical due to flow confinement. Tomographic reconstruction algorithms are reviewed for analysing density projections of a three-dimensional flow. Algebraic reconstruction methods are studied in greater detail, because they produce accurate results when the data is ill-posed. The performance of these algorithms is assessed using CFD input data and it is shown that a reconstruction accuracy of approximately 1% may be obtained when sixteen projections are recorded over a viewing angle of ±58°. The effect of noise on the data is also quantified and methods are suggested for visualising and reconstructing obstructed flow regions

    Indoor Source Localization of Radio Frequency Transmitters Using Blind Channel Identification Techniques

    Get PDF
    Locating transmitters is a research area that is becoming increasingly relevant as technology advances. It is especially useful for determining the location of livestock, drones, keys, phones, tablets, etc. As a result of this push for locating devices, many algorithms have been developed to determine source locations. Most source location algorithms and techniques rely on a line of sight , or a direct path between the source and the receivers to provide accurate results. Indoor environments pose a challenge to locating transmitters due to the many surfaces that allow radio waves to interact (reflect, refract, and generally distort) with them. Because of the effects of the radio wave interactions, a direct path from the transmitter to the receivers may not be possible inside, increasing the difficulty. This problem is further augmented when the transmitter is transmitting an unknown signal in an unknown environment. This research derives algorithms to address these issues. The algorithms are tested via simulations and real-world environmental testing

    Towards CO2 Emission Monitoring with Passive Air- and Space-Borne Sensors

    Get PDF
    Coal-fueled power plants are responsible for 30% of anthropogenic carbon dioxide (CO2) emissions and can therefore be considered important drivers of climate warming. The 2015 Paris Climate Accord has established a global stock take mechanism, which will assess the progress of global carbon emission reduction policies in five-yearly tallies of worldwide emissions. However, there exists no independent monitoring network, which could verify such stock takes. Remote sensing of atmospheric CO2 concentrations from air- and space-borne sensors could provide the means of monitoring localized carbon sources, if their ground sampling distance is sufficiently fine (i.e. below the kilometer scale). Increased spatial resolution can be achieved at the expense of decreasing the spectral resolution of the instrument, which in turn complicates CO2 retrieval techniques due to the reduced information content of the spectra. The present thesis aims to add to the methodology of remote CO2 monitoring approaches by studying the compromise between spectral and spatial resolution with CO2 retrievals from three different sensors. First, the trade-off between coarse spectral resolution and retrieval performance is discussed for a hypothetical imaging spectrometer which could reach a spatial resolution of ∌ 50 × 50 mÂČ by measuring backscattered sunlight in the short wave infrared spectral range at a resolution of ∆λ ∌ 1 nm. To this end, measurements of the Greenhouse gases Observing SATellite (GOSAT) at ∆λ = 0.1 nm are artificially degraded to coarser spectral resolutions to emulate the proposed sensor. CO2 column retrievals are carried out with the native and degraded spectra and the results are compared with each other, while data from the ground based Total Carbon Column Observing Network (TCCON) serve as independent reference data. This study identifies suitable retrieval windows in the short wave infrared spectral range and a favorable spectral resolution for a CO2 monitoring mission. Second, CO2 column retrievals are carried out with measurements of the airborne AVIRIS-NG sensor at a spectral resolution of ∆λ = 5 nm. This case study identifies advantageous CO2 retrieval configurations, which minimize correlations between retrieval parameters, near two coal-fired power plants. A bias correction method is proposed for the retrievals and a plume mask is applied to the retrieved CO2 enhancements to separate the CO2 emission signal from the atmospheric background. Emission rates of the two facilities are calculated under consideration of the local wind speed, compared to a public inventory and discussed in terms of their uncertainties. Third, CO2 retrievals are extended to spectral resolutions on the order of ∆λ ∌ 10 nm by analyzing spectra of the specMACS imager near a small power plant. Retrieval effects that hamper the detection of the source signal are discussed
    corecore