
GEOMETRIC TRANSFORMATION TECHNIQUES 
FOR DIGITAL I~IAGES: A SURVEY 

George Walberg 

Department of Computer Science 
Columbia University 

New York, NY 10027 
wolberg@cs.columbia.edu 

December 1988 
Technical Report CUCS-390-88 

ABSTRACT 

This survey presents a wide collection of algorithms for the geometric transformation of 
digital images. Efficient image transformation algorithms are critically important to the remote 

sensing, medical imaging, computer vision, and computer graphics communities. We review the 

growth of this field and compare all the described algorithms. Since this subject is interdisci

plinary, emphasis is placed on the unification of the terminology, motivation, and contributions 

of each technique to yield a single coherent framework. 

This paper attempts to serve a dual role as a survey and a tutorial. It is comprehensive in 

scope and detailed in style. The primary focus centers on the three components that comprise all 

geometric transformations: spatial transformations, resampling, and antialiasing. In addition, 

considerable attention is directed to the dramatic progress made in the development of separable 

algorithms. The text is supplemented with numerous examples and an extensive bibliography. 

This work was supponed in part by NSF grant CDR-84-21402. 
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1. INTRODUCTION 

A geometric transformation is an image processing operation that redefines the spatial rela
tionship between points in an image. This facilitates the manipulation of an image's spatial lay

out, i.e., its size and shape. This area has received considerable attention due to its practical 

imponance in remote sensing, medical imaging, computer vision, and computer graphics. Typi

cal applications include distortion compensation of imaging sensors, decalibration for image 

registration, geometrical normalization for image analysis and display, map projection, and tex
ture mapping for image synthesis. 

Historically, geometric transformations were first performed on continuous (analog) images 
using optical systems. Early work in this area is described in [Cutrona 60], a landmark paper on 

the use of optics to perform transformations. Since then, numerous advances have been made in 

this field [Horner 87]. Although optical systems offer the distinct advantage of operating at the 
speed of light, they are limited in control and flexibilty. Digital computer systems, on the other 

hand, resolve these problems and potentially offer more accuracy. Consequently, the algorithms 

presented in this survey deal exclusively with digital (discrete) images, the primary target of 
geometric transformations. 

1.1. MOTIVATION 

The earliest work in geometric transformations for digital images stems from the remote 

sensing field. This area gained attention in the early 196Os, when the U.S. National Aeronautics 

and Space Administration (NASA) embarked upon aggressive earth observation programs. Its 

objective was the acquisition of data for environmental research applicable to earth resource 

inventory and management. As a result of this initiative, programs such as Landsat and Skylab 

emerged. In addition, other government agencies were supporting work requiring aerial photos 

for terrain mapping and surveillance. 

These projects all involved acquiring multi-image sets, i.e., multiple images of the same 

area taken either at different times or with different sensors. Immediately, the task arises to 

align each image with every other image in the set so that all corresponding points match. 

Misalignment can occur due to any of the following reasons. First. images may be taken at the 

same time but acquired from several sensors. each having different distortion properties. 

Second, images may be taken from one sensor at different times and at various viewing 

geometries. Furthermore, sensor motion will give rise to distortion as well. 

Geometric transformations were originally introduced to invert (correct) these distortions 

and allow the accurate determination of spatial relationships and scale. This requires us to first 
estimate the distortion model, usually by means of reference points which may be accurately 

marked or readily identified (e.g., road intersections. land-water interface). In the vast majority 

of applications, the coordinate transformation representing the distortion is modeled as a bivari

ate polynomial whose coefficients are obtained by minimizing an error function over the refer

ence points. Usually, a second-order polynomial suffices, accounting for translation, scale. 
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rotation. skew, and pincushion effects. For more local control, affine transformations and pie~e
wise polynomial mapping functions are widely used, with transformation parameters varymg 
from one region to another. A historical review of early remote sensing techniques can be found 

in lHaralick 76]. 
The methods derived from remote sensing have direct application in other related fields, 

including medical imaging and computer vision. In medical imaging, for instance, geometric 
transformations play an imponant role in image registration and rotation for digital radiology. In 
this field, images obtained after injection of contrast dye are enhanced by subtracting a mask 
image taken before the injection. This technique, known as digital subtraction angiography, is 
subject to distortions due to patient motion. Since motion causes misalignment of the image and 
its subtraction mask, the resulting produced images are degraded. The quality of these images is 
improved with superior transformation algorithms that increase the accuracy of the registration. 

Computer graphics offers another repertoire of methods and goals for geometric transfor
mations. In this field, the goal is not geometric correction, but rather inducing geometric distor
tion. This inverse formulation is used to map 2-D images onto 3-D surfaces. This technique, 
known as texture mapping, has been used with much success in achieving visually rich and com
plicated imagery. Furthermore, additional sop rusticated filtering techniques have been promoted 
to combat artifacts arising from the severe spatial distortions possible in this application. The 
thrust of this effort has been directed to the study and design of efficient space-variant low-pass 
filters. Since the remote sensing and medical imaging fields have generally attempted to correct 
only mild distortions, they have neglected this important area. The design of efficient algo
rithms for filtering fairly general areas remains a great challenge. 

The continuing development of efficient algorithms for the geometric transformation of 
digital images has gained impetus from the growing availability of fast and cost-effective digital 
hardware. The ability to process high resolution imagery has become more feasible with the 
advent of fast computational elements, high-capacity digital data storage devices, and improVed 
display technology. Consequently, the trend in algorithm design has been towards a more effec
tive match with the implementation technology. 

1.2. OVERVIEW 

In this section, we briefly review the various stages in a geometric transformation. Each 
stage of the geometric transformation process has received much attention from a wide commun
ity of people in many diverse fields. As a result, the literature is replete with varied terminolo
gies, motivations, and assumptions. A review of geometric transformation techniques, particu
larly in the context of their numerous applications, is useful for highlighting the common thread 
that underlies their many forms. 

The purpose of this paper is to describe the algorithms developed in this field within a con
sistent and coherent framework. It centers on the three components that comprise all geometric 
transformations: spatial transformations. resampling, and antialiasing. Due to the central impor
tance of sampling theory, a review is provided as a preface to the resampling and antialiasing 
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sections. In addition, a discussion of efficient separable implementations is given as well. We 
now briefly outline the contents of these sections. 

1.2.1. Spatial Transformations 

The basis of geometric transformations is the mapping of one coordinate system onto 
another. This is defIned by means of a spatial transformation - a mapping function that estab
lishes a spatial correspondence between all points in the input and output images. Given a spa

tial transformation, each point in the output assumes the value of its corresponding point in the 

input image. The correspondence is found by using the spatial transformation mapping function 
to project the output point onto the input image. 

Depending on the application, spatial transformation mapping functions may take on many 

different forms. Simple transformations may be specified by analytic expressions including 
affine, projective, and polynomial transformations. More sophisticated mapping functions that 

are not conveniently expressed in analytic terms can be determined from a sparse lattice of con

trol points for which spatial correspondence is known. This yields a spatial representation in 

which undefined points are evaluated through interpolation. Indeed, taking this approach to the 

limit yields a dense grid of control points resembling a 2-D spatial lookup table that may define 

any arbitrary mapping function. 

In computer graphics, the spatial transformation is completely specified by the parameteri

zation of the 3-D object and its position from the 2-D projecting plane (i.e., the viewing screen). 
The objects are usually defined as planar polygons or bicubic patches. Consequently, three coor

dinate systems are used: 2-D texture space, 3-D object space, and 2-D screen space. The various 

formulations for spatial transformations are discussed in section 3. 

1.2.2. Sampling Theory 

Sampling theory is central to the study of sampled-data systems, e.g., digital image 

transformations. It lays a finn mathematical foundation for the analysis of sampled signals, 

offering invaluable insight into the problems and solutions of sampling. It does so by providing 

an elegant mathematical formulation describing the relationship between a continuous signal and 

its samples. We will use it to resolve the problems of image reconstruction and aliasing that fol

low. Note that reconstruction is an interpolation procedure applied to the sampled data, and 

aliasing simply refers to the presence of unreproducibly high frequencies and the resulting 

artifacts. 

Together with defining theoretical limits on the continuous reconstruction of discrete input, 
sampling theory yields the guidelines for numerically measuring the quality of various proposed 

filtering techniques. This proves most useful in formally describing reconstruction, aliasing, and 

the filtering necessary to combat the artifacts that may appear at the output. The fundamentals 
of sampling theory are reviewed in section 4. 
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1.2.3. Resampling 

In the continuous domain, a geometric transfonnation is fully specified by the spatial 
transfonnation. This is due to the fact that an analytic mapping is bijective - one-to-one and 
onto. However, in our domain of interest, complications are introduced due to the discrete 

nature of digital images. 
In digital images, the discrete picture elements, or pixels, are restricted to lie on a sampling 

grid, taken to be the integer lattice. The output pixels, now defined to lie on the output sampling 
grid, are passed through the mapping function generating a new grid used to resample the input. 

This new resampling grid, unlike the input sampling grid, does not generally coincide with the 
integer lattice. Rather, the positions of the grid points may take on any of the continuous values 

assigned by the mapping function. 

Since the discrete input is defined only at integer positions, an interpolation stage is intro

duced to fit a continuous surface through the data samples. The continuous surface may then be 
sampled at arbitrary positions. This interpolation stage is known as image reconstruction t. Col

lectively, image reconstruction followed by sampling is known as image resampling. 

Image resampling consists of passing the regularly spaced output grid through the spatial 
transfonnation, yielding a resampling grid that maps into the input image. Since the input is 
discrete, image reconstruction is perfonned to interpolate the continuous input signal from its 
samples. Sampling the reconstructed signal gives us the intensity values that are assigned to the 

output pixels. 

The accuracy of interpolation has significant impact on the quality of the output image. 
Therefore, many interpolation functions have been studied from the viewpoints of both computa

tional efficiency and approximation qUality. Popular interpolation functions include cubic con
volution, bilinear, and nearest neighbor. They can exactly reconstruct second-, first-, and zero
degree polynomials, respectively. More expensive and accurate methods include cubic spline 
interpolation and convolution with a sinc function. Using sampling theory, this last choice can 

be shown to be the ideal filter. However, it cannot be realized using a finite number of neighbor
ing elements. Consequently, the alternate proposals have been given to offer reasonable approx

imations. Image resampling and reconstruction are described in section 5. 

1.2.4. Aliasing 

Through image reconstruction, we have solved the first problem that arises due to operating 
in the discrete domain - sampling a discrete input. Another problem now arises in evaluating 
the discrete output. The problem, related to the resampling stage, is described below. 

The output image, as described above, has been generated by point sampling the recon
structed input. Point (or zero-spread) sampling refers to an ideal sampling process in which the 

value of each sampled point is taken independently of its neighbors. That is, each input point 

t In !he lileralUrc. !he lerms reconstruction and imerpolation are used interchangeably. 
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influences one and only one output point. 

With point sampling, entire intervals between samples are discarded and their information 
content is lost. If the input signal is smoothly varying, the lost data is recoverable through inter
polation, i.e., reconstruction. This statement is true only when the input is a member of a class 
of signals for which the interpolation algorithm is designed. However, if the skipped intervals 
are sufficiently complex, interpolation may be inadequate and the lost data is unrecoverable. 
The input signal is then said to be undersampled, and any attempt at reconstruction gives rise to 
a condition known as aliasing. Aliasing distortions, due to the presence of unreproducibly high 
spatial frequencies, may surface in the form of jagged edges and moire patterns. 

Aliasing artifacts are most evident when the spatial mapping induces large scale changes. 
As an example, consider the problem of image magnification and minification. When magnify

ing an image, each input pixel contributes to many output pixels. This one-to-many mapping 

requires the reconstructed signal to be densely sampled. Clearly, the resulting image quality is 
closely tied to the accuracy of the interpolation function used in reconstruction. For instance, 
high-degree interpolation functions can exactly reconstruct a larger class of signals than low

degree functions. Therefore, if the input is poorly reconstructed, artifacts such as jagged edges 
become noticeable at the output grid. Note that the computer graphics community often consid
ers jagged edges to be synonymous with aliasing. As we shall see in section 4, this is sometimes 

a misconception. In this case, for instance, jagged edges are due to inadequate reconstruction. 
not aliasing. 

Under magnification, the output contains at least as much information as the input, with the 
output assigned the values of the densely sampled reconstructed signal. When minifying an 
image, the opposite is true. The reconstructed signal is sparsely sampled in order to realize the 
scale reduction. This represents a clear loss of data, where many input samples are actually 
skipped over in the point sampling. It is here where aliasing is apparent in the form of moire 
patterns and fictitious low-frequency components. It is related to the problem of mapping many 

input samples onto a single output pixel. This requires appropriate filtering to properly integrate 
all the information mapping to that pixel. 

The filtering used to counter aliasing is known as anlialiasing. Its derivation is grounded in 
the well-established principles of sampling theory. Antialiasing typically requires the input to be 

blurred before resampling. This serves to have the sampled points influenced by their discarded 
neighbors. In this manner, the extent of the artifacts is diminished. but not eliminated. 

Completely undistorted sampled output can only be achieved by sampling at a sufficiently 
high frequency, as dictated by sampling theory. Although adapting the sampling rate is more 
desirable, physical limitations on the resolution of the output device often prohibit this alterna
tive. Thus, the most common solution to aliasing is smoothing the input prior to sampling. 

The well understood principles of sampling theory offer theoretical insight into the problem 
of aliasing and its solution. However, due to practical limitations in implementing the ideal 

filters suggested by the theory, a large number of algorithms have been proposed to yield 
approximate solutions. Section 6 details the antialiasing algorithms. 
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1.2.5. Separable Geometric Transformation Algorithms 

A large body of work in the geometric transformation of digital images has been directed 

towards optimizing special cases to obtain major performance gains. In particular, the use of 

separable techniques has reduced complexity and processing time. Separable geometric algo
rithms reduce 2-D problems into a sequence of 1-D (scanline) resampling problems. This makes 
them amenable to streamline processing and allows them to be implemented with conventional 

hardware. Separable techniques have been shown to be useful for affine and perspective 
transformations, as well as mapping onto bilinear, biquadratic, bicubic, and superquadric 
patches. Contributions in this area are discussed in section 7. 
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2. DIGITAL IMAGE ACQUISITION 

Consider the imaging system shown in Fig. 2.1. The entire imaging process can be viewed 
as a cascade of filters applied to the input image. The scene f (x,y) is a continuous two
dimensional image. It passes through an imaging subsystem which acts as the fIrst stage of data 
acquisition. Due to the point spread function (PSF) of the image sensor, the output g (x.y) is a 
degraded version of f (x.y). 

f (x,y) Imaging g (x.y) Sampling gs(x.y) .. 
Subsytem 

.. 
Subsystem 

.. .. - ... 
scene * h (x,y) image *s(x,y) sampled 

image 

Figure 2.1: Imaging system. 

As its name suggests, the PSF is taken to be a bandlimiting ftlter, h (x,y), having blurring 

characteristics. It reflects the physical limitations of an optical lens to accurately resolve each 
input point without the influence of neighboring points. Consequently, the PSF is typically 
modeled as a low-pass filter given by a bell-shaped weighting function over a fmite aperture 
area. A PSF profile is depicted in Fig. 2.2. By defInition, 

g (x,y) = f (x,y) * h (x,y) (2.1 ) 

where < denotes convolution. The problems addressed in this paper also assume that the imag
ing device induces geometric distortion in addition to blurring. Examples are given in section 3. 

hex) 

x 

Figure 2.2: PSF profile. 
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The continuous image g (x,y) then enters a sampling subsystem which digitizes the analog 
input and completes tht'" d!'lt:l acql1isitioll st::tge. The sampled image gs(x,y) is given by 

gs(x,y) = g (x,y) * s (x,y) 

where 

s(x,y) = l: r, 0 (x -m, y -n) 
m=-oo n=~ 

is the two-dimensional comb function, depicted in Fig. 2.3, and _ {I if (x,y) = (0,0) 
o (x, y) - 0 otherwise 

is an impulse function, known also as the Kronecker or Dirac delta function. 

s (x,y) 

x 

Figure 2.3: Comb function. 

(2.2) 

(2.3) 

(2.4) 

The comb function comprises our sampling grid which is conveniently nonzero only at 
integral (x-.y) coordinates. Therefore, gs(x,y) is now a digital (discrete) image with intensity 

values defined only over integral indices of x and y. Each sample represents a picture element, 

or pixel. Collectively, they comprise the 2-D array of pixels that serve as input to the subsequent 
processing. "" 

The process of mapping real numbers onto a range of integers is called quantization. Digi
tal images are the product of both spatial and intensity quantization. Spatial quantization is 

achieved through the use of a sampling grid. Intensity quantization is the result of representing 

pixel values with a finite number of bits. A tradeoff exists between sampling rate and quantiza

tion levels. An interesting review of early work in this area is found in [Knowlton 72]. Related 

work in image coding is described in [Netravali 801. Finally. a recent analysis on the tradeoff 

between sampling and qu~~ization can be found in [Lee 87]. 
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3. SPATIAL TRANSFORMATION 

This section describes the various mapping formulations derived for geometric transforma
tions. We begin with a brief review of affine and perspective transformations. This provides the 
basis for the more sophisticated mappings described in the remainder of this section. They 

include the most common spatial transformations used in remote sensing, medical imaging, 
computer vision, and computer graphics. 

3.1. DEFINITIONS 

A spatial transformation defines a geometric relationship between each point in the input 

and output images. An input image consists entirely of reference points whose coordinate values 

are known precisely. The output image is comprised of the observed (warped) data. The general 

mapping function can be given in two forms: either relating the output coordinate system to that 
of the input, or vice versa. R~tively, they ca;1 be expressed as 

[X,Y] = [X(u,v), Y(u,v)] (3.1) 

or 

[u, v] = [U(x,y), V (x,y) ] (3.2) 

where [u, v] refers to the input image coordinates corresponding to output pixel [x,y], and X, Y. 

U and V are arbitrary mapping functions that uniquely specify the spatial transformation. Since 
X and Y map the input onto the output, they are referred to as the forward mapping. Similarly, 

the U and V functions are known as the inverse mapping since they map the output onto the 

input. 

3.1.1. Forward Mapping 

The forward mapping consists of copying each input pixel onto the output image at posi

tions determined by the X and Y mapping functions. Figure 3.1 illustrates the forward mapping 
for the 1-0 case. The discrete input and output are each depicted as a string of pixels lying on an 
integer grid (dots). Each input pixel is passed through the spatial transformation where it is 

assigned new output coordinate values. Notice that the input pixels are mapped from the set of 

integers to the set of real numbers. In the figure, this corresponds to the regularly spaced input 

samples and the irregular output distribution. 

The real-valued output positions assigned by X and Y present complications at the discrete 

output. In the continuous domain, where pixels may be viewed as points, the mapping is 

straightforward. However, in the discrete domain pixels are now taken to be finite elements 

defined to lie on a (discrete) integer lattice. It is therefore inappropriate to implement the spatial 

transformation as a point-to-point mapping. Doing so can give rise to two types of problems: 
holes and overlaps. Holes, or patches of undefined pixels, occur when mapping contiguous input 

samples to sparse positions on the output grid. In Fig. 3.1, F I is a hole since it is bypassed in the 
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A • .-\' 

B B' 

C C' 
Forward 

D D' 
Mapping 

E £' 

F • F' 

G • G' 

Input Output 

Figure 3.1: Forward mapping. 

input-output mapping. In contrast, overlaps occur when consecutive input samples collapse into 

one output pixel, as depicted in Fig. 3.1 by output pixel G'. 

The shoncomings of a point-te-point mapping are avoided using a four-comer mapping 

paradigm. This considers input pixels as square patches that may be transfonned into arbitrary 

quadrilaterals in the output image. This has the effect of allowing the input to remain contiguous 

after the mapping. 

Due to the fact that the projected input is free to lie anywhere in the output image, input 

pixels often straddle several output pixels, or lie embedded in one. These two instances are illus

trated in Fig. 3.2. An accumulalor array is required to properly integrate the input contributions 

at each output pixel. It does so by detennining which fragments contribute to each output pixel 

and then integrating over all contributing fragments. The panial contributions are handled by 

scaling the input intensity in proportion to the fractional pan of the pixel that it covers. Intersec

tion tests must be perfonned to compute the coverage. Thus, each position in the accumulator 
tV 

array evaluates L WJi. where Ii is the input value. Wj is the weight reflecting its coverage of the 
,=0 

output pixel. and N is the total number of deposits into the cell. Note that N is free to vary 

among pixels and is detennined only by the mapping function and the output discretization. 

Fonnulating the rransfonnation as a four-corner mapping problem allows us to avoid holes 

in [he output image. Nevenheless, this paradigm introduces two problems in the forward map

ping process. First. costly intersection tests are needed to derive the weights. Second, magnifi

cation will possibly cause the same input value to be applied onto many output pixels unless 

additional filtering is employed. 

Both problems can be resolved by adaptively sampling the input based on the size of the 

projected quadrilateral. In other words. if the input pixel is mapped onto a large area in the out

put image. then it is best to repeatedJy subdivide the input pixel until the projected area reaches 

some acceptably low limit. i.e .. one pixel size. As the sampling rate rises, the weights converge 
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Input array Output (accumulator) array 

Figure 3.2: Accumulator array. 

to a single value, the input is resampled more densely, and the resulting computation is per

fonned at higher precision. 

It is imponant to note that uniformly sampling the input image does not guarantee unifonn 

sampling in the output image unless X and Y are affine (linear) mappings. Thus, for nonaffine 

mappings, e.g., perspective, the input image must be adaptively sampled at rates that are spa

tially varying. For example, the oblique surface shown in Fig. 3.3 must be sampled more 

densely near the horizon to account for the foreshonening due to the perspective mapping. In 

general, forward mapping is useful when the texture image must be read sequentially or will not 

reside entirely in memory. 

..: 

Figure 3.3: An oblique surface requiring adaptive sampling. 

3.1.2. Inverse Mapping 

The inverse mapping operates in screen order, projecting each output coordinate into the 

input image via U and V. The value of the data sample at that point is copied onto the output 

pixel. Again, filtering is necessary to combat the aliasing artifacts described in more detail later. 

This is the most common method since no accumulator array is necessary and since output pix

els which lie outside a clipping window need not be evaluated. This method is useful when the 

screen is to be \Ifritten sequentially, U and V are readily available, and the input image can be 
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stored entirely in memory. As a result of these advantages. the spatial transformations described 

in the remainder of the paper will be in the inverse mapping form. 

A • A' 

B • B' 

e e' 
Inverse 

D D' 
Mapping 

£ £' 

F F' 

G • G' 

Input Output 

Figure 3.4: Inverse mapping. 

Figure 3.4 depicts the inverse mapping, with each output pixel mapped back onto the input 

via the spatial transformation (inverse) mapping function. Notice that the output pixels are cen

tered on integer coordinate values. They are projected onto the input at real-valued positions. 

As we will see later, an interpolation stage must be introduced in order to retrieve input values at 

undefined (nonintegral) input positions. 

Unlike the point-to-point forward mapping scheme. the inverse mapping guarantees that all 

output pixels are computed. However, the analogous problem remains to determine whether 

large holes are left when sampling the input. If this is the case, large amounts of input data may 

have been discarded while evaluating the output, thereby giving rise to artifacts described in sec

tion 6. Thus. filtering is necessary to integrate the area projected onto the input. In general, 

though, this arrangement has the advantage of allowing interpolation to occur in the input space 

instead of the output space. This proves to be a much more convenient approach than forward 

mapping. 

In their most unconsrrained form, U and V can serve to scramble the image by defining a 

discontinuous function. The image remains coherent only if U and V are piecewise continuous. 

Several common forms of U and V have been isolated for geometric correction and geometric 

disronion. 

We begin \\ith a discussion of the general rransformation matrix, the elementary form to 

specify simple mappings including affine and perspective transformations. This is followed by 

the methods advanced in remote sensing. The work in this area is motivated by the need to per

form geometric correction. Many of the methods presented here apply equally to medical imag

ing and computer vision. two fields which share this related problem. Finally. additional map

ping formulations used in computer graphics are presented. 
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3.2. GENERAL TRANSFORMATION MATRIX 

Many simple spatial transfonnations can be expressed in tenns of the general 3 x 3 
transformation matrix shown below. It handles local scaling, overall scaling, shearing. rotation, 
reflection, translation, and perspective in 2-space. Without loss of generality, we shall ignore 
the component in the third dimension since we are only interested in 2-D image projections. 
When multiplied with [x, y, w], a 2-space vector represented in homogeneous coordinates, it 
yields the 2-space vector [u, v, w']. 

[
an a12 a13] 

[u, v, w'] = [x, y, w] a21 a22 a23 

a31 a32 a33 

(3.3) 

The 3 x 3 transformation matrix can be best understood by partitioning it into four separate 
sections. The 2 x 2 submatrix 

yields a linear transfonnation for local scaling, shearing, and rotation. The 1 x 2 matrix 

[ a 31 a 32 ] produces translation. The 2 x 1 matrix [a 13 a 23 ]T produces perspective transfonna
tion. The final element a33 is responsible for overall scaling. 

3.2.1. Translation 

All points are translated to new positions by adding offsets Tx and Ty to x and y, respec

tively. The translate transfonn is 

[u, v, 1] = [x, y, 1] [ 6 ? ~l 
Tx Ty 1 

(3.4) 

3.2.2. Rotation 

All points in the xy -plane are rotated about the origin through the clockwise angle S. 

[u, v, 1) = [x, y, 1) [~~b~~ ~~~ 7] (3.5) 

3.2.3. Scale 

All points are scaled by applying the scale factors 5x and 5y to the x and y coordinates, 
respectively. Negative scale factors cause the image to be reflected, yielding a mirrored image. 
If the scale factors are not identical, then the image proponions are altered resulting in a dif

ferentially scaled image. 
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[u, v, 1] (3.6) 

3.2.4. Shear 

The coordinate scaling described above involves only the diagonal terms all and a22. We now 
consider the case where all =a22 = 1, and a 12 =0. By allowing a21 to be nonzero, u is made 
linearly dependent on both x and y, while v remains identical to y. A similar operation can be 
applied along the y-axis to compute new values for v while u remains unaffected. This effect, 
called shear, is therefore produced using the off-diagonal terms. The shear transform along the 

x-axis is 

[ 
1 0 0] 

[u, v, 1] = [x, y, 1] Hx 1 0 

o 0 1 

(3.7a) 

where Hx is used to make u linearly dependent on y as well as x. Similarly, the shear transform 
along the y-axis is 

[u, v, 1] = [x, y, 1] [~ ~y ~] 
001 

(3.7b) 

3.2.5. Composite Transformations 

Multiple transformations can be collapsed into a single composite transform. The transfor
mations are combined by taking the product of the 3 x 3 matrices. For example, the composite 
transform representing a translation followed by a rotation and a scale change is given below. 

[u, v, 1] = [x, y, 1] Mcomp (3.8) 

where 

[ 

1 0 0] [cose sine 0] 
Mcomp = 0 1 0 -sine cose 0 

Tx Ty 1 0 0 1 [

Sx 0 01 
o Sy 0 

o 0 1 

[ 

sxcose 

= -Sxsine 

Sx(Txcose - TysinS) 

SyCOSe 

Sysine 
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3.2.6. Affine Transformations 

All of the above examples are known as two-dimensional affine transformations. They are 
characterized by their last columns being equal to [00 1 f. Since the product of affine transfor
mations is also affine, they can be used to perform a general orientation of a set of points relative 
to an arbitrary coordinate system while still maintaining a unity value for the homogeneous 
coordinate. This is necessary for generating composite transforms. Furthermore, projections of 

3-D affine transformations have the property of retaining parallelism among parallel lines. This 
allows us to avoid foreshortened axes when performing 2-D projections. The general representa
tion of the affine transform is 

[

a 11 a 12 01 
[u, v, 1] = [x, Y, 1] a21 an 0 

a31 a32 1 

(3.9) 

3.2.7. Perspective Transformations 

A perspective transformation is produced when [a 13 a 23 f is nonzero. A perspective 
transformation is frequently used in conjunction with a projection onto a viewing plane. This 
combination is known as a perspective projection. The perspective projection of any set of 
parallel lines which are not parallel to the projection plane will converge to a vanishing point. 

the center of projection. This is useful for rendering realistic images. It has the property of 

foreshortening distant lines. 

3.2.8. Homogeneous Coordinates 

Projection into 2-space for viewing requires dividing the computed [u I, V '] values by the 
homogeneous coordinate w'. This yields [u, v] = [u I Iw ' , V I Iw ' ], where [u, v] is the projected 
vector which we sought from the transformation. Readers are referred to [Rogers 76] and [Foley 
82] for a thorough treatment of 2-D and 3-D transformation maoix operations. 

For affine transformations, 

u = all x +a21Y +a31 (3.10) 

v = a 12X + a 22Y + a 32 

For projective transformations, 

all x +a21Y +a31 
u = (3.11 ) 

a 13X + a 23Y + a 33 

a 12X + a22Y + a32 
v = 

a 13X + a23Y + a33 
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3.3. POLYNOMIAL TRANSFORMATIONS 

Geometric correction requires a spatial transformation to invert an unknown distortion 
function. The mapping functions, U and V, have been almost universally chosen to be bivariate 

polynomial transformations of the form 

N .'V-i 

U = ~ ~ aijxiy} (3.12) 
i=O }::JJ 

N N-i 
v = ~ ~ bijxiy} 

i::JJ }=O 

where aij and bi} are the constant polynomial coefficients. Since this formulation for geometric 
correction originated in remote sensing [Markarian 71], the discussion below will center on its 
use in that field. All the examples. though, have direct analogs in other related areas such as 

medical imaging [Singh 79] and computer vision [Rosenfeld 82]. 

The polynomial transformations given above are low-order global mapping functions 

operating on the entire image. They are intended to account for sensor-related spatial distortions 

such as centering, scale, skew. and pincushion effects. as well as errors due to earth curvature. 
viewing geometry, and camera attitude and altitude deviations. Due to dynamic operating condi

tions, these errors are comprised of internal and external components. The internal errors are 

sensor-related distortions. External errors are due to platform perturbations and scene charac
teristics. The effects of these errors have been categorized in [Bernstein 71] and are shown in 
Fig. 3.5. 
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I , 

I 
,-------' 

Centering 

-------

C]-----' 
I I 
I I 
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Figure 3.5: Common geometric image distortions. 
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These errors are characterized as low-frequency (smoothly varying) distortions. The global 
effects of the polynomial mapping will not account for high-frequency deformations that are 
local in nature. Since most sensor-related errors tend to be low-frequency, modeling the spatial 
transformation with low-order polynomials appears justified. Common values of N that have 
been used in the polynomials of Eq. (3.12) include N = 1 [Steiner 77], N = 2 [Nack 77], N = 3 
[Van Wie 77], and N =4 [Leckie 80]. In practice, a second-degree (N =2) approximation has 
been shown to be adequate [Lillestrand 72]. 

Rather than apply the mapping functions over the entire set of points, an interpolation grid 
is often introduced to reduce the computational complexity. This method evaluates the mapping 
function at a relatively sparse set of grid, or mesh, points. The spatial correspondence of points 
internal to the mesh is computed by bilinear interpolation from the corner points [Bernstein 76]. 

3.3.1. Polynomial Coefficients 

Auxiliary information is needed to determine the polynomial coefficients. This information 
includes reseau marks, platform attitude and altitude data, and ground control points. Reseau 
marks are small cruciform markings inscribed on the faceplate of the sensor. Since the locations 

of the reseau marks can be accurately calibrated, the measured differences between their true 
locations and imaged (distorted) locations yields a sparse sensor distortion mapping. This 
accounts for the internal errors. 

External errors can be directly characterized from platform attitude, altitude, and ephem
erides data. However, this data is not generally precisely known. Consequently, ground control 
points are used to determine the external error. Ground control points (GCP) are identifiable 
natural landmarks detectable in a scene, whose locations and elevations are known precisely. 
Typical GCPs include airports, highway intersections, land-water interfaces, and geological pat

terns [Bernstein 71, 76]. 

A number of these points are located and differences between their observed and actual 
locations are used to characterize the external error component. Together with the internal dis
tortion function, this serves to fully define the spatial transformation which inverts the distor
tions present in the input image, yielding a corrected output image. Since there are more ground 
control points than undetermined polynomial coefficients, a least-squared-error fit is used. For 
example, a second-degree approximation requires only six coefficients to be solved. 

UI v I Ulvl ur vr aoo 
Xl 

U~ V~ alO 
X2 U2 V2 U2 V2 

aOl 
X3 = U3 v3 U3 V3 UJ vJ (3.13) 

all 

xR UR vR URVR uk vk 
a20 
a02 

where R ~ 6. A similar equation holds for y and bi}. Both of these expressions may be written in 
matrix notation as 
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X=WA 

Y=WB 

(3.14) 

Using the least squares estimate theory. the best estimate for A and B is given by the pseudoin

verse solution [Wong 77]. 

A = (WTW)-l WTX 

B = (WT~V)-l WTy 

(3.15) 

Equation (3.15) expresses a numerical solution for estimating the polynomial coefficients. 
A recent paper on practical geometric correction methods can be found in [Butler 87]. Under 
certain simplifying conditions, it is possible to derive compact analytic solutions for the coeffi
cients. This has the advantage of offering a stable closed fonn solution. An example is given in 
[Bizais 83] for the case in which the reference pattern exhibits point symmetry about the origin. 

3.3.2. A Surface Fitting Paradigm for Geometric Correction 

The problem of determining functions U and V can be conveniently posed as a surface fit
ting problem. Consider. for example. knowing N control points labeled [Xj,y;] in the observed 

image and [Uj. v;] in the reference image, where 0 ~ i < N. Deriving mapping functions U and V 
is equivalent to determining two smooth surfaces: one that passes through points [Xi ,Yi. Ui] and 
the other that passes through [Xj.Yj.vd for O~i <N. Figure 3.6 shows a surface for U(x,y) with 
control points given at the grid points. 

U 

Figure 3.6: Surface U (x.y). 

Before an image undergoes geomerric distonion. these surfaces are defined to be ramp 
functions. This follows from the observation that Ui =Xj and Vj = Yi in the absence of any defor

mation. Introducing geomerric distortions will cause these surfaces to deviate from their initial 

ramp configurations. ~ote that as long as the surface is monotonically nondecreasing. the 
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resulting image does not fold back upon itself. 

Given only sparse control points, it is necessary to interpolate a surface through these 
points and closely approximate the unknown distortion function. It is clear that global low-order 
polynomial mapping functions can only approximate these surfaces. Furthermore, the least

squares technique that is used to determine the coefficients average a local geometric difference 
over the whole image area independent of the position of the difference. As a result, local dis
tortions cannot be handled and they instead contribute to errors at distant locations. We may, 

instead, interpolate the surface with a global mapping by increasing the degree of the polynomial 
to match the number of control points. However, the resulting polynomial is likely to exhibit 
excessive spatial undulations and thereby introduce further artifacts. 

These problems are resolved by considering piecewise mapping functions. Rather than 
deflning U and V via a global function, they are expressed as a union of a local functions. In this 
manner, the interpolated surface is composed of local surface patches, each influenced by nearby 

control points. 
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3.4. PIECEWISE POLYNOMIAL TRANSFORMATONS 

The global polynomial transfonnations described earlier impose a single mapping function 
upon the whole image. They do not account for local geometric distortions such as scene eleva
tion, atmospheric turbulence, and sensor nonlinearity. Consequently, piecewise mapping func

tions have been introduced to handle local deformations [Goshtasby 86, 87]. 

The study of piecewise interpolation has received much attention in the spline literature. 
The majority of the work, however, assumes that the data is available on a rectangular grid. In 
our application, this is generally not the case. Instead, we must consider the problem of fitting a 

composite surface to scattered 3-D data [Franke 79]. 

3.4.1. Procedure 

The general procedure for perfonning surface interpolation on irregularly-spaced 3-D 

points consists of the following operations. 

1) Partition each image into triangular regions by connecting neighboring control points with 
noncrossing line segments, forming a planar graph. This process, known as triangulation, 
serves to delimit local neighborhoods over which surface patches will be defined. 

2) Estimate partial derivatives of U (and similarly V) with respect to x and y at each of the 
control points. This may be done using a local method, with data values taken from nearby 
control points, or a global method using all the control points. Computing the partial 
derivatives is necessary only if the surface patches are to join smoothly, i.e., for C 1, C 2

, or 
smoother results t . 

3) For each triangular region, fit a smooth surface through the vertices satisfying the con

straints imposed by the partial derivatives. The surface patches are generated using low

order bivariate polynomials. A linear system of equations must be solved to compute the 

polynomial coefficients. 

4) Those regions lying outside the convex hull of the data points must extrapolate the surface 
from the patches lying along the boundary. 

5) For each point (x.y), detennine its enclosing triangle and compute an interpolated value u 

(similarly for v) using the polynomial coefficients derived for that triangle. This yields the 

(u. v) coordinates necessary to resample the input image. 

3.4.2. Triangulation 

Triangulation is the process of tesselating the convex hull of a set of N distinct points into 
triangular regions. This is done by connecting neighboring control points with noncrossing line 
segments. forming a planar graph. Although many configurations are possible, we are interested 

to achieve a partition such that points inside a triangle are closer to its three vertices than to 

7 eland C 2 denote continuous first and second derivatives. respectively. 
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vertices of any other triangle. This is called the optimal triangulation and it avoids generating 
triangles with sharp angles and long edges. In this manner, only nearby data points will be used 
in the surface patch computations that follow. Several algorithms to obtain optimal triangula
tions are reviewed below. 

In [Lawson 77], the author describes how to optimize an arbitrary triangulation initially 
created from the given data. He gives the following three criteria for optimality. 

1) Max-min criterion: For each quadrilateral in the set of triangles, choose the triangulation 
that maximizes the minimum interior angle of the two obtained triangles. This tends to bias 
the tesselation against undesirable long thin triangles. Figure 3.7a shows triangle ABC 
selected in favor of triangle BCD under this criterion. The technique has computational 
complexity 0 (N4/3

). 

2) The circle criterion: For each quadrilateral in the set of triangles, pass a circle through three 
of its vertices. If the fourth vertex lies outside the circle then split the quadrilateral into two 
triangles by drawing the diagonal which does not pass through the vertex. This is illus

trated in Fig. 3.7b. 

3) Thessian region criterion: For each quadrilateral in the set of triangles, construct the Thes

sian regions. In computational geometry, the Thessian regions are also known as Delaunay, 
Dirichlet, and Voronoi regions. They are the result of intersecting the perpendicular bisec

tors of the quadrilateral edges, as shown in Fig. 3.7c. This serves to create regions around 
each control point P such that points in that region are closer to P than to any other control 
point. Triangulation is obtained by joining adjacent Delaunay regions, a result known as 

Delaunay triangulation (Fig. 3.8). An 0 (N 3/2 ) triangulation algorithm using this method is 

described in [Green 78]. 

A 

B 

( a) (b) (c) 

Figure 3.7: Three criteria for optimal triangulation. 

An 0 (N logz N) recursive algorithm that detenrunes the optimal triangulation is given lfi 

[Lee 801. The method recursively splits the data into halves using the x-values of the control 
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(a) (b) 

Figure 3.8: (a) Delaunay tesselation; (b) Triangulation. 
points until each subset contains only three or four points. These small subsets are then easily 

triangulated using any of Lawson's three criteria. Finally, they are merged into larger subsets 

until all the triangular subsets are consumed. resulting in an optimal triangulation of the control 
points. Due to its speed and simplicity, this divide-and-conquer technique was used in [Gosh

tasby 87] to compute piecewise cubic mapping functions. 

3.4.3. Linear Triangular Patches 

Once the triangular regions are detennined. the scattered 3-D data (Xj,Yj.Ui) or (.t"j,Yj,Vj) are 
panitioned into groups of three points. Each group is fitted with a low-order bivariate polyno
mial to generate a surface patch. In this manner, triangUlation allows only nearby control points 
to influence the surface patch calculations. Together, these patches comprise a composite sur
face defining the corresponding u or v coordinates at each point in the observed image. 

We now consider the case of fitting the triangular patches with a linear interpolant, i.e., a 

plane. The equation of a plane through three points [Xl,Yl,ud, [X2,Y2,U2], and [X3,Y3,U3] is 
given by 

where 

YI UI XI 

A = Y2 142 B = X2 

Y3 u3 X3 

At +By +Cu +D = 

Ul 

u2 C = 
u3 

0 

Xl 

X2 

X3 

Yl 

Y2 

Y3 

(3.16) 

Xl Yl UI 

D = X2 Y2 u2 

X3 Y3 u3 

As seen in Fig. 3.7b. the triangulation covers only the convex hull of the set of control 
points. In order to extrapolate points outside the convex hull. the planar triangles along the 

boundary are extended to the image border. Their extents are limited to the intersections of 
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neighboring planes. 

3.4.4. Cubic Triangular Patches 

Although piecewise linear mapping functions are continuous at the boundaries between 
neighboring functions, they do not provide a smooth transition across patches. In order to obtain 
smoother results, the patches must at least use C 1 interpolants. This is achieved by fitting the 
patches with higher-ordered bivariate polynomials. 

This subject has received much attention in the field of computer-aided geometric design. 
Many algorithms have been proposed using N-degree polynomials. They include N = 2 [Powell 
77], N = 3,4 [Percell 76], and N = 5 [Akima 78]. In this section, we examine the case of fitting 
triangular regions with cubic patches (N = 3). A cubic patch f is a third-degree bivariate polyno
mial of the form 

f(x,y) = al+a2x+a3y+a4x2+asxy+a6y2+a7x3+agx2y+a9xy2+alOy3 (3.17) 

The ten coefficients can be solved by determining ten constraints among them. Three rela

tions are obtained from the coordinates of the three vertices. Six relations are derived from the 
partial derivatives of the patch with respect to x and y at the three vertices. Smoothly joining a 
patch with its neighbors requires the partial derivatives of the two patches to be the same in the 
direction normal to the common edge. This adds three more constraints, yielding a total of 
twelve relations. Since we have ten unknowns and twelve equations, the system is overdeter
mined and cannot be solved as given. 

The solution lies in the use of the Clough-Tocher triangle, a widely known C 1 triangular 
interpolant [Clough 65]. Interpolation with the Clough-Tocher triangle requires the triangular 

region to be divided into three subtriangles. Fitting a surface patch to each subtriangle yields a 

total of thirty unknown parameters. Since exactly thirty constraints can be derived in this pro
cess. a linear system of thirty equations must be solved to compute a surface patch for each 

region in the triangulation. A full derivation of this method is given in [Goshtasby 87]. A com
plete review of triangular interpolants can be found in [Barnhill 77]. 

An interpolation algorithm offering smooth blending across patches requires partial deriva
tive data. Since this is generally not available with the supplied data, it must be estimated. A 
straightforward approach to estimating the partial derivative at point P consists of fitting a 
second-degree bivariate polynomial through P and five of its neighbors. This allows us to deter

mine the six parameters of the polynomial and directly compute the partial derivative. More 
accurate estimates can be obtained by a weighted least squares technique using more than six 
points [Lawson 77]. 

Another approach is given in [Akima 78] where the author uses P and its m nearest points 

PI, P 2 , ... , Pm, to form vector products Vij = (P -Pi) X (P -Pj ) with Pi and Pj being all possible 
combinations of the points. The vector sum V of all Vij's is then calculated. Finally, the partial 
derivatives are estimated from the slopes of a plane which is normal to the vector sum. A 
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similar approach is described in [Klucewicz 78]. Akima later improved this technique by 
weilYhtinp" thl" contri9ution of each triangle such that small weights were assigned to large or nar-u _ 

row triangles when the vector sum was calculated [Akima 84]. For a comparison of methods, 

see [Nielson 83] and [Stead 84]. 

3.5. FOUR-CORNER MAPPING 

The piecewise mapping functions described above are best suited for scattered data. Often, 
though, more efficient solutions are possible when the structure of the control points is regular. 
In particular, if the control points lie on a distoned rectangular grid, then triangulation is not 
necessary and the problem reduces to mapping one quadrilateral onto another. This spatial 
transfonnation, known as four-corner mapping, is pervasive in remote sensing and medical 
imaging where a grid of reseau marks on the sensor are imaged and registered with their known 
positions for calibration purposes. It is also common in computer graphics where it plays a cen

tral role in texture mapping. 

3.5.1. Texture Mapping 

Texture mapping is a powerful technique used to render visually realistic images in com
puter graphics. It consists of a series of spatial transfonnations: a texture plane, [u, v], is 
transfonned onto a 3-D surface, [x' ,y' ,z'], and then projected onto the output screen, [x,y J. 
This sequence is shown in Fig. 3.9, where f is the transfonnation from [u, v] to [x' ,y' ,z'] and p 

is the projection from [x'.y',z'] onto [x,y]. The forward mapping functions X and Yrepresent 
the composite function p if Cu, v». The inverse mapping functions are U and V. 
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Texture Output screen 

Figure 3.9: Texture mapping functions. 

Texture mapping serves to create the appearance of complexity by simply applying image 
detail onto a surface, in much the same way as wallpaper. Textures are rather loosely defined. 

They are usually taken to be images used for mapping color onto the targeted surface. Textures 

are also used to penurb surface nonnals, thus allowing us to simulate bumps and wrinkles 

without the tedium of modeling them. Additional applications are included in [Heckben 86b], a 
recent survey ankle on texture mapping. 
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The 3-D objects are usually modeled with planar polygons or bicubic patches. Patches are 
quite popular since they easily lend themselves for efficient rendering [Catmull 74, 80] and offer 
a natural parameterization that can be used as a curvilinear coordinate system. Polygons, on the 
other hand, are defmed implicitly. Several parameterizations for planes and polygons are 
described below. 

Once the surfaces are parameterized, the mapping between the input and output images is 
treated as a four-corner mapping. In inverse mapping, square output pixels must be projected 
back onto the input image for resampling purposes. In forward mapping, we project square tex
ture pixels onto the output image via mapping functions X and Y. These operations are discussed 
below. 

3.5.2. Mapping Rectangles to (Non)Planar Quadrilaterals 

Consider the problem of mapping a rectangle onto an arbitrary quadrilateral. For con
sistency, we treat the rectangle as our undistorted input in the uv plane, and the quadrilateral as 
the distorted output in the xy plane. The mapping is defined through a piecewise function that 
must interpolate the coordinate assignments specified at the vertices. Thus, the approach is 
identical as before - a surface patch is fitted to the vertices of the tesselated regions. The only 
distinction is that rectangular regions are now used instead of triangular regions. This scheme, 
called bilinear interpolation, is used to evaluate the X and Y mapping functions. It is equivalent 
to using a bilinear patch, a nonlinear parameterization that maps rectangles onto planar or non

planar quadrilaterals. 

3.5.2.1. Bilinear Interpolation 

Bilinear interpolation utilizes a linear combination of the four closest pixel values to pro

duce a new, interpolated value. Given four points, [uo,vo], [UI,VI], [U2,V2], and [U3,V3], and 
their respective function values x 0, Xl, x 2. and X3, any intermediate point X (u, V) may be com

puted by the expression 

(3.18) 

where the aj coefficients are obtained by solving 

1 1 

(3.19) 

Since the four points are assumed to lie on a rectangular grid, we rewrite them in the above 

matrix in terms of uo. Ul, Yo, and V2. Namely, the points are [uo,vo], [Ul,vO], [UO,V2], and 
[u 1. V2], respectively. Solving for aj and substituting into Eq. (3.18) yields 

(3.20) 



where u' and v' E (0,1), and 
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u = Uo +(Ul-UO)U' 

v = Vo + (v l-VO) v' 

Therefore, given a normalized coordinate [u',v'] and function values [XO,Xl,X2,X3], the point 
correspondence [x,y] in the arbitrary quadrilateral is detennined. Figure 3.10 depicts this bil
inear interpolation for the X mapping function. 
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Figure 3.10: Bilinear interpolation. 
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presented below. 

3.5.3.1. Bilinear Patch Inversion 

By inverting Eq. (3.18), we can determine the nonnalized coordinate [u', v'] corresponding to 
the given coordinate [x,y]. The derivation is given below. First, we rewrite the expressions for 
x and y in tenns of u and v, as given in Eq. (3.18). 

Isolating u in Eq. (3.23a) gives us 

u = 

(3.23a) 

(3.23b) 

(3.24) 

In order to solve this, we must determine v. This can be done by substituting Eq. (3.24) into Eq. 
(3.23b). MUltiplying both sides by (a 1 + a3 v) yields 

yea 1 +a3 v ) = boCa 1 +a3 v ) + b 1 (X-a O-a2v ) + b 2v(a 1 +a3 v ) + b3v(x-aO-a2v) (3.25) 

This can be rewritten as 

where 

Co = adbo-y)+bdx-ao) 

C 1 = a 3 (b 0 - y) + b 3 (x - a 0) + alb 2 - a 2 b 1 

C2 = a3 b 2 - a2 b 3 

(3.26) 

The inverse mapping for v thus requires the solution of a quadratic equation. Once v is deter

mined, it is plugged into Eq. (3.24) to compute u. 

3.5.3.2. Perspective Projection 

A better approach is to consider the planar rectangle to be a perspective projection of the 
arbitrary quadrilateral. The perspective mapping of a planar quadrilateral can be expressed as 

(3.27) 

If a 33 is arbitrarily chosen to be 1, eight coefficients remain to be determined. These values can 

be computed by solving an 8 x 8 system of linear equations, defined by the texture and screen 
coordinates of the four vertices. This is described in [Heckbert 83, 86b]. 
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3.5.2.2. Separability 

The bilinear transfonnation is a separable function. This propeny enables us to easily 

extend I-D linear interpolation into two dimensions, resulting in a computationally efficient 
algorithm. The algorithm requires two passes, with the flrst pass applying 1-D linear interpola

tion along the horizontal direction, and the second pass interpolating along the venical direction. 

For example, consider the rectangle shown in Fig. 3.11. Points x 01 and x 23 are interpolated in 

the flrst pass. These results are then used in the second pass to compute the final value x. 
o u ' 1 u ' 

Xo o ------
I 

V ------ -------x 

~--------~----~ 

I 
V v 

X3 

Figure 3.11: Separable bilinear interpolation. 

u 

The separable results can be shown to be identical with the solution given in Eq. (3.20). In 
the first (horizontal) pass, we compute 

x 0 1 = X 0 + (x 1 -x 0) u I 

X 23 = X 2 + (x 3 -x 2) u I 

(3.21 ) 

These two intennediate results are then combined in the second (vertical) pass to yield the final 
value 

x = XOI + (X23-XOl)V' 

= X 0 + (x 1 -x 0) u I + [ (x 2 -x 0) + (x 3 -x 2 -Xl + X 0) u I I v I 

= Xo + (x \-Xo) u ' + (x2-XO) Vi + (X3-X2-X 1 +XO) u ' Vi 

Notice that this result is identical with the classic solution derived in Eq. (3.20). 

3.5.3. Mapping (Non)Planar Quadrilaterals to Rectangles 

(3.22) 

In remote sensing, the opposite problem is posed - given a nonnalized coordinate [x I ,y '] 

in an arbirrary (distorted) quadrilateral. find its position in the rectangle. Two solutions are 
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3.5.3.3. Interpolation Grid 

Mapping from an arbitrary grid to a rectangular grid is an imponant step in perfonning any 
2-D interpolation within an arbitrary quadrilateral. The procedure is given as follows. 

1) To any point [x,yJ inside an interpolation region defined by four arbitrary points, a nonnal
ized coordinate [u', v'] is associated in a rectangular region. This makes use of the results 
derived above. A geometric interpretation is given in Fig. 3.12, where the nonnalized coor
dinates can be found by detennining the grid lines that intersect at [x,y] (point P). Given 
the positions labeled at the vertices, the nonnalized coordinates [u', v'] are given as 

, P01Po PnP 2 
u = = (3.28) 

P1Po P 3P 2 

v' = 

2) The function values at the four quadrilateral vertices are assigned to the rectangle vertices. 

3) A rectangular grid interpolation is then perfonned, using the nonnalized coordinates to 
index the interpolation function. 

4) The result is then assigned to point [x,y] in the distorted plane. 

, 

p / 
P CJ2 -, ,-, --1-\.:....---------:/ p 13 

\ I 

Figure 3.12: Geometric interpretation of arbitrary grid interpolation. 

It is important to note that the primary benefit of this procedure is that higher-order interpo

lation methods (e.g., spline interpolation) which are commonly defined to operate on rectangular 
lattices can now be extended into the domain of non-rectangular grids. This thereby allows the 

generation of a continuous interpolation function for any arbitrary grid [Bizais 83]. 
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4. SAMPLING THEORY 

This seeLio •• reviews the principal ideas of digital sampling and filtering theoryt. Although 
a complete treatment of this area falls outside the scope of this paper. a brief review is appropri
ate in order to grasp the key issues relevant to the resampling and antialiasing stages that follow. 
Both stages share the common two-fold problem addressed by sampling theory: 

1) Given an original input signal g (x) and its sampled counterpart gs(x), are the samples of 
gs(x) sufficient to exactly describe g (x)? 

2) If so, how can g (x) be reconstructed from gs(x)? 

This problem is known as signal reconstruction. The solution lies in the frequency domain 

whereby spectral analysis is used to examine the spectrum of the sampled data. 

The conclusions derived from examining the reconstruction problem will prove to be 
directly useful for resampling, and indicative of the filtering necessary for antialiasing. Sam
pling theory thereby provides an elegant mathematical framework in which to assess the quality 

of reconstruction, establish theoretical limits, and predict when it is not possible. 

4.1. SAMPLING 

Consider the imaging system discussed in section 2. For convenience, the images will be 

taken as one dimensional signals, i.e .. a single scanline image. Recall that the continuous signal, 
f (x), is presented to the imaging system Due to the point spread function of the imaging dev

ice. the degraded output g (x) is a bandlimited signal with attenuated high frequency com
ponents. Since visual detail directly corresponds to spatial frequency, it follows that g (x) will 
have less detail than its original counterpart f (x). The frequency content of g (x) is given by its 
spectrum. G (f), as determined by the Fourier Transform. 

G (f) = f 00 g (x) e-j2nf%dx - (4.1 ) 

The spectrum is shown in Fig. 4.1. Notice that the signal is bandlimited to frequency fmax. 

G(f) 

f 

Figure 4.1: Spectrum G (f). 

t The reader is assumed to be familiar with elementary Fourier Transforms. 



- 31 -

The continuous output g (x) is then digitized by an ideal impulse sampler, the comb func
tion. to get the sampled signal gs(x). The ideal 1-0 sampler is given as 

oc 

sex) = .t O(x-nTs) (4.2) 
n=-<:o 

where 0 is the familiar impulse function and Ts is the sampling period. The running index n is 
used with 0 to define the impulse train of the comb function. We now have 

gix) = g (x) s (x) (4.3) 

Taking the Fourier Transform of gsCx) yields 

Gs(j) = G (j) * S (j) (4.4) 

= G(f)· [nEl,Q(f-nf ,)] (4.5) 

n=oo 
(4.6) 

n=-oo 

where fs is the sampling frequency. The above equations make use of the following well-known 
propenies of Fourier Transforms: 

1) Multiplication in the spatial domain corresponds to convolution in the frequency domain. 

Therefore. Eq. (4.3) gives rise to a convolution in Eq. (4.4). 

2) The Fourier Transform of an impulse train is itself an impulse train, justifying Eq. (4.5). 

3) The spectrum of a signal sampled with frequency Is (Ts = 1/ls) yields the original spectrum 
replicated in the frequency domain with period Is (Eq. 4.6). 

This last property has imponant consequences. It yields spectrum Gs(j) which. in response 

to a sampling period Ts = lIfs' is periodic in frequency with period fs. This is depicted in Fig. 
4.2. Notice then, that a small sampling period is equivalent to a high sampling frequency yield

ing spectra replicated far apart from each other. In the limiting case when the sampling period 

approaches zero (Ts-+O, fs-+oo), only a single spectrum appears - a result consistent with the 
continuous case. This leads us, in the next section. to answer the central problem posed earlier 

regarding reconstruction of the original signal from its samples. 

Figure ~.2: Spectrum Gs(j). 
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4.2. RECONSTRUCTION 

The above result reveals that the sampling operation has left the original input spectrum 
intact, merely replicating it periodically in the frequency domain with a spacing of is. This 
allows us to rewrite Gs(f) as a sum of two tenns, the low frequency (baseband) and high fre
quency components. The baseband expression is exactly G (f), and the high frequency tenns, 

Ghigh(f), consist of the remaining replicated versions of G (f). 

(4.7) 

Exact signal reconstruction from sampled data requires us to discard the replicated spectra 
Ghigh(f), leaving only G (f), the spectrum of the signal we seek to recover. This is a crucial 

observation in the study of sampled-data systems. 

4.2.1. Reconstruction Conditions 

The only provision for exact reconstruction is that G (f) be undistorted due to overlap with 

Ghigh(f). Two conditions must hold for this to be true: 

1) The signal must be bandlimited. This avoids spectra with infinite extent that are impossible 

to replicate without overlap. 

2) The sampling frequency is must be greater than twice the maximum frequency imax, 
present in the signal. This minimum sampling frequency, known as the Nyquist rate, is the 
minimum distance between spectra, each with extent of imax. 

The first condition merely ensures that a sufficiently large sampling frequency exists which 
can be used to separate replicated spectra from each other. Since all imaging systems impose a 
bandlimiting filter in the fonn of a point spread function, this condition is always satisfied for 
images captured through an optical system t. Note that this does not apply to synthetic images, 
e.g., computer generated imagery. 

The second condition proves to be the most revealing statement about reconstruction. It 
answers the problem regarding the sufficiency of the data samples to exactly reconstruct the con

tinuous input signal. It states that exact reconstruction is possible only when is> iNyquist, where 
iNyquist = 2imax. Collectively, these two conclusions about reconstruction fonn the central mes
sage of sampling theory, as pioneered by Claude Shannon in his landmark papers on the subject 

[Shannon 48, 49]. Interestingly enough, these conditions were first discussed during the early 

development of television in the landmark 1934 paper by Mertz and Gray [Mertz 34]. In their 
work, they infonnally outlined these conditions as a rule-of-thumb for preventing visual artifacts 
in the reconstructed image. 

t This does not include the shot noise that may be introduced by digital scanners. 



- 33 -

4.2.2. Ideal Low-Pass Filter 

We now turn to the second central problem: Given that it is theoretically possible to per
form reconstruction, how may it be done? The answer lies with our earlier observation that sam
pling merely replicates the spectrum of the input signal, generating Ghigh (j) in addition to G (j). 

Therefore, the act of reconstruction requires us to completely suppress Ghigh(j). This is done by 
multiplying Gs(j) with H (j), given as 

Hif) ~ {~ If I <fmax 

If I ?fmax 
(4.8) 

H (j) is known as an ideal low-pass filter and is depicted in Fig. 4.3, where it is shown 
suppressing all frequency components above fmax. This serves to discard the replicated spectra 
Ghigh(j). It is ideal in the sense that the fmax cut-off frequency is strictly enforced as the transi
tion point between the transmission and complete suppression of frequency components. 

H(j) 

o 

Figure 4.3: Ideal low-pass fllter H (j). 

In the literature, there appears to be some confusion as to whether it is possible to perform 
exact reconstruction when sampling at exactly the Nyquist rate, yielding an overlap at the 
highest frequency component fmax. In that case, only the frequency can be recovered, but not the 

amplitude or phase. The only exception occurs if the samples are located at the minimas and 

maximas of the sinusoid at frequency fMLJX. Since reconstruction is possible in that exceptional 

instance, some sources in the literature have inappropriately included the Nyquist rate as a sam

pling rate which permits exact reconstruction. Nevertheless, realistic sampling techniques must 

sample at rates far above the Nyquist frequency in order to avoid the nonideal elements that 
enter into the process, e.g., sampling with a narrow pulse rather than an impulse. Therefore, this 

mistaken point is rather academic for natural images. This has more serious consequences for 

synthetic images which can indeed be sampled with a perfect comb function. 

4.2.3. Sinc Function 

In the spatial domain, the ideal low-pass filter is derived by computing the inverse Fourier 

Transform of H (j). This yields the sinc function (Fig. 4.4), also known as a Cardinal spline. 
Note that the sinc function is only one instance of the large class of functions known as Cardinal 

splines. It is defined as 

sinc(x) = 
sin (1tx) 

1tX 
(4.9) 
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Figure 4.4: The sinc function. 

Since multiplication in the frequency domain is identical to convolution in the spatial 
domain, sine (x) represents the convolution kernel used to evaluate any point x on the continuous 

input curve g given only the sampled data gs' 

g (x) = sine (x) * gs(x) 

= f sine (A) gs(x - A) dA (4.10) 

Eq. (4.10) highlights an important impediment to the practical use of the ideal low-pass 
filter. The filter requires an infinite number of neighboring samples, i.e., an infinite filter sup
port, in order to precisely compute the points. This is, of course, impossible owing to the finite 
number of data samples available. However, truncating the sinc function allows for approximate 

solutions to be computed at the expense of undesirable "ringing", i.e., ripple effects. These 
artifacts, known as the Gibbs phenomenon, are the overshoots and undershoots caused by recon

structing a signal with truncated frequency tenns (Fig. 4.5). 

Figure 4.5: Ringing due to truncated sinc function. 

In response to these difficulties, a number of approximating algorithms have been derived, 

offering a tradeoff between precision and computational expense. They represent non ideal 

reconstruction filters, allowing spurious frequencies beyond fmcu to pass onto the output. Their 
descriptions are given in the resampling section. 
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4.3. ALIASING 

If the two reconstruction conditions outlined earlier are not met. sampling theory predicts 
that exact reconstruction is not possible. This phenomenon. known as aliasing, occurs when sig
nals are not bandlimited or when they are undersampled. i.e .• Is :5 fNyqwist. In either case there 
will be unavoidable overlapping of spectral components. as in Fig. 4.6. Notice that the irrepro
ducible high frequencies fold over into the low frequency range. As a result. frequencies origi
nally beyond fmtn: will, upon reconstruction. appear in the fonn of much lower frequencies. 
Unlike the spurious high frequencies retained by nonideal reconstruction filters, the spectral 
components passed due to undersampling are more serious since they actually corrupt the com

ponents in the original signal. 

-2fmax o fmax 2fmax 

Figure 4.6: Overlapping spectral components give rise to aliasing. 

Aliasing gives rise to distortions such as jagged (staircased) edges and moire patterns. the 
latter effect typically surfacing when the image is viewed under extreme perspective or scale 

change. Aliasing takes its name from the field of digital signal processing. It refers to the higher 
frequencies becoming aliased. and indistinguishable from. the lower frequency components in 

the signal if the sampling rate falls below the Nyquist frequency. In other words. undersampling 
causes high frequency components to appear as spurious low frequencies (Fig. 4.7). In digital 
images. the Nyquist rate is detennined by the highest frequency that can be displayed: one cycle 
every two pixels. Therefore. any attempt to display higher frequencies will produce similar 
artifacts. 

Figure 4.7: Aliasing anifacts due to undersampling. 

In the computer graphics literature there is a misconception that jagged edges are always a 
symptom of aliasing. This is only panially true. Technically. jagged edges can arise from high 

frequencies inrroduced by inadequate reconstruction. Since these high frequencies are not cor

rupting the low frequency components. no aliasing is actually taking place. The confusion lies 

in that the suggested remedy of increasing the sampling rate is also used to eliminate aliasing. 
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The distinction becomes clear when we notice that the appearance of jagged edges is improved 
by blurring. For example, it is not un('omm(.'n to S!~r back mm an image exhibiting excessive 
blockiness in order to see it more clearly. This is a defocusing operation which attenuates the 
high frequencies admitted through non ideal reconstruction. 

It is important to note that a signal may be densely sampled (far above the Nyquist rate), 
and continue to appear jagged if a zero-order reconstruction filter is used. In this case, the signal 
is clearly not aliased but rather poorly reconstructed. On the other hand, once a signal is truly 
undersampled, there is no postprocessing possible to improve its condition. This subtlety is 
pointed out in [Pavlidis 82]. 

4.4. ANTIALIASING 

The filtering necessary to combat aliasing is known as antialiasing. In order to determine 
corrective action, we must directly address the two conditions necessary for exact signal recon
struction. The first solution calls for low-pass filtering before sampling. This bandlimits the sig

nal to levels below imax' thereby eliminating the offending high frequencies. Notice that the fre
quency at which the signal is to be sampled imposes limits on the allowable bandwidth. This is 
often necessary when the output sampling grid must be fixed to the resolution of an output dev
ice, e.g., screen resolution. Therefore, aliasing is often a problem that is confronted when a sig
nal is forced to conform to an inadequate resolution due to physical constraints. As a result, it is 
necessary to bandlimit, or narrow, the input spectrum to conform to the allotted bandwidth as 

determined by the sampling frequency. 

The second solution is to point sample at a higher frequency. In doing so, the replicated 
spectra are spaced farther apart, thereby separating the overlapping spectra tails. This approach 
theoretically implies sampling at a resolution determined by the highest frequencies present in 
the signal. Since a surface viewed obliquely can give rise to arbitrarily high frequencies, this 
method may require extremely high resolution. Whereas the first solution adjusts the bandwidth 
to accommodate the fixed sampling rate, is, the second solution adjusts is to accommodate the 
original bandwidth. Antialiasing by sampling at the highest frequency is clearly superior in 
tenns of image qUality. This is, of course, operating under different assumptions regarding the 
possibility of varying is. In practice, antialiasing is performed through a combination of these 
two approaches. That is, the sampling frequency is increased so as to reduce the amount of 

bandlimiting to a minimum. 

The largest body of antialiasing research stems from computer graphics where high-quality 
rendering of complicated imagery is the central goal. The developed algorithms have primarily 
addressed the tradeoff issues of accuracy versus efficiency. Consequently, methods such as 
supersampling, adaptive sampling, stochastic sampling, pyramids, and preintegrated tables have 
been introduced. These techniques are described in section 6. 
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5. IMAGE RESAMPLING 

Image resampling is the process of transfonning a discrete image from one coordinate sys
tem to another. The two coordinate systems are related to each other by the mapping function of 
the spatial transformation. This pennits the output image to be generated by the following 
straightforward procedure. First, the inverse mapping function is applied to the output sampling 
grid, projecting it onto the input. The result is a resampling grid, specifying the locations at 
which the input is to be resampled. Then, the input image is sampled at these points and the 
values are assigned to their respective output pixels. 

The resampling process outlined above is hindered by one problem. The resampling grid 
does not generally coincide with the input sampling grid, taken to be the integer lattice. This is 
due to the fact that the range of the continuous mapping function is the set of real numbers, a 
superset of the integer grid upon which the input is defined. The solution therefore requires a 
match between the domain of the input and the range of the mapping function. This can be 
achieved by converting the discrete image samples into a continuous surface, a process known as 
image reconstruction. Once the input is reconsnucted, it can be resampled at any position. 

Conceptually, image resampling is comprised of two stages: image reconstruction followed 
by sampling. Although resarnpling takes its name from the sampling stage, image reconstruction 
is the implicit component in this procedure. It is achieved through an interpolation procedure, 
and, in fact, the terms reconstruction and interpolation are often used interchangeably. 

Reconstructed Signal 

I I .~ 
I / I ' 

I \ 

• I \ 
I • 
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Image Reconstruction 

Resampling I I 
Grid 

Spatial Transformation 

\ \ I \ I 
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I I 
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W W W 'Y/ W W W 

• • • • • • • • • • • • • • 
Input Samples Output Samples 

Figure 5.1: Image resampling. 
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The image resampling process is depicted in Fig. 5.1 for the 1-D case. A discrete input 
(squares) is shown passing through the- imClge reC0nstrl'ction module, yielding a continuous input 
signal (solid curve). Reconstruction is performed by convolving the discrete input signal with a 
continuous interpolating function. The reconstructed input is then modulated (multiplied) with a 
resampling grid (dashed arrows). Note that the resampling grid is the result of projecting the 

output grid onto the input through a spatial transformation. After the reconstructed signal is 
sampled by the resampling grid, the samples (circles) are assigned to the uniformly spaced out

put image. 

Image magnification and minification are two typical instances of image resampling. They 
are illustrated in Fig. 5.2. In the top half of the figure the interval between two adjacent black 
and white pixels must be reconstructed in order to generate five output points. A ramp is fitted 

between these points and uniformly sampled at five locations to yield the intensity gradation 
appearing at the output In the bottom half of the figure a scale reduction is shown. This is 
achieved by discarding points. a method prone to aliasing. In later sections various filters will be 
introduced to address the aliasing problem. These filters will be shown to be related to the inter
polation functions used in reconstruction. 

Original 

Figure 5.2: Image magnification and minification. 

The interpolating function is often referred to as the interpolation kernel, a term used to 

denote the weights applied to the input signal in convolution. Another term commonly used to 

denote the interpolating function is impulse response. This relates the response of the interpolat

ing function to a unit impUlse. thereby demonstrating the influence of a sampled value upon the 
neighboring area. 
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The remainder of this section focuses on interpolation for reconstruction, the central com
ponent of image resampling. This area has received extensive treatment due to its practical sig

nificance in numerous applications. Although theoretical limits on image reconstruction are 

derived by sampling theory, the algorithms proposed in this section address tradeoff issues in 
accuracy and complexity. 

5.1. INTERPOLATION 

Interpolation is the process of fitting a continuous function through the discrete input sam
ples. While sampling generates an infinite bandwidth signal from one that is bandlimited, inter

polation plays an opposite role: it produces a bandlimited signal by applying a low-pass filter to 

the discrete signal. That is, interpolation reconstructs the signal lost in the sampling process by 
smoothing the data samples according to an interpolation function. 

For equally spaced data, interpolation can be expressed as 

K-l 
f (x) = L Ckh (x -Xk) 

k=O 
(5.1) 

where h is the interpolation kernel weighted by coefficients Ck and applied to K data samples, XA:. 

In all but one case that we will consider, the CA: coefficients are the data samples themselves. 

Note that Eq. (5.1) fonnulates interpolation as a convolution operation. 

The computation of one interpolated point is illustrated in Fig. 5.3. The interpolating func

tion is centered at x, the location of the point to be interpolated. The value of the interpolated 

point is equal to the sum of the values of the discrete input scaled by the corresponding values of 

the interpolation kernel. This follows from the definition of convolution. 

I 

/ 
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Figure 5.3: Interpolation of a single point. 
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The interpolation function shown in the figure extends over four points. If x is offset from 
the nearest po~nt by distance d, where O~d < 1, we sample the kernel at h(-d), h(-I-d), 

h (l-d), and h (2-d). Since h is symmetric, it is defined only over the positive interval. There
fore, h (d) and h (1 +d) are used in place of h (-d) and h (-I-d), respectively. Note that if the 
resampling grid is unifonnly spaced, only a fixed number of points on the interpolation kernel 
must be evaluated. Large perfonnance gains can be achieved by precomputing these weights 
and storing them in lookup tables for fast access during convolution. 

Although interpolation has been posed in terms of convolution, it is rarely implemented this 
way. Instead, it is simpler to directly evaluate the corresponding interpolating polynomial at the 
resampling positions. Why then is it necessary to introduce the interpolation kernel and the con
volution process into the discussion? The answer lies in the ability to compare interpolation 
algorithms. Whereas evaluation of the interpolation polynomial is used to implement the inter
polation, analysis of the kernel is used to determine the numerical accuracy of the interpolated 
function. This provides us with a quantitative measure which facilitates a comparison of various 

interpolation methods [Schafer 73]. 

The accuracy of an interpolation kernel can be evaluated by analyzing its frequency domain 
characteristics. Of particular importance is the filter response in the passband and stopband. In 
this problem, the passband consists of all frequencies below fmax. The stopband contains all 
higher frequencies, arising from the sampling process t . 

An ideal reconstruction filter, as described earlier, will completely suppress the stopband 
while leaving the passband intact. Recall that the stopband contains the offending high frequen

cies that, if allowed to remain, would produce aliasing artifacts. As a result, the sinc filter was 
devised to meet these goals and serve as the ideal reconstruction filter. Its kernel in the fre
quency domain applies unity gain to transmit the passband and zero gain to suppress the stop

band. 

The breakdown of the frequency domain into passband and stopband isolates two problems 
that can arise due to nonideal reconstruction filters. The first problem deals with the effects of 
imperfect filtering on the passband. Failure to impose unity gain on all frequencies in the 
passband will result in some combination of image smoothing or image sharpening. Smoothing, 
or blurring, will result when the frequency gains near the cut-off frequency start falling off. 

Image sharpening results when the high frequency gains are allowed to exceed unity. This fol
lows from the direct correspondence of visual detail to spatial frequency. Furthermore, amplify

ing the high passband frequencies yields a sharper transition between the passband and stopband, 
a propeny shared by the sinc function. 

The second problem addresses non ideal filtering on the stopband. If the stopband is 
allowed to persist. high frequencies will exist that will contribute to aliasing. Failure to fully 
suppress the stopband is a condition known as frequency leakage. This allows the offending 

t Note that frequency ranges designated as passbands and stopbands vary among problems. 
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frequencies to fold over into the passband range. These distortions tend to be more serious since 
they are visually perceived more readily. 

Due to their infmite extent, sinc filters are categorized as infinite impulse reponse (HR). 
Practical filtering requirements, however, call for the use of finite impulse response (FIR) filters. 
In FIR filters, each output value is computed as the weighted sum of a finite number of neigh
boring elements. Commonly used FIR filters include the box, triangle, cubic convolution kernel. 
cubic B-spline, and the truncated sinc function. They serve as the interpolating functions, or ker
nels, described below. 

5.2. INTERPOLATION KERNELS 

The numerical accuracy and computational cost of interpolation algorithms are directly tied 
to the interpolation kernel. As a result, interpolation kernels are the target of design and analysis 
in the creation and evaluation of interpolation algorithms. They are subject to conditions 
influencing the tradeoff between accuracy and efficiency. 

In this section, the analysis is applied to the I-D case. Interpolation in 2-D will be shown to 
be a simple extension of the I-D results. In addition. the data samples are assumed to be equally 
spaced along each dimension. This restriction imposes no serious problems since images tend to 
be defined on regular grids. 

5.2.1. Sinc Function 

Sampling theory establishes that the sinc function, or Cardinal spline. is the ideal interpola
tion kernel. However, since it is a filter of infinite support, it cannot be realized on standard 
input with finite data samples. Nevertheless, it is perfectly reasonable to consider the effects of 

using a truncated. and therefore finite, sinc function as the interpolation kernel. 

The results of this operation are predicted by sampling theory which demonstrates that trun

cation in one domain leads to ringing in the other domain. Thus, truncating the sinc function in 
the spatial domain is equivalent to ringing in the frequency domain. Since the stopband is no 
longer eliminated, but rather attenuated by a ringing filter, aliasing artifacts are present. In 
[Ratzel 80]. the author found this method to perfonn poorly. 

The process of truncating a signal is equivalent to multiplication with a rectangle function. 
This function serves as a window, or kernel. that weighs the input signal. Ringing can be 
attenuated by using a different windowing function exhibiting smoother fall-off than the rectan

gle. The resulting windowed sinc function yields better results. However, since slow fall-off 

requires larger windows. the computation remains costly. 

In spite of these problems, properties of the sinc filter may be used as heuristics for 
developing a superior interpolation kernel achieving accuracy and efficiency. As we will see 

later, the cubic convolution algorithm is an outgrowth of this goal. We now review the interpo

lation schemes in the order of their complexity. 
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5.2.2. Nearest Neighbor 

The simplest interpolation algorithm from a computational standpoint is the:: nearest neigh
bor algorithm, where each interpolated output pixel is assigned the value of the nearest sample 
point in the input image. This technique, also known as the point shift algorithm, is given by the 

following interpolating polynomial. 

f(x) = f(x,,) 

It can be achieved by convolving the image with a one-pixel width rectangle in the 
domain. The interpolation kernel for the nearest neighbor algorithm is defmed as 

{

I O~lxl<1/2 
h (x) = 0 112 ~ I x I 

(5.2) 

spatial 

(5.3) 

Various names are used to denote this simple kernel. They include the box filter, sample-and
hold function, and Fourier window. The kernel and its Fourier Transform are shown in Fig. 5.4. 
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Figure 5.4: Nearest neighbor: (a) kernel, (b) Fourier Transform. 

In the frequency domain, convolution with the rectangle function h is equivalent to multi

plication with a sinc function. Due to the prominent side lobes and infinite extent, a sinc func
tion makes a poor low-pass fllter. Consequently, the nearest neighbor algorithm has a poor fre

quency domain response relative to that of the ideal low-pass filter. 

The technique achieves magnification by pixel replication, and minification by sparse point 
sampling. For large-scale changes, nearest neighbor interpolation produces images with a 

blocky appearance. In addition. position errors of up to one-half pixel are possible. These prob
lems make this technique inappropriate when sub-pixel accuracy is required. 

One notable propeny of this algorithm is that. except for the shift. the resampled data 
exactly reproduces the original data if the resarnpling grid has the same spacing as that of the 

input. This means that the frequency spectra of the original and resampled images differ only by 
a pure linear phase shift. In general, the nearest neighbor algorithm permits zero-degree recon
struction and yields exact results only when the sampled function is piecewise constant. 

Nearest neighbor interpolation was first used in remote sensing at a time when the process

ing time limitations of general purpose computers prohibited more sophisticated algorithms. It 
was found to simplify the entire mapping problem because each output point is a function of 
only one input sample. Funhermore, since the majority of problems involved only slight 
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distonions with a scale factor near one, the results were considered adequate. 

Currently, this method has been superceded by more elaborate interpolation algorithms. 
Dramatic improvements in digital computers account for this transition. Nevertheless, the 
nearest neighbor algorithm continues to find widespread use in one area: frame buffer hardware 
zoom functions. By simply diminishing the rate at which to sample the image, and increasing 
the cycle period in which the sample is displayed, pixels are easily replicated on the display 
monitor. This scheme, also known as a sample-and-hold filter, is implemented by exploiting the 
roundoff features of integer arithmetic available on all computers. Although it generates images 
with large blocky patches, the nearest neighbor algorithm derives its primary use as a means for 
real-time magnification. For more sophisticated algorithms, this has only recently become real
izable with the use of special-purpose hardware. 

5.2.3. Linear Interpolation 

Linear interpolation is a first-degree method that passes a straight line through every two 
consecutive points of the input signal. Given an interval (XO,XI), and their respective function 
values f 0 and f I, the interpolating polynomial is 

(5.4) 

where ao and a I are determined by solving 

fJofd = [al ao] [
X1o XII] 

This gives rise to the following interpolating polynomial. 

[
X - Xo 1 f (X) = f 0 + (j I - f 0) 

Xl -Xo 
(5.5) 

Not surprisingly, we have just derived the equation of a line joining points (xo,fo) and (x I ,II)· 

In order to evaluate this method of interpolation, we must examine the frequency response of its 

interpolation kernel. 

In the spatial domain, linear interpolation is equivalent to convolving the sampled input 

with the following interpolation kernel. 

{
I - Ix I 

h(x) = 0 
o ~ Ix I < 1 

1 ~ Ix I (5.6) 

Kernel h is referred to as a triangle filter, roof function, Chateau function, or Bartlett window. 

This interpolation kernel corresponds to a reasonably gO<Xllow-pass filter in the frequency 

domain. As shown in Fig. 5.5, its response is superior to that of the nearest neighbor interpola
tion function. In particular, the side lobes are far less prominent, indicating improved perfor

mance in the stopband. Nevertheless, a significant amount of spurious high-frequency 
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components continue to leak into the passband, contributing to some aliasing. In addition, the 

passband is moderately attenuated, resulting in image smoothing. 

hex) IH(f)1 
I 

A lL
-, 

I . : 

I ! ' : 
(a) (b) 

Figure 5.5: Linear interpolation: (a) kernel, (b) Fourier Transform. 

Linear interpolation offers improved image quality above nearest neighbor techniques by 
accommodating first-degree fits. It is the most widely used interpolation algorithm for recon
struction since it produces reasonably good results at moderate cost. Often, though, higher fidel

ity is required and thus more sophisticated algorithms have been fonnulated. 

Although second-degree interpolating polynomials appear to be the next step in the pro
gression, it was shown that their fllters are space-variant with phase distortion [Schafer 73]. 

These problems are shared by all interpolators of even-degree. This is attributed to the fact that 

the number of sampling points on each side of the interpolated point always differ by one. As a 
result, interpolating polynomials of even-degree are not considered. 

5.2.4. Cubic Convolution 

Cubic convolution is a third-degree interpolation algorithm originally suggested by Rifman 

and McKinnon [Rifman 74] as an efficient approximation to the theoretically optimum sinc 

interpolation function. Its interpolation kernel is derived from constraints imposed on the gen

eral cubic spline interpolation fonnula. The kernel is composed of piecewise cubic polynomials 

defined on the unit subintervals (-2,-1), (-1,0), (0,1), and (1.2). Outside the interval (-2.2), 

the interpolation kernel is zero t. As a result, each interpolated point is a weighted sum of four 

consecutive input points. This has the desirable symmetry propeny of retaining two input points 

on each side of the interpolating region. It gives rise to a symmetric, space-invariant, interpola

tion kernel of the fonn 

0$ Ix I < 1 

1 $ Ix I < 2 

2 $ Ix I 
(5.7) 

The values of the coefficients can be determined by applying the following set of constraints to 

the interpolation kernel. 

1) h (0) = 1 and h (1) = h (2) = O. 

t We again assume that our data points are located on the integer grid. 
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2) h must be continuous at x = 0, 1, and 2. 

3) h must have a continuous first derivative at x = 0, 1, and 2. 

The first constraint states that when h is centered on an input sample, the interpolation 

function is independent of neighboring samples. This permits f to actually pass through the 

input points. In addition, it establishes that the c" coefficients in Eq. (S.l) are the data samples 

themselves. This follows from the observation that at data point Xj' 

K-l 
f (Xj) = :E c"h (Xj - x,,) 

,,=0 

j+2 
= :E c"h(xj-x,,) 

"=j-2 

(S.S) 

According to the first constraint listed above, h(xj -x,,) = 0 unless j = k. Therefore, the right

hand side of Eq. (S.S) reduces to Cj. Since this equals f (Xj), we see that all c" coefficients must 

equal the data samples in the four-point interval. 

The first two constraints provide four equations for these coefficients: 

1 = h (0) = aoo 

o = h (1-) = a 30 + a 20 + a 10 + a 00 

0= h(l+) = a31+a21+all+aOl 

0= h(T) = Sa31+4a21+2all+aOl 

Three more equations are obtained from constraint (3): 

-alO = h'(O-) = h'(O+) = alO 

3a30+2a20+alO = h'(l-) = h'(1+) = 3a31 +2a21 +all 

12a31 +4a21 +all = h'(T) = h'(2+) = 0 

(S.9a) 

(S.9b) 

(S.9c) 

(S.9d) 

(S.ge) 

(S.9f) 

(S.9g) 

The constraints given above have resulted in seven equations. However, there are eight 

unknown coefficients. This requires another constraint in order to obtain a unique solution. By 

allowing a = a31 to be a free parameter that may be controlled by the user, the family of solu

tions given below may be obtained. 

l
ea + 2) Ix 13 - (a + 3) Ix 12 + 1 

h (x) = ~ I X 13 - 5a I x 12 + Sa I x I - 4a 

O~lxl<l 

1 ~ Ix I < 2 

2~ Ixi 
(5.10) 

Additional knowledge about the shape of the desired result may be imposed upon Eq. 

(5.10) to yield bounds on the value of a. The heuristics applied to derive the kernel are 
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motivated from properties of the ideal reconstruction filter, the sinc function. By requiring h to 

be concave upward at Ix I = 1, and concave downward at x = 0, we have 

h"(O) = -2(a +3) < 0 -+ a> -3 (5.11a) 

h"(1) = -4a>0 -+ a<O (5.11b) 

Bounding a to values between -3 and 0 makes h resemble the sinc function. In [Rifman 
74], the authors use the constraint that a = -1 in order to match the slope of the sinc function at 
x = 1. This choice results in some amplification of the frequencies at the high-end of the 
passband. As stated earlier, such behavior is characteristic of image sharpening. 

Other choices for a include -112 and -3/4. Keys selected a = -112 by making the Taylor 
series approximation of the interpolated function agree in as many tenns as possible with the ori
ginal signal [Keys 81]. He found that the resulting interpolating polynomial will exactly recon

struct a second-degree polynomial. Finally, a = -3/4 is used to set the second derivatives of the 
two cubic polynomials in h to 1 [Simon 75]. This allows the second derivative to be continuous 

at x = 1. 

Of the three choices for a, the value -1 is preferable if visually enhanced results are 

desired. That is, the image is sharpened, making visual detail perceived more readily. However, 

the results are not mathematically precise, where precision is measured by the order of the Tay
lor series. To maximize this order, the value a = -112 is preferable. The kernel and spectrum of 

a cubic convolution kernel with a = -112 is shown in Fig. 5.6. 

h (x) IH (J) I 

(a) (b) 

Figure 5.6: Cubic convolution: (a) kernel (a = -1 12), (b) Fourier Transfonn. 

In a recent paper [Maeland 88]. Maeland showed that at the Nyquist frequency the spec

trum anains a value which is independent of the free parameter a. The value is equal to 

(48/7t4 )ls. while the value at the zero frequency is Is. This result implies that adjusting a can 

alter the transition rate between the passband and stopband. but not the perfonnance gain at the 

cut-off frequency. In comparing the effect of varying a, Maeland points out that cubic convolu
tion with a = 0 is superior to the simple linear interpolation method when a strictly positive ker
nel is necessary. The role of a has also been studied in [Park 83]. where a discussion is given on 

its optimal selection based on the frequency content of the image. 

It is important to note that in the general case cubic convolution can give rise to values out

side the range of the input data. Consequently. when using this method in image processing it is 

necessary to properly clip or rescale the results into the appropriate range for display. 
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5.2.5. Two-Parameter Cubic Filters 

In [Mitchell 88], Mitchell and Netravali describe a variation of cubic convolution in which 
two parameters are used to describe a family of cubic reconstruction filters. Through a different 
set of constraints, the number of free parameters in Eq. (5.7) are reduced from eight to two, 
yielding the following two-parameter family of solutions. 

!
(-9b-6C+12) Ix 13 + (12b+6c-18)lx 12 + (-2b+6) 0 ~ Ix I < 1 

hex) = ~ (-b-6c) Ix 13 + (6b+30c) Ix 12 + (-12b-48c) Ix 1+ (8b+24c) 1 ~ Ix I < 2 (5.12) 

o 2~ Ixl 

Several well-known cubic filters are derivable from Eq. (5.12) through an appropriate choice of 
values for (b,c). For instance, (O,-c) corresponds to the cubic convolution kernel in Eq. (5.10) 

and (1,0) is the cubic B-spline given later in Eq. (5.19). 

The evaluation of these parameters is perfonned in the spatial domain, using the visual 
artifacts described in [Schreiber 85] as the criteria for judging image quality. In order to better 
understand the behavior of (b, c), the authors panitioned the parameter space into regions charac
terizing different artifacts, including blur, anisotropy, and ringing. As a result, the parameter 
pair (1/3,113) is found to offer superior image quality. Another suggestion is (3/2,-1/4), 
corresponding to a band-reject, or notch, filter. This suppresses the signal energy near the 
Nyquist frequency that is most responsible for conspicuous moire patterns. 

Further improvements in reconstruction are possible when derivative values can be given 
along with the signal amplitude. This is possible for synthetic images where this infonnation 
may be available. In that case, Eq. (5.1) can be rewritten as 

(S.13) 

where 

g (x) 
sin21U 

(S.14a) = 
1t2X 2 

h (x) = sin21U 
(S.14b) 

1t2X 

An approximation to the resulting reconstruction fonnula can be given by Hennite cubic interpo
lation. 

{

2IxI3-3IxI2+1 
g (x) = 0 

{
lxl3 -2xlxl +x 

h (x) = 0 

o ~ Ix I < 1 

1 ~ Ix I 

o ~ Ix I < 1 

1 ~ Ix I 

(5.15a) 

(S.lSb) 
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5.2.6. Cubic Splines 

The final reconstruction technique described here is the method of cubic spline interpola
tion. A cubic spline is a piecewise continuous third-degree polynomial. Given n points labeled 
(XbYIr.) for 0 ~ k < n, the interpolating cubic spline consists of n -1 cubic polynomials. They 
pass through the supplied points, which are also known as control points or knots. 

We now derive the piecewise interpolating polynomials. The kIn polynomial piece, fb is 
defined to pass through two consecutive input points in the fixed interval (xktxlr.+d. Further
more, fir. are joined at XIr. (for k = 1, ... ,n-2) such that fkt ft, and It. are continuous (Fig. 5.7). 
The interpolating polynomial fk is given as 

f,,(x) = a3(x - x,,)3 + a2(x - Xk)2 + a 1 (x - Xk) + ao (5.16) 

Y 

x 

Figure 5.7: A spline consisting of 5 piecewise cubic polynomials. 

The four coefficients of fir. can be defined in terms of the data points and their first (or 

second) derivatives. Assuming that the data samples are on the integer lattice, each spaced one 

unit apan, then the coefficients, defined in terms of the data samples and their first derivatives. 
are given below. 

ao = YIr. (5.17a) 

, 
(5.17b) al = Yk 

a2 = 3~Yk - 2Yk - Yk+l (5.17c) 

a3 = -2~Y.t + Yk + Yk+l (5.17d) 

where ~YIr. = Yk+l - Yk· 

Although the derivatives are not supplied with the data, they are derived by solving the fol

lowing system of linear equations. 
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, 
2 4 

Yo -SYo +4Yl +Y2 

1 4 1 
, 

Yl 3(Y2 - Yo) 

1 4 1 
, 

3(y3 -yt> Y2 

= (S.18) 

141 , 
3(Yn-1 - Yn-3) Yn-2 

4 2 , 
-Yn-3 - 4Yn-2 + SYn-1 Yn-l 

The not-a-knot boundary condition [de Boor 78] was used above, as reflected in the fIrst 

and last rows of the matrices. It is superior to the artifIcial boundary conditions commonly 

reported in the literature, such as the natural or cyclic end conditions, which have no relevance 

in our application. Note that the need to solve a linear system of equations arises from global 

dependencies introduced by the constraints for continuous fIrst and second derivatives at the 

knots. A complete derivation is given in [Wolberg 88b]. 

In order to compare interpolating cubic splines with other methods we must analyze the 

interpolation kernel. Thus far, however, the piecewise interpolating polynomials have been 

derived without any reference to an interpolation kernel. We seek to express the interpolating 

cubic spline as a convolution in a manner similar to the previous algorithms. This can be done 

with the use of cubic B-splines as interpolation kernels [Hou 78]. 

5.2.6.1. B-Splines 

A B-spline of degree n is derived through n convolutions of the box fIlter, B o. Thus, 

B 1 = B 0 *B 0 denotes a B-spline of degree 1, yielding the familiar triangle function shown in Fig. 

S.Sa. Interpolation by B 1 consists of a sequence of straight lines joined at the knots continu

ously. This is equivalent to linear interpolation. 

The second-degree B-spline B 2 is produced by convolving B 0 three times. Using B 2 to 

interpolate data yields a sequence of parabolas which join at the knots continuously together 

with their slopes. The span of B 2 is limited to three points. 

The cubic B-spline B 3 is generated from four convolutions of B o. That is, 

B3 = Bo*Bo*Bo*Bo. The interpolation with B3 is composed of a series of cubic polynomials 

which join at the knots continuously together with their slopes and curvatures, i.e., their fIrst and 

second derivatives. Figure S.8 summarizes the shapes of these low-order B-splines. 

Denoting the cubic B-spline interpolation kernel as h, we have the following piecewise 

cubic polynomials defining the kernel. 

!
3IXI3-6IXI2+4 

h (x) = 1. -I X 13 + 61 X 12 - 121 x I + 8 
6 0 

o ~ Ix I < 1 

1 ~ Ix I < 2 

2~ Ixl 
(S.19) 
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Figure 5.8: Low-order B-splines are derived from repeated box filters. 

This kernel is sometimes called the Parzen window. 

There are several properties of cubic B-splines worth noting. As in the cubic convolution 
method, the extent of the cubic B-spline is over four points. This allows two points on each side 
of the central interpolated region to be used in the convolution. Consequently, the cubic B

spline is shift-invariant as well. 

Unlike cubic convolution, however, the cubic B-spline kernel is not interpolatory since it 
does not satisfy the necessary constraint that h (0) = 1 and h (1) = h (2) = O. Instead, it is an 
approximating function which passes near the points but not necessarily through them. This is 

due to the fact that the kernel is strictly positive. 

The positivity of the cubic B-spline kernel is actually attractive for our image processing 
application. When using kernels with negative lobes. e.g .. the cubic convolution and truncated 

sinc functions, it is possible to generate negative values while interpolating positive data. Since 
negative imensity values are meaningless for display it is desirable to use strictly positive imer
polation kernels to guarantee the positivity of the interpolated image. 

There are problems. however. in directly imerpolating the data with kernel h. as given in 
Eq. (5.19). Due to the low-pass (blur) characteristics of h, the image undergoes considerable 

smoothing. This is evident by examining its frequency response where the stopband is effec

tively suppressed at the expense of additional attenuation in the passband. This leads us to the 
development of an imerpolation method built upon the local suppon of the cubic B-spline. 
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5.2.6.2. Interpolating B-Splines 

Interpolating with cubic B-splines requires that at data point Xj, we again satisfy Eq. (5.8). 
Namely, 

j+2 
f (Xj) = L Ckh (Xj -Xk) (5.20) 

k=j-2 

From Eq. (5.19), we have h (0) = 4/6, h (-1) = h (1) = 1/6, and h (-2) = h (2) = O. This yields 

(5.21) 

Since this must be true for all data points, we have a chain of global dependencies for the Ck 

coefficients. The resulting linear system of equations is similar to that obtained for the deriva
tives of the cubic interpolating spline algorithm. We thus have, 

10 4 1 Co 

It 141 cl 

12 141 c2 

= (5.22) 

In-2 141 Cn-2 

In-l 1 4 Cn-l 

Labeling the three matrices above as F. K, and C, respectively, we have 

F = KC (5.23) 

The coefficients in C may be evaluated by multiplying the known data points F with the inverse 
of the tridiagonal matrix K. 

(5.24) 

This matrix inversion has an efficient algorithm which is solvable in linear time [Press 88]. 
In [Lee 83], the matrix inversion step is modified to introduce high-frequency emphasis. This 

serves to compensate for the undesirable low-pass filter imposed by the point-spread function of 
the imaging system. 

In all the previous methods the coefficients Ck were taken to be the data samples them
selves. In the cubic spline interpolation algorithm, however, the coefficients must be detennined 

by solving a tridiagonal matrix problem. After the interpolation coefficients have been com

puted, cubic spline interpolation has the same computational cost as cubic convolution. 
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5.3. COMPARISON OF INTERPOLATION METHODS 

The quality of the popular interpolation kernels are ranked in ascending order as follows: 
nearest neighbor. linear. cubic convolution. cubic spline. and sinc function. These interpolation 
methods are compared in [Andrews 76]. [Parker 83], and [Maeland 88]. 

The algorithms are rated according to the passband and stopband performances of their 
interpolation kernels. If an additional process is required to compute coefficients used together 
with the kernel. its effect must be evaluated as well. In [Parker 83], the authors failed to con
sider this when they erroneously concluded that cubic convolution is superior to cubic spline 
interpolation. Their conclusion was based on an inappropriate comparison of the cubic B-spline 
kernel with that of the cubic convolution. The fault lies in neglecting the effect of computing the 
coefficients in Eq. (5.1). Had the data samples been directly convolved with the cubic B-spline 
kernel, then the analysis would have been correct. However, in performing a matrix inversion to 
determine the coefficients. a certain periodic filter must be multiplied together with the spectrum 
of the cubic B-spline in order to produce the interpolation kernel. The resulting kernel can be 

easily demonstrated to be of infinite support and oscillatory, sharing the same properties as the 
Cardinal spline (sinc) kernel [Maeland 88]. By a direct comparison, cubic spline interpolation 

performs better than cubic convolution, albeit at slightly greater computational cost. 

It is important to note that high quality interpolation algorithms are not always warranted 
for adequate reconstruction. This is due to the natural relationship that exists between the rate at 
which the input is sampled and the interpolation quality necessary for accurate reconstruction. If 
a bandlimited input is densely sampled, then its replicating spectra are spaced far apart. This 
diminishes the role of frequency leakage in the degradation of the reconstructed signal. Conse
quently, we can relax the accuracy of the interpolation kernel in the stopband. Therefore, the 
stopband performance necessary for adequate reconstruction can be made a function of the input 
sampling rate. Low sampling rates require the complexity of the sinc function, while high rates 
allow simpler algorithms. Although this result is intuitively obvious, it is reassuring to arrive at 
the same conclusion from an interpretation in the frequency domain. 

The above discussion has focused on reconstructing gray-scale (color) images. Complica
tions emerge when the attention is restricted to bi-Ievel (binary) images. In [Abdou 82]. the 
authors analyze several interpolation schemes for bi-Ievel image applications. This is of practi
cal importance for the geometric transformation of images of black-and-white documents. 
Subtleties are introduced due to the nonlinear elements that enter into the imaging process: 

quantization and thresholding. Since binary signals are not bandlimited and the nonlinear effects 
are difficult to analyze in the frequency domain, the analysis is performed in the spatial domain. 
Their results confrrm the conclusions already derived regarding interpolation kernels. In addi
tion, they arrive at useful results relating the errors introduced in the tradeoff between sampling 
rate and quantization. 
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5.4. SEPARABLE 2-D INTERPOLATION 

The I-D interpolation algorithms described above generalize quite simply to 2-D. This is 
accomplished by performing 1-0 interpolation in each dimension. For example, the horizontal 
scanlines are fIrst processed, yielding an intermediate image which then undergoes a second pass 
of interpolation in the vertical direction. These are the elements of a separable transformation, 
which allow a reconstruction fIlter h (x,y) to be replaced by the product h (x)h (y). 

In 2-D, the nearest neighbor and bilinear interpolation algorithms use a 2 x 2 neighborhood 
about the desired location. The separable transform result is identical to computing these 
methods directly in 2-D. The proof for bilinear interpolation was given in section 3. In cubic 
convolution, a 4 x 4 neighborhood is used to achieve an approximation to the radially symmetric 
2-D sinc function. Note that this is not equivalent to the result obtained through direct computa
tion. This can be easily verified by observing that the zeros are all aligned along the rectangular 
grid instead of being distributed along concentric circles. Nevertheless, separable transfonns 
provide a substantial reduction in computational complexity from 0 (N2

) to 0 (N) for an N xN 

image. 
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6. Al"JTIALIASING 
The geometric transfonnation of digital images is inherently a sampling process. As with 

all sampled data, digital images are susceptible to aliasing artifacts. This section reviews the 
antialiasing techniques developed to counter these deleterious effects. The largest contribution 
to this area stems from work in computer graphics, where visually complex images containing 
high spatial frequencies must be rendered onto a discrete array. In particular, antialiasing has 
played a critical role in the quality of texture-mapped and ray-traced images. Remote sensing 
and medical imaging, on the other hand. typically do not deal with large scale changes that war
rant sophisticated filtering. They have therefore neglected this stage of the processing. 

6.1. INTRODUCTION 

Aliasing occurs when the input signal is undersampled. There are two solutions to this 

problem: raise the sampling rate or bandlimit the input. The first solution is ideal but may 
require a display resolution which is too costly or unavailable. The second solution forces the 
signal to confonn to the low sampling rate by attenuating the high frequency components that 
give rise to the aliasing artifacts. In practice, some compromise is reached between these two 

solutions [Crow 77,81]. 

6.1.1. Point Sampling 

The naive approach for generating an output image is to perfonn point sampling, where 
each output pixel is a single sample of the input image taken independently of its neighbors (Fig. 
6.1). It is clear that infonnation is lost between the samples and that aliasing artifacts may sur
face if the sampling density is not sufficiently high to characterize the input. This problem is 
rooted in the fact that intennediate intervals between samples, which should have some influ
ence on the output, are skipped entirely. 

! I 

! • , 

~, 

I 
Input Output 

Figure 6.1: Point sampling. 

Aliasing can be reduced by point sampling at a higher resolution. This raises the Nyquist 

limit, accounting for signals with higher bandwidths. Generally, though, the display resolution 
places a limit on the highest frequency that can be displayed, and thus limits the Nyquist rate to 

one cycle every two pixels. Any attempt to display higher frequencies will produce aliasing 

artifacts such as moire patterns and jagged edges. Consequently, antialiasing algorithms have 
been derived to bandlimit the input before resampling onto the output grid. 
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6.1.2. Area Sampling 

The basic flaw in point sampling is that a discrete pixel actually represents an area, not a 
point. In this manner, each output pixel should be considered a window looking onto the input 
image. Rather than sampling a point, we must instead apply a low-pass filter (LPF) upon the 
projected area in order to properly reflect the information content being mapped onto the output 
pixel. This approach, depicted in Fig. 6.2, is called area sampling and the projected area is 
known as the preimage. The low-pass filter comprises the prefiltering stage. It serves to defeat 
aliasing by bandlimiting the input image prior to resampling it onto the output grid. In the gen
eral case, prefiltering can be defined by the following convolution integral. 

g (x,y) = f f f (u, v) h (x -u,y -v) du dv (6.1) 

where f is the input image, g is the output image, h is the filter kernel, and the integration is 
applied to all [u, v] points in the preimage. 

Input Output 

Figure 6.2: Area sampling. 

Area sampling is akin to direct convolution except for one notable exception: indepen
dently projecting each output pixel onto the input image limits the extent of the filter kernel to 
the projected area. As we shall see, this constraint can be lifted by considering the bounding 
area which is the smallest region that completely bounds the pixel's convolution kernel. 

Depending on the size and shape of convolution kernels. these areas may overlap. Since this 
carries extra computational cost, most area sampling algorithms limit themselves to the restric
tive definition which, nevenheless, is far superior to point sampling. The question that remains 

open is the manner in which the incoming data is to be filtered. There are various theoretical 
and practical considerations to be addressed. 
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6.1.3. Space-Invariant Filtering 

Ideally, the sinc function should be used to filter the preimage. However, as discussed in 
sections 4 and 5, a finite impulse response (FIR) approximation must be used instead to form a 

weighted average of samples. If the mapping is affine, the filter kernel remains constant as it 

scans across the image. Such a filter is said to be space-invariant. 

Fourier convolution can be used to implement space-invariant filtering by transforming the 

image and filter kernel into the frequency domain using an FFf, multiplying them together, and 

then computing the inverse FFf. For wide space-invariant kernels, this becomes the meth<Xi of 

choice since it requires 0 (N log2 N) operations instead of 0 (MN) operations for direct convolu

tion, where M and N are the lengths of the filter kernel and image, respectively. Since the cost 

of Fourier convolution is independent of the kernel width, it becomes practical when M > log2N. 
This means, for example, that scaling an image can best be done in the frequency domain when 
excessive magnification or minification is desired. An excellent tutorial on the theory suppon

ing digital filtering in the frequency domain can be found in [Smith 83]. 

6.1.4. Space-Variant Filtering 

In most applications, however, space-variant filters are required, where the kernel varies 

with position. This is necessary for many common operations such as perspective mappings, 

nonlinear warps, and texture mapping. In such cases, space-variant FIR filters are used to con

volve the preimage. Proper filtering requires a large number of preimage samples in order to 

compute each output pixel. There are various sampling strategies used to collect these samples. 

They can be broadly categorized into two classes: regular sampling and irregular sampling. 
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6.2. REGCLAR SAMPLING 

The process of using a regular sampling grid to collect image samples is called regular 
sampling. It is also known as uniform sampling, which is slightly misleading since an irregular 
sampling grid can also generate a uniform distribution of samples. Regular sampling includes 
point sampling, as well as the supersampling and adaptive sampling techniques described below. 

6.2.1. Supersampling 

The process of using more than one regularly-spaced sample per pixel is known as super
sampling. Each output pixel value is evaluated by computing a weighted average of the samples 
taken from their respective preimages. For example, if the supersampling grid is three times 
denser than the output grid (i.e., there are nine grid points per pixel area), each output pixel will 
be an average of the nine samples taken from its projection in the input image. If, say, three 
samples hit a green object and the remaining six samples hit a blue object, the composite color in 

the output pixel will be one-third green and two-thirds blue. 

Supersampling reduces aliasing by bandlimiting the input signal. The purpose of the high
resolution supersampling grid is to refine the estimate of the preimages seen by the output pixels. 
The samples then enter the preflitering stage, consisting of a low-pass filter. This permits the 
input to be resampled onto the (relatively) low-resolution output grid without any offending high 
frequencies introducing aliasing artifacts (Fig. 6.3) . 

• 
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• 

Supersampling grid Input Output 

Figure 6.3: Supersampling. 

There are two problems associated with straightforward supersampling. The first problem 
is that the increased frequency of the prefiltered image continues to be fixed. Therefore, there 

will always be sufficiently high frequencies that will alias. The second problem is cost. In our 
example. supersampling will take nine times longer than point sampling. Although there is a 
clear need for the additional computation, the dense placement of samples can be optimized. 
Adaptive sampling is introduced to address these drawbacks. 
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6.2.2. Adaptive Sampling 

In adaptive sampling, the samples are distributed more densely in areas of high intensity 
variance. In this manner, supersamples are collected only in regions that warrant their use. 
Early work in adaptive sampling for computer graphics is described in [Whitted 80]. The stra
tegy is to subdivide areas between previous samples when an edge, or some other high frequency 
pattern, is present. Two approaches to adaptive sampling have been described in the literature. 
The fIrst approach allows sampling density to vary as a function of local image variance [Lee 85, 
Kajiya 86]. A second approach introduces two levels of sampling densities: a regular pattern for 
most areas and a higher-density pattern for regions demonstrating high frequencies. The regular 
pattern simply consists of one sample per output pixel. The high density pattern involves local 
supersampling at a rate of 4 to 16 samples per pixel. Typically, these rates are adequate for 
suppressing aliasing artifacts. 

A sampling strategy is required to detennine where supersampling is necessary. In 
[Mitchell 87], the author describes a method in which the image is divided into small square 
supersampling cells, each containing eight or nine of the low-density samples. The entire cell is 
supersampled if its samples exhibit excessive variation. In [Lee 85]. the variance of the samples 
are used to indicate high frequency. It is well-known, however. that variance is a poor measure 
of visual perception of local variation. Another alternative is to use contrast, which more closely 
models the nonlinear response of the human eye to rapid fluctuations in light intensities [Caelli 
81]. Contrast is given as 

c = (6.2) 

Adaptive sampling reduces the number of samples required for a given image quality. The 
problem with this technique, however, is that the variance measurement is itself based on point 
samples, and so this method can fail as well. This is panicularly true for sub-pixel objects that 
do not cross pixel boundaries. Nevertheless, adaptive sampling presents a far more reliable and 
cost-effective alternative to supersampling. 
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6.2.3. Reconstruction from Regular Samples 

Each output pixel is evaluted as an average of the preimage samples. The low-pass filters 
shown in Figs. 6.2 and 6.3 are actually reconstruction filters used to interpolate the output point. 
They share the identical function of the reconstruction filters discussed in section 5: they 
bandlirnit the sampled signal (suppress the replicated spectra) so that the resampling process 
does not itself introduce aliasing. The careful reader will notice that reconstruction serves two 
roles: 

1) Reconstruction filters interpolate the input samples to compute values at nonintegral posi
tions. These values are the preimage samples that are assigned to the supersampling grid. 

2) The very same filters are used to interpolate a new value from the dense set of samples col
lected in step (1). The result is applied to the output pixel. 

When reconstruction filters are applied to interpolate new values from regularly-spaced 
samples, errors may appear as observable derivative discontinuities across pixel boundaries. In 

antialiasing, reconstruction errors are more subtle. Consider an object of constant intensity 
which is entirely embedded in pixel p, Le., a sub-pixel sized object. We will assume that the 
popular triangle filter is used as the reconstruction kernel. As the object moves away from the 
center of p, the computed intensity for p decreases as it moves towards the edge. Upon crossing 
the pixel boundary, the object begins to contribute to the adjacent pixel, no longer having an 
influence on p. If this motion were animated, the object would appear to flicker as it crossed the 
image. This artifact is due to the limited range of the filter. This suggests that a wider filter is 
required, in order to reflect the object's contribution to neighboring pixels. 

One ad hoc solution is to use a square pyramid with a base width of 2 x 2 pixels. This 
approach was used in [Blinn 76], an early paper on texture mapping. In general, by varying the 
width of the filter a compromise is reached between passband transmission and stopband 
attenuation. This underscores the need for high-quality reconstruction filters to prevent aliasing 
in image resampling. 

Despite the apparent benefits of supersampling and adaptive sampling, all regular sampling 
methods share a common problem: information is discarded in a coherent way. This produces 
coherent aliasing artifacts that are easily perceived. Since spatially correlated errors are a conse
quence of the regularity of the sampling grid, the use of irregular sampling grids has been pro
posed to address this problem. 
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6.3. IRREGULAR SAMPLING 

Irregular sampling is the process of using an irregular sampling grid in which to sample the 
input image. This process is also referred to as nonuniform sampling and stochastic sampling. 
As before, the term nonuniform sampling is a slight misnomer since irregular sampling can be 

used to produce a uniform disnibution of samples. The name stochastic sampling is more 
appropriate since it denotes the fact that the irregularly-spaced locations are determined proba

bilistically via a Monte Carlo technique. 

The motivation for irregular sampling is that coherent aliasing artifacts can be rendered 

incoherent, and thus less conspicuous. By collecting irregularly-spaced samples, the energies of 
the offending high frequencies are made to appear as featureless noise of the correct average 
intensity, an anifact that is much less objectionable than aliasing. This claim is supported by 
evidence from work in color television encoding [Lim 77], image noise measurement [Sakrison 
77], dithering [Lim 69, Ulichney 87], and the disnibution of retinal cells in the human eye [Yel

lott 83]. 

6.3.1. Stochastic Sampling 

Although the mathematical properties of stochastic sampling have received a great deal of 

attention, this technique has only recently been advocated as a new approach to antialiasing for 
images. In panicular, it has played an increasing role in ray tracing where the rays (point sam
ples) are now stochastically disnibuted to perform a Monte Carlo evaluation of integrals in the 

rendering equation. This is called distribured ray tracing and has been used with great success 

in computer graphics to simulate motion blur, depth of field, penumbrae, gloss, and translucency 
[Cook 84, 86]. 

There are three common forms of stochastic sampling discussed in the literature: Poisson 
sampling, jittered sampling, and point-diffusion sampling. 

6.3.2. Poisson Sampling 

Poisson sampling uses an irregular sampling grid that is stochastically generated to yield a 

uniform distribution of sample points. This approximation to uniform sampling can be improved 

with the addition of a minimum-distance constraint between sample points. The result, known 

as the Poisson-disk distribution, has been suggested as the optimal sampling pattern to mask 

aliasing anifacts. This is motivated by evidence that the Poisson-disk disnibution is found 

among the sparse retinal cells outside the foveal region of the eye. It has been suggested that 
this spatial organization serves to scatter aliasing into high-frequency random noise [Yell on 83]. 

A Poisson-disk sampling pattern and its Fourier Transform are shown in Fig. 6.4. Theoreti
cal arguments can be given in favor of this sampling pattern, in terms of its spectral characteris
tics. An ideal sampling pattern, it is argued, should have a broad noisy spectrum with minimal 

low-frequency energy. A perfectly random pattern such as white noise is an example of such a 
signal where all frequency components have equal magnitude. This is equivalent to the 
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B = -2 (Ux Vx + Uy Vy ) 

C = U; + U~ 

(Ur,vr) = [ ~:. ~; 1 

(Uy. Vy) = [ ~; • ~ 1 
Once the ellipse parameters are determined, samples in the texture space may be tested for 

point-inclusion in the ellipse by incrementally computing Q for new values of u and v. In texture 

space the contours of Q are concentric ellipses. Points inside the ellipse satisfy Q (u, v) < F for 

some threshold F. 

(6.7) 

This means that point-inclusion testing for ellipses can be done with one function evaluation 

rather than the four needed for quadrilaterals (four line equations). 

If a point is found to satisfy Q < F, then the sample value is weighted with the appropriate 
lookup table entry. In screen space, the lookup table is indexed by r, the radius of the circle 
upon which the point lies. In texture space, though, Q is related to r2. Rather than indexing 

with r, which would require us to compute r = ~ at each pixel, the kernel values are stored into 
the lookup table so that they may be indexed by Q directly. Initializing the lookup table in this 
manner results in large computational efficiency. Thus, instead of determining which concentric 

circle the texture point maps onto in screen space, we determine which concentric ellipse the 

point lies upon in texture space and use it to index the appropriate weight in the lookup table. 

Explicitly treating preimages as ellipses permits the function Q to take on a dual role: 
point-inclusion testing and lookup table index. The EWA is thereby able to achieve high-quality 

filtering at substantially lower cost. After all the points in the ellipse have been scanned, the 

sum of the weighted values is divided by the sum of the weights (for normalization) and 

assigned to the output pixel. 

All direct convolution methods have a computational cost proportional to the number of 
input pixels accessed. This cost is exacerbated in [Feibush 80] and [Gangnet 82] where the col

lected input samples must be mapped into screen space to be weighted with the kernel. By 

achieving identical results without this costly mapping, the EW A is the most cost-effective 
high-quality filtering method. 
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6.5. PREFIL TERING 

The direct convolution methods described above impose minimal constraints on the filter 
area (quadrilateral. ellipse) and filter kernel (precomputed lookup table entries). Additional 
speedups are possible if further constraints are imposed. Pyramids and preintegrated tables are 
introduced to approximate the convolution integral with a constant number of accesses. This 
compares favorably against direct convolution which requires a large number of samples that 
grow proportionately to preiroage area. As we shall see, though. the filter area will be limited to 
squares or rectangles. and the kernel will consist of a box filter. Subsequent advances have 

extended their use to more general cases with only marginal increases in cost. 

6.5.1. Pyramids 

Pyramids are multi-resolution data structures commonly used in image processing and 

computer vision. They are generated by successively bandlimiting and subsampling the original 
image to form a hierarchy of images at ever decreasing resolutions. The original image serves as 
the base of the pyramid. and its coarsest version resides at the apex. Thus, in a lower resolution 

version of the input, each pixel represents the average of some number of pixels in the higher 

resolution version. 

The resolution of successive levels typically differ by a power of two. This means that suc

cessively coarser versions each have one quarter of the total number of pixels as their adjacent 
predecessors. The memory cost of this organization is modest: 1 + 114 + 1116 + ... = 4/3 
times that needed for the original input. This requires only 33% more memory. 

To filter a preimage, one of the pyramid levels is selected based on the size of its bounding 
square box. That level is then point sampled and assigned to the respective output pixel. The 
primary benefit of this approach is that the cost of the filter is constant, requiring the same 
number of pixel accesses independent of the filter size. This performance gain is the result of 
the filtering that took place while creating the pyramid. Furthermore, if pre image areas are ade

quately approximated by squares, the direct convolution methods amount to point sampling a 
pyramid. This approach was first applied to texture mapping in [Catrnull 74] and described in 
[Dungan 78]. 

There are several problems with the use of pyramids. First. the appropriate pyramid level 

must be selected. A coarse level may yield excessive blur while the adjacent finer level may be 
responsible for aliasing due to insufficient bandlimiting. Second, preimages are constrained to 
be squares. This proves to be a crude approximation for elongated preimages. For example. 
when a surface is viewed obliquely the texture may be compressed along one dimension. Using 
the largest bounding square will include the contributions of many extraneous samples and result 
in excessive blur. These two issues were addressed by Williams and Crow, respectively, along 
with extensions proposed by other researchers. 

Williams proposed a pyramid organization called mip map to store color images at multiple 
resolutions in a convenient memory organization [Williams 83]. The acronym "mip" stands for 
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"multum in parvo," a Latin phrase meaning' 'many things in a small place." The scheme sup
ports uilinear interpolation. where both intra- and inter-level interpolation can be computed 
using three normalized coordinates: u, v, and d. Both u and v are spatial coordinates used to 
access points within a pyramid level. The d coordinate is used to index, and interpolate between, 
different levels of the pyramid. This is depicted in Fig. 6.7. 
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Figure 6.7: Mip Map memory organization. 

The quadrants touching the east and south borders contain the original red, green, and blue 

(RGB) components of the color image. The remaining upper-left quadrant contains all the lower 

resolution copies of the original. The memory organization depicted in Fig. 6.7 clearly supports 
the earlier claim that memory cost is 4/3 times that required for the original input. Each level is 

shown indexed by the [u. v,d] coordinate system. where d is shown slicing through the pyramid 
levels. Since corresponding points in different pyramid levels have indices which are related by 

some power of two, simple binary shifts can be used to access these points across the multi

resolution copies. This is a panicularly attractive feature for hardware implementation. 

The primary difference between mip maps and ordinary pyramids is the trilinear interpola

tion scheme possible with the [u, v,d] coordinate system. By allowing a continuum of points to 

be accessed, mip maps are referred to as pyramidal parametric data structures. In Williams' 

implementation, a box filter (Fourier window) was used to create the mip maps. and a triangle 

filter (Bartlett window) was used to perform intra- and inter-level interpolation. The value of d 

must be chosen to balance the tradeoff between aliasing and blurring. Heckbert suggests 

(6.8) 

where d is proportional to the span of the preimage area, and the panial derivatives can be 
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computed from the surface projection [Heckbert 83]. 

6.5.2. Summed· Area Tables 

An alternative to pyramidal filtering was proposed by Crow in [Crow 84]. It extends the 

filtering possible in pyramids by allowing rectangular areas, oriented parallel to the coordinate 
axes. to be filtered in constant time. The central data structure is a preintegrated buffer of inten
sities. known as the summed-area table. This table is generated by computing a running total of 
the input intensities as the image is scanned along successive scanlines. For every position P in 

the table, we compute the sum of intensities of pixels contained in the rectangle between the ori

gin and P. The sum of all intensities in any rectangular area of the input may easily be 
recovered by computing a sum and two differences of values taken from the table. For example, 

consider the rectangles R 0, R 1, R 2, and R shown in Fig. 6.8. The sum of intensities in rectangle 
R can be computed by considering the sum at [x l,y 1], and discarding the sums of rectangles R 0, 

R 1, and R 2. This corresponds to removing all area lying below and to the left of R. The result
ing area is rectangle R. and its sum S is given as 

S = T[x 1,y 1] - T[x l,yO] - T[xO,y 1] + T[xO,yO] (6.9) 

where T [x,y] is the value in the summed-area table indexed by coordinate pair [x,y ]. 
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Figure 6.8: Summed-area table calculation. 

Since T[x l,yO] and T[xO,y 1] both contain RD. the sum of Ro was subtracted twice in Eq. 
(6.9). As a result, T[xO.yO] was added back to restore the sum. Once S is determined it is 

divided by the area of the rectangle. This gives the average intensity over the rectangle, a pro

cess equivalent to filtering with a Fourier window (box filtering). 

There are two problems with the use of summed-area tables. First. the filter area is res

tricted to rectangles. This is addressed in [Glassner 86], where an adaptive, iterative technique is 

proposed for obtaining arbitrary filter areas by removing extraneous regions from the rectangular 

bounding box. Second, the summed-area table is restricted to box filtering. This, of course, is 

attributed to the use of unweighted averages that keeps the algorithm simple. In [Perlin 851 and 

[Heckben 86aJ. the summed-area table is generalized to suppon more sophisticated filtering by 
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repeated integration. 

It is shown that by repeatedly integrating the summed-area table n times, it is possible to 
convolve an orthogonally oriented rectangular region with an nIh-order box filter (B-spline). 
Kernels for small n are shown in Fig. 5.8. The output value is computed by using n + 1 
weighted samples from the preintegrated table. Since this result is independent of the size of the 
rectangular region, this method offers a great reduction in computation over that of direct convo
lution. Perlin called this a selective image filter because it allows each sample to be blurred by 
different amounts. 

Repeated integration has rather high memory costs relative to pyramids. This is due to the 
number of bits necessary to retain accuracy in the large summations. Nevertheless, it allows us 
to filter rectangular or elliptical regions, rather than just squares as in pyramid techniques. Since 
pyramid and summed-area tables both require a setup time, they are best suited for input that is 
intended to be used repeatedly, i.e., a stationary background scene. In this manner, the initializa
tion overhead can be amortized over each use. However, if the texture is only to be used once, 
the direct convolution methods raise a challenge to the cost-effectiveness offered by pyramids 
and summed-area tables. 

6.6. FREQUENCY CLAMPING 

The antialiasing methods described above all attempt to bandlimit the input by convolving 
input samples with a filter in the spatial domain. An alternative to this approach is to transfonn 
the input to the frequency domain, apply an appropriate low-pass filter to the spectrum, and then 
compute the inverse transfonn to display the bandlimited result. This was, in fact, already sug
gested as a viable technique for space-invariant filtering in which the low-pass filter can remain 
constant throughout the image. Norton, Rockwood, and Skolmoski explore this approach for 
space-variant filtering, where each pixel may require different bandlimiting to avoid aliasing 
[Norton 82]. 

The authors propose a simple technique for clamping, or suppressing, the offending high 
frequencies at each point in the image. This clamping function technique requires some a priori 
knowledge about the input image. In particular, the input should not be given as an array of 
samples but rather it should be represented by a Fourier series, i.e., a sum of bandlimited tenns 
of increasing frequencies. When the frequency of a tenn exceeds the Nyquist rate at a given 
pixel, that term is forced to the local average value. This method has been successfully applied 
in a real-time visual system for flight simulators. It is used to solve the aliasing problem for tex
tures of clouds and water, patterns which are convincingly generated using only a few low-order 
Fourier terms. 

6.7. ANTIALIASED LINES AND TEXT 

A large body of work has been directed towards efficient antialiasing methods for eliminat
ing the jagged appearance of lines and text in raster images. These two applications have 
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attracted a lot of attention due to their practical importance in the ever growing workstation and 
personal computer markets. While images of lines ::Inn text r.an he handled with the algorithms 
described above, antialiasing techniques have been developed which embed the filtering process 

directly within the drawing routines. 

Shaded (gray) pixels for lines can be generated, for example, with the use of a lookup table 

indexed by the distance between each pixel center and the line (or curve). Since arbitrary ker
nels can be stored in the lookup table at no extra cost, this approach shares the same merits as 

[Feibush 80]. Conveniently, the point-line distance can be computed incrementally by the same 

Bresenham algorithm used to determine which pixels must be turned on. This algorithm is 

described in [Gupta 81]. 

In [Turkowski 82], the CORDIC rotation algorithm is used to calculate the point-line dis

tance necessary for indexing into the kernel lookup table. Other related papers describing the 

use of lookup tables and bionaps for efficient antialiasing of lines and polygons can be found in 

[Pitteway 80], [Fiume 83], and [Abram 85]. Recent work in this area is described in [Chen 88]. 

For a description of recent advances in antialiased text, the reader is referred to [Naiman 87]. 

6.8. DISCUSSION 

This section has reviewed methods to combat the aliasing artifacts that may surface upon 

performing geometric transformations on digital images. Aliasing becomes apparent when the 
mapping of input pixels onto the output is many-to-one. Sampling theory suggests theoretical 
limitations and provides insight into the solution. In the majority of cases, increasing display 

resolution is not a parameter that the user is free to adjust. Consequently, the approaches have 

dealt with bandlirniting the input so that it may conform to the available output resolution. 

All contributions in this area fall into one of two categories: direct convolution and pre

filtering. Direct convolution calls for increased sampling to accurately resolve the input preim

age that maps onto the current output pixel. A low-pass filter is applied to these samples, gen

erating a single bandlirnited output value. This approach raises two issues: sampling techniques 

and efficient convolution. The first issue has been addressed by the work on regular and irregu
lar sampling, including the recent advances in stochastic sampling. The second issue has been 

treated by algorithms which embed the filter kernels in lookup tables and provide fast access to 

the appropriate weights. Despite all possible optimizations, the computational complexity of 

this approach is inherently coupled with the number of samples taken over the preimage. Thus. 

larger pre images will incur higher sampling and filtering costs. 

A cheaper approach providing lower quality results is obtained through prefiltering. By 

precomputing pyramids and summed-area tables, filtering is possible with only a constant 

number of computations, independent of the preimage area. Combining the partially filtered 

results contained in these data structures produces large performance gains. The cost, however, 

is in terms of constraints on the filter kernel and approximations to the pre image area. Design

ing efficient filtering techniques that support arbitrary preimage areas and filter kernels remains 
a great challenge. It is a subject that will continue to receive much attention. 
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7. SEPARABLE GEOMETRIC TRANSFORMATION ALGORITHMS 

Separable geometric transformation algorithms, also known as scan line algorithms, spa
tially transform 2-D images by decomposing the mapping into a sequence of orthogonal 1-D 
transformations. This implies that the mapping function is separable, i.e., each dimension can be 
resampled independently of the other. For instance, 2-pass scanline algorithms typically apply 
the first pass to the image rows and the second pass to the columns. Although separable algo
rithms cannot handle all possible mapping functions, they can be shown to work particularly 
well for a wide class of common transformations, including affine and perspective mappings. 

7.1. INTRODUCTION 

Geometric transformations have traditionally been formulated as either forward or inverse 
mappings operating entirely in 2-D. Their advantages and drawbacks have already been 
described in section 3. We briefly restate these features in order to motivate the case for separ
able geomenic transformation algorithms. 

7.1.1. Forward Mapping 

Forward mappings deposit input pixels into an output accumulator array. A distinction is 
made here based on the order in which pixels are fetched and stored. In forward mappings, the 
input arrives in scanline order (row by row) but the results are free to leave in any order, project
ing into arbitrary areas in the output. In the general case, this means that no output pixel is 
guaranteed to be totally computed until the entire input has been scanned. Therefore, a full 2-D 
accumulator array must be retained throughout the duration of the mapping. Since the square 
input pixels project onto quadrilaterals at the output. costly intersection tests are needed to prop
erly compute their overlap with the discrete output cells. Furthermore, an adaptive algorithm 
must be used to determine when supersampling is necessary in order to avoid blocky appear
ances upon one-to-many mappings. 

7.1.2. Inverse Mapping 

Inverse mappings are more commonly used to perform spatial transformations. By operat

ing in scanline order at the output, square output pixels are projected onto arbitrary quadrila

terals. In this case, the projected areas lie in the input and are not generated in scanline order. 
Each preimage must be sampled and convolved with a low-pass filter to compute an intensity at 
the output. In section 6 we reviewed clever approaches to efficiently approximate this computa
tion. While either forward or inverse mappings can be used to realize arbitrary mapping func
tions, there are many transformations that are well-suited for alternate techniques that yield 
funher computational savings. These are the mappings that can be implemented with separable 
algorithms. They include affine and perspective mappings onto bivariate surfaces. 
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7.1.3. Separable Mapping 

There are several advantages to decomposing a mapping into a series of 1-0 transfonns. 

First, the resampling problem is made simpler since reconstruction, area sampling, and filtering 

can now be done entirely in I-D. Second, this lends itself naturally to digital hardware imple

mentation. Note that no sophisticated digital filters are necessary to deal explicitly with the 2-D 

case. Third, the mapping can be done in scanline order both in scanning the input image and in 

producing the projected image. In this manner, an image may be processed in the same fonnat 

in which it is stored in the framebuffer: rows and columns. This leads to efficient data access 

and large savings in I/O time. The approach is amenable to stream-processing techniques such 

as pipelining, and facilitates the design of hardware that works at real-time video rates. 
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7.2. 2-PASS TRANSFORMS 

Consider a spatial transformation specified by forward mapping functions X and f such that 

[x,y] = T(u,v) = [X(u,v), f(u,v)] (7.1) 

The transformation T is said to be separable if T (u, v) = F (u)G (v). Since it is understood that G 

is applied only after F, the mapping T (u, v) is said to be 2-pass transformable, or simply 2-

passable. Functions F and G are called the 2-pass functions, each operating along different 

axes. Consequently, the forward mapping in Eq. (7.1) can be rewritten as a succession of two 

1-D mappings F and G, the horizontal and vertical transformations, respectively. 

7.2.1. Catmull and Smith, 1980 

The most general presentation of the 2-pass technique appears in the seminal work 

described by Catmull and Smith in [Catmull 80]. This paper tackles the problem of mapping a 

2-D image onto a 3-D surface and then projecting the result onto the 2-D screen for viewing. 

The contribution of this work lies in the decomposition of these steps into a sequence of compu

tationally cheaper mapping operations. In particular, it is shown that a 2-D resarnpling problem 

can be replaced with two onhogonal 1-0 resarnpling stages. This is depicted in Fig. 7.1. 

7.2.1.1. First Pass 

In the first pass, each horizontal scanline (row) is resampled according to spatial transfor

mation F (u), generating an intermediate image I in scanline order. All pixels in I have the same 

x-coordinates that they will assume in the final output; only their y-coordinates now remain to be 

computed. Since each scanline will generally have a different transformation, function F (u) 

will usually differ from row to row. Consequently, F can be considered to be a function of both 

u and v. In fact, it is clear that mapping function F is identical to X, generating x-coordinates 

from points in the [u, v] plane. To remain consistent with earlier notation, we rewrite F (u, v) as 

Fy(u) to denote that F is applied to horizontal scanlines, each having constant v. Therefore, the 

first pass is expressed as 

[x, v] = [Fy(u), v] (7.2) 

where F y(u) = X (u, v). This relation maps all [u, v] points onto the [x, v 1 plane. 

7.2.1.2. Second Pass 

In the second pass, each venical scanline (column) in I is resampled according to spatial 

transformation G (v), generating the final image in scanline order. The second pass is more 

complicated than the first pass because the expression for G is often difficult to derive. This is 

due to the fact that we must inven [x, v] to get [u, v 1 so that G can directly access f (u, v). In 

doing so, new y-coordinates can be computed for each point in I. 
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G 

Figure 7.1: 2-pass geometric transfonnation. 

Invening f requires us to solve the equation X (u, v) - i = 0 for u to obtain u = Hx(v) for 

venical scanline (column) i. Note that i contains all the pixels along the column at x. Function 

H. known as the auxiliary function, represents the u-coordinates of the inverse projection of i. 
the column we wish to resample. Thus, for every column in /, we compute Hx(v) and use it to
gether with the available v-coordinates to index into mapping function Y. This specifies the ven

ical spatial transfonnation necessary for resampling the column. The second pass is therefore 
expressed as 
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[x,y] = [x, Gx(v)] (7.3) 

where Gx(v) refers to the evaluation of G ex, v) along vertical scanlines with constant x. It is 
given by 

(7.4) 

The relation in Eq. (7.3) maps all points in I from the [x, v] plane onto the [x,y] plane, the coor
dinate system of the final image. 

7.2.1.3. 2-Pass Algorithm 

In summary, the 2-pass algorithm has three steps. They correspond directly to the evalua
tion of scanline functions F and G, as well as the auxiliary function H. 

1) The horizontal scanline function is defined as F v (u) = X (u, v). Each row is resampled 
according to this spatial transformation, yielding intennediate image I. 

2) The auxiliary function Hx(v) is derived for each vertical scanline x in I. It is defined as the 

solution to x = X (u, v) for u, if such a solution can be derived. Sometimes a closed fonn 
solution for H is not possible and numerical techniques such as the Newton-Raphson itera
tion method must be used. As we shall see later, computing H is the principal difficulty 
with the 2-pass algorithm. 

3) Once Hx(v) is determined. the second pass plugs it into the expression for Y (u, v) to evalu
ate the target y-coordinates of all pixels in column x in image I. The vertical scanline func
tion is defined as Gx(v) = Y(Hx(v),v). Each column in I is resampled according to this 
spatial transformation, yielding the final image. 

7.2.1.4. An Example: Rotation 

The above procedure is demonstrated on the simple case of rotation. The rotation matrix is 
given as 

[ 
cosS sinS] 

[x, y] = [u, v] -sinS cosS (7.5) 

We want to transform every pixel in the original image in scanline order. If we scan a row by 
varying u and holding v constant, we immediately notice that the transformed points are not 

being generated in scanline order. This presents difficulties in antialiasing filtering and fails to 

achieve our goals of scanline input and output. 

Alternatively, we may evaluate the scanline by holding v constant in the output as well, and 
only evaluating the new x values. This is given as 

[x, v] = [ucosS-vsinS, v] (7.6) 

This results in a picture that is skewed and scaled along the horizontal scanlines. 
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The next step is to transfonn this intennediate result by holding x constant and computing 

y. However, the equation y = usinS + vcosS cannot be applied since the varial;ie u is rtferenl.:ed 

instead of the available x. Therefore, it is first necessary to express u in tenns of x. Recall that 

x = ucosS - v sinS, so 

x + vsinS 
u= 

cosS 

Substituting this into y = usinS+vcosS yields 

xsinS + v 
y = cosS 

(7.7) 

(7.8) 

The output picture is now generated by computing the y-coordinates of the pixels in the inter

mediate image, and resampling in vertical scanline order. This completes the 2-pass rotation. 

An example of this procedure for a 45° clockwise rotation is shown in Fig. 7.1. 

The stages derived above are directly related to the general procedure described earlier. 

The three expressions for F, G, and H are explicitly listed below. 

1) The ftrst pass is deftned by Eq. (7.6). In this case, Fv(u) = ucosS-vsinS. 

2) The auxiliary function H is given in Eq. (7.7). It is the result of isolating u from the expres

sion for x in mapping function X (u, v). In this case, H:x;(v) = (x + vsinS) / cosS. 

3) The second pass then plugs Hx(v) into the expression for Y(u,v), yielding Eq. (7.8). In this 

case, Gx(v) = (xsinS + v) / cosS. 

7.2.1.5. Bottleneck Problem 

After completing the flrst pass, it is sometimes possible for the intennediate image to col

lapse into a narrow area. If this area is much less than that of the fmal image, then there is insuf

ficient data left to accurately generate the ftnal image in the second pass. This phenomenon, 

referred to as the bottleneck problem in [Catmull 80], is the result of a many-to-one mapping in 

the flrst pass followed by a one-to-many mapping in the second pass. 

The bottleneck problem occurs, for instance, upon rotating an image clockwise by 90°. 

Since the top row will map to the rightmost column, all of the points in the scanline will collapse 

onto the rightmost point. Similar operations on all the other rows will yield a diagonal line as 

the intennediate image. No possible separable solution exists for this case when implemented in 

this order. This unfortunate result can be readily observed by noting that the cosS tenn in the 

denominator of Eq. (7.7) approaches zero as S approaches 90°, thereby giving rise to an undeter
minable inverse. 

The solution to this problem lies in considering all the possible orders in which a separable 

algorithm can be implemented. Four variations are possible to generate the intennediate image: 

1) Transform u ftrst. 

2) Transform v ftrst. 
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3) Rotate the input image by 90° and transfonn u fIrst. 

4) Rotate the input image by 90° and transfonn v fIrst. 

In each case, the area of the intermediate image can be calculated. The method that pro
duces the largest intermediate area is used to implement the transfonnation. If a 90° rotation is 
required. it is conveniently implemented by reading horizontal scanlines and writing them in 
vertical scanline order. 

In our example, methods (3) and (4) will yield the correct result. This applies equally to 
rotation angles near 90°. For instance, an 87° rotation is best implemented by fIrst rotating the 
image by 90° as noted above and then applying a -3° rotation using the 2-pass technique. These 
diffIculties are resolved more naturally in a recent paper, described later, that demonstrates a 
separable technique for implementing arbitrary spatial lookup tables [Wolberg 88c]. 

7.2.1.6. Foldover Problem 

The 2-pass algorithm is particularly well-suited for mapping images onto surfaces with 
closed form solutions to auxiliary function H. For instance, texture mapping onto rectangles that 
undergo perspective projection was fIrst shown to be 2-passable in [Catmull 80]. This was 
independently discovered by Evans and Gabriel at Ampex Corporation where the result was 
implemented in hardware. The product was a real-time video effects generator called ADO 
(Ampex Digital Optics). It has met with great success in the television broadcasting industry 
where it is routinely used to map images onto rectangles in 3-space and move them around 
fluidly. 

The process is more complicated for surfaces of higher order, e.g., bilinear, biquadratic. and 
bicubic patches. Since these surfaces are often nonplanar, they may be self-occluding. This has 

the effect of making For G become multi-valued at points where the image folds upon itself, a 
problem known as fo/dover. 

Foldover can occur in either of the two passes. In the vertical pass, the solution for single 

folds in G is to compute the depth of the vertical scanline endpoints. At each column. the end
point which is furthest from the viewer is transformed fIrst. The subsequent closer points along 
the vertical scan line will obscure the distant points and remain visible. Generating the image in 

this back-to-front order becomes more complicated for surfaces with more than one fold. In the 

general case, this becomes a hidden surface problem. 

This problem can be avoided by restricting the mappings to be non folded, or single-valued. 

This simplifIcation reduces the warp to one that resembles those used in remote sensing. In par
ticular, it is akin to mapping images onto dis toned planar grids where the spatial transformation 
is specifIed by a polynomial transformation. For instance, the nonfolded biquadratic patch can 
be shown to correct common lens aberrations such as the barrel and pincushion distortions dep
icted in Fig. 3.5. 

Once we restrict patches to be nonfolded. only one solution is valid. This means that only 
one u on each horizontal scanline can map to the current vertical scanline. We cannot attempt to 
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use classic techniques to solve for H because n solutions may be obtained for an n'h -order sur
face patch. Instead, we find a solution u = Hx(O) for th,. first hnrizont::tl 5Canline. Since we are 
assuming smooth surface patches, the next adjacent scanline can be expected to lie in the vicin
ity. The Newton-Raphson iteration method can be used to solve for Hx(1) using the solution 
from Hx(O) as a first approximation (starting value). This exploits the spatial coherence of sur

face elements to solve the inverse problem at hand. 

The complexity of this problem can be reduced at the expense of additional memory. The 
need to evaluate H can be avoided altogether if we make use of earlier computations. Recall that 
the values of U that we now need in the second pass were already computed in the first pass. 
Thus, by introducing an auxiliary frame buffer to store these u's, H becomes available by trivial 

lookup table access. 

In practice, there may be many u's mapping onto the unit interval between x and x+l. 
Since we are only interested in the inverse projection of integer values of x, we compute x for a 
dense set of equally spaced u's. When the integer values of two successive x's differ, we take 

one of the two following approaches. 

1) Iterate on the interval of their projections Uj and Uj+1' until the computed x is an integer. 

2) Approximate U by U = Uj + a (Uj +1 - Uj) where a = x - Xj. 

The computed U is then stored in the auxiliary framebuffer at location x. 

7.2.2. Fraser, Schowengerdt, and Briggs, 1985 

Fraser, Schowengerdt, and Briggs demonstrate the 2-pass approach for geometric correc
tion applications [Fraser 85]. They address the problem of accessing data along vertical scan
lines. This issue becomes significant when processing large multichannel images such as 
Landsat mUltispectral data. Accessing pixels along columns can be inefficient and can lead to 
major perfonnance degradation if the image cannot be entirely stored in main memory. Note 
that paging will also contribute to excessive time delays. Consequently, the intermediate image 
should be transposed, making rows become columns and columns become rows. This allows the 
second pass to operate along easily accessible rows. 

A fast transposition algorithm is introduced that operates directly on a multichannel image, 
manipulating the data by a general 3-D permutation. The three dimensions include the row, 
column, and channel indices. The transposition algorithm uses a bit-reversed indexing scheme 
akin to that used in the Fast Fourier Transform (FFT) algorithm. Transposition is executed "in 
place," with no temporary buffers, by interchanging all elements having corresponding bit
reversed index pairs . 
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7.2.3. Fant, 1986 

The central benefit of separable algorithms is the reduction in complexity of l-D resam
pIing algorithms. When the input is restricted to be one-dimensional, efficient solutions are 
made possible for the image reconstruction and antialiasing components of resampling. Fant 
presents a detailed description of such an algorithm that is well-suited for hardware implementa
tion [Fant 86]. 

The process treats the input and output as streams of pixels that are consumed and gen
erated at rates determined by the spatial mapping. The input is assumed to be mapped onto the 
output along a single direction, i.e., with no folds. As each input pixel arrives, it is weighted by 
its panial contribution to the current output pixel and integrated into an accumulator. In terms of 
the input and output streams, one of three conditions is possible: 

1) The current input pixel is entirely consumed without completing an output pixel. 

2) The input is entirely consumed while completing the output pixel. 

3) The output pixel will be completed without entirely consuming the current input pixel. In 
this case, a new input value is interpolated from the neighboring input pixels at the position 
where the input was no longer consumed. It is used as the next element in the input stream. 

If conditions (2) or (3) apply, the output computation is complete and the accumulator 
value is stored into the output array. The accumulator is then reset to zero in order to receive 
new input contributions for the next output pixel. Since the input is unidirectional, a one
element accumulator is sufficient. The process continues to cycle until the entire input stream is 

consumed. 

The algorithm described in [Fant 86] is the principal I-D resampling method used in separ
able transformations. It is demonstrated in the example below. Consider the input arrays shown 
in Fig. 7.2. The first array specifies the values of Fy(u) for U =0,1, ... ,4. These represent new x

coordinates for their respective input pixels. For instance, the leftmost pixel will stan at x = .6 

and terminate at x = 2.3. The next input pixel begins to influence the output at x = 2.3 and 
proceeds until x = 3.2. This continues until the last input pixel is consumed, filling the output 
between x = 3.3 and x = 3.9. 

The second array specifies the distribution range that each input pixel assumes in the out
put. It is simply the difference between adjacent coordinates. Note that this requires the first 

array to have an additional element to define the length of the last input pixel. Large values 
correspond to stretching, and small values reflect compression. They determine the rate at 
which input is consumed to generate the output stream. 

The input intensity values are given in the third array. Their contributions to the output 
stream is marked by connecting segments. The output values are labeled A 0 through A 3 and are 
defined below. For clarity, the following notation is used: interpolated input values are written 
within square brackets ([]), weights denoting contributions to output pixels are written within an 
extra level of parentheses, and input intensity values are printed in boldface. 
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Fy(u) I .61 2.31 3.2 \ 3.31 3.9 1 

My(u) 11.71 .91 .1 1 .6\ 

Input 90 

Output Ao 

Figure 7.2: Resampling example. 

A 0 = (100) «.4)) = 40 

A I = [(100)[ 1- i~] + (106)[ i~]] «1» = 101 

A 2 = [(100) [ 1- : :~] + (106) [ :~]] «.3» + (106) «.7» = 106 

A 3 = [(106)[ 1-~ + (92)[ :; ]] «.2» + (92) «.1» + (96) «.6» = 82 

The algorithm demonstrates both image reconstruction and antialiasing. When we are not 
positioned at pixel boundaries in the input stream, linear interpolation is used to reconstruct the 
discrete input. When more than one input element contributes to an output pixel, the weighted 

results are integrated in an accumulator to achieve antialiasing. These two cases are both 

represented in the above equations, as denoted by the expressions between square brackets and 

double parentheses, respectively. 

7.2A. Smith, 1987 

The 2-pass algorithm has been shown to apply to a wide class of transfonnations of general 

interest. These mappings include the perspective projection of rectangles, bivariate patches, and 

superquadrics. Smith has discussed them in detail in [Smith 87]. 

The paper emphasizes the mathematical consequence of decomposing mapping functions X 

and Y into a sequence of F followed by G. Smith distinguishes X and Y as the parallel warp, and 
F and G as the serial warp, where warp refers to resampling. He shows that an nih-order serial 

warp is equivalent to an (n 2 + n )Ih -order parallel warp. This higher-order polynomial mapping is 

quite different in fonn from the parallel polynomial warp. Smith also proves that the serial 

equivalent of a parallel warp is generally more complicated than a polynomial warp. This is due 

to the fact that the solution to H is typically not a polynomial. 
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7.3. ROTATION 

The earliest separable geometric techniques can be traced back to the application of image 
rotation. Several of these algorithms are reviewed below. 

7.3.1. Braccini and Marino, 1980 

Braccini and Marino use a variant of the Bresenham line-drawing algorithm to rotate and 

shear images [Braccini 80]. While this does not qualify as a separable technique, it is included 
here because it is similar in spirit. In particular, the algorithm demonstrates the decomposition 
of the rotation matrix into simpler operations which can be efficiently computed. 

Consider a straight line with slope nlm, where n and m are both integers. The line is 
rotated by an angle S from the horizontal. The expressions for cosS and sinS can be given in 

terms of n and m as follows: 

cosS 
m = 

~(n2 + m2) 

sinS = n 

~(n2 + m2) 

These terms can be substituted into the rotation matrix R to yield 

R = [CosS SinS] 
-sinS cose 

m [1 n/lm] 
= ~(n2+m2) -(nlm) 

(7.9) 

(7.10) 

The matrix in Eq. (7.10) is equivalent to generating a digital line with slope nl m, an opera
tion conveniently implemented by the Bresenham line-drawing algorithm [Foley 82]. The scale 

factor that is applied to the matrix amounts to resampling the input pixels, an operation which 

can be formulated in terms of the Bresenham algorithm as well. This is evident by noting that 
the distribution of n input pixels onto m output pixels is equivalent to drawing a line with slope 
nlm. The primary advantage of this formulation is that it exploits the computational benefits of 

the Bresenham algorithm: an incremental technique using only simple integer arithmetic compu
tations. 

The rotation algorithm is thereby implemented by depositing the input pixels along a digital 
line. Both the position of points along the line and the resampling of the input array are deter

mined using the Bresenham algorithm. Due to the inherent jaggedness of digital lines, holes 
may appear between adjacent lines. Therefore, an extra pixel is drawn at each bend in the line to 

fill any gap that may otherwise be present. Clearly, this is a crude attempt to avoid holes, a 

problem inherent in this forward mapping approach. 

The above procedure has been used for rotation and scale changes. It has been generalized 



- 84 -

into a 2-pass technique to realize all affine transfonnations. This is achieved by using different 
angles and scale factors along each of the two image axes. Further nonlinear extensions are pos
sible if the parameters are allowed to vary depending upon spatial position, e.g .. space-variant 

mapping. 

7.3.2. Weiman, 1980 

Weiman describes a rotation algorithm based on cascading simpler I-D scale and shear 
operations [Weiman 80]. These transfonnations are detennined by decomposing the rotation 

manix R into four submanices. 

R = [COSS sinSJ 
-sinS cosS 

= [6 tarSJ [-sinJcoss ?J 

(7.11) 

[ 
1 0 J [11 cosS OJ o cosS 0 1 

This fonnulation represents a separable algorithm in which I-D scaling and shearing are 
perfonned along both image axes. As in the Braccini-Marino algorithm, an efficient line
drawing algorithm is used to resample the input pixels and perfonn shearing. Instead of using 
the incremental Bresenham algorithm. Weiman uses a periodic code algorithm devised by Roth
stein. By averaging over all possible cyclic shifts in the code. the transfonned image is shown to 
be properly filtered. In this respect, the Weiman algorithm is superior to that in [Braccini 80]. 

7.3.3. Paeth, 1986/ Tanaka, et. aI., 1986 

The most significant algorithm to be proposed for image rotation was proposed indepen
dently in [Paeth 86] and [Tanaka 86]. They demonstrate that rotation can be implemented by 
cascading three shear transfonnations. 

R = [COSS sinSJ 
-sinS cosS 

= [-tan~S/2) ?J [6 sifSJ [-tan~S/2) ?J 

(7.12) 

The algorithm first skews the image along the horizontal direction by displacing each row. 
The result is then skewed along the vertical direction. Finally. an additional skew in the hor
izontal direction yields the rotated image. This sequence is illustrated in Fig. 7.3. 

The primary advantage to the 3-pass shear transfonnation algorithm is that it avoids a 
costly scale operation. In this manner. it differs significantly from the 2-pass Catmull-Smith 

algorithm which combined scaling and shearing in each pass. and the 4-pass Weiman algorithm 
which further decomposed the scale/shear sequence. By not introducing a scale operation, the 

algorithm avoids complications in sampling. filtering, and the associated degradations. Note. for 
instance, that this method is not susceptible to the bottleneck problem. 
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Figure 7.3: 3-pass shear transformation algorithm. 

Simplifications are based in the particularly efficient means available to realize a shear 

transformation. The skewed output is the result of displacing each scan line differently. The dis

placement is generally not integral. but remains constant for all pixels on a given scanline. This 
allows intersection testing to be computed once for each scanline, noting that each input pixel 

can overlap at most two output pixels in the skewed image. The result is used to weigh each 

input intensity as it contributes to the output. Since the filter support is limited to two pixels. a 
simple box filter is adequate. Furthermore. the sum of the pixel intensities along any scanline 

can be shown to remain unchanged after the shear operation. Thus. the algorithm produces no 
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visible spatial-variant artifacts or holes. Finally, images on bitmap displays can be rotated using 
conventional hardware supporting bitblt, the bit block transfer operation useful for ~nslations. 

7.4. MORE SEPARABLE MAPPINGS 

Additional separable geometric transformations are described in this section. They rely on 
the simplifications of 1-0 processing to perform perspective projections, mappings among arbi
trary planar shapes, and spatial lookup tables. 

7.4.1. Perspective Projection: Robertson, 1987 

The perspective projection of 3-D surfaces has been shown to be reducible into a series of 
fast 1-0 resampting operations [Robertson 87]. In the traditional approach, this task has proved 
to be computationally expensive due to the problems in determining visibility and performing 
hidden-point removal. With the introduction of this algorithm, the problem can be decomposed 
into efficient separable components that can each be implemented at rates approaching real-time. 

The procedure begins by rotating the image into alignment with the frontal (nearest) edge 
of the viewing window. Each horizontal scanline is then compressed so that all pixels which lie 
in a line of sight from the viewpoint are aligned into columns in the intermediate image. That is. 
each resulting column comprises a line of sight between the viewpoint and the surface. 

Occlusion of a pixel can now only be due to another pixel in that column that lies closer to 
the viewer. This simplifies the perspective projection and hidden-pixel removal stages. These 
operations are performed along the vertical scanlines. By processing each column in back-to
front order, hidden-pixel removal is executed trivially. 

Finally. the intermediate image undergoes a horizontal pass to apply the horizontal projec
tion. This pass is complicated by the need to invert the previously applied horizontal compres
sion. The difficulty arises since the image has already undergone hidden-pixel removal. Conse
quently, it is not directly known which surface point has been mapped to the current projected 
point. This can be uniquely determined only after additional calculations. The resulting image 
is the perspective transformation of the input, performed at rates which make real-time interac
tive manipulation possible. 

704.2. Warping Among Arbitrary Planar Shapes: Wolberg, 1988 

The advantages of 1-0 resampling have been exploited for use in warping images among 
arbitrary planar shapes [Wolberg 88a]. The algorithm addresses the following inadequately 
solved problem: mapping between two images which are delimited by arbitrary. closed. planar, 
curves, e.g., hand-drawn curves. 

Unlike many other problems treated in image processing or computer graphics, the stretch
ing of an arbitrary shape onto another. and the associated mapping, is a problem not addressed in 
a tractable fashion in the literature. The lack of attention to this class of problems can be easily 
explained. In image processing. there is a well-defmed 2-0 rectilinear coordinate system. 
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Correcting for distortions amounts to mapping the four corners of a nonrectangular patch onto 
the four corners of a rectangular patch. In computer graphics, a parameterization exists for the 
2-D image, the 3-D object, and the 2-D screen. Consequently, warping amounts to a change of 
coordinate system (2-D to 3-D) followed by a projection onto the 2-D screen. The problems 
considered in this work fail to meet the above properties. They are neither parameterized nor are 
they well suited for four-corner mapping. 

The algorithm treats an image as a collection of interior layers. Informally, the layers are 
extracted in a manner similar to peeling an onion. A radial path emanates from each boundary 
point, crossing interior layers until the innermost layer, the skeleton, is reached. Assuming 
correspondences may be established between the boundary points of the source and target 
images, the warping problem is reduced to mapping between radial paths in both images. Note 
that the layers and the radial paths actually comprise a sampling grid. 

This algorithm uses a generalization of polar coordinates. The extension lies in that radial 
paths are not restricted to terminate at a single point. Rather. a fully connected skeleton obtained 
from a thinning operation may serve as terminators of radial paths directed from the boundary. 
This permits the processing of arbitrary shapes. 

The 1-D resampling operations are introduced in three stages. First. the radial paths in the 
source image must be resampled so that they all take on the same length. Then these normalized 
lists, which comprise the columns in our intermediate image, are resampled in the horizontal 
direction. This serves to put them in direct correspondence to their counterparts in the target 
image. Finally, each column is resampled to lengths that match those of the radial paths in the 
target image. In general, these lengths will vary due to asymmetric image boundaries. 

The fmal image is generated by wrapping the resampled radial paths onto the target shape. 
This procedure is identical to the previous peeling operation except that values are now depo
sited onto the traversed pixels. 

7.4.3. Spatial Lookup Tables: Wolberg and Boult, 1988 

Sampling an arbitrary forward mapping function yields a 2-D spatial lookup table. This 
specifies the output coordinates for all input pixels. A separable technique to implement this 
utility is of great practical importance. The chief complications arise from the bottleneck and 
foldover problems described earlier. These difficulties are addressed in [Wolberg 88c]. 

Wolberg and Boult propose a 2-pass algorithm akin to that in [Catmull 80], with additional 
memory and data structures introduced to guard against the bottleneck and foldover problems. 
The solution lies in careful implementation of function F. Rather than blindly calculating the 
intermediate image without regard for any possible many-to-one mappings, the fIlter that is used 
to perform antialiasing also determines when aliasing is present. While integrating pixels into a 
single-element accumulator array, their y-coordinates are inspected. If they do not all lie within 
a single pixel in the final image, then the bottleneck problem is present. This is an accurate 
measure of bottleneck superior to that in [Catmull 80]. For instance, they suggest that the area 
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of the intermediate image be used to detect bottleneck problems. This, however, is a global 

measure which may fail to highlight severe compressio'1 in ICY.:al areas. Altho'!gh this proves to 

be satisfactory for mappings onto low-order surface patches. it is inadequate for arbitrary map

pings. 

The points subjected to the bottleneck are stored in a list and their processing is deferred 

until the second pass. Thus. the intermediate image actually consists of a combination of prop
erly fIltered pixels and pointers to lists of pixels. The second pass then processes this data along 

vertical scanlines. This approach is shown to resolve the foldover problem as well. 

7.5. DISCUSSION 

Scanline algorithms all share a common theme: simple interpolation. antialiasing, and data 

access are made possible when operating along a single dimension. Using a 2-pass transform as 
an example. the first pass represents a forward mapping. Since the data is assumed to be uni

directional, a single-element accumulator is sufficient for flltering purposes. This is in contrast 

to a full 2-D accumulator array for standard forward mappings. The second pass is actually a 

hybrid mapping function, requiring an inverse mapping to allow a new forward mapping to 

proceed. Namely, auxiliary function H must be solved before G, the second-pass forward map

ping, can be evaluated. 

A benefit of this approach is that clipping along one dimension is possible. For instance, 

there is no need to compute H for a particular column that is known in advance to be clipped. 

This results in some timesavings. The principal difficulty, however, is the bottleneck problem 

which exists as a form of aliasing. This is avoided in some applications, such as rotation, where 

it has been shown that no scaling is necessary in any of the 1-0 passes. More generally, special 

attention must be provided to counteract this degradation. This has been demonstrated for the 

case of arbitrary spatial lookup tables. 
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8. SUMMARY 

Geometric transformation techniques for digital images are a subject of widespread interest. 
They are of practical importance to the remote sensing, medical imaging, computer vision, and 
computer graphics communities. Typical applications can be grouped into two classes: 

geometric correction and geometric distortion. Geometric correction refers to distortion com
pensation of imaging sensors, decalibration, and geometric normalization. It is applied to 

remote sensing, medical imaging, and computer vision. Geometric distortion refers to texture 
mapping, a powerful computer graphics tool for realistic image synthesis. 

All geometric transformations have three principal components: spatial transformation, 
image resampling, and antialiasing. They have each received considerable attention. However, 
due to domain-dependent assumptions and constraints. they have rarely received uniform treat
ment. For instance. in remote sensing work where there is usually no severe scale change. image 
reconstruction is more sophisticated than antialiasing. However. in computer graphics where 
there is often more dramatic image compression, antialiasing plays a more significant role. This 

has served to obscure the single underlying set of principles that govern all geometric transfor
mations for digital images. The goal of this paper has been to survey the numerous contributions 
to this field, with special emphasis given to the presentation of a single coherent framework. 

Various formulations of spatial transformations have been reviewed, including affine and 

perspective mappings. polynomial transformations, piecewise polynomial transformations, and 

four-comer mapping. The role of these mapping functions in geometric correction and 
geometric distortion was discussed. For instance. polynomial transformations were introduced 

to extend the class of mappings beyond affine transformations. Thus, in addition to performing 
the common translate. scale, rotate, and shear operations, it is possible to invert pincushion and 
barrel distortions. For more local control. piecewise polynomial transformations are widespread. 

It was shown that by establishing several correspondence points. an entire mapping function can 

be generated through the use of local interpolants. This is actually a surlace reconstruction prob

lem. There continues to be a great deal of activity in this area as evidenced by recent papers on 

multigrid relaxation algorithms to iteratively propagate constraints throughout the surface. Con

sequently, the tools of this field of mathematics can be applied directly to spatial transforma
tions. 

Image resarnpling has been shown to primarily consist of image reconstruction, an interpo

lation process. Various interpolation methods have been reviewed. including the (truncated) sinc 

function. nearest neighbor. linear interpolation. cubic convolution. 2-parameter cubic filters, and 

cubic splines. By analyzing the responses of their filter kernels in the frequency domain. a com

parison of interpolation methods was presented. In particular. the quality of interpolation is 
assessed by examining the performance of the interpolation kernel in the pass bands and stop

bands. A review of sampling theory has been included to provide the necessary background for 

a comprehensive understanding of image resampling and antialiasing. 

Antialiasing has recently attracted much attention in the computer graphics community. 

The earliest antialiasing algorithms were restrictive in terms of the preimage shape and filter 
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kernel that they supported. For example, box filtering over rectangular preimages were com
mon. Later developments obtained major performance gains by retaining these restrictions but 
pennitting the number of computations to be independent of the preimage area. Subsequent 
improvements offered fewer restrictions at lower cost. In these instances the preimage areas 
were extended to ellipses and the filter kernels, now stored in lookup tables, were allowed to be 
arbitrary. The design of efficient filters that operate over an arbitrary input area and accommo

date arbitrary filter kernels remains a great challenge. 

Development of superior filters used another line of attack: advanced sampling strategies. 
They include supers amp lin g, adaptive sampling, and stochastic sampling. These techniques 
draw upon recent results on perception and the human visual system. The suggested sampling 
patterns that are derived from the blue noise criteria offer promising results. Their critics, how
ever, point to the excessive sampling densities required to reduce noise levels to unobjectionable 
limits. Determining minimum sampling densities which satisfy some subjective criteria requires 

additional work. 

The final section has discussed various separable algorithms introduced to obtain large per
formance gains. These algorithms have been shown to apply over a wide range of transforma
tions, including perspective projection of rectangles, bivariate patches, and superquadrics. 
Hardware products, such as the Ampex ADO and Quantel Mirage, are based on these techniques 
to produce real-time video effects for the television industry. Recent progress has been made in 
scanline algorithms that avoid the bottleneck problem, a degradation that is particular to the 
separable method. These modifications have been demonstrated on the special case of rotation 
and the arbitrary case of spatial lookup tables. 

Despite the relatively short history of geometric transformation techniques for digital 
images, a great deal of progress has been made. This has been accelerated within the last decade 
through the proliferation of fast and cost-effective digital hardware. Algorithms which were too 

costly to consider in the early development of this area, are either commonplace or are receiving 
increased attention. Future work in the areas of reconstruction and antialiasing will most likely 
integrate models of the human visual system to achieve higher quality images. This has been 
demonstrated in a recent study of a family of filters defined by piecewise cubic polynomials, as 
well as recent work in stochastic sampling. Related problems that deserve attention include new 
adaptive filtering techniques, irregular sampling algorithms, and reconstruction from irregular 

samples. In addition, work remains to be done on efficient separable schemes to integrate 

sophisticated reconstruction and antialiasing filters into a system supporting more general spatial 
transformations. This is likely to have great impact on the various diverse communities which 
have contributed to this broad area. 
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